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 A B S T R A C T

Sentinel-1 is a unique resource for global flood monitoring, providing systematic, weather-independent 
Synthetic Aperture Radar (SAR) imagery with unprecedented coverage. To overcome limitations of on-
demand flood mapping services that depend on human operators to collect and interpret satellite images, 
a fundamentally new approach was adopted by the Global Flood Monitoring (GFM) service. This service, 
which was launched in 2021 as part of the Copernicus Emergency Management Service (CEMS), processes all 
Sentinel-1 land images acquired in VV polarisation fully automatically in near-real time. This article presents 
the first comprehensive analysis of GFM’s scientific achievements and challenges during its initial years of 
operation. To map floods reliably under diverse environmental conditions, GFM combines three complementary 
flood-mapping algorithms with reference water datasets to differentiate flooded areas from permanent and 
seasonal water bodies. The service also offers a novel flood-likelihood layer and contextual information to 
highlight areas where flood mapping is unreliable or not feasible. These data layers were derived from a 
global 20 m backscatter datacube containing approximately 379 billion land surface pixels. This datacube 
also made it possible to generate the first global Sentinel-1 flood archive (2015 to present). Our performance 
analysis shows that GFM typically delivers flood maps within five hours of image acquisition. However, a 
significant percentage of floods may go undetected due to coverage gaps. Initial evaluation results show that 
good accuracies are achieved for larger-scale floods and regions in the temperate and tropical zones, while 
accuracies are lower for smaller-scale floods and arid environments. The GFM service will continue to improve 
service quality by enhancing flood detection capabilities using improved algorithms and additional data, such 
as the VH channel from Sentinel-1 or L-band data from the upcoming ROSE-L mission.
I This article is part of a Special issue entitled: ‘Ten years of Sentinel-1 in space (Invitation Only)’ published in Remote Sensing of Environment.
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1. Introduction

1.1. Satellite-based flood monitoring

Significant efforts have been made over recent years to improve 
flood risk management. European and global policy frameworks such as 
the Floods Directive of the European Union and the Sendai Framework 
for Disaster Risk Reduction have enabled the strengthening of pre-
vention, preparedness, and response to floods. While this has resulted 
in a decrease in flood fatalities and economic losses for Europe (Pa-
protny et al., 2018), this is not true for other regions of the world. 
In addition, the increase in weather- and climate-related extremes 
thwarts the achievements in flood risk management. According to the 
Intergovernmental Panel on Climate Change (IPCC), human-caused 
climate change is already affecting many weather and climate extremes 
including floods in every region across the globe (Calvin et al., 2023). 
The large-scale floods in central Europe in mid-September 2024, for 
example, which were caused by record-breaking rainfall over a period 
of four days, have demonstrated again the increasing challenges that 
civil protection and emergency responders are facing in order to reduce 
the impacts of floods on our society and economy (Kimutai et al., 2024).

With the increasing availability of satellite imagery, particularly 
through Europe’s Earth observation programme Copernicus, satellite-
based flood monitoring has become a crucial tool for flood response. 
It offers a rapid and efficient overview of flood situations, especially 
for large-scale flood events. As part of the Copernicus Emergency 
Management Service (CEMS), satellite imagery is routinely used to 
generate flood maps within hours or days, following activation by 
authorised users from European Member States and other countries 
participating in the European Civil Protection Mechanism (Denis et al., 
2016). This on-demand CEMS Rapid Mapping service operates 24/7, 
providing geospatial information on the impact of selected disasters 
worldwide using both optical and radar satellite images (Ajmar et al., 
2017). It involves human experts to collect and process flood data. This 
can cause delays in the delivery of the flood maps, potentially rendering 
the flood maps less effective for rapid response activities.

To accelerate map delivery and maximise coverage, CEMS launched 
the new Global Flood Monitoring (GFM) service in 2021. Using
Sentinel-1 Synthetic Aperture Radar (SAR) data, GFM provides in near 
real-time, continuously, and fully automatically, flood maps together 
with uncertainly information and contextual auxiliary layers. Unlike 
existing regional services or semi-automatic cloud-based workflows, 
GFM enables truly global operations in a cloud computing environment 
without human intervention (except for system maintenance). This 
capability is underpinned by a global Sentinel-1 backscatter datacube as 
described by Wagner et al. (2021). A major scientific innovation is the 
GFM ensemble approach, which integrates three complementary flood-
mapping algorithms. In the following, we outline the key concepts and 
milestones leading to the success of the Sentinel-1 mission and the 
subsequent establishment of the GFM service.

1.2. Systematic observation capabilities of Sentinel-1

The potential of SAR sensors for flood mapping has been recognised 
since the inception of spaceborne SAR missions in the second half of 
the 20th century. Following the launch of Seasat in 1978, the first 
civil satellite equipped with an L-band SAR sensor, researchers started 
exploring the data for flood mapping and water resources evalua-
tion (Imhoff et al., 1987). SAR technology is particularly effective in 
detecting surface water features under cloudy conditions, thanks to 
its ability to penetrate the atmosphere at microwave frequencies and 
the contrasting return signals from smooth water surfaces compared 
to rough terrain (Lewis, 1998). This capability allows SAR to overcome 
the limitations posed by cloud cover, which often obscures visibility for 
optical satellite systems, particularly during the initial phases of a flood. 
Consequently, Imhoff et al. (1987) predicted that SAR would become 
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a powerful tool for measuring and monitoring flood progression as 
satellite-acquired SAR imagery becomes available worldwide in the 
1990s.

This prediction turned out to be only partially true. While the 
first generation of SAR satellites launched in the 1990s, including 
ERS-1 and ERS-2 from Europe, JERS-1 from Japan, and Radarsat from 
Canada, enabled numerous scientific studies that investigated algo-
rithms for extracting flood extent (Oberstadler et al., 1997; Wang, 
2004), their impact on real-world flood monitoring efforts was limited. 
The problem was not the quality of the data, which was excellent 
for a first-generation technology (Meadows et al., 2001), but rather 
data availability. Essentially, due to the lack of frequent observations, 
one had to be ‘‘fortunate’’ to obtain a high-resolution SAR image of 
a flood (Kiage et al., 2005). This had technical and organisational 
reasons. The main technical constraints stem from fixed satellite orbits 
and the high energy demand of high-resolution SAR imaging modes. 
Space agencies tried to mitigate these restrictions by developing SAR 
instruments with multiple imaging modes that enable the acquisition 
of SAR images with varying spatial extents, resolutions, and incidence 
angles (Raney et al., 1991). Consequently, users had to select and 
request appropriate SAR images several days in advance of acquisitions, 
which is very problematic, particularly for flood mapping applications.

Improving data availability during flood situations can be accom-
plished through various strategies. The most straightforward solution 
is to gather data from as many SAR (and optical) satellites as possi-
ble (Voigt et al., 2007), a concept adopted by the International Charter 
on Space and Major Disasters. This strategy is gaining momentum with 
the deployment of large fleets of small, programmable SAR satellites, as 
seen with new commercial SAR data providers (Ignatenko et al., 2024). 
A crucial component for the success of this strategy is to have advance 
knowledge of the locations requiring data collection. This can be facil-
itated by leveraging hydrological model predictions (Boni et al., 2016; 
Wania et al., 2021) and monitoring social media posts (Rossi et al., 
2018). An alternative strategy is to develop SAR missions that provide 
frequent high-resolution coverage without the need for programming-
specific image acquisitions. This was the road chosen for the Sentinel-1 
mission. Instead of offering many different imaging modes like its 
predecessors, Sentinel-1 was developed to operate in a limited number 
of pre-programmed, conflict-free modes, allowing for high-resolution 
imaging of the Earth’s surface with extended swath width and duty 
cycles (Torres et al., 2012). Additionally, from the outset, Sentinel-1 
acquisitions have been scheduled according to a stable and predefined 
observation scenario, with sufficient resource margin to flexibly handle 
emergency requests (Potin et al., 2012). The duty cycle, which deter-
mines the sensor’s effective ground coverage per orbit revolution, is 
probably one of the most overlooked SAR mission characteristics. With 
a duty cycle of 28 min and a swath width of up to 250 km, even a single 
Sentinel-1 satellite achieves a daily global coverage unmatched by any 
of its predecessors or small SAR satellite swarms. For the Sentinel-1 
Next Generation, the duty cycle will be further extended to approxi-
mately 38 min and the swath width to 400 km (Torres et al., 2024).

Sentinel-1 was developed as a constellation of two SAR satellites 
flying in a near-polar sun-synchronous orbit with a 12-day repeat cycle 
(i.e. the time between two successive identical orbits). Together, the 
two satellites achieve a combined orbit repeat cycle of 6 days. The 
first two satellites, Sentinel-1A and Sentinel-1B, were launched in April 
2014 and April 2016, respectively. Unfortunately, Sentinel-1B failed 
prematurely in December 2021. Sentinel-1C was launched in December 
2024 and Sentinel-1D will follow in 2025. The principle Sentinel-1 ac-
quisition mode over land is the Interferometric Wide (IW) swath mode, 
which captures three sub-swaths using an advanced ScanSAR technique 
introduced by De Zan and Monti Guarnieri (2006). This results in 250 
km wide images with a spatial resolution of approximately 3 m in 
range and 22 m in azimuth directions (single look). The on-board SAR 
sensor can emit and receive polarised electromagnetic waves along both 
vertical (V) and horizontal (H) planes. The base configuration over land 
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Fig. 1. Average revisit time of the Sentinel-1 two-satellite constellation over non-polar land. The image was created by collecting all Interferometric Wide (IW) 
swath data acquired by Sentinel-1A and Sentinel-1B in the years from 2016 to 2021.
Fig. 2. Overview of GFM’s main algorithms and workflows, with NRT processes in the top, and offline model layer generation in the bottom.
is to collect IW imagery in VV and VH polarisation. According to the 
Copernicus Sentinel Data Access Annual Report 2023, the Sentinel-1 
mission produces up to 6 terabytes daily and the delivery time of near-
real-time products can be as fast as 1 h after data acquisition. The 
average revisit time (i.e. the time between two subsequent images of 
the same area, which may be observed from different orbits) of two 
Sentinel-1 satellites is illustrated in Fig.  1, based on all IW images 
acquired by Sentinel-1A and Sentinel-1B from 2016 to 2021. Europe 
is covered best, with revisit times generally ranging from 1 to 3 days. 
For other priority regions, as outlined in the observation scenario, the 
average revisit time is between 4 and 6 days. Most other land areas are 
observed every 6 to 12 days, although some individual orbits covering 
high-latitude regions, Africa, islands, and coastal regions have even 
longer revisit intervals.

1.3. SAR-based flood mapping

Flood mapping is among the first and most important applications of 
spaceborne SAR missions (Amitrano et al., 2024). Most flood mapping 
studies start from the premise that backscatter from water surfaces is 
lower than that from surrounding land. Consequently, many algorithms 
concentrate on detecting areas of low backscatter within individual SAR 
images. Assuming that all detected areas represent water surfaces, flood 
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extent is obtained by subtracting permanent water bodies (Twele et al., 
2016; Rahman and Thakur, 2018). The techniques used for mapping 
water surfaces are diverse, ranging from multi-scale thresholding meth-
ods to fuzzy classifiers and deep learning approaches, often enhanced 
by post-processing steps for image improvement (Bentivoglio et al., 
2022; Amitrano et al., 2024). While these algorithms generally perform 
well under ideal conditions, various physical factors can disrupt the 
assumption that backscatter from flooded areas is consistently lower 
than from land. Some effects can even completely obstruct the detection 
of flooded areas.

The physical mechanism responsible for the high contrast in radar 
imagery between flooded and non-flooded terrain is the specular, 
mirror-like reflection of SAR signals from smooth water surfaces, which 
produces very low backscattered amplitude. However, various factors – 
wind, rain, variable water depths, and obstacles obstructing water flow 
– can induce ripples and waves on the water surface that significantly 
increase backscatter (Dasgupta et al., 2018b). Additionally, vegetation 
and other objects that extend above the water’s surface can increase 
backscatter due to direct scattering from these objects and double 
bounce effects occurring between the water surface and the scattering 
elements. In these situations, the contrast between flooded and non-
flooded areas may lessen or disappear entirely. When double bounce 
effects are pronounced, it may even be possible to identify flooded 
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vegetation and urban regions by detecting very strong backscatter 
echoes (Tsyganskaya et al., 2018; Mason et al., 2014).

Even when backscatter from the water surface is low, confusion 
can arise with water-free land areas that also appear dark in SAR 
images (Lewis, 1998; Zhang et al., 2020). These water-lookalike areas 
include sandy (beaches, sand dunes, etc.) and paved (airport runways, 
parking lots, etc.) surfaces, which have a smooth texture at radar 
wavelengths, resulting in consistently low backscatter throughout the 
year. Other land surfaces may exhibit low backscatter only during 
specific seasons or environmental conditions, such as when the soils 
and vegetation are dry, frozen or covered by wet snow (Pulvirenti 
et al., 2014). Additionally, SAR imagery exhibits dark, noisy patches 
in radar shadow regions. All these water-lookalike areas contribute to 
ambiguities in SAR image classification, leading to false alarms. Such 
false alarms can be removed in sloping terrain by using topographic 
indices that derive drainage patterns or valley bottoms from digital 
elevation models (DEMs) (Huang et al., 2017). In flood mapping, prob-
ably the most widely used terrain index is the Height Above Nearest 
Drainage (HAND) index that expresses the height difference between a 
DEM cell and the closest cell of the drainage network along the actual 
flow path (Rennó et al., 2008).

Another, more important way to reduce false alarms is to employ 
change detection techniques that compare a SAR image acquired during 
the flood with a reference SAR image depicting non-flooded condi-
tions (Carincotte et al., 2006; Giustarini et al., 2013; Long et al., 2014). 
The assumption is that only SAR pixels showing a drop in backscatter 
value from the non-flood image to the flood image correspond to 
flooded areas. In addition to minimising the false alarm rate, change 
detection techniques simplify the process of establishing thresholds that 
are effective across various environments and weather conditions (Tu-
pas et al., 2023b), and they eliminate the need for external datasets 
to delineate permanent water surfaces. However, one challenge is 
to select suitable SAR reference images that best represent ‘normal’ 
conditions (Hostache et al., 2012). Furthermore, change detection does 
not solve the problem of underdetection in case the backscatter from 
the flooded areas is elevated due to a rough water surface, emergent 
vegetation, or buildings.

In their review of SAR-based flood monitoring, Amitrano et al. 
(2024) highlight that monitoring floods in vegetated and urban ar-
eas still presents significant challenges due to the complex scatter-
ing mechanisms that impede accurate water region extraction. They 
recommend employing multi-dimensional SAR data (e.g. multi-phase, 
multi-polarisation, multi-frequency) to isolate the different scattering 
mechanisms that contribute to the overall received signal. Further-
more, the thematic accuracy of flood mapping algorithms is often 
enhanced through the integration of ancillary datasets, such as land 
cover information (Wang et al., 2022), radar shadow masks (Rees, 
2000), and topographic indices (Tupas et al., 2023a). Beyond im-
proving mapping accuracy, multi-dimensional SAR data and ancillary 
datasets play a crucial role in estimating retrieval uncertainties and 
delineating exclusion areas where the presence of water simply cannot 
be determined from SAR backscatter observations due to physical 
reasons (Zhao et al., 2021a), as is, for example, the case in tropical 
forest regions (Carreno-Luengo et al., 2024).

On the algorithmic side, machine learning (ML) has become a 
powerful approach for mapping floods using SAR imagery (Bentivoglio 
et al., 2022). Using labelled datasets for training, ML techniques are 
capable of learning complex spatial patterns from the SAR images 
which enhances flood detection and mapping accuracy (Dasgupta et al., 
2018a; Pillai and Dolly, 2025; Fakhri and Gkanatsios, 2025). Earlier-
generation ML methods, such as Random Forests and Support Vector 
Machines, generally yield strong performance within the regions where 
they are trained (Tanim et al., 2022; Panahi et al., 2022; Kurni-
awan et al., 2025; Uddin et al., 2025). However, these methods often 
lack robustness and transferability when applied to different flood 
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events. To address this limitation, deep learning approaches are in-
creasingly adopted, offering improved generalisability across diverse 
scenarios (Bentivoglio et al., 2022; Bereczky et al., 2022; Andrew et al., 
2023; Doan and Le-Thi, 2025). Nevertheless, key drawbacks are the 
need for large, high-quality training datasets and the significant com-
putational time required for model training (Toma et al., 2024; Wieland 
et al., 2024). Furthermore, most machine learning frameworks are still 
black boxes that provide deterministic outputs without uncertainty 
quantification – a critical limitation for decision-making in emergency 
contexts (Destefanis et al., 2025).

1.4. Scope of the flood monitoring service and this article

As noted by Solbo and Solheim already in 2004, operational flood 
monitoring services require fully-automated methods capable of pro-
cessing available SAR data in near real-time (NRT). One of the pioneer-
ing studies that investigated the use of Sentinel-1 SAR data for NRT 
flood mapping was conducted by Twele et al. (2016). They demon-
strated that, without requiring user intervention at any stage of the 
flood mapping process, time-sensitive disaster information could be 
produced in less than 45 min after a new dataset was made available 
on one of the Sentinel data hubs. Recognising the unique opportu-
nities presented by such NRT capabilities to enhance the timeliness 
of information during emergencies, the European Commission initi-
ated a feasibility study for an automated, global, satellite-based flood 
monitoring product. The main conclusion of this feasibility study was 
that state-of-the-art scientific methods for automatically detecting and 
identifying flood events are mature and ready for operational imple-
mentation for Sentinel-1 (Matgen et al., 2019). Following the study’s 
recommendations on the design of the data processing architecture and 
system requirements (Wagner et al., 2020), a fully-automatic global 
Sentinel-1 processing system was set up in less than a year and put 
into operations at the end of 2021 (Salamon et al., 2021). This so-
called Global Flood Monitoring (GFM) service is a new and independent 
component of CEMS, complementing its flood early warnings and on-
demand mapping services (Matthews et al., 2024; Denis et al., 2016). 
All worldwide GFM flood data are freely available in NRT, as well 
as the historic data from an archive covering the complete Sentinel-1 
observation period (from 2015 to present).

