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Motivation

Electrode Design

Why electrochemical CO₂ Reduction on Gas Diffusion Electrodes (GDEs)?
• Sustainable pathway: Employs renewable electricity to reduce CO₂,

supporting greenhouse gas neutrality and climate targets.
• Scalable technology: Converts CO₂ from industrial point sources

(waste incineration, cement, biogenic processes) into value-added
products such as CO, ethylene, and formic acid.

Acidic CO2RR

Electrochemical performance
• We showed comparable performance in

bulk acidic and in alkaline conditions
• HCOOH production up to 500 mA/cm²

with ~90% Faradaic efficiency.
• Local pH in both cases similar due

to product accumulation within
GDE structure
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Conclusion

• Commercial carbon-based GDLs unsuitable for long-term
stability due to too low hydrophobicity and electro-wetting.

• Porous polymer membranes could serve as effective GDLs
due to their high hydrophobicity.

• PTFE membranes resist flooding and prevent electrolyte
intrusion caused by electrowetting.

• Expected durability under prolonged operation in
comparison with commercial GDLs.

Long-term stability
• In circulating flow 

performance breaks 
down in acidic conditions
caused by HCOOH 
accumulation

• In single-pass mode
stable behavior up to
20h demonstrated

• Very low HCOOH concentration
achievable in single-pass mode
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Degradation study
• Long-term degradation

governed by carbonate
precipitation in GDE

• Systematic study via
EIS and DRT

➢ Shorter diffusion path
into bulk electrolyte
desired

From single- to multi-layer GDE assembly 
(Multilayer approach) 
• Highly hydrophobic gas diffusion layer (GDL): 

Prevents electrolyte intrusion and enhances gas 
transport.

• Thin catalyst layer: Minimizes product 
accumulation and improves reaction efficiency.
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200 mA/cm²

100 mA/cm², 12°C to accelerate degradation,
increase of H2 FE from 1% to 15%

Limitations of thick single-layer electrode design

Chen et al. (2024) ACS Energy Letters 

9, 6096-6103.

Double layer capacitance via
EIS SEM/EDX on cross-section
shows electrolyte penetration

• Acidic electrolysis to formic acid is preferred over alkaline conditions due to significant
advantages for down-stream processing; no requirement for protonation of formate and less
carbonate accumulation.

• Current densities and FE already in the range but long-term stability and achievable formic acid
concentrations are still far from the industrial requirements for economically competitive formic
acid production.
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Multilayer design with hydrophobic 
polymer backing

Approach and Methods

➢ PTFE membrane 
electrode

• Continuous electrolyte 
intrusion into the GDE 
caused by electrowetting 
during prolonged 
operation.

• Extended diffusion 
pathways which limit 
mass transport

• Successfully fabricated robust PTFE-based GDEs.

• Electrodes demonstrated catalytic activity with
performance trends indicating that reduced catalyst
layer thickness suppresses HER.

• Further systematic studies are required to
understand electrode structure–performance
relationships.

• Optimizing contacting methods remains a key
challenge.

• Long-term stability and benchmarking versus thick
single layer GDEs currently under investigation.

Material Characteristics

GDE
Binder:Catalyst 

Ratio

Catalyst 
Loading / 
mgcm-2

Coating 
Thickness / 

µm

GDE_A 1:4 0.703 40.28

GDE_B 1:4 0.281 9.28

Performance Evaluation 
• Both electrodes show similar overall trends..
• Catalyst layer with 10µm thickness largely supresses

HER up to 150 mA/cm².
• Thicker layer (40µm) exhibit transport limitation and

yield higher HER.

Air Brushing
Physical 

CharacterizationInk Preparation

• Catalyst: Bi-coated 
acetylene black

• Binder: Fumion FAA-3
• Method: Ultrasonic 

Dispersion

• Multistep-
Chronopotentiometry 

• Range: 0 – 250 mA/cm2
• Step size: 20 minutes

Electrochemical 
Characterization

01 02 03 04

• Uniform thickness
• Parameters: Flow 

rate and volume 
of catalyst ink

• Thickness 
measurement

• Catalyst loading
• SEM/EDX
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