The CEMS GFM service is designed to provide continuous global 
flood monitoring by automatically processing and analysing all incom-
ing Sentinel-1 IW images over ice-free land. The flood maps need to 
be accompanied by uncertainty information and a variety of ancillary 
data to enable emergency managers to assess the reliability of the fully-
automatically generated maps. For cost reasons, the service utilises 
so far only one polarisation of the IW images. VV polarisation was 
selected over VH polarisation because studies have shown that VV 
polarisation offers slightly higher thematic accuracy compared to VH 
polarisation (Twele et al., 2016). When there are no delays in the pro-
vision of Sentinel-1 data on the Copernicus data hubs, users can expect 
20 m resolution flood maps within a few hours after image acquisition, 
and as GFM being based on radar, even during cloud coverage or poor 
light conditions. The service employs three independently developed 
flood mapping algorithms to enhance the robustness and accuracy of 
flood and water extent maps, and to build a high degree of redundancy 
into the service. The outputs are binary flood maps together with flood 
likelihood values and detailed contextual information, including data 
layers showing permanent and seasonal water bodies, exclusion areas 
where Sentinel-1 is unable to provide flood data, and environmental 
conditions that may affect the quality of the flood information.

In terms of the data processing efforts alone – without even con-
sidering the complexity of the scientific algorithms – the CEMS GFM 
service stands out as the largest systematic initiative for operational 
SAR-based flood monitoring. Other SAR-based systems typically focus 
on specific regions, lack transparency, or still require some degree of 
user interaction to start SAR data processing. For instance, Ohki et al. 
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Fig. 3. Illustration of the GFM ensemble approach for merging the flood maps and likelihood estimates produced by three independent flood mapping algorithms. 
Prior-computed monthly reference water maps and an exclusion mask are used for masking the ensemble flood map.
Fig. 4. Decision tree on pixel level for generating the GFM ensemble flood map.
(2024) recently introduced the first ALOS-2-based algorithms designed 
for rapid and automated flood detection in Japan. Efforts to create 
regional-scale Sentinel-1-based flood monitoring capabilities have of-
ten leveraged the Google Earth Engine (GEE), which has emerged as 
a powerful web platform for managing large satellite datasets effi-
ciently (Velastegui-Montoya et al., 2023). For example, DeVries et al. 
(2020) describe a method for NRT flood monitoring that combines 
contemporary SAR time series with historical Landsat data on the 
GEE, enabling rapid discrimination of floods and previously inun-
dated areas. Tsyganskaya et al. (2018) present an advanced GEE so-
lution by incorporating both ascending and descending passes, inte-
grating slope and elevation parameters to reduce false positives in hilly
5 
terrains, and optimising on-the-fly processing to eliminate unnecessary 
computations.

The purpose of this paper is to give a comprehensive overview of 
the CEMS GFM service, discussing in Section 2 how the service was set 
up to benefit from novel scientific algorithms and Big Data solutions in 
a cloud platform environment. The service rests on a global Sentinel-1 
backscatter datacube system that allows analysing the complete mission 
data archive for all continental land surface areas. After presenting 
results in Section 3, the technical and scientific challenges encountered 
during the first three years of operations are discussed in Section 4. 
This includes pinpointing the main limitations of the GFM service from 
a user’s point of view and outlining directions for scientific research and 



W. Wagner et al. Remote Sensing of Environment 333 (2026) 115108 
system development to enhance the GFM service. Finally, conclusions 
are presented in Section 5.

2. Methods

2.1. Approach

The task of SAR-based flood mapping is commonly approached from 
an image classification perspective (Manavalan, 2017). In contrast, the 
CEMS GFM service treats it as a geophysical variable retrieval problem, 
similar to methodologies used for soil moisture (Quast et al., 2023) 
or biomass (Santoro and Cartus, 2018) retrievals. The key distinction 
is that image-oriented approaches focus on classifying water surfaces 
visible in SAR images, while geophysical approaches emphasise the 
physical aspects of the problem, taking into account the sensitivity of 
backscatter measurements to the target variable under varying envi-
ronmental conditions. This perspective calls for an accurate description 
of retrieval uncertainties accounting for both the visible and hidden 
components present within a SAR image. Consequently, the CEMS 
GFM service was designed not only to map flooded areas evident in 
the Sentinel-1 images but also to describe the associated uncertainties 
and exclusion cases. It achieves this by leveraging the information 
content of the Sentinel-1 time series and by fusing single-image, dual-
image, and time series-based flood mapping algorithms using ensemble 
approaches. Additionally, contextual information layers are derived by 
combining Sentinel-1 data with ancillary datasets, such as surface water 
data, forest maps and a global settlement dataset.

The GFM workflow is depicted in Fig.  2, illustrating the step-by-
step generation of the GFM data products from the Sentinel-1 IW 
Ground Range Detected (GRD) images and ancillary data. The first 
step of the NRT workflow is to preprocess the GRD images, producing 
geometrically and radiometrically corrected images of the backscat-
tering coefficient 𝜎◦. The 𝜎◦ images are then ingested in a global 
Sentinel-1 datacube (Section 2.4.1) and forwarded to the three flood 
classification algorithms (Sections 2.2.1 to 2.2.3) and the advisory 
flag module (Section 2.3.3). After classifying each 𝜎◦ image using the 
three complementary flood mapping algorithms, they are combined 
using two ensemble approaches that produce a binary flood map and a 
flood likelihood layer, respectively (Section 2.2.4). The NRT workflows 
utilises additional inputs that were derived offline by analysing the 
historic data within the Sentinel-1 datacube along with high-resolution 
ancillary datasets, namely a harmonic backscatter model required by 
the time series algorithm, monthly reference water maps (Section 2.3.1) 
and the exclusion mask (Section 2.3.2). In the following subsections, 
we examine the scientific literature and key arguments that influenced 
the design of the different algorithms and technical solutions. More de-
tailed descriptions of each processing step and the associated technical 
specifications can be found on the Wiki pages of the GFM service (https:
//extwiki.eodc.eu/en/GFM). The Wiki pages also serve as a register of 
the changes made in the GFM implementation. This paper describes 
GFM version v3.2.0 released on 27th November 2024.

2.2. Flood mapping algorithms

The three algorithms used for mapping flood extent have been 
developed by the German Aerospace Centre (DLR), the Luxembourg In-
stitute of Science and Technology (LIST), and the Vienna University of 
Technology (TU Wien). Each algorithm employs distinct strategies and 
data inputs to address the complex scattering mechanisms, resulting in 
outputs that are not directly comparable at first glance (see Table  1). 
The single-image algorithm from DLR estimates the total water extent 
captured in an image, which includes both seasonal and permanent 
water bodies as well as flooded areas. Next, the dual-image algorithm 
from LIST compares the flood image with a recent SAR scene acquired 
from the same orbit, analysing the statistical properties of both the 
backscatter intensity and the changes observed between the two SAR 
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images. It can therefore describe recent water and flood dynamics. 
Finally, the time-series algorithm developed by TU Wien focuses on 
the difference between the flood image and a reference SAR image 
simulated by a harmonic backscatter model that was trained on historic 
Sentinel-1 observations. As a result, the TU Wien algorithm provides 
the flood area in relation to a long-term seasonal mean. The differences 
in the target variables of the three algorithms can be reconciled by us-
ing reference water maps that allow distinguishing between permanent 
inland water, seasonal flooding, and the real flood extent. The main 
scientific concepts behind each of the three algorithms are discussed in 
the following.

2.2.1. Single-image classifier
The algorithm from DLR is designed to derive individual scene-

dependent threshold values for data of various SAR sensors acquired 
with different sensor configurations (i.e., polarisation, beam mode, 
and incidence angle) and estimates the total water extent captured 
in one single image. It was originally developed by Martinis et al. 
(2009, 2015) for automatic flood detection in TerraSAR-X/TanDEM-X 
data, and was adapted to Sentinel-1 data by Twele et al. (2016). The 
classification is initialised by an unsupervised hierarchical tile-based 
thresholding procedure, which solves the water detection problem even 
in large-size SAR data with small a priori probabilities of the class-
conditional densities of water in a time-efficient manner. First, the 
SAR imagery is tiled according to a bi-level quadtree structure and 
a limited number of tiles are selected, which are characterised by a 
high probability of representing a bimodal distribution of the classes 
to be separated (i.e., water and non-water areas). Local threshold 
values are computed from histograms of the selected tiles using a 
parametric thresholding approach (Kittler and Illingworth, 1986). A 
global threshold computed based on the arithmetic mean of the local 
thresholds is applied to the SAR data to derive an initial water mask. 
In order to exclude water-lookalikes and to reduce underestimations, 
the initial classification result is optimised using a fuzzy logic-based 
post-classification approach by combining different information sources 
(backscatter, elevation and slope information as well as size of initially 
derived water bodies). Fuzzy region growing is performed in order 
to iteratively enlarge the water bodies until a tolerance criterion is 
reached and to increase the spatial homogeneity of the detected water 
areas. The HAND index is used to reduce potential misclassification in 
non-flood-prone regions with an empirically defined value above the 
drainage network. Finally, the monthly reference water reference maps 
are used to separate flooded areas from permanent or seasonal water 
bodies.

2.2.2. Dual-image classifier
LIST’s flood mapping algorithm is fundamentally based on a dual-

image approach utilising SAR from the same orbit, applying a sequence 
of statistical backscatter modelling, region growing and change de-
tection (Matgen et al., 2011). It was initially designed to enable an 
automated on-demand mapping of water bodies to support disaster risk 
reduction at large scale. It later evolved into an always-on systematic 
monitoring tool that analyses newly obtained pairs of SAR images 
acquired from the same orbit and updates a regional floodwater extent 
with each new image acquisition (Chini et al., 2017, 2020). This 
algorithm operates iteratively, enforcing a systematic mapping of water 
body and flood dynamics on a large scale. The process is initiated by 
calibrating the parameters of the probability density functions (PDFs) 
to automatically and adaptively retrieve thresholds for the region-
growing process. This involves modelling backscatter values linked 
to open water bodies and changes derived from flood and difference 
images, respectively. The employed hierarchical split-based approach 
identifies specific subsets of the images characterised by a substantial 
amount of water and changed pixels, where the bimodality of the 
histogram becomes evident. This characteristic facilitates a more robust 
estimation of the model parameters. The advantages of this dual-image 

https://extwiki.eodc.eu/en/GFM
https://extwiki.eodc.eu/en/GFM
https://extwiki.eodc.eu/en/GFM
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Fig. 5. GFM’s monthly reference water maps for Bangladesh, with permanent (dark blue) and seasonal water bodies (light blue). (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.)
method include its ability to distinguish between floodwater and pre-
flood water bodies while simultaneously leveraging the fact that image 
pairs allow distinguishing slow and fast changing processes impacting 
backscatter. This allows filtering out categories that exhibit water-
like backscattering values, including shadows and smooth surfaces, as 
well as improving the detection of backscatter reduction caused by 
vegetation and dry soils. Utilising reference and flood images from the 
same relative orbit and with identical incidence angles minimises false 
7 
alarms resulting from varying geometrical acquisition characteristics. 
Furthermore, selecting images that are temporally closest reduces the 
effects of variations in vegetated regions (Zhao et al., 2021b), rendering 
this method particularly effective for Sentinel-1 data, which features a 
6-day repeat cycle and ensures systematic and consistent image collec-
tion. This change detection configuration allows for the identification 
of waters that have emerged since the previous satellite acquisition. 
Subsequently, the algorithm analyses regions where the floodwater 
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Table 1
Main characteristics of the three flood mapping algorithms used within the GFM service.
 Algorithm Single-image Dual-image Time-series  
 Developer DLR LIST TU Wien  
 Target variables Total water area Total water and recently flooded 

area
Flood area compared to seasonal 
mean

 

 Reference image None Last image from same orbit Image simulated with harmonic 
model

 

 Method Hierarchical tile-based 
thresholding

Hierarchical split-based 
thresholding

Bayesian inference  

 Thresholds Automatic tile-based thresholds 
for backscatter

Automatic tile-based thresholds 
for backscatter and backscatter 
change

Fixed threshold of Bayesian 
posteriori probability

 

 Likelihood Fuzzy logic Bayesian inference Bayesian inference  
 Post-processing Region-growing Region-growing Noise filter  
 Main reference Martinis et al. (2015) Chini et al. (2017) Bauer-Marschallinger et al. (2022) 
Fig. 6. Illustration of the approach to estimate the number of affected people 
by superimposing the 100 m Global Human Settlement Layer with the 20 m 
GFM flood map.

might have diminished in comparison to the reference image. The two 
types of detected changes are ultimately employed to update the flood 
extent map generated in the previous satellite cycle.

2.2.3. Time-series classifier
The time-series based flood mapping algorithm is based on two 

decades of research carried out at TU Wien aimed at large-scale mon-
itoring of surface water dynamics from SAR data. Initial research 
concentrated on monitoring wetlands in boreal and sub-arctic envi-
ronments, where simple thresholding methods proved effective due 
to the strong contrast between water bodies and surrounding land 
areas (Bartsch et al., 2007). However, when applying these meth-
ods to regions in Africa (Bartsch et al., 2009) and Asia (Greifeneder 
et al., 2014), it became clear that more sophisticated approaches were 
necessary to account for spatial backscatter patterns. This realisation 
led Schlaffer et al. (2015, 2016) to develop a harmonic backscatter 
model that, after calibration with historical backscatter time series, 
enables the simulation of expected backscatter values for each pixel 
and day of the year. By comparing observed backscatter with ex-
pected values, it becomes possible to identify anomalously low or high 
backscatter, with low values indicating open flood water and high 
values pointing to flooded vegetation. To quantify the uncertainty, the 
difference between observed and expected backscatter was interpreted 
as a measure of confidence, prompting the introduction of PDFs for land 
and open water surfaces, and the estimation of flood probabilities using 
Bayes’ theorem. While Schlaffer et al. (2017) worked with Advanced 
Synthetic Aperture Radar (ASAR) data from the ENVISAT mission, 
which sampled backscatter observations quite uniformly over the entire 
incidence angle range, the application of this method to Sentinel-1 data 
proved challenging due to the mission’s systematic coverage, which 
results in very uneven data sampling at different locations on the Earth. 
Therefore, Bauer-Marschallinger et al. (2022) adopted the Bayesian 
inference model for application with Sentinel-1 IW data collected from 
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different ascending and descending orbits. They also refined the meth-
ods for the masking of radar shadow areas, water-lookalike areas, 
areas of no-sensitivity due to obstructive land cover, and ill-posed SAR 
settings, thereby enhancing classification robustness.

2.2.4. Ensemble algorithms
The GFM ensemble algorithms integrate at the pixel level the results 

from the three individual flood mapping algorithms in order to produce 
two output layers, namely a binary flood map and a flood likelihood 
layer (Fig.  3). The binary flood map is the main GFM output and 
is based on the idea of combining the three flood maps by means 
of a majority voting mechanism. However, there are instances when 
only two or one of the three individual flood mapping algorithms 
produce valid output files for an incoming Sentinel-1 scene. Therefore, 
in order to make best use of all acquired scenes, the ensemble algorithm 
producing the binary flood maps is essentially a decision tree that 
considers several cases (Fig.  4). In the standard case, when all three 
flood mapping algorithms yield valid results, the binary flood map is 
generated by classifying pixels as flooded when at least two of the 
three algorithms had classified the pixels as flooded. In cases where 
one algorithm fails to provide a result, the remaining two algorithms 
ideally reach a consensus. If there is disagreement between them, the 
classification with the greater likelihood is selected. If both algorithms 
disagree but have equal likelihood, the ensemble defaults to classifying 
the pixel as flooded. If only a single algorithm returns a result, this 
result is adopted by the ensemble.

To ensure that known water bodies are not mistakenly marked as 
flooded areas, all results are corrected using the monthly reference 
water maps, which include permanent and seasonal water extents (Sec-
tion 2.3.1). If the majority of algorithms classify a pixel as water but 
it overlaps with a (semi-)permanent water body in the reference water 
map, this flood detection is overwritten. The total water extent can then 
by determined by blending the flood extent and the reference water 
maps. In addition, an exclusion mask as described in Section 2.3.2 is ap-
plied to remove misclassified flood pixels arising from non-sensitivity, 
radar shadow, permanent low backscatter, or topographic distortions. 
Finally, ocean areas are excluded based on the Copernicus Water Body 
Mask.

The second output from the GFM ensemble module, the flood 
likelihood layer, is derived independently from the binary flood layer 
by fusing the flood likelihoods estimates from the three individual 
algorithms (Krullikowski et al., 2023). The flood likelihood indicates 
the probability of flood detection for each pixel. Lower likelihood 
scores signify greater confidence in non-flood classifications, while 
higher values indicate increasing confidence in flood classifications. 
Since the TU Wien’s Bayesian algorithm outputs uncertainties, these 
are inverted to align with the likelihood values of the DLR and LIST 
algorithms before combining them in the ensemble. The ensemble flood 



W. Wagner et al. Remote Sensing of Environment 333 (2026) 115108 
likelihood is then computed as the arithmetic mean of all successfully 
computed likelihood layers from the three individual algorithms. While 
not carried out by the GFM service itself, the flood likelihood layer can 
be easily converted into a binary flood map adapted to local conditions 
by fine-tuning a threshold above which a pixel is classified as flood and 
below it as non-flood.

2.3. Contextual information

Contextual information on local conditions and how they impact 
the SAR measurements is crucial for the correct interpretation of SAR-
based flood maps, allowing users to assess the usability of the flood 
product and the impact of the flood. The first important contextual 
data layers are reference water maps that allow distinguishing between 
flooded areas and the ‘normal’ permanent and seasonal water extent 
as seen by the SAR sensors. To achieve this, the reference water maps 
must also be derived from the same SAR sensor. Failing to do so, 
such as when comparing SAR-derived flood maps with optical surface 
water data, leads to systematic differences related to the different 
physical sensitivities of the sensors. Furthermore, emergency managers 
and other users must be aware of the areas where the SAR sensor 
cannot detect floods due to physical factors. Unfortunately, explicit 
information about exclusion areas is often missing in operational ser-
vices and scientific studies (Lahsaini et al., 2024; Al-Ruzouq et al., 
2024). Furthermore, users must be informed about environmental and 
meteorological conditions that could interfere with flood detection.

The following subsections describe the methods used by the GFM 
service to generate monthly reference water maps, an exclusion mask, 
and advisory flags, which are all tailored to the physical characteristics 
of the Sentinel-1 VV data. Finally, to help GFM users quickly evaluate 
potential flood impacts, the flood maps are combined with land cover 
and population datasets.

2.3.1. Reference water extent
In satellite-based flood mapping, inundation extent is typically 

derived by comparing crisis data with water extent under normal 
hydrologic conditions, either through change detection or by using 
static reference water masks. Change detection often involves man-
ually (O’Grady et al., 2011; Ban and Yousif, 2012) or automatically
(Hostache et al., 2012; Li et al., 2018a) selecting pre-event images 
from the same season. Reference water maps, derived from indepen-
dent sources, can also differentiate flood waters from normal condi-
tions (Martinis et al., 2015; Twele et al., 2016), though their suitability 
depends not only on matching sensor characteristics but also stable hy-
drologic conditions. For areas with seasonal changes, month-by-month 
mapping is preferable to capture temporal variations in surface water 
extent (Martinis et al., 2022). In this context, statistical computations 
on remote sensing time-series data are promising to reflect seasonality 
in the products (Fichtner et al., 2023). Water frequency approaches 
rely on calculating the frequency of water presence over time to 
distinguish permanent water bodies from seasonal ones (Wieland and 
Martinis, 2019). Median image approaches, in contrast, use the median 
pixel values over a reference time period to generate a single, stable 
representation of water extent that smoothens out transient changes, 
making it well-suited for identifying consistent water features.

As recommended by Martinis et al. (2022), the GFM service has 
derived twelve monthly reference water maps, each reflecting the 
extent of both permanent and seasonal water bodies. These reference 
water maps were produced using an ensemble water mapping algo-
rithm based on Sentinel-1 median backscatter intensity data over a 
predefined time period of several years. The first version of the data 
was based upon two years (2019–2020), the most recent one upon 
five years (2017–2021). The ensemble method uses only the DLR and 
LIST algorithms that map water extent and calculate likelihoods for 
each pixel. The TU Wien algorithm was not used as it maps only 
flood areas. In cases where the DLR and LIST algorithms disagree on 
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water classification, the one with the higher likelihood dictates the 
final result. In a post-processing step, an exclusion layer, based on a 
buffered version of the maximum extent of the Landsat-based Global 
Surface Water (GSW) product (Pekel et al., 2016) and the Copernicus 
DEM Water Body Mask (Franks and Rengarajan, 2023), is applied to 
address potential misclassification caused by radar shadows or rough 
surfaces. Fig.  5 shows an example of the GFM reference water maps for 
Bangladesh with strong hydrological variability throughout the year.

2.3.2. Exclusion mask
Even though it may not be apparent from visual inspection, a 

SAR image typically contains many pixels where flood mapping is 
impossible due to land cover and topography (Boni et al., 2016; Zhao 
et al., 2021a). For example, over dense vegetation and urban areas 
C-band backscatter is normally quite stable, making the SAR mea-
surements insensitive to surface inundation. Moreover, water-lookalike 
areas (e.g., flat and impervious surfaces, sandy surfaces) and radar 
distortion areas (e.g., layover and shadow) pose challenges. For identi-
fying affected pixels, a variety of methods and ancillary datasets have 
been developed. Urban areas and dense vegetation can be masked using 
existing land use maps and lidar-derived digital surface models (Mason 
et al., 2018; Grimaldi et al., 2020). Sandy areas, which often mimic 
water surfaces in SAR imagery, can be excluded using a sand exclusion 
layer derived from SAR time series (Martinis et al., 2018). Addition-
ally, geometric and radiometric distortions in SAR images caused by 
topography can be filtered using the HAND index (Huang et al., 2017) 
and DEM-based shadow and layover masks (Mason et al., 2018). For 
the systematic mapping of all these effects at large scales, Zhao et al. 
(2021a) introduced a decision-tree-based approach for generating ex-
clusion maps solely from SAR time series. Similarly, the GFM service 
derived a global exclusion mask based on a statistical analysis of the 
Sentinel-1 datacube, refined using various ancillary datasets. This ex-
clusion mask is an overlay of several thematic sub-masks, each designed 
to address specific effects:

1. No-sensitivity areas: Pixels, where SAR backscatter is largely 
insensitive to flooding, are identified using the Sentinel-1 Global 
Backscatter Model developed by Bauer-Marschallinger et al. 
(2021), a Global Forest Change dataset for vegetation (Hansen 
et al., 2013), as well as static masks for urban regions (Mar-
concini et al., 2020).

2. Non-water low-backscatter areas: Tarmac, sand, and other smooth 
surfaces often display consistently low backscatter values, sim-
ilar to those of open water surfaces. Since it is not feasible 
to differentiate these surface types from water surfaces based 
solely on their backscatter characteristics, all pixels showing low 
backscatter (below −15 dB) in more than 70% of the time series 
and not belonging to the reference water layer are masked.

3. Topographic distortions: Topography can distort the geometric 
and radiometric properties of SAR images. Taking benefit of 
the fact that floods are unlikely at high elevations above the 
nearest drainage, areas with HAND values greater than 15 m are 
excluded (Chow et al., 2016).

4. Sentinel-1 radar shadows: Shadows caused by terrain (e.g., rough 
terrain or forest edges) and non-terrain factors are masked by 
comparing temporal mean backscatter values between ascending 
and descending Sentinel-1 tracks.

5. Insufficient coverage: Areas with no or insufficient historic
Sentinel-1 coverage are excluded, as in these areas no parametri-
sation of the algorithms is possible.

The obtained binary GFM exclusion mask integrates all pixel loca-
tions where the SAR data cannot deliver the necessary information for 
robust flood delineation.
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Fig. 7. (a)-(c) show the thematic exclusion layers, the monthly reference water extent, and the individual floods maps from the three contributing scientific 
algorithms. The GFM ensemble output is shown with the flood likelihood in (d), and the ensemble flood in (e). The scene shows the flood situation on July 
17, 2021, along the river Rhine in Germany, near the city of Wesel. The background shows the temporally aggregated VV backscatter from Sentinel-1 Global 
Backscatter Model from Bauer-Marschallinger et al. (2021).
2.3.3. Advisory flags
While the GFM exclusion masks deal with static effects at high 

resolution, there are many highly dynamic phenomena that can impair 
the detection of flooded areas in SAR images over larger areas. In par-
ticular, the intermittent or semi-permanent occurrence of phenomena 
such as wet snow, frost and dry soil or wind-roughened water can result 
in limited flood mapping capabilities (Pulvirenti et al., 2014; Wieland 
and Martinis, 2019). To address this issue, the GFM service provides an 
advisory flag output layer, whose function is to raise the user’s attention 
in carefully handling flood mapping results within flagged regions. In 
contrast to the exclusion layer, pixels highlighted by the advisory flags 
are not removed from the flood maps. For each incoming Sentinel-1 
scene processed by the flood mapping algorithm, two distinct flags are 
produced in NRT:

1. Low-regional backscatter flag : Dry soil conditions, snow and frost 
can lead to a drop in backscatter, leading to wrongful flood 
mapping results over large areas affected by the specific weather 
conditions. In the GFM service those areas are outlined by 
comparing the monthly backscatter signature with the incoming 
Sentinel-1 scene at a 20 km scale. Pixels with detected low-
backscatter values are then enclosed into a 14 km buffer zone, 
constituting the final advisory-flagged region.

2. Rough water surface flag : Water bodies can be affected by wind 
disturbances on the surface, altering significantly the typical 
backscatter behaviour observed by SAR. Thus, given the calm 
water signature from the backscatter time-series data as a refer-
ence, it becomes possible to delineate water pixels (as indicated 
by the reference water layer) that exhibit a significant increase in 
backscatter. A 5 km buffer zone around the wind-altered water 
pixels is flagged for potential wind impact.
10 
Areas overlapped by both flags are highlighted separately.

2.3.4. Flood impact indicators
When complete and accurate flood maps are available it is possible 

to carry out rapid flood impact assessments by superimposing different 
exposure layers to the final flood map (Cian et al., 2024). While 
Sentinel-1 cannot map flooding in dense urban settings and other exclu-
sion zones, as discussed in Section 2.3.2, the GFM service still computes 
two rapid flood impact indicators to address the critical need for such 
information during emergency situations, namely indices estimating 
the affected population and land cover respectively. The source of 
information for estimating the affected population is the Global Human 
Settlement Layer (GHSL), specifically the GHS-POP dataset (Schiavina 
et al., 2023). This dataset provides a raster representation of population 
distribution and density, indicating the number of people living within 
each grid cell. It is available at various spatial resolutions and for 
different time periods. For the GFM service, the dataset at 100 m 
resolution and with the Epoch 2020 of version R2022A is used. This 
dataset was resampled from 100 m to the 20 m grid used for the 
Sentinel-1 datacube Section 2.4.1. This involved dividing the input 
pixels by the number of 20 m pixels that fit into one 100 m pixel. As 
illustrated by Fig.  6, the affected number of people is then estimated 
by superimposing the GFM flood layer with the resampled human 
population layer.

For obtaining a quick estimate of the affected landcover the GFM 
flood maps are superimposed upon the Global Land Cover dataset 
provided by the Copernicus Land Monitoring Service. The Copernicus 
Global Land Cover dataset includes 23 classes, is available globally 
at a 100 m resolution and is updated annually. This dataset was also 
resampled from 100 m to the 20 m grid. This information allows for 
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an initial assessment of affected land cover or land use types, such 
as determining the extent of agricultural areas impacted by the flood 
within the observed flood extent area.

2.4. Implementation

The scientific methods outlined in the previous section were imple-
mented within a dedicated cloud platform environment to enable its 
global and automatic processing in near real-time, utilising a datacube-
centric processing architecture (Wagner et al., 2020). This allows for 
straightforward comparisons of each incoming backscatter image with 
the entire backscatter history, making it possible to run any type of 
time-series analysis on a per-pixel basis. In terms of storage and compu-
tational requirements, such a datacube solution is far more demanding 
than single-image SAR processing pipelines, such as the one used 
by Twele et al. (2016) to demonstrate the potential of Sentinel-1 IW 
images for fully-automatic flood mapping. However, as already pointed 
out by Cossu et al. in 2009, fast access to both recent and historical 
data requires more advanced cloud platform solutions. Since then, 
advancements in cloud computing technologies (Gomes et al., 2020) 
and datacube solutions (Chatenoux et al., 2021) have greatly enhanced 
capabilities for storing, processing, analysing, and disseminating large 
datasets like those generated by Sentinel-1. The following subsections 
describe the solutions adopted by the GFM service.

2.4.1. Sentinel-1 backscatter datacube
The GFM service builds upon the Sentinel-1 backscatter datacube 

as described by Wagner et al. (2021), which represents a complete 
collection of Sentinel-1 IW data for all continents (except Antarctic) 
sampled to a 20 m fixed-Earth grid. The datacube runs on the cloud 
infrastructure of the Earth Observation Data Center (EODC) (https:
//portal.services.eodc.eu/), enabling both near real-time image-based 
applications and offline analyses of multi-year time series. Like other 
SAR datacube solutions such as realised by the Google Earth En-
gine (Mullissa et al., 2021), it solves the problem of providing fast 
and efficient access to Sentinel-1 backscatter time series by projecting 
all Sentinel-1 IW images, which come as variable swath-based images, 
onto a fixed-Earth grid before tiling. This preprocessing step, though 
resource-intensive, is essential because performing on-demand Range-
Doppler terrain correction is time-consuming, especially when covering 
large regions and/or extended time periods (Navacchi et al., 2022). 
A key feature of this datacube solution is the use of the Equi7Grid 
that employs the equidistant azimuthal projection and divides the 
Earth surface into seven continental zones (Bauer-Marschallinger et al., 
2014). Unlike other commonly used large-area grids, the Equi7Grid 
minimises shape distortions even near the zone boundaries. In compar-
ison to the Universal Transverse Mercator (UTM) based grid as used for 
Landsat and Sentinel-2, the Equi7Grid offers the advantages of a smaller 
number of zones (7 instead of 62) and reduced data redundancy (3% 
instead of 34%) (Bauer-Marschallinger and Falkner, 2023). Thanks to 
these specifications, the yearly data volume per satellite is less than 
50 TB, whereas the number of pixels is approximately 379 billion. 
The backscatter data are stored as sigma nought (𝜎◦) values and not 
as radiometrically-terrain-corrected gamma nought (𝛾◦𝑅𝑇𝐶 ) values as 
proposed by Small (2011). While the latter was recognised by the 
Committee on Earth Observation Satellites (CEOS) as the Analysis 
Ready Data (ARD) format for normalised radar backscatter data, it 
primarily improves the classification of SAR data over undulating 
terrain Dostalova et al. (2022). Its benefits are less obvious in valley 
bottoms and flat areas, which are most relevant for flood mapping. 
Therefore, for the GFM service, we will await the official switch to 
𝛾◦𝑅𝑇𝐶 , which is expected to happen in the 2026+ timeframe.

2.4.2. Near real-time workflow
The NRT data production workflow operates on a fully independent 

processing environment within EODC’s cloud infrastructure. This setup 
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includes 570 virtual CPUs (vCPUs) and 3 TB of memory, distributed 
across multiple worker units to ensure a service availability of 99%. As 
illustrated by Fig.  2, the NRT workflow starts from fetching the latest 
Sentinel-1 IW images. Only Ground Range Detected at High resolution 
(GRDH) images in VV polarisation are used, while VH polarisation is 
neglected. The incoming scenes are then preprocessed and registered 
in the datacube. The output of the preprocessing routine is encoded 
and gridded SAR data ready for both spatial and temporal analysis. 
The Equi7Grid with a 20 m pixel spacing and a 300 km gridding (T3 
level) serves as efficient working grid representation for all steps in 
the data processing workflow. Therefore, all input datasets, including 
auxiliary datasets from external sources, must be re-projected to the 
Equi7Grid beforehand. This effort during ingestion enables direct and 
fast access during service operations. After the successful preprocessing, 
the NRT flood data production workflow is triggered. First, the tiled 
backscatter as well as auxiliary datasets are mosaicked and cut to cover 
the whole extent of the input Sentinel-1 scene. As a next step, the 
processing of the individual flood mapping algorithms is initiated. For 
the dual-image classifier described in Section 2.2.2 the previous image 
acquired from the same orbit is extracted as additional input. Once the 
individual algorithms have been executed, their results are registered 
in dedicated databases and the ensemble algorithm is triggered. In 
the ensemble, described in Section 2.2.4, the observed flood extent, 
likelihood values, observed water extent and the exclusion mask are 
produced and afterwards registered. As a last step, the ensemble out-
puts are re-projected to the WebMercator projection which is used in 
the dissemination system described in Section 2.4.3.

2.4.3. Open data access
As highlighted by Mostafiz et al. (2022), flood information should 

be easily accessible and continuously evaluated to maximise its use-
fulness for both the public and professionals. Accordingly, GFM data 
are freely available and accessible to all stakeholders upon registration. 
To meet the needs of diverse users, several dissemination systems 
have been established (Table  2). One way to visualise the GFM flood 
maps is to use the map viewers of the European Flood Awareness 
System (Matthews et al., 2025) and the Global Flood Awareness Sys-
tem (Matthews et al., 2024). These map viewers enable users to visu-
alise all GFM product layers and manually download data for specific 
areas of interest (AOI). For more flexible downloading, including single 
files or time series for one or multiple GFM output layers, a set of ap-
plication programming interfaces (APIs) following the Representational 
State Transfer (REST) standard has been implemented. This standard 
facilitates access to web resources using a predefined set of opera-
tions, allowing for seamless integration with virtually any programming 
language (Iadanza et al., 2021). For the analysis of the GFM data in 
Geographic Information System (GIS) environments, a web mapping 
service based on the GeoServer technology was established. Finally, a 
dedicated webportal was set up to enable users to define AOIs, display 
and download the available products for the AOI, and configure the 
notifications for any new available data. All mentioned systems provide 
the latest available imagery for each Sentinel-1 overpass. Moreover, 
users can also request the full time-series (or a subset) of all the 
archived data products. Considering the constantly growing volume 
of the generated GFM output data, encompassing the whole archive 
as well as NRT data, easy discoverability and access in a program-
matic way is vital to include GFM data into processing workflows 
and applications (Groth et al., 2024). That is why, additionally to the 
aforementioned data access methods, we have published the GFM data 
as an open access collection utilising Spatio-temporal Asset Catalogs 
(STAC). This enables users to search the whole GFM output data for 
regions and time ranges of interest. Filtering based on output-specific 
metadata such as the amount of flooded pixels is also possible. The GFM 
output data itself is stored in the cloud-optimised GeoTiff (COG) format 
in order to improve data reading efficiency and be ready for scaleable 
processing workflows.

https://portal.services.eodc.eu/
https://portal.services.eodc.eu/
https://portal.services.eodc.eu/
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Table 2
Access mechanisms for the GFM flood products.
 Access Description Link  
 Web viewers GFM viewers integrated into the web viewers of 

the Global Flood Awareness System (GloFAS) and 
the European Flood Awareness System (EFAS)

https://global-flood.emergency.copernicus.eu/
https://european-flood.emergency.copernicus.eu/

 

 REST API RESTful APIs written in Python with the Flask 
framework for web applications

https://api.gfm.eodc.eu/v2/  

 Web Map Service GeoServer implementation to support web-based 
GIS analysis

https://geoserver.gfm.eodc.eu/geoserver/gfm/wms  

 Web portal Dedicated webportal tailored for operational GFM 
applications

https://portal.gfm.eodc.eu/  
Table 3
The ten data layers of the CEMS GFM product. COG stands for cloud optimised GeoTIFF, GeoJSON is a format for encoding a different geographic data structures, 
and KML is a file format used to display geographic data in Earth browsers.
 Name Description Sections Data formats  
 Observed Flood 
extent

Flooded areas observed by Sentinel-1, mapped by applying 
an ensemble majority voting on three scientific algorithms

2.2, 2.2.4 Raster (COG) and 
vector (GeoJSON)

 

 Total water 
extent

Total water extent by blending observed flood extent and 
reference water extent

2.2.4 Raster (COG) and 
vector (GeoJSON)

 

 Reference water 
extent

Monthly maps of permanent and seasonal water extent 
derived from median Sentinel-1 backscatter images using the 
single- and dual-image algorithms

2.2, 2.3.1 Raster (COG) and 
vector (GeoJSON)

 

 Exclusion mask Unclassified areas due to topography and lack of sensitivity 
of Sentinel-1 (forests, cities, smooth surfaces, insufficient 
coverage)

2.3.2 Raster (COG)  

 Flood likelihood Likelihood of a pixel being flooded derived by averaging the 
likelihoods from the three scientific algorithms

2.2.4 Raster (COG)  

 Advisory flags Flags indicating potential misclassifications due to 
environmental conditions (dry soils, frost, snow, wind)

2.3.3 Raster (COG)  

 S-1 footprint & 
Metadata

Sentinel-1 acquisition parameters inherited from IW image 2.4.2 KML  

 S-1 schedule Next scheduled Sentinel-1 acquisition 2.4.2 KML  
 Affected 
population

Number of people in affected areas, mapped by overlaying 
the flood map with population data

2.4.2 Raster (COG)  

 Affected land 
cover

Flood land cover classes, mapped by overlaying flood map 
with land cover data

2.4.2 Raster (COG)  
3. Results

3.1. GFM data product

The fully-automatic algorithms and workflows described in the 
previous section yield ten data layers that are included in the GFM 
data product. As can be seen from Table  3, the main output layer is 
the observed flood extent. Context is provided by the reference water 
maps, the exclusion mask, the advisory flags, and the flood impact 
indicators. The observed water extent is the combination of the ob-
served flood extent and the reference water extent. The flood likelihood 
layer quantifies the uncertainty of the flood mapping algorithms and 
has turned out to be a valuable output layer in its own right. These 
data fields are complemented by metadata inherited from the Sentinel-1 
IW swath products, including the image boundaries (footprint), and 
the next scheduled Sentinel-1 acquisition. The latter is important for 
emergency managers who are awaiting updates on the flood situation.

An exemplary GFM data product is shown in Fig.  7. This scene 
depicts flooded areas along the river Rhine in the province of North 
Rhine-Westphalia, Germany, during the disastrous flooding that hit 
Germany and the Benelux countries in July 2021 (Tradowsky et al., 
2023). As can be learned from the backscatter image shown as back-
ground of the flood map in Fig.  7e, the region is characterised by a 
mix of agricultural fields, forests, urban areas (including the city of 
Wesel in the southwestern part of the image), and several permanent 
water bodies. Many forest areas, such as the ‘‘Uedemer High Forest’’ in 
the western part of the image, are located in more elevated terrain. 
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The different landscape features are well captured by the exclusion 
mask layers as discussed in Section 2.3.2. Most of the exclusion areas 
are a result of the presence of forests and urban areas (no backscatter 
sensitivity) and elevated terrain (high HAND index values). In this area 
there are few non-water low-backscatter areas, mostly situated near 
water bodies contained in the reference water map. Potentially these 
represent new water bodies or errors in the reference water map. Radar 
shadow areas are very small and mostly located along forest edges, as 
is typical outside mountainous regions. Some erroneous radar shadow 
areas can be observed along the river course, likely caused by river 
currents or ships, which can impact ascending and descending SAR 
acquisitions differently.

As can be seen by comparing Figs.  7a to 7c, the flood maps gen-
erated by the three individual algorithms agree very well. While a 
systematic evaluation of the differences between the three algorithms 
is outside the scope of this paper, we found a satisfying agreement for 
most of the analysed large-scale flood events. However, local differ-
ences near the borders of the flooded areas may arise, for instance, 
from the way in which each algorithm incorporates region-growing 
and filtering processes. Nevertheless, for our example, the ensemble 
flood map shown in Fig.  7e closely resembles the individual maps. Of 
particular interest is the comparison with the flood likelihood layer dis-
played in Fig.  7d. As expected, high flood likelihood values correspond 
to areas identified as flooded in the ensemble flood map. Additionally, 
it is encouraging to note that in this particular case medium likelihood 
values are found only near the flooded areas and permanent water 
bodies, while further away flood likelihood values are consistently 

https://global-flood.emergency.copernicus.eu/accounts/login/?next=/glofas-forecasting/
https://european-flood.emergency.copernicus.eu/efas_frontend/#/home
https://api.gfm.eodc.eu/v2/
https://geoserver.gfm.eodc.eu/geoserver/gfm/wms
https://portal.gfm.eodc.eu/
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small. This suggests that the flood likelihood layers can provide a more 
complete picture of the flood situation, by allowing to identify even 
pixels that are only partially flooded or more challenging to interpret. 
This impression is further strengthened when checking other flood 
cases where the flood likelihood values often depict the river course, 
whereas the flood map remains patchy.

3.2. Timeliness of production

As the timely dissemination of flood maps is crucial for disaster re-
sponse efforts, a core requirement of the GFM service is delivering GFM 
output data within 8 h after each Sentinel-1 SAR acquisition. In line 
with the technical specifications issued by the European Commission in 
2020, procedures have been put in place to ensure and evaluate service 
quality. A set of Key Performance Indicators (KPIs) is used for quarterly 
monitoring of GFM product performance (Seewald et al., 2024). The 
first KPI measures the percentage of time the service was available to 
users, with a target value of ≥ 99%. A monitoring system keeps track 
of the availabilities of all user-facing components of the GFM service. 
For the year 2023, a value of 99.80% was reached. The second KPI 
tracks the percentage of products delivered within the required 8 h 
timeframe from actual observation of a Sentinel-1 scene to availability 
of the data on the user front ends. A typical timeline is illustrated in Fig. 
8: The availability of new Sentinel-1 IW GRDH images is monitored by 
querying the Copernicus Data Space Ecosystem every 10 min. Down-
loading and pre-processing the data on the EODC cloud infrastructure 
takes less than 10 min and 35 min respectively. The time required for 
the three scientific algorithms and the ensemble product varies more 
strongly, from 15 to 60 min with an average of approximately 45 min 
depending on the complexity of the SAR scene. Post-processing and 
placing the data on the user front ends takes less than 10 min. On days 
when the Sentinel-1 ground segment operates nominally, the total time 
from sensing to dissemination is under 5 h, whereas the time from data 
upload on the Copernicus Data Space Ecosystem to delivery to the users 
is less than 2 h. In best-case scenarios, the system achieved a timeliness 
from sensing to dissemination even below 90 min.

3.3. Archive processing

In addition to the NRT delivery of the GFM flood products, we have 
created a complete GFM data archive using all available Sentinel-1 
IW acquisitions from 2015 onwards, totalling approximately 2 million 
scenes. This offline processing was conducted in the high-performance-
computing environment at the Vienna Scientific Cluster (https://vsc.ac.
at/). The GFM archive is continuously expanding, with efforts focused 
on ensuring compatibility between the software versions used for both 
NRT and archive processing chains. The first version of the GFM data 
archive, based on GFM NRT version v2.1.0, was released end of 2023. 
The current version of the archive was processed with GFM NRT 
version v3.1.0 in early 2024, and was released in early 2025. The 
GFM data archive can be accessed as described in Section 2.4.3. The 
GFM archive processing precedes a comparable effort by Misra et al. 
(2025), who create a 10 year-long Sentinel-1 flood data record using 
a Neural Network model trained with manually labelled SAR images 
from selected large-scale flood events.

3.4. Exclusion mask

Table  4 summarises the percentage of land covered by the exclusion 
mask and its three main thematic sub-masks for the six continents 
as well as the global total. On average, 69.9% of global land area is 
covered by the GFM exclusion mask. The largest contribution comes 
from the topographic distortions sub-mask (54.2%, including large 
portions of elevated areas that are not prone to floods), followed by 
non-sensitive areas (31.98%, primarily dense forests and urban areas), 
and low-backscatter areas (11.78% of global land, mainly arid regions). 
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Fig. 8. Timeliness of the GFM service, with maximum durations under regular 
conditions between acquisition from Copernicus, GFM main processing mod-
ules, and product dissemination. NRT-3 h and FAST-24 h refer to Copernicus’ 
Sentinel-1 timeliness categories.

Note that the values are not additive due to overlap of the sub-masks, 
e.g., mountain forests are contained in both the topographic distortions 
and non-sensitive areas sub-masks.

The extent of the exclusion mask varies between continents, re-
flecting differences in land cover, climate, and topography. South 
America shows the highest overall exclusion rate (81.7%), resulting 
from the combined effect of the Amazon rainforest, which dominates 
the non-sensitive areas sub-mask (51.7%), and the Andes mountains, 
which contribute substantially to the topographic-distortion sub-mask 
(59.3%). In contrast, Oceania has the lowest exclusion fraction (58.8%), 
likely due to a strong overlap between the topographic-distortion 
sub-mask (56.0%) and the non-sensitive areas sub-mask (31.1%). For 
low-backscatter areas, Africa shows by far the highest excluded fraction 
(25.1%), followed by Asia (14.5%) and Oceania (11.5%), whereas 
South America, North America, and Europe each remain below 10%. 
This distribution is consistent with the geography of arid and sandy 
environments: Africa contains the world’s largest hot desert regions, 
Asia includes extensive arid zones such as the Arabian and Gobi 
deserts, and Oceania covers much of the Australian outback. In con-
trast, low-backscatter areas are less extensive in the Americas and 
Europe. Topographic distortions affect a much larger share of land 
across all continents, with exclusion rates ranging between 47% and 
59%. Since all pixels more than 15 m above the nearest drainage 
are masked (HAND>15), these consistently high fractions are expected 
given the ubiquity of mountainous and elevated terrain.

3.5. Coverage of flood events

A high spatio-temporal data coverage is essential for effective flood 
monitoring. To identify gaps in Sentinel-1 satellite observations and 
detection capabilities, we evaluated the data coverage by assessing 
the performance of the GFM service in detecting 104 flood events 

https://vsc.ac.at/
https://vsc.ac.at/
https://vsc.ac.at/
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Fig. 9. Overview on the coverage analysis of 104 flood events from 2022–2024 listed in Table  8. See results also in Table  5. Flood events are detected (blue 
circles) or missed (dark yellow circles) by GFM with Sentinel-1A. The red circles show cases where no Sentinel-1 image was acquired over the entire flood 
duration as reported in the GDACS database. The size of the circles illustrates the events’ duration. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.)
Table 4
Percentage of land [%] covered by the exclusion mask (all layers combined) and its three most important thematic sub-masks for the six continents (AF: Africa, 
AS: Asia, EU: Europe, NA: North America, OC: Oceania, SA: South America) and all global land area (except Antarctica). Values are not additive due to overlap 
among sub-masks.
 Layer AF AS EU NA OC SA Global 
 Non-sensitive areas 25.3 26.9 27.5 29.5 31.1 51.7 32.0  
 Low-backscatter areas 25.1 14.5 5.3 9.4 11.5 4.9 11.8  
 Topographic distortions 47.7 54.6 56.6 51.0 56.0 59.3 54.2  
 Combined Exclusion mask 71.6 71.1 70.3 66.0 58.8 81.7 69.9  
Table 5
Summary of flood events detection performance by continent.
 Continent Events Detected Missed No Data 
 Europe 20 19 1 0  
 Asia 20 14 3 3  
 South America 20 14 4 2  
 Africa 20 13 7 0  
 North America 15 9 3 3  
 Oceania 9 4 3 2  
 Total 104 73 21 10  

from all continental regions (except Antarctica). These events were 
identified using the Global Disaster Alert and Coordination System 
(GDACS), a cooperation framework between the United Nations, the 
European Commission, and disaster management organisations world-
wide (https://gdacs.org/). GDACS provides details such as affected 
regions, event duration, fatalities, and displacement figures, supporting 
disaster response and coordination during major emergencies. Our 
dataset contains all large- and medium-scale flood events that occurred 
between 2022 and 2024, ensuring comprehensive coverage of signifi-
cant global floods during this period. In addition, 67 small-scale flood 
events were included to obtain up to 20 flood events per continental 
region and test the ability of the GFM service to detect less severe 
events. Note that during this period only Sentinel-1A was operational. 
With Sentinel-1C now in orbit the mission re-established the nominal 
coverage with a two-satellite constellation in the course of 2025. The 
results of this analysis are summarised in Fig.  9 and Table  5; the 
complete list of flood events is provided in the Appendix in Table  8.

As can be seen from Table  5, the GFM service detected 70.2% of 
the selected flood events (73 out of 104), while 21 events (20.2%) 
were not detected, most likely due to unfavourable timing of the 
Sentinel-1 acquisition or possible failures of more than one algorithm: 
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For 10 events (9.6%) no Sentinel-1 data were acquired. Fig.  9 illus-
trates how detection performance of Sentinel-1A varied significantly 
across continents: Europe, benefitting from the best overall coverage, 
demonstrated the highest success rate, detecting 95% of events (19 out 
of 20). Asia and South America followed with a 70% detection rate, 
although several events were missed in both regions. Africa showed a 
detection rate of 65%, with 7 out of 20 events undetected, while in 
North America, 60% of events (9 out of 15) were detected and 3 were 
missed. Oceania, with the smallest sample size of 9 events, exhibited 
the lowest performance, with GFM detecting 4 events, missing 3, and 
encountering 2 instances of unavailable Sentinel-1 observations.

3.6. Accuracy of flood maps

In addition to timeliness and coverage, the thematic accuracy is 
the third KPI for evaluating the effectiveness of the GFM service. As 
stipulated by the European Commission, the thematic accuracy of the 
flood maps is quantitatively evaluated based on a comparison with 
independent reference datasets generated by regular off-line visual 
interpretation and digitisation of flood extent, by experienced image 
interpreters, using the same Sentinel-1 image datasets. Given that the 
scope of the GFM service is to provide a fully operational, automated 
global monitoring of all major flood events, continuously and in near 
real-time, this is considered an apposite method for assessing the 
thematic quality of the GFM product.

As the GFM service cannot exploit more information than what is 
contained in the Sentinel-1 VV-polarised IW imagery itself, the main 
question is how well do the algorithms extract the flooded areas visible 
in the Sentinel-1 images? Note that this is a different question from 
asking how well do Sentinel-1 flood maps capture the total flood 
extent? In the latter case, also the basic sensor limitations play a big 
role. Nevertheless, since these questions are closely related, also efforts 
targeted to deepen our understanding of the physical characteristics of 

https://gdacs.org/


W. Wagner et al. Remote Sensing of Environment 333 (2026) 115108 
C-band VV backscatter measurements and the efficacy of the various 
contextual layers were undertaken. At the individual algorithm level, 
the algorithm development teams have conducted a series of case 
studies to examine specific aspects of their algorithms and advanced 
techniques for exploiting the Sentinel-1 data (Zhao et al., 2022; Tupas 
et al., 2023b,a; Roth et al., 2023; Martinis et al., 2024; Tupas et al., 
2024; Garg et al., 2024; Roth et al., 2025). At the GFM product level, 
the ensemble flood maps have been evaluated for selected flood cases 
(3 every quarter of a year) and systematically on a global level, as 
discussed in the following.

In the dedicated GFM evaluation activities, the accuracy is de-
termined by comparing the automatically derived GFM binary flood 
maps with human-interpreted Sentinel-1 images and computing various 
accuracy metrics based upon the error matrix, primarily the Overall 
Accuracy (OA) and the Critical Success Index (CSI). The OA can be 
regarded as a detection-oriented measure (binary presence/absence), 
providing a global assessment of correctly classified flood and non-flood 
pixels. However, as the non-flood class dominates outside of flood-
affected areas, the OA can be biased towards non-flood accuracies. The 
CSI, by contrast, reflects the extent-oriented accuracy (spatial precision) 
of the flood mapping by quantifying the overlap between predicted 
and reference inundation, and it is particularly suited for accuracy 
assessments where the classified events (in our case floods) are much 
less frequent than the non-occurrence of the event (Wilks, 2011). In 
our context, the CSI is the number of correct flood pixels divided by the 
total number of flood pixels in either the GFM flood map or the human-
interpreted reference map. Like the OA, it scales between 0 (worst 
possible) and 100% (best possible value). For service implementation 
purposes, the GFM accuracy target, or the minimum accuracy that 
should be achieved for considering the flood mapping results to be 
‘‘good’’, was defined by the European Commission as a CSI value of 
at least 70%. This threshold balances user needs for reliable flood 
information in emergency response with practical performance limits 
of fully-automatic workflows. It is also consistent with the scientific 
literature, where a CSI score exceeding 70% is commonly considered 
indicative of a good model performance, while values below 50% are 
generally regarded as poor (Risling et al., 2024). Indeed, if the range 
of CSI values (0%–100%) is considered as a five-category increasing 
qualitative scale of classification accuracy (e.g. ‘‘very poor’’, ‘‘poor’’, 
‘‘fair’’, ‘‘good’’, and ‘‘very good’’), then the mid-point of the fourth 
quantile (i.e. 70%) is an appropriate threshold for considering classi-
fication results to be ‘‘good’’. We note that the CSI has several other 
denominations (Godet et al., 2024), such as the Threat score, Jaccard 
Index, or Intersection over Union (IoU) score.

We acknowledge that using human-interpreted Sentinel-1 images to 
evaluate the quality of the GFM algorithms introduces some uncertainty 
due to the subjective nature of manual image analysis (Landwehr 
et al., 2024). Although interpreters were trained and had access to 
optical imagery and other supplementary data, human errors are likely 
and were not systematically quantified (e.g., through inter-annotator 
disagreement studies). Consequently, lower CSI and OA values may 
not solely reflect limitations in the GFM algorithms but could also 
arise from human interpretation errors. Nonetheless, given the lack of 
other systematic reference data, we consider these expert-interpreted 
reference maps to be crucial for regularly verifying product quality and 
gaining insights into potential errors within the GFM maps. It is also 
worth noting that hand-labelled reference datasets are commonly used 
in machine learning (Bonafilia et al., 2020; Bountos et al., 2023).

As results for the current GFM version v3.2.0 are not yet available, 
we report here results from version v2.1.0 that was used for generating 
the first version of the GFM data archive (Section 3.3). When computing 
OA and CSI values for 12 selected flood events, which occurred between 
2017 and 2023, Seewald et al. (2024) found consistently high OA val-
ues (>95.0%), while CSI values varied strongly, from 11.0% to 81.1%. 
The accuracy target was reached for 7 of the 12 events. For the system-
atic evaluation at global scale, a method similar to the one used for the 
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Table 6
Global evaluation results for permanent water, seasonal water, 
and flood pixels, showing Overall Accuracy (OA) and Critical 
Success Index (CSI) together with their 95% confidence intervals.
 Class OA [%] CSI [%]  
 Permanent water 95.9 ± 0.2 64.1 ± 0.7 
 Seasonal water 74.4 ± 0.4 55.2 ± 0.8 
 Flood 72.0 ± 0.4 43.7 ± 0.8 

evaluation of the GSW product of Pekel et al. (2016) was employed. Fol-
lowing the guidelines given by Card (1982) and Olofsson et al. (2014), 
a stratified random sampling approach was implemented to evaluate 
how accurately a particular pixel is mapped into the categories of per-
manent water, seasonal water, flood, or other areas. For establishing the 
reference data base consisting of tens of thousands of individual points, 
a tool was implemented that allowed trained interpreters to perform a 
blind validation (i.e., without prior knowledge of the mapped class) of 
the sample points based on the production imagery (i.e., Sentinel-1), 
with visual support from Sentinel-2, and various very high resolution 
images provided via Google and Bing Areal maps. For Sentinel-1 and 
Sentinel-2, pre- and post-event time series were provided to facilitate 
the identification of flood events. Each sample point was interpreted 
multiple times to assess interpretation uncertainty. The results of the 
global assessment are summarised in Table  6. This table shows globally-
aggregated and area-weighted OA and CSI values for the three water 
classes: permanent water, seasonal water, and flooded areas. Whereas 
the OA values suggest a high accuracy for the permanent water body 
class, seasonal water and flooded areas reach OA values of 74.4% 
and 72.0%, respectively. The CSI values are lower, ranging between 
43.7% for the flood class to 64.1% for the permanent water body 
class. To get a better understanding of the flood detection capability 
under various environmental conditions, the ∼55,000 sample points 
were assigned to global environmental zones as proposed by Metzger 
et al. (2013). These zones are mainly differentiated according to their 
temperature (growing degree-days) and aridity (from arid, xeric, dry, 
mesic, moist, to wet). As can be seen in Table  7, the best validation 
results are obtained for regions in the temperate and tropical zones, 
while lower accuracies are typically observed in arid environments. 
This is in line with expectations given the difficulties in distinguishing 
sand from water in SAR images (Martinis et al., 2018; Garg et al., 
2024). Overall, these results suggest that the accuracy target had not 
yet been reached for the investigated archive version. Further work is 
required to determine of how much the CSI values can be increased 
through improvements in the algorithms, or, as will be discussed in 
Section 4.8, whether lower CSI values could partially be attributed to 
intrinsic constraints in the statistical analysis and uncertain reference 
data.

4. Discussion

4.1. A paradigm shift in SAR-based flood monitoring

While there are already fully-automatic global flood monitoring 
services based upon optical satellite data (Li et al., 2018b), the GFM 
service is the first of its kind in the SAR domain, benefitting from 
the radars’ capability to observe day and night under all weather 
conditions. Some of the experiences made during its first three years of 
operation aligned with our anticipations while others were unexpected. 
From a scientific perspective, probably the most notable aspect is the 
shift in perspective, away from the scientific focus on mapping flood 
scenes as accurately as possible to designing the algorithms such that 
they perform equally well for flood and non-flood scenes. In fact, given 
that only a small fraction of SAR images depict flooding, the detection 
of false positives was one of the biggest concern during the initial 
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Table 7
Evaluation results for different bio-geographic regions as defined by Metzger et al. (2013). The third column shows the number of sample points per environmental 
zone. Note that results from the arctic biome are not included in this table due to the small number of sample points (<100).
 Biome Environmental zone No. OA [%] CSI [%]  
 Boreal/Alpine E. Cold and wet 543 78.1 ± 3.6 41.9 ± 4.9 
 F. Extremely cold and mesic 4521 69.7 ± 1.4 57.5 ± 1.7 
 G. Cold and mesic 4542 80.9 ± 1.2 64.2 ± 1.6 
 Cool temperate H. Cool temperate and dry 3931 77.2 ± 1.4 58.3 ± 1.8 
 I. Cool temperate and xeric 3130 78.7 ± 1.5 55.2 ± 2.0 
 J. Cool temperate and moist 1185 94.7 ± 1.3 68.4 ± 3.1 
 Warm temperate K. Warm temperate and mesic 3273 92.9 ± 0.9 63.8 ± 1.9 
 L. Warm temperate and xeric 3439 82.3 ± 1.3 47.8 ± 2.0 
 Sub-tropical M. Hot and mesic 2286 89.4 ± 1.3 63.7 ± 2.3 
 Drylands N. Hot and dry 4149 73.1 ± 1.4 53.1 ± 1.8 
 O. Hot and arid 2319 64.2 ± 2.1 36.2 ± 2.3 
 P. Extremely hot and arid 1412 67.2 ± 2.6 37.4 ± 3.0 
 Q. Extremely hot and xeric 4875 79.2 ± 1.2 59.4 ± 1.6 
 Tropical R. Extremely hot and moist 8458 85.8 ± 0.8 74.2 ± 1.1 
phase of the GFM service. Since it is impossible to create an error-
free scientific algorithm that entirely eliminates classification errors, 
this issue cannot be resolved purely through scientific and technical 
methods but requires careful consideration of the way of how the 
results are communicated to the users of the data.

Although the rapid uptake of the GFM service demonstrates that 
it meets the need of users for a freely accessible near-real-time service 
for monitoring flood worldwide in a fully-automatic manner, significant 
challenges remain to be addressed in future evolutions of the service. 
An important limitation encountered during the first three years of op-
eration has been the insufficient temporal coverage, especially during 
the period when only one Sentinel-1 satellite was operational. Solutions 
to this challenge are discussed in Section 4.2. Another limitation is 
that Sentinel-1, like any other instrument, cannot detect all flooded 
areas due to various technical and scientific constraints. From the user 
perspective, a major shortcoming is the current inability of the GFM 
service to map flooding in urban areas. In this context, a high quality of 
the GFM exclusion mask is crucial, as it informs users where Sentinel-1 
measurements cannot provide flood information. Minimising the extent 
of this mask maximises the coverage of the service, but increases the 
risk of classification errors if it becomes unrealistically narrow. Also 
the quality of the reference water maps has a strong influence on clas-
sification accuracy. For instance, if these maps are outdated or fail to 
correctly capture seasonal dynamics as seen by Sentinel-1, the resulting 
errors propagate into the flood products. For these reasons, we first 
address the quality of the GFM exclusion mask in Section 4.3 and the 
reference water maps in Section 4.4, before discussing common over- 
and underdetection errors observed in non-masked areas in Sections 4.5
and 4.6, respectively. As a result of both over- and underestimation 
errors, validation outcomes have been mixed so far. In Section 3.6 
we therefore address the question of how accurate the GFM data are, 
comparing our results with those of other Sentinel-1 flood mapping 
studies. Due to the challenges encountered when interpreting validation 
results from different studies, we highlight the need for further research 
to refine best practices for validating satellite-derived flood maps in 
Section 4.8.

4.2. Temporal coverage requirements

Despite the fact that the Sentinel-1 mission provides better global 
coverage than any other single SAR satellite or SAR satellite constel-
lation, GFM users have to cope with the fact that Sentinel-1 may miss 
flood events entirely. Based upon their analysis of discharge data from 
nearly 2000 in situ gauge stations across Europe, Tarpanelli et al. 
(2022) estimated that only about 58% of flood events are potentially 
observable by two Sentinel-1 satellites over any section of a catch-
ment or runoff area. In our analysis of 104 flood events presented in 
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Section 3.5, we searched for evidence of flood detection over entire 
river catchments. We found Sentinel-1 flood maps in 73 cases; for the 
remaining 31 events, either no image was acquired, or there were 
no flood pixels in the acquired SAR images. It is not surprising that 
all undetected events and cases of unavailable Sentinel-1 observations 
corresponded to small- or medium-scale floods. This highlights a critical 
limitation of the GFM service: its reduced capability to detect smaller 
and short-lived flood events, particularly in regions with low tempo-
ral revisit frequencies of Sentinel-1 satellites. The most crucial factor 
influencing how well GFM captures flood dynamics is the spatial cov-
erage pattern and the actual overpass time of the satellite(s) (Wagner 
et al., 2024). When overpasses coincide with local flood peaks, the 
GFM product aligns best with the perception of affected populations 
and authorities, offering the most useful information. Additionally, a 
dense revisit frequency enables monitoring the progression of floods 
over entire catchments from onset to peak and eventual retreat. This 
shows that, at present, the GFM service is most valuable for large-scale 
flood events, such as the 2022 Pakistan floods (Roth et al., 2023). For 
small- to medium-scale events, however, additional satellite observa-
tions or improved revisit strategies are needed to enhance detection 
capabilities.

Through improvements in swath width and duty cycle, the situation 
will become better with the Sentinel-1 Next Generation (Torres et al., 
2024). Nonetheless, substantial improvements in the GFM coverage can 
only be achieved by integrating further satellites into the service. The 
most logical candidates are other SAR missions that match the global 
and systematic monitoring capabilities of Sentinel-1. In this regard, 
two L-band SAR missions stand out, namely the NASA-ISRO Synthetic 
Aperture Radar (NISAR) satellite (Rosen and Kumar, 2021), which was 
launched in July 2025, and the Radar Observing System for Europe 
at L-band (ROSE-L) two-satellites constellation mission (Davidson and 
Furnell, 2021), planned for launch in the 2028+ timeframe. ROSE-L 
belongs to the Copernicus programme, and its two satellites will be 
operated in synergy with the two Sentinel-1 satellites, with the or-
bit phasing yet to be determined. One option is to fly the ROSE-L 
satellites in convoy with the Sentinel-1 satellites, acquiring matching 
dual-frequency SAR imagery just minutes apart. The alternative is to 
phase the orbits of the four satellites to maximise daily global coverage. 
As we already highlighted in Wagner et al. (2024), the second option is 
clearly preferred by the GFM service. While dual-frequency retrievals 
can be expected to improve the accuracy of the flood maps to some 
extent (Refice et al., 2020), the more critical issue is whether the 
satellites can effectively capture flood dynamics, especially near the 
flood peak. Irrespective of the choice for the orbit phasing, research 
will be needed to optimally exploit the availability of interleaved C- 
and L-band backscatter time series.
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4.3. Suitability of the exclusion mask

While most SAR flood mapping studies have used ad hoc criteria for 
masking (e.g., Misra et al., 2025), few have investigated the optimal 
design of the exclusion mask. The challenge is that the capability of 
SAR to detect surface water varies in space and time in a gradual 
manner, implying that there is usually no clear defined threshold 
beyond which surface water can be mapped or not. Therefore, it is nec-
essary to balance the size of the exclusion areas and the magnitude of 
classification errors, which are, by definition, only assessed in the non-
excluded areas. Furthermore, land cover datasets derived from optical 
satellite observations and other ancillary data often do not adequately 
capture those areas where the SAR data should be masked. To address 
these challenges, Zhao et al. (2021a) proposed a method for creating 
exclusion maps from C-band SAR backscatter time-series. A subsequent 
inter-comparison study demonstrated that the GFM exclusion mask is 
similar, with only minor regional differences, confirming the overall 
suitability of the GFM approach (Zhao et al., 2023).

As reported in Section 3.4, the GFM exclusion mask covers 69,9% 
of the global land surface, which may seem extensive at first glance. 
However, one has to consider that only a portion of land is prone 
to flooding in the first place, mostly following valleys and plains. 
Therefore, the largest contribution to the global GFM exclusion mask 
comes from the HAND index that is used for creating the topographic 
distortions sub-mask. Earlier work by Chow et al. (2016) evaluated dif-
ferent HAND threshold values and demonstrated that 15 m provides a 
meaningful and conservative global cutoff. This value has subsequently 
been adopted in numerous studies (e.g., Tsyganskaya et al., 2016; Zhao 
et al., 2021b; Chimata et al., 2025), and we therefore also apply it in 
the GFM service to ensure consistency with established practice. While 
this choice inevitably reduces potential coverage in hilly regions, it 
represents a pragmatic compromise to minimise false detections and 
enhance overall reliability.

The second largest contribution to the exclusion mask comes from 
the non-sensitive areas sub-mask that comprises forests and urban 
areas. This sub-mask covers 31.98% of the global land surface, closely 
aligning with the estimated 31% global forest cover (Keenan et al., 
2015). While urban areas account for only a small portion of this sub-
mask, they represent some of the most critical regions for flood impact 
assessment. The current GFM products rely solely on Sentinel-1 VV 
intensity, which is not sufficient to capture inundation processes in 
built-up environments where radar backscatter becomes highly com-
plex during flood events (Zhao et al., 2025). Consequently, urban floods 
are excluded by design. Rather than a limitation, this exclusion should 
be viewed as a safeguard, as it prevents the dissemination of potentially 
unreliable flood extent information. At the same time, it provides an 
implicit indication to end-users that complementary products or data 
sources are required for analysing urban flood impacts.

Finally, the third largest contribution comes from non-water low-
backscatter areas. Globally, this mask covers 11.78% of the land sur-
face, a figure that closely matches the 12% of the terrestrial land 
surface occupied by deserts (Chen et al., 2023). However, this sub-mask 
exhibits substantial spatial variability and extends much beyond desert 
areas, primarily covering arid and semi-arid land with low vegetation 
cover and smooth soil surfaces.

4.4. Suitability of reference water maps

The suitability of the monthly reference water maps depends on 
their ability to match the level of detail as provided by Sentinel-1 
and to reflect accurately the normal water extent for the same sea-
son. Unfortunately, these requirements could not have been fulfilled 
by using existing global surface water datasets. For example, relying 
on static water products such as the SRTM Water Body Data (NASA 
JPL, 2013) or the Copernicus DEM Water Body Mask (Franks and 
Rengarajan, 2023) would lead to an overestimation of flood extent 
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particularly in hydrologically dynamic regions like monsoon-affected 
Bangladesh (Fig.  5). Martinis et al. (2022) confirm this effect through 
comparing different water mask products. They stress that only few 
studies explicitly address seasonality, and that not all seasonal water 
products are useful for flood mapping. The latter point is also true for 
the widely used Landsat-based GSW dataset from Pekel et al. (2016). 
This dataset contains a ‘‘Monthly History’’ product that offers intra-
annual water extent through monthly layers from the past 32 years, but 
is sensitive to single-image artifacts such as extreme events or cloud 
cover. Such artifacts are removed in the GSW ‘‘Monthly Recurrence’’ 
product, which provides monthly water coverage but is averaged over 
a long period, thus not reflecting river dynamics or climate shifts. Last 
but not least, it needs to be remembered that water maps derived from 
optical and topographic data do not capture the same water areas as 
observed by Sentinel-1’s SAR, which would lead to systematic errors in 
the Sentinel-1 flood maps.

For these reasons, a dedicated effort was needed to produce 20 m 
reference water maps directly from the Sentinel-1 datacube, meaning 
that the GFM service has delivered a completely new global high-
resolution surface water dataset quasi as a by-product. As our global 
evaluation has shown (Section 3.6), the quality of the GFM reference 
water maps appears to be quite good, with overall accuracies of 95.6% 
for the permanent water extent and 74.4% for the seasonal water 
bodies respectively. Nonetheless, it needs to be remembered that these 
water extent maps only show water surfaces as sensed by Sentinel-1. 
More complete water maps could be derived by adopting multi-sensor 
approaches that combine the Sentinel-1 data with multi-spectral optical 
data from Landsat or Sentinel-2 (Martinis et al., 2022) or novel bi-static 
measurements such as provided by Global Navigation Satellite Systems 
Reflectometry (GNSS-R) missions (Carreno-Luengo et al., 2024) or 
swath-based altimetry missions (Morrow et al., 2018).

An open question for flood mapping is the optimal length of the time 
series used to compute the reference water maps. Following Martinis 
et al. (2022), GFM uses time series of a few years from the recent past. 
Whereas the first versions of the reference water maps was based upon 
two years (2019–2020), the most recent on five years (2017–2021). 
While the longer time series helped to reduce misclassification and 
mitigate the impact of extreme events, longer aggregation periods 
may blur dynamic hydrological features, such as braided rivers and 
water reservoirs. Hence, some water surfaces that should be part of 
the reference water maps are wrongly shown as flooded (e.g. water 
reservoirs that are being filled up). An interesting special case is flooded 
fields used for growing rice and other semiaquatic crops. These fields 
are sometimes included in the reference water maps and sometimes in 
the flood maps. As this is confusing for the GFM users, a dedicated 
effort for mapping these fields based upon their pronounced seasonal 
backscatter behaviour, as for example done by Nguyen and Wagner 
(2017) over European rice fields, might be useful.

4.5. Overdetection in non-flood situations

Overdetection in non-flood situations occurs when dynamic land 
surface processes other than flooding cause backscatter to drop to 
low values typical for water surfaces. Fig.  10 shows three common 
cases of overdetection encountered during the first three years of 
operation. Probably the most problematic case from a service point 
of view is overdetection in agricultural and grassland areas, as illus-
trated in the example of Fig.  10a. This has several causes, including 
signal attenuation during the early stages of crop growth (Arias et al., 
2022; Reußet al., 2024) and rapid changes in surface roughness and 
crop cover due to farming activities (Zhu et al., 2019). These effects 
are exacerbated when the soils are dry, as this reduces backscatter 
from fertile soils. As a result, depending on crop type and weather 
conditions, false positive rates can be quite high in some agricul-
tural regions. Not only the single-image algorithm is impacted, but 
also time-series algorithm as described by Bauer-Marschallinger et al. 
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Fig. 10. Examples of overdetection in non-flood situations: (a) Agricultural areas in the USA, and (b) dry soil in Iran. (c) Shows in the Netherlands an actual 
flood event, but an exceptional one under frozen soils conditions. The GFM low regional backscatter advisory flag is displayed in transparent blue, indicating 
backscatter decrease at the larger scale. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 
article.)
(2022), given that the harmonic backscatter model − which is used to 
predict non-flood backscatter − cannot account for crop rotation prac-
tices. Therefore, Tupas et al. (2024) suggested replacing the harmonic 
backscatter model with an exponential filtering approach that better 
accounts for changing land surface backscatter.

The second, and most significant case in terms of the area affected, 
is the overestimation of flood areas in arid environments. While this 
issue is more pronounced in certain desert regions, such as northwest-
ern Iraq, anomalies appear and disappear in many arid regions without 
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clear spatio-temporal patterns. Due to the lack of systematic studies, 
the exact causes of these anomalies remain speculative. One likely 
reason is that many arid regions have low backscatter values, close to 
the threshold used to create the non-water low-backscatter exclusion 
layer. As a result, even minor changes in land surface conditions or 
speckle can cause pixels to be mistakenly classified as flooded. Poten-
tial natural causes for changes in backscatter include the movement 
of sand Abdelkareem et al. (2020), which seems to be the primary 
factor contributing to the false positives shown in Fig.  10b, erosion 
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and deposition processes triggered by rainfall, and variations in soil 
moisture levels. The effect of soil moisture on backscatter can vary 
in arid environments; it may increase or decrease depending on the 
presence of subsurface scatterers (Wagner et al., 2022).

The third case of overdetection occurs when the land surface freezes 
or gets covered by snow and ice, which can cause a significant drop 
in backscatter (Nagler and Rott, 2000; Park et al., 2011; Pulvirenti 
et al., 2014). When this happens over larger areas, it is often well 
captured by GFM’s low-regional-backscatter advisory flag. However, 
when temperatures fluctuate around 0 ◦C, there may be considerable 
spatial variability in the Sentinel-1 images, with small patches of low 
backscatter caused by either frost, ice, wet snow, or flooding. In this 
case it is impossible to decide where the GFM flood map is correct 
or where not. An outstanding example is a flood that affected large 
areas in northwestern Europe in early January 2024 (see Fig.  10c). As 
temperatures started to drop below 0 ◦C in the Netherlands, flooded 
meadows and agricultural fields began to freeze, likely leading to 
scattered patches of overestimation.

In addition to these three common causes, other factors can also 
contribute to overdetection. These include rare instances of corrupt 
Sentinel-1 images, topographic effects and radar shadows that are not 
removed by the exclusion mask, and changes in land cover that lead to 
a drop in backscatter (e.g., land clearance). For all these cases, further 
research is needed to gain a deeper understanding of the physical mech-
anisms behind false alarms and to develop methods for correcting — or 
at least improving the flagging of these effects. As mentioned earlier, 
GFM’s low-regional-backscatter advisory flag generally performs well in 
identifying potential issues caused by snow or frost. However, flagging 
changes in already dry areas, such as deserts, remains a challenge. 
Additionally, advisory flags are typically not raised for overdetection in 
agricultural areas, as the impact of this phenomenon is usually confined 
to smaller areas than in the case of frost or drought.

4.6. Underdetection in flood situations

The problem of underdetection during flood events is another major 
concern of GFM users. Whilst the exclusion mask limits the area for 
which flood information is expected, GFM flood maps may still miss 
out on flooded areas, even within areas not masked. In order to identify 
suitable strategies to improve this situation, it is crucial to clearly 
differentiate between the two distinct causes that contribute to the un-
derdetection of flood extent during flood events. The first cause lies in 
algorithmic limitations and shortcomings that hinder the accurate map-
ping of all water pixels observed in the Sentinel-1 VV data. This cause 
can be overcome with improved algorithms, possibly benefitting from 
topographic indices and land cover maps. The second cause stems from 
the inherent limitations of the Sentinel-1 VV polarisation data itself, 
and can only be overcome by using additional data in the retrieval algo-
rithm, such as VH polarisation, InSAR coherence, or L-band SAR data.

Let us first examine the issues within GFM algorithms that have 
contributed to underdetection of flooded areas. Ironically, initial con-
cerns about overdetection errors in non-flood scenarios inadvertently 
led to an increase in underdetection errors during actual flood events. 
In an attempt to reduce ‘‘noise’’ (e.g. speckle, isolated pixels) in the 
GFM flood maps, refining post-processing and merging strategies were 
implemented that effectively acted as low-pass filters. While this helped 
mitigating the impact of speckle and small-scale land cover effects, 
they inadvertently hampered the capability to detect small-scale and 
spatially scattered flood areas (Roth et al., 2025). This problem was 
partly solved by an update of the post-processing algorithms in 2025.

One important fundamental cause for underdetection are mixed 
pixels covering both open water and non-water features. During flood 
events, the high backscatter from vegetation and wet soils can quickly 
overshadow the signal from open water in these mixed pixels, leading 
to ragged flood water boundaries. One way to reduce such effects 
are active contour models that refine the flood boundaries (Horritt 
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et al., 2001; Asadi et al., 2025) or segmentation approaches, like 
those used by the LIST and DLR algorithms. For TU Wien’s Bayesian 
method, Tupas et al. (2023a) experimented with a HAND-based prior 
probability function to enhance flood classification. They found notice-
able improvement particularly near the borders of the flooded areas. 
However, while the HAND-based priors reduced false negatives, they 
slightly increased false positives in non-flood situations. This shows that 
more research will be needed to balance overestimation errors in non-
flood cases and underestimation of actual flood areas. This challenge 
is not unique to the GFM service but is a broader issue within the 
field of SAR-based flood mapping. To date, many studies are limited to 
selected datasets coinciding with flood events, while disregarding the 
much more common non-flood situations. In contrast, the GFM service 
− to fulfil its monitoring mission − processes hundreds of individual 
data takes to flood products per day. Naturally, most of these products 
do not cover any flood and may be exposed to overestimation.

The second root cause for underestimation can be tackled by adding 
additional datasets that add features not contained in the Sentinel-1 VV 
data. As already discussed in Section 4.2, the inclusion of L-band SAR 
data in the GFM service would be highly beneficial to increase both 
the temporal coverage and the mapping accuracy. From a technical 
perspective, the dataset that would be the easiest to add to the GFM 
workflow is the VH polarisation also acquired by the Sentinel-1 IW 
mode. As noted before, this second image channel is currently discarded 
due to cost reasons. But as e.g. shown by Qin et al. (2025), the use of 
both VV and VH data can reduce the impact of feature mixing, improv-
ing flood mapping accuracy. Boni et al. (2016) and Roth et al. (2025) 
noted that not using the VH channel can lead to an underestimation in 
the presence of certain types of vegetation and wind. For the vegetation 
case, Fig.  11 illustrates the comparison between VV and VH images 
for a flood along the river Shire in Malawi in January 2022. The VH 
image detects more flooded areas than the VV image, particularly along 
the tributary rivers Lukhubula and Mwamphanzi, which flow into the 
Shire from the western hills. January falls in the middle of the rainy 
season in Malawi, so grasses and agricultural crops were tall when the 
flood occurred. The better detection of flooded areas by VH, compared 
to VV, is likely due to the double-bounce effect created by floodwa-
ter beneath the grasses or crops, which can increase backscatter and 
obscure flood detection. The VV polarisation is particularly sensitive 
to this effect, while VH remains less affected. Therefore, incorporating 
VH polarisation can provide a more complete flood map for tall grass 
and crop canopies. This is also true for windy conditions, where VV 
backscatter from wind-roughened water surfaces is often more strongly 
enhanced than VH backscatter (Roth et al., 2025). However, over low-
vegetated surfaces and water bodies, VH images are characterised by 
lower backscatter that is associated with reduced contrast and elevated 
noise. As this leads to higher classification errors, care must be taken 
that algorithms, which use both polarisations, are designed to extract 
the additional flood areas from VH data while avoiding higher false 
positive rates.

A second promising SAR-based dataset for flood mapping is the 
interferometric coherence, which is calculated by comparing the am-
plitude and phase information of two or more single look complex 
(SLC) SAR images. High coherence indicates stable scatterers, while 
low coherence signifies a loss of correlation in amplitude and/or phase. 
Since flooding causes a loss of correlation, coherence can potentially 
enhance flood detection in areas where it is generally high (Chini 
et al., 2019). Because this is the case for urban areas and arid envi-
ronments, the interferometric coherence holds particular promise for 
these two cases. The urban case was addressed by a recent review 
by Zhao et al. (2025) who concluded that the coherence − and even 
the interferometric phase − are critical for improving flood detection 
in urban areas. Similarly, Garg et al. (2024) highlighted the importance 
of the interferometric coherence in arid regions, where floodwaters 
reduce coherence, while non-flooded areas exhibit stable and consistent 
coherence over time. However, other factors, such as varying soil 
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Fig. 11. 2022 flood event in Malawi, an example for underdetection of flooded vegetation due to the limitation to a single polarisation. (a) shows the GFM 
products based on Sentinel-1 IW data in VV-polarisation; (b) shows the VH band of the same dataset, with flooded areas underdetected in VV highlighted by 
yellow ellipses. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Source: Modified from Roth et al. (2025).
moisture conditions, can also lead to a loss of correlation. Therefore, 
further research is required to better understand the environmental 
conditions under which interferometric coherence can reliably indicate 
flooded areas.

4.7. How accurate are the GFM flood maps?

Our dedicated GFM validation activities encompassed the analysis 
of selected flood events and a systematic global analysis, yielding mixed 
results. The analysis of individual flood events produced satisfactory 
outcomes in most cases (7 out of 12), with CSI values surpassing the 
GFM target of 70% and OA values exceeding 97%. Unfortunately, a 
comparison with the results of other event-specific Sentinel-1 flood 
mapping studies is difficult due to differences in study design, reference 
datasets and reported accuracy metrics. For instance, Risling et al. 
(2024) compared Sentinel-1 flood maps with MODIS-derived flood 
maps over two study sites in Myanmar and Paraguay. They found that 
CSI values were around 50% for both sites, and attributed the discrep-
ancies to differences in sensing techniques, spatial resolution, timing of 
acquisition, and algorithmic uncertainties. Tupas et al. (2023b) com-
pared Sentinel-1 flood maps derived using different parameterisations 
of four change detection techniques against an expert-interpreted flood 
map for a flood event in the Philippines and found CSI values in 
the range from about 50% to 90%. Vanama et al. (2021) validated 
Sentinel-1 flood maps with survey and other government data for 
a flood in Kerala, India, finding an OA value of 90.6% and a CSI 
value of 81.6%. These and analogous research findings from other 
recent regional Sentinel-1 flood mapping studies (e.g., McCormack 
et al. (2022), Nhangumbe et al. (2023)) suggest that the quality of the 
fully-automatic derived GFM flood maps is in most cases comparable 
to the quality of Sentinel-1 flood maps generated for specific study 
domains under well-controlled lab conditions.

The results of our systematic global evaluation are even more diffi-
cult to put in context to existing research findings as no other study has 
yet evaluated SAR derived flood maps in a similar manner. Although 
our approach was inspired by the systematic approach used by Pekel 
et al. (2016) to evaluate their Landsat-derived surface water dataset at 
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a global scale, these authors focused on assessing the accuracy of the 
permanent and seasonal waters using the producer and user accuracy, 
respectively. For the permanent water class, they found consistently 
high values (> 99%) for both accuracy metrics across three Landsat 
generations (Landsat 5, 7 and 8). By contrast, for seasonal water, only 
the user accuracy was high (> 98%), while the producer accuracy 
dropped to 73.8–77.4%. They explained the lower producer accuracy 
value for seasonal water by the fact that there are fewer opportunities 
to observe seasonal water bodies, which leads to higher errors of 
omission. Our results shown in Section 3.6 indicate somewhat lower 
overall classification accuracies for the SAR derived reference water 
maps, but also in our case results were much better for permanent 
water bodies (95.9%) than for seasonal water bodies (74.4%). Given 
the high dynamics of floods, it is remarkable that the OA value for the 
GFM flood layer is only somewhat lower (72.0%) than for the seasonal 
water layer. Considering the fact that the classification of SAR images is 
more challenging than of optical images, we concluded that the results 
are satisfying for the first generation of the GFM archive (v2.1.0) even 
though the CSI values for all three classes (permanent, seasonal, and 
flood) are below the 70% accuracy target. We also note that insights 
gained from the different validation activities have already been very 
instructive, driving step-by-step improvements in the algorithms and 
workflows with each new GFM version. For example, over- and under-
detection errors as discussed in the sections above have already been 
reduced, leading to subsequent improvements in CSI values.

Recent advances in machine learning can be expected to promote 
systematic evaluations of global flood datasets, as the availability of 
high-quality labelled data for model training and testing is a critical 
requirement (Rambour et al., 2020; Bonafilia et al., 2020; Wieland 
et al., 2024). Machine learning and computer vision studies usually 
refer to the CSI as the Intersection over Union (IoU) score, a notation 
that we keep in the following to be consistent with the cited studies. For 
example, Bountos et al. (2023) curated dual-polarisation (VV and VH) 
SAR time series data from Sentinel-1 for 43 flood events worldwide, 
manually annotated them with the expertise of SAR specialists, and re-
leased the so-created reference dataset under the name Kuro Siwo. The 
best-performing models achieved IoU scores up to 76%, demonstrating 
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high accuracy for flood mapping tasks. The Kuro Siwo dataset was 
already used for an independent assessment of the GFM data by Misra 
et al. (2025). The authors did not use the GFM flood maps directly but 
created their own GFM-based flood dataset by applying a tuned global 
threshold of 0.3 to turn the GFM flood likelihood layer into binary flood 
maps. Further, their global model was tuned towards the Kuro Siwo 
dataset. This yielded an IoU value of 56% for the GFM, which was lower 
than the result (63%) for their own global flood dataset retrieved from 
dual-polarised Sentinel-1 images (VV and VH) using a neural network. 
This hints again at the importance of including the VH polarised data 
in future GFM operations.

Another notable recent study was carried out by Mukherjee et al. 
(2024) who created a globally sampled, high spatial-resolution refer-
ence water data comprising 100 images, each with a size of 1024 × 1024
pixels, from 3 m PlanetScope imagery. They used this reference dataset 
for evaluating two surface water datasets, one derived from Sentinel-2 
(Brown et al., 2022) and another from Sentinel-1 using the deep 
learning model proposed by Paul and Ganju (2021). As expected the 
results for Sentinel-2 were better (mean IoU value of 72.2%) than 
for Sentinel-1 (57.6%). Interestingly, their Sentinel-1 results for 14 
different biomes show an even more pronounced variability as our CSI 
analysis for different environment zones shown in Table  6. They found 
the highest IoU values for tropical and sub-tropical broadleave forest 
regions (∼90%), followed by tundra and boreal regions (70%–90%), 
and grasslands and savannas (30%–70%). The worst results (<20%) 
were obtained for coniferous forest regions and arid and semi-arid 
environments. Despite the different stratification schemes, the observed 
dependency on land cover aligns well with our findings.

4.8. Adequacy of accuracy metrics

The challenge of comparing the results of different SAR flood map-
ping studies shows that there is a need for common validation practices. 
Furthermore, our experience from analysing numerous flood events 
worldwide over the last few years is that the CSI and other accuracy 
metrics remain relatively low in some cases, even when the Sentinel-1 
flood maps appear visually satisfactory (Roth et al., 2023, 2025). This 
raises questions regarding the adequacy of the accuracy metrics. One 
key issue is the lack of independent data to serve as objective ground 
truth for assessing how well the algorithm extracts flooded areas from 
Sentinel-1 images. As a result, expert-interpreted Sentinel-1 flood data 
are used to create flood reference datasets. However, this introduces 
uncertainties, which likely lower the CSI and other accuracy metrics 
to an extent that remains unclear. The second issue is that, so far, 
the quality of flood maps has been assessed with methods used for 
assessing static land cover. While critical aspects such as sampling 
design, response design, and analysis design are well understood for the 
latter (Stehman and Czaplewski, 1998; Congalton and Green, 2019), 
the high spatiotemporal variability of the sensitivity of the sensor to 
the target variable and the highly dynamic nature of floods make the 
evaluation of flood data much more challenging. As a result, flood 
mapping studies had to cope with inadequacies of metrics derived from 
the error matrix. For example, Landuyt et al. (2019) showed that the 
CSI has a bias towards large-scale floods and assigns a higher accuracy 
in case of overdetection in comparison to underdetection. When using 
the whole map for the metric computation, the agreement between the 
reference and classification will generally be much larger compared to 
their difference. In addition, the expected autocorrelation of neighbour-
ing pixels in satellite observations may lead to many redundant pixels 
being validated. Consequently, Landwehr et al. (2024) suggested the 
definition of an appropriate sampling design for computing the metrics 
and choosing an adequate metric for the corresponding design.

A further, more practical challenge concerns the reliance of GFM 
accuracy assessments on pixel-by-pixel comparisons between auto-
matically derived flood maps and independently generated reference 
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datasets. While such pixel-level validation is standard in map classifica-
tion evaluation, it overlooks small, spatially localised mismatches along 
flood boundaries that can arise from georeferencing inaccuracies, sam-
pling inconsistencies, or filtering procedures. These minor discrepancies 
may artificially depress accuracy scores. To mitigate this, a future 
improvement in GFM quality assessment could involve complementing 
pixel-based validation with fuzzy map comparison approaches, which 
evaluate the similarity of neighbourhoods around corresponding pixels 
in classified and reference datasets, as outlined by Hagen (2003).

Finally, in line with our methodological approach, which views 
flood mapping as a geophysical variable retrieval problem rather than 
a classification task (Section 2.1), we believe that also the validation 
of flood extent data should be approached from a broader geophysical 
perspective. First, validation activities should clearly define their scope. 
Is the aim to evaluate the combined effect of sensor and retrieval 
algorithm on the quality of the flood extent data, or just one of these 
aspects? In all cases, data producers should provide estimates of the 
retrieval uncertainty and clearly identify exclusion areas where the 
sensor is insensitive to the target variable. Additionally, validation 
should not be limited to flood images but should also include non-flood 
cases (Tupas et al., 2024). It is likely that most existing algorithms are 
optimised for flood detection, which may limit their applicability to 
other regions or time periods. Moreover, methods must be developed 
to assess the impact of imperfect reference data on accuracy metrics. 
All these topics require a community effort to develop best practice 
guidelines, which, as already noted by Landwehr et al. (2024), are still 
missing. These efforts could be organised as part of the Land Product 
Validation subgroup of the Committee on Earth Observation Satellites 
(https://lpvs.gsfc.nasa.gov/).

5. Conclusions

The GFM service constitutes a significant advancement in the field 
of satellite-based flood monitoring. Launched in 2021 as part of the 
CEMS, the GFM service has demonstrated its capability to deliver flood 
maps with high accuracy and reliability in near real-time. When the 
Sentinel-1 ground segment operates normally, the service achieves a 
rapid turnaround of under five hours, which is essential for timely 
disaster response. The flood maps are produced using an innovative 
ensemble approach that integrates three complementary flood mapping 
algorithms. These algorithms combine single-image, dual-image, and 
time-series techniques to improve the robustness and accuracy of the 
automatic flood detection. In addition to the binary flood map, a 
novel flood likelihood layer is generated, which often offers a more 
comprehensive view of the local flood situation. For example, it can 
depict river courses more effectively than the binary flood maps. Users 
with their on-site knowledge can create a binary flood map that is 
better suited to local conditions by fine-tuning a threshold, above which 
a pixel is classified as flooded and below which it is classified as 
non-flooded.

The scientific algorithms were implemented within a cloud platform 
environment, leveraging an efficient datacube-centric processing archi-
tecture. This approach is crucial for framing the flood mapping problem 
as a geophysical variable retrieval task, rather than a traditional image 
classification problem. A global 20 m Sentinel-1 datacube allows to 
compare each incoming backscatter image with the entire historical 
backscatter dataset, facilitating time-series analysis on a per-pixel basis. 
This setup has enabled the generation of monthly reference water 
maps, which differentiate flooded areas from permanent and seasonal 
water bodies, as well as an exclusion mask that informs users where 
Sentinel-1 cannot effectively map flooded areas. Advisory flags raise 
attention in case of ambiguous radar signals stemming from meteo-
rologic or geomorphologic circumstances, and flood impact indicators 
give quick insight into affected population and land cover. Additionally, 
the datacube has enabled the creation of a global flood data archive 
spanning the entire Sentinel-1 mission from 2015 onwards. The GFM 

https://lpvs.gsfc.nasa.gov/
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flood archive is continuously updated with NRT data, while regular 
reprocessing efforts are conducted to ensure compatibility between the 
NRT and archive data.

Despite its successes, the GFM service faces several scientific and 
technical challenges. One of the primary issues is the reduction of false 
positives, especially in agricultural and arid regions, as well as in areas 
with frozen or snow-covered land surfaces. These false positives arise 
from the complex scattering mechanisms as depicted by SAR imagery, 
which are influenced by a range of environmental factors, including 
soil moisture and vegetation dynamics. Another significant challenge 
is the underdetection of floods in certain conditions. The reliance on 
VV polarisation alone, without considering VH polarisation, can lead 
to underestimation in areas with dense vegetation or rough water 
surfaces. Additionally, urban areas pose difficulties for flood detection 
due to the complex interaction of microwaves with building structures. 
Preliminary validation results as reported in this paper showed that 
algorithmic improvements are still needed, several of which are in the 
process of being implemented and tested. Moreover, work is needed to 
advance validation practices, approaching the problem from a broader 
geophysical perspective and accounting for uncertainties in the flood 
reference data. For the users, a pressing issue is that particularly smaller 
and short-lived flood events go undetected due to insufficient satel-
lite/sensor coverage. The analysis of 104 global flood events from 2022 
to 2024 revealed that the GFM service, relying on only one Sentinel-1 
satellite during this period, detected 70.2% of these events. However, 
the detection performance varied significantly across continents, with 
Europe demonstrating the highest success rate and Oceania the lowest. 
The reduced capability to detect smaller flood events, particularly in 
regions with low temporal revisit frequencies of Sentinel-1 satellites, 
highlights the need for improved sensor coverage.

To enhance the GFM service, several future directions are pro-
posed. First, the integration of VH polarisation data could improve 
flood detection in vegetated areas. Additionally, the development of 
more sophisticated algorithms that account for the complex scattering 
mechanisms in SAR imagery is essential. For instance, the consideration 
of double bounce signals and interferometric coherence may improve 
food mapping in urban areas and dense vegetation (Mason et al., 2014; 
Chini et al., 2019; Li et al., 2019). Flood maps may be refined by 
improved use of ancillary data such as topographic indices and land 
cover (Tupas et al., 2023a). Machine learning is expected to be useful 
for better modelling of spatio-temporal patterns, though challenges 
related to over- and under-detection remain significant (Misra et al., 
2025). The GFM service should also continue to refine and update 
its exclusion mask and reference water maps, making sure that these 
data layers reflect changing land cover and water body dynamics. 
After the premature loss of Sentinel-1B, the expansion of the Sentinel-1 
constellation with Sentinel-1C and the upcoming Sentinel-1D satellite 
is essential to maintain the performance of the service. Additionally, 
adopting a multi-sensor approach, which includes data from other satel-
lite missions such as ROSE-L, would significantly improve the ability 
to capture flood dynamics and reduce over- and underdetection. The 
aim is to gather enough satellite imagery to monitor the progression of 
floods from onset to peak and retreat with improved thematic accuracy. 
Although not discussed in this article, the integration of the GFM 
flood maps with topographic data and their assimilation into hydraulic 
models to provide more complete flood extent maps and improved 
hydrological predictions holds significant potential.

The Sentinel-1-based Global Flood Monitoring service has made 
significant strides in operational satellite-based flood monitoring, pro-
viding timely and accurate flood maps to support disaster response 
efforts. While challenges remain, ongoing research and development 
efforts are poised to enhance the service’s capabilities, ensuring it meets 
the evolving needs of users worldwide. By leveraging advancements in 
SAR technology and integrating data from multiple satellite missions, 
the GFM service is well set to continue to play a leading role in global 
flood risk management and mitigation.
22 
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Appendix. List of flood events

The 104 flood events selected for this study were derived from 
the Global Disaster Alert and Coordination System (GDACS). GDACS 
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offers real-time flood alerts and comprehensive data to aid disaster 
response (De Grove et al., 2007). The alerts issued by GDACS are based 
on information gathered from authoritative institutions, media outlets, 
and scientific institutions, rather than automated systems. Small-scale 
floods in data-poor regions may be underrepresented. These alerts rely 
on manual evaluations of the flood impacts, which are performed by the 
Dartmouth Flood Observatory. The assessments include various metrics 
such as the area affected, the duration of the flood, severity, fatalities, 
and the number of displaced persons. The magnitude of each event is 
23 
computed according to:

Magnitude = ln(duration) × severity class × affected region
100

where the affected region is measured in km2, estimated from the 
polygon that encompasses all the place names reported in the media. 
Duration is measured in days, and for single-day events, the duration is 
set to 1.1 d for calculation purposes. The GDACS alert score is translated 
into an alert level or colour as follows:
Table 8
Selected flood events from the GDACS flood events record (2022–2024).
 ID Country From Date To Date GDACS Score Deaths Displaced  
 AF01 Libya 08-09-2023 14-09-2023 2.5 3500 33000  
 AF02 Nigeria 10-09-2022 26-10-2022 2.5 605 1306000  
 AF03 Chad 01-09-2024 17-10-2024 1.5 576 –  
 AF04 South Sudan 03-08-2024 05-08-2024 1.5 0 571989  
 AF05 Kenya 12-04-2024 06-05-2024 1.5 219 206000  
 AF06 Burundi 17-03-2024 03-05-2024 1.5 5 209486  
 AF07 Ethiopia 29-04-2024 01-05-2024 1.5 18 106193  
 AF08 Tanzania 28-03-2024 28-04-2024 1.5 169 1660  
 AF09 Ethiopia 07-11-2023 06-12-2023 1.5 53 347600  
 AF10 Kenya 23-10-2023 06-12-2023 1.5 136 462160  
 AF11 Somalia 04-10-2023 06-12-2023 1.5 87 458126  
 AF12 Democratic Republic of 

Congo
01-05-2023 10-05-2023 1.5 478 3300  

 AF13 Rwanda 01-05-2023 03-05-2023 1.5 109 –  
 AF14 Democratic Republic of 

Congo
01-04-2023 15-04-2023 1.5 20 100500  

 AF15 Somalia 20-03-2023 14-04-2023 1.5 30 140000  
 AF16 Malawi 13-03-2023 16-03-2023 1.5 225 88312  
 AF17 Mozambique 22-03-2024 24-03-2024 0.5 4 7658  
 AF18 Nigeria 14-10-2024 19-10-2024 0.5 25 5328  
 AF19 Nigeria 23-06-2024 23-09-2024 0.5 5 10284  
 AF20 Angola 25-11-2022 05-12-2022 0.5 15 405  
 AS01 India 20-10-2024 26-10-2024 2.5 9 803,888  
 AS02 Bangladesh, India, 

Myanmar
13-05-2023 15-05-2023 2.5 41 850,000  

 AS03 China, Taiwan 14-09-2022 16-09-2022 2.5 0 1,233,000 
 AS04 Pakistan 14-06-2022 31-08-2022 2.5 1,061 215,997  
 AS05 Nepal 26-09-2024 28-09-2024 1.5 148 –  
 AS06 India 30-08-2024 05-09-2024 0.5 45 45,369  
 AS07 Indonesia 03-02-2024 12-06-2024 1.5 79 84,943  
 AS08 Afghanistan 09-05-2024 25-05-2024 1.5 387 –  
 AS09 Kazakhstan 28-03-2024 10-04-2024 1.5 2 104,694  
 AS10 Bangladesh 24-10-2023 26-10-2023 1.5 3 273,000  
 AS11 Pakistan 16-08-2023 18-08-2023 1.5 0 100,000  
 AS12 China 27-06-2023 23-07-2023 1.5 15 284,100  
 AS13 India 07-07-2023 10-07-2023 1.5 169 47,790  
 AS14 India, Pakistan 14-06-2023 16-06-2023 1.5 7 175,925  
 AS15 Philippines 10-12-2022 23-01-2023 1.5 63 330,071  
 AS16 Oman, Yemen 23-10-2023 25-10-2023 0.5 1 9,000  
 AS17 Indonesia 18-09-2024 04-11-2024 0.5 18 1,100  
 AS18 Azerbaijan 12-10-2024 23-10-2024 0.5 2 67  
 AS19 Philippines 12-10-2024 23-10-2024 0.5 3 12,793  
 AS20 Sri Lanka 08-10-2024 10-10-2024 0.5 3 9,591  
 EU01 Spain 27-10-2024 04-11-2024 2.5 221 447  
 (continued on next page)
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Table 8 (continued).
 ID Country From Date To Date GDACS Score Deaths Displaced 
 EU02 Bosnia and Herzegovina 03-10-2024 05-10-2024 1.5 14 –  
 EU03 Austria, Czech Republic, 

Germany, Poland, 
Romania, Slovakia

12-09-2024 18-09-2024 1.5 13 7,042  

 EU04 France 3-12-2023 03-01-2024 1.5 1 743  
 EU05 Germany 18-12-2023 03-01-2024 1.5 0 –  
 EU06 Norway 31-10-2024 05-11-2024 0.5 0 98  
 EU07 Greece 04-09-2023 15-09-2023 0.5 20 4,506  
 EU08 Italy 16-10-2024 28-10-2024 0.5 1 290  
 EU09 Italy 17-09-2024 25-09-2024 0.5 0 1,550  
 EU10 France 01-10-2024 26-10-2024 0.5 1 347  
 EU11 Italy 30-10-2023 04-11-2023 0.5 10 510  
 EU12 Italy 01-05-2023 26-05-2023 0.5 17 36,450  
 EU13 Slovenia 03-08-2023 05-08-2023 0.5 3 4,000  
 EU14 United Kingdom 28-12-2023 01-01-2024 0.5 3 1,120  
 EU15 United Kingdom 19-10-2023 12-11-2023 0.5 1 1,620  
 EU16 Russia 01-07-2023 10-07-2023 0.5 0 407  
 EU17 Austria 03-08-2023 13-08-2023 0.5 1 57  
 EU18 Russia 11-08-2023 21-08-2023 0.5 8 2,500  
 EU19 Kosovo, Serbia 18-01-2023 22-01-2023 0.5 2 584  
 EU20 Italy 26-11-2022 10-12-2022 0.5 7 1,304  
 NA01 Dominican Republic 02-11-2024 04-11-2024 0.5 0 1,390  
 NA02 Costa Rica 06-11-2024 08-11-2024 0.5 1 155  
 NA03 United States 09-01-2024 03-02-2024 0.5 1 405  
 NA04 United States 16-08-2024 18-09-2024 0.5 1 55  
 NA05 Panama 29-09-2024 01-10-2024 0.5 1 12  
 NA06 Mexico 16-10-2024 22-10-2024 0.5 7 247  
 NA07 United States 22-12-2022 28-01-2023 0.5 4 500  
 NA08 Canada 01-07-2023 23-07-2023 0.5 0 1,270  
 NA09 United States 16-06-2023 24-08-2023 0.5 5 14,525  
 NA10 Honduras 03-11-2023 05-11-2023 0.5 4 1,024  
 NA11 Honduras 07-12-2023 09-12-2023 0.5 2 30  
 NA12 Cuba, Jamaica 03-11-2024 10-11-2024 0.5 0 38,095  
 NA13 Costa Rica 06-11-2024 08-11-2024 0.5 1 155  
 NA14 Mexico 30-08-2024 04-10-2024 0.5 18 92  
 NA15 United States 22-12-2022 28-01-2023 0.5 4 500  
 OC01 New Zealand 03-10-2024 05-10-2024 0.5 0 100  
 OC02 Australia 29-12-2022 05-01-2023 0.5 0 700  
 OC03 Fiji 03-02-2023 05-02-2023 0.5 1 350  
 OC04 New Zealand 12-02-2023 14-02-2023 0.5 0 3,810  
 OC05 Australia 01-01-2024 23-02-2024 0.5 0 286  
 OC06 Fiji 14-03-2024 16-03-2024 0.5 0 230  
 OC07 Papua New Guinea 25-03-2024 27-03-2024 0.5 4 2,250  
 OC08 Australia 22-10-2022 05-11-2022 0.5 2 540  
 OC09 New Zealand 11-11-2022 15-11-2022 0.5 0 200  
 SA01 Brazil 23-04-2024 17-05-2024 1.5 144 540,548  
 SA02 Brazil 23-05-2022 26-05-2022 1.5 92 16,619  
 SA03 Chile 20-06-2024 28-06-2024 0.5 0 1,500  
 SA04 Uruguay 20-03-2024 22-03-2024 0.5 0 4,687  
 SA05 Brazil 05-11-2024 08-11-2024 0.5 1 1,950  
 SA06 Brazil 19-12-2022 06-01-2023 0.5 3 242  
 SA07 Colombia 09-01-2023 17-01-2023 0.5 1 558  
 SA08 Brazil 17-01-2023 19-02-2023 0.5 5 4,900  
 SA09 Brazil 18-02-2023 20-02-2023 0.5 40 2,496  
 (continued on next page)
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Table 8 (continued).
 ID Country From Date To Date GDACS Score Deaths Displaced 
 SA10 Peru 22-02-2023 01-03-2023 0.5 1 740  
 SA11 Peru 16-01-2023 18-04-2023 0.5 24 2,045  
 SA12 Ecuador 22-05-2023 06-06-2023 0.5 3 46  
 SA13 Brazil 07-07-2023 11-07-2023 0.5 15 3,850  
 SA14 Chile 19-08-2023 21-08-2023 0.5 1 1,200  
 SA15 Argentina 26-11-2023 14-12-2023 0.5 2 2,340  
 SA16 Venezuela 08-10-2022 22-10-2022 0.5 61 –  
 SA17 Bolivia 10-02-2024 14-02-2024 0.5 2 420  
 SA18 Brazil 03-03-2024 05-03-2024 0.5 0 1,663  
 SA19 Peru 26-12-2023 12-03-2024 0.5 21 727  
 SA20 Argentina 03-03-2024 17-03-2024 0.5 3 1,194  
• Large-scale floods: GDACS score of 2.5, corresponding to a Red 
alert for more than 1,000 dead or 800,000 displaced.

• Medium-scale floods: GDACS score of 1.5, corresponding to an 
Orange alert if there are more than 100 dead or 80,000 displaced.

• Small-scale floods: GDACS score of 0.5, corresponding to a Green 
alert for all other floods.

Data availability

The Sentinel-1 flood data generated by the CEMS GFM service are 
free and open. They can be accessed as described in Section 2.4.3.

References

Abdelkareem, M., Gaber, A., Abdalla, F., El-Din, G.K., 2020. Use of optical and radar 
remote sensing satellites for identifying and monitoring active/inactive landforms in 
the driest desert in Saudi Arabia. Geomorphology 362, 107197. http://dx.doi.org/
10.1016/j.geomorph.2020.107197, URL: https://linkinghub.elsevier.com/retrieve/
pii/S0169555X20301690.

Ajmar, A., Boccardo, P., Broglia, M., Kucera, J., Giulio-Tonolo, F., Wania, A., 2017. 
Response to flood events: the role of satellite–based emergency mapping and the 
experience of the copernicus emergency management service. In: Molinari, D., 
Menoni, S., Ballio, F. (Eds.), Geophysical Monograph Series, first ed. Wiley, pp. 
211–228. http://dx.doi.org/10.1002/9781119217930.ch14, URL: https://agupubs.
onlinelibrary.wiley.com/doi/10.1002/9781119217930.ch14.

Al-Ruzouq, R., Shanableh, A., Jena, R., Gibril, M.B.A., Hammouri, N.A., Lamghari, F., 
2024. Flood susceptibility mapping using a novel integration of multi–temporal 
sentinel-1 data and eXtreme deep learning model. Geosci. Front. 15 (3), 
101780. http://dx.doi.org/10.1016/j.gsf.2024.101780, URL: https://linkinghub.
elsevier.com/retrieve/pii/S1674987124000045.

Amitrano, D., Di Martino, G., Di Simone, A., Imperatore, P., 2024. Flood detection with 
SAR: A review of techniques and datasets. Remote. Sens. 16 (4), 656. http://dx.
doi.org/10.3390/rs16040656, URL: https://www.mdpi.com/2072-4292/16/4/656.

Andrew, O., Apan, A., Paudyal, D.R., Perera, K., 2023. Convolutional neural network-
based deep learning approach for automatic flood mapping using novasar-1 and 
sentinel-1 data. ISPRS Int. J. Geo-Inform. 12 (5), 194. http://dx.doi.org/10.3390/
ijgi12050194, URL: https://www.mdpi.com/2220-9964/12/5/194.

Arias, M., Campo-Bescos, M.A., Arregui, L.M., Gonzalez-Audicana, M., Alvarez-
Mozos, J., 2022. A new methodology for wheat attenuation correction at C-band 
VV-polarized backscatter time series. IEEE Trans. Geosci. Remote Sens. 60, 1–14. 
http://dx.doi.org/10.1109/TGRS.2022.3176144, URL: https://ieeexplore.ieee.org/
document/9777738/.

Asadi, M., Sarabi, S., Kordani, M., Ilani, M.A., Banad, Y.M., 2025. Enhanced-HisSegNet: 
Improved SAR image flood segmentation with learnable histogram layers and active 
contour model. IEEE Geosci. Remote. Sens. Lett. 22, 1–5. http://dx.doi.org/10.
1109/LGRS.2025.3532334, URL: https://ieeexplore.ieee.org/document/10848168/.

Ban, Y., Yousif, O.A., 2012. Multitemporal spaceborne SAR data for urban change 
detection in China. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 5 
(4), 1087–1094. http://dx.doi.org/10.1109/JSTARS.2012.2201135, URL: https://
ieeexplore.ieee.org/document/6230616/.

Bartsch, A., Kidd, R.A., Pathe, C., Scipal, K., Wagner, W., 2007. Satellite radar imagery 
for monitoring inland wetlands in boreal and sub–arctic environments. Aquat. 
Conserv.: Mar. Freshw. Ecosyst. 17 (3), 305–317. http://dx.doi.org/10.1002/aqc.
836, URL: https://onlinelibrary.wiley.com/doi/10.1002/aqc.836.

Bartsch, A., Wagner, W., Scipal, K., Pathe, C., Sabel, D., Wolski, P., 2009. Global 
monitoring of wetlands – the value of ENVISAT ASAR global mode. J. Envi-
ron. Manag. 90 (7), 2226–2233. http://dx.doi.org/10.1016/j.jenvman.2007.06.023, 
URL: https://linkinghub.elsevier.com/retrieve/pii/S0301479708000431.
25 
Bauer-Marschallinger, B., Cao, S., Navacchi, C., Freeman, V., Reuß, F., Geudtner, D., 
Rommen, B., Vega, F.C., Snoeij, P., Attema, E., Reimer, C., Wagner, W., 2021. The 
normalised sentinel–1 global backscatter model, mapping Earth’s land surface with 
C-band microwaves. Sci. Data 8 (1), 277. http://dx.doi.org/10.1038/s41597-021-
01059-7, URL: https://www.nature.com/articles/s41597-021-01059-7.

Bauer-Marschallinger, B., Cao, S., Tupas, M.E., Roth, F., Navacchi, C., Melzer, T., 
Freeman, V., Wagner, W., 2022. Satellite–based flood mapping through Bayesian 
inference from a sentinel-1 SAR datacube. Remote. Sens. 14 (15), 3673. http://
dx.doi.org/10.3390/rs14153673, URL: https://www.mdpi.com/2072-4292/14/15/
3673.

Bauer-Marschallinger, B., Falkner, K., 2023. Wasting petabytes: A survey of the 
sentinel–2 UTM tiling grid and its spatial overhead. ISPRS J. Photogramm. Remote 
Sens. 202, 682–690. http://dx.doi.org/10.1016/j.isprsjprs.2023.07.015, URL: https:
//linkinghub.elsevier.com/retrieve/pii/S0924271623001971.

Bauer-Marschallinger, B., Sabel, D., Wagner, W., 2014. Optimisation of global grids 
for high–resolution remote sensing data. Comput. Geosci. 72, 84–93. http:
//dx.doi.org/10.1016/j.cageo.2014.07.005, URL: https://www.sciencedirect.com/
science/article/pii/S0098300414001629.

Bentivoglio, R., Isufi, E., Jonkman, S.N., Taormina, R., 2022. Deep learning methods 
for flood mapping: a review of existing applications and future research directions. 
Hydrol. Earth Syst. Sci. 26 (16), 4345–4378. http://dx.doi.org/10.5194/hess-26-
4345-2022, URL: https://hess.copernicus.org/articles/26/4345/2022/.

Bereczky, M., Wieland, M., Krullikowski, C., Martinis, S., Plank, S., 2022. Sentinel-
1-based water and flood mapping: Benchmarking convolutional neural networks 
against an operational rule-based processing chain. IEEE J. Sel. Top. Appl. 
Earth Obs. Remote. Sens. 15, 2023–2036. http://dx.doi.org/10.1109/JSTARS.2022.
3152127, URL: https://ieeexplore.ieee.org/document/9714780/.

Bonafilia, D., Tellman, B., Anderson, T., Issenberg, E., 2020. Sen1Floods11: a georef-
erenced dataset to train and test deep learning flood algorithms for sentinel–1. In: 
2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Work-
shops. CVPRW, IEEE, Seattle, WA, USA, pp. 835–845. http://dx.doi.org/10.1109/
CVPRW50498.2020.00113, URL: https://ieeexplore.ieee.org/document/9150760/.

Boni, G., Ferraris, L., Pulvirenti, L., Squicciarino, G., Pierdicca, N., Candela, L., 
Pisani, A.R., Zoffoli, S., Onori, R., Proietti, C., Pagliara, P., 2016. A prototype 
system for flood monitoring based on flood forecast combined with COSMO–
SkyMed and sentinel–1 data. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 
9 (6), 2794–2805. http://dx.doi.org/10.1109/JSTARS.2016.2514402, URL: https:
//ieeexplore.ieee.org/document/7399683/.

Bountos, N.I., Sdraka, M., Zavras, A., Karasante, I., Karavias, A., Herekakis, T., 
Thanasou, A., Michail, D., Papoutsis, I., 2023. Kuro Siwo: 33 Billion M2 
Under the Water. a Global Multi–Temporal Satellite Dataset for Rapid 
Flood Mapping, vol. 37, pp. 38105–38121, URL: https://proceedings.neurips.
cc/paper_files/paper/2024/file/43612b0662cb6a4986edf859fd6ebafe-Paper-
Datasets_and_Benchmarks_Track.pdf. Version Number: 3.

Brown, C.F., Brumby, S.P., Guzder-Williams, B., Birch, T., Hyde, S.B., Mazzariello, J., 
Czerwinski, W., Pasquarella, V.J., Haertel, R., Ilyushchenko, S., Schwehr, K., 
Weisse, M., Stolle, F., Hanson, C., Guinan, O., Moore, R., Tait, A.M., 2022. 
Dynamic World, Near real–time global 10 m land use land cover mapping. Sci. 
Data 9 (1), 251. http://dx.doi.org/10.1038/s41597-022-01307-4, URL: https://
www.nature.com/articles/s41597-022-01307-4.

Calvin, K., Dasgupta, D., Krinner, G., Mukherji, A., Thorne, P.W., Trisos, C., Romero, J., 
Aldunce, P., Barrett, K., Blanco, G., et al., 2023. In: Core Writing Team, Lee, H., 
Romero, J. (Eds.), IPCC, 2023: Climate Change 2023: Synthesis Report. Contri-
bution of Working Groups I, II and III to the Sixth Assessment Report of the 
Intergovernmental Panel on Climate Change, Technical Report, first ed. Intergov-
ernmental Panel on Climate Change (IPCC), Geneva, Switzerland, http://dx.doi.org/
10.59327/IPCC/AR6-9789291691647, URL: https://www.ipcc.ch/report/ar6/syr/. 
IPCC.

Card, D.H., 1982. Using known map category marginal frequencies to improve estimates 
of thematic map accuracy. Photogramm. Eng. Remote Sens. (3), 431–439.

http://dx.doi.org/10.1016/j.geomorph.2020.107197
http://dx.doi.org/10.1016/j.geomorph.2020.107197
http://dx.doi.org/10.1016/j.geomorph.2020.107197
https://linkinghub.elsevier.com/retrieve/pii/S0169555X20301690
https://linkinghub.elsevier.com/retrieve/pii/S0169555X20301690
https://linkinghub.elsevier.com/retrieve/pii/S0169555X20301690
http://dx.doi.org/10.1002/9781119217930.ch14
https://agupubs.onlinelibrary.wiley.com/doi/10.1002/9781119217930.ch14
https://agupubs.onlinelibrary.wiley.com/doi/10.1002/9781119217930.ch14
https://agupubs.onlinelibrary.wiley.com/doi/10.1002/9781119217930.ch14
http://dx.doi.org/10.1016/j.gsf.2024.101780
https://linkinghub.elsevier.com/retrieve/pii/S1674987124000045
https://linkinghub.elsevier.com/retrieve/pii/S1674987124000045
https://linkinghub.elsevier.com/retrieve/pii/S1674987124000045
http://dx.doi.org/10.3390/rs16040656
http://dx.doi.org/10.3390/rs16040656
http://dx.doi.org/10.3390/rs16040656
https://www.mdpi.com/2072-4292/16/4/656
http://dx.doi.org/10.3390/ijgi12050194
http://dx.doi.org/10.3390/ijgi12050194
http://dx.doi.org/10.3390/ijgi12050194
https://www.mdpi.com/2220-9964/12/5/194
http://dx.doi.org/10.1109/TGRS.2022.3176144
https://ieeexplore.ieee.org/document/9777738/
https://ieeexplore.ieee.org/document/9777738/
https://ieeexplore.ieee.org/document/9777738/
http://dx.doi.org/10.1109/LGRS.2025.3532334
http://dx.doi.org/10.1109/LGRS.2025.3532334
http://dx.doi.org/10.1109/LGRS.2025.3532334
https://ieeexplore.ieee.org/document/10848168/
http://dx.doi.org/10.1109/JSTARS.2012.2201135
https://ieeexplore.ieee.org/document/6230616/
https://ieeexplore.ieee.org/document/6230616/
https://ieeexplore.ieee.org/document/6230616/
http://dx.doi.org/10.1002/aqc.836
http://dx.doi.org/10.1002/aqc.836
http://dx.doi.org/10.1002/aqc.836
https://onlinelibrary.wiley.com/doi/10.1002/aqc.836
http://dx.doi.org/10.1016/j.jenvman.2007.06.023
https://linkinghub.elsevier.com/retrieve/pii/S0301479708000431
http://dx.doi.org/10.1038/s41597-021-01059-7
http://dx.doi.org/10.1038/s41597-021-01059-7
http://dx.doi.org/10.1038/s41597-021-01059-7
https://www.nature.com/articles/s41597-021-01059-7
http://dx.doi.org/10.3390/rs14153673
http://dx.doi.org/10.3390/rs14153673
http://dx.doi.org/10.3390/rs14153673
https://www.mdpi.com/2072-4292/14/15/3673
https://www.mdpi.com/2072-4292/14/15/3673
https://www.mdpi.com/2072-4292/14/15/3673
http://dx.doi.org/10.1016/j.isprsjprs.2023.07.015
https://linkinghub.elsevier.com/retrieve/pii/S0924271623001971
https://linkinghub.elsevier.com/retrieve/pii/S0924271623001971
https://linkinghub.elsevier.com/retrieve/pii/S0924271623001971
http://dx.doi.org/10.1016/j.cageo.2014.07.005
http://dx.doi.org/10.1016/j.cageo.2014.07.005
http://dx.doi.org/10.1016/j.cageo.2014.07.005
https://www.sciencedirect.com/science/article/pii/S0098300414001629
https://www.sciencedirect.com/science/article/pii/S0098300414001629
https://www.sciencedirect.com/science/article/pii/S0098300414001629
http://dx.doi.org/10.5194/hess-26-4345-2022
http://dx.doi.org/10.5194/hess-26-4345-2022
http://dx.doi.org/10.5194/hess-26-4345-2022
https://hess.copernicus.org/articles/26/4345/2022/
http://dx.doi.org/10.1109/JSTARS.2022.3152127
http://dx.doi.org/10.1109/JSTARS.2022.3152127
http://dx.doi.org/10.1109/JSTARS.2022.3152127
https://ieeexplore.ieee.org/document/9714780/
http://dx.doi.org/10.1109/CVPRW50498.2020.00113
http://dx.doi.org/10.1109/CVPRW50498.2020.00113
http://dx.doi.org/10.1109/CVPRW50498.2020.00113
https://ieeexplore.ieee.org/document/9150760/
http://dx.doi.org/10.1109/JSTARS.2016.2514402
https://ieeexplore.ieee.org/document/7399683/
https://ieeexplore.ieee.org/document/7399683/
https://ieeexplore.ieee.org/document/7399683/
https://proceedings.neurips.cc/paper_files/paper/2024/file/43612b0662cb6a4986edf859fd6ebafe-Paper-Datasets_and_Benchmarks_Track.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/43612b0662cb6a4986edf859fd6ebafe-Paper-Datasets_and_Benchmarks_Track.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/43612b0662cb6a4986edf859fd6ebafe-Paper-Datasets_and_Benchmarks_Track.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/43612b0662cb6a4986edf859fd6ebafe-Paper-Datasets_and_Benchmarks_Track.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/43612b0662cb6a4986edf859fd6ebafe-Paper-Datasets_and_Benchmarks_Track.pdf
http://dx.doi.org/10.1038/s41597-022-01307-4
https://www.nature.com/articles/s41597-022-01307-4
https://www.nature.com/articles/s41597-022-01307-4
https://www.nature.com/articles/s41597-022-01307-4
http://dx.doi.org/10.59327/IPCC/AR6-9789291691647
http://dx.doi.org/10.59327/IPCC/AR6-9789291691647
http://dx.doi.org/10.59327/IPCC/AR6-9789291691647
https://www.ipcc.ch/report/ar6/syr/
http://refhub.elsevier.com/S0034-4257(25)00512-7/sb22
http://refhub.elsevier.com/S0034-4257(25)00512-7/sb22
http://refhub.elsevier.com/S0034-4257(25)00512-7/sb22


W. Wagner et al. Remote Sensing of Environment 333 (2026) 115108 
Carincotte, C., Derrode, S., Bourennane, S., 2006. Unsupervised change detection 
on SAR images using fuzzy hidden Markov chains. IEEE Trans. Geosci. Remote 
Sens. 44 (2), 432–441. http://dx.doi.org/10.1109/TGRS.2005.861007, URL: http:
//ieeexplore.ieee.org/document/1580728/.

Carreno-Luengo, H., Ruf, C.S., Gleason, S., Russel, A., 2024. Detection of inland 
water bodies under dense biomass by CYGNSS. Remote Sens. Environ. 301, 
113896. http://dx.doi.org/10.1016/j.rse.2023.113896, URL: https://linkinghub.
elsevier.com/retrieve/pii/S0034425723004479.

Chatenoux, B., Richard, J.P., Small, D., Roeoesli, C., Wingate, V., Poussin, C., Rodila, D., 
Peduzzi, P., Steinmeier, C., Ginzler, C., Psomas, A., Schaepman, M.E., Giuliani, G., 
2021. The swiss data cube, analysis ready data archive using Earth observations of 
Switzerland. Sci. Data 8 (1), 295. http://dx.doi.org/10.1038/s41597-021-01076-6, 
URL: https://www.nature.com/articles/s41597-021-01076-6.

Chen, Y., Lu, H., Wu, H., Wang, J., Lyu, N., 2023. Global desert variation under 
climatic impact during 1982–2020. Sci. China Earth Sci. 66 (5), 1062–1071. 
http://dx.doi.org/10.1007/s11430-022-1052-1, URL: https://link.springer.com/10.
1007/s11430-022-1052-1.

Chimata, L.A., Anuvala Setty Venkata, S.B., Patlolla, S.V.R., Korada Hari Venkata, D.R., 
Kandrika, S., Chauhan, P., 2025. Automated rapid estimation of flood depth using 
a digital elevation model and Earth observation satellite (EOS-04)-derived flood 
inundation. Nat. Hazards Earth Syst. Sci. 25 (7), 2455–2472. http://dx.doi.org/
10.5194/nhess-25-2455-2025, URL: https://nhess.copernicus.org/articles/25/2455/
2025/.

Chini, M., Hostache, R., Giustarini, L., Matgen, P., 2017. A hierarchical split-based 
approach for parametric thresholding of SAR images: Flood inundation as a test 
case. IEEE Trans. Geosci. Remote Sens. 55 (12), 6975–6988. http://dx.doi.org/10.
1109/TGRS.2017.2737664, URL: http://ieeexplore.ieee.org/document/8017436/.

Chini, M., Pelich, R., Hostache, R., Matgen, P., Bossung, C., Campanella, P., Rudari, R., 
Bally, P., 2020. Systematic and automatic large-scale flood monitoring system using 
sentinel-1 SAR data. In: IGARSS 2020 - 2020 IEEE International Geoscience and 
Remote Sensing Symposium. IEEE, Waikoloa, HI, USA, pp. 3251–3254. http://
dx.doi.org/10.1109/IGARSS39084.2020.9323428, URL: https://ieeexplore.ieee.org/
document/9323428/.

Chini, M., Pelich, R., Pulvirenti, L., Pierdicca, N., Hostache, R., Matgen, P., 2019. 
Sentinel-1 InSAR coherence to detect floodwater in urban areas: Houston and 
hurricane harvey as A test case. Remote. Sens. 11 (2), 107. http://dx.doi.org/10.
3390/rs11020107, URL: https://www.mdpi.com/2072-4292/11/2/107.

Chow, C., Twele, A., Martinis, S., 2016. In: Neale, C.M.U., Maltese, A. (Eds.), An 
Assessment of the Height Above Nearest Drainage Terrain Descriptor for the The-
matic Enhancement of Automatic SAR-Based Flood Monitoring Services. Edinburgh, 
United Kingdom, 999808. http://dx.doi.org/10.1117/12.2240766, URL: http://
proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.2240766.

Cian, F., Delgado Blasco, J.M., Ivanescu, C., 2024. Improving rapid flood impact 
assessment: An enhanced multi-sensor approach including a new flood mapping 
method based on sentinel-2 data. J. Environ. Manag. 369, 122326. http://
dx.doi.org/10.1016/j.jenvman.2024.122326, URL: https://linkinghub.elsevier.com/
retrieve/pii/S0301479724023120.

Congalton, R.G., Green, K., 2019. Assessing the Accuracy of Remotely Sensed 
Data: Principles and Practices, third ed. CRC Press, http://dx.doi.org/10.1201/
9780429052729, URL: https://www.taylorfrancis.com/books/9780429629358.

Cossu, R., Schoepfer, E., Bally, P., Fusco, L., 2009. Near real-time SAR-based processing 
to support flood monitoring. J. Real-Time Image Process. 4 (3), 205–218. http:
//dx.doi.org/10.1007/s11554-009-0114-4, URL: http://link.springer.com/10.1007/
s11554-009-0114-4.

Dasgupta, A., Grimaldi, S., Ramsankaran, R., Pauwels, V.R., Walker, J.P., 
2018a. Towards operational SAR-based flood mapping using neuro-fuzzy 
texture-based approaches. Remote Sens. Environ. 215, 313–329. http://dx.doi.
org/10.1016/j.rse.2018.06.019, URL: https://linkinghub.elsevier.com/retrieve/pii/
S0034425718302979.

Dasgupta, A., Grimaldi, S., Ramsankaran, R., Pauwels, V.R.N., Walker, J.P., Chini, M., 
Hostache, R., Matgen, P., 2018b. Flood mapping using synthetic aperture 
radar sensors from local to global scales. In: Schumann, G.J., Bates, P.D., 
Apel, H., Aronica, G.T. (Eds.), Geophysical Monograph Series, first ed. Wiley, 
pp. 55–77. http://dx.doi.org/10.1002/9781119217886.ch4, URL: https://agupubs.
onlinelibrary.wiley.com/doi/10.1002/9781119217886.ch4.

Davidson, M.W.J., Furnell, R., 2021. ROSE-L: Copernicus L-band sar mission. In: 
2021 IEEE International Geoscience and Remote Sensing Symposium. IGARSS, 
IEEE, Brussels, Belgium, pp. 872–873. http://dx.doi.org/10.1109/IGARSS47720.
2021.9554018, URL: https://ieeexplore.ieee.org/document/9554018/.

De Grove, T., Kugler, Z., Brakenridge, R., 2007. Near real-time flood alerting for the 
global disaster alert and coordination system. In: Proceedings of ISCRAM2007. 
VUBPRESS Brussels University Press, Brussels, Belgium, pp. 33–40, URL: https:
//publications.jrc.ec.europa.eu/repository/handle/JRC40032.

De Zan, F., Monti Guarnieri, A., 2006. TOPSAR: Terrain observation by progressive 
scans. IEEE Trans. Geosci. Remote Sens. 44 (9), 2352–2360. http://dx.doi.org/10.
1109/TGRS.2006.873853, URL: http://ieeexplore.ieee.org/document/1677745/.
26 
Denis, G., De Boissezon, H., Hosford, S., Pasco, X., Montfort, B., Ranera, F., 2016. 
The evolution of earth observation satellites in Europe and its impact on the 
performance of emergency response services. Acta Astronaut. 127, 619–633. http://
dx.doi.org/10.1016/j.actaastro.2016.06.012, URL: https://linkinghub.elsevier.com/
retrieve/pii/S0094576515303337.

Destefanis, T., Guliyeva, S., Boccardo, P., Fissore, V., 2025. Advancing flood detection 
and mapping: A review of Earth observation services, 3D data integration, and 
AI-based techniques. Remote. Sens. 17 (17), 2943. http://dx.doi.org/10.3390/
rs17172943, URL: https://www.mdpi.com/2072-4292/17/17/2943.

DeVries, B., Huang, C., Armston, J., Huang, W., Jones, J.W., Lang, M.W., 2020. 
Rapid and robust monitoring of flood events using Sentinel-1 and landsat data 
on the Google Earth Engine. Remote Sens. Environ. 240, 111664. http://dx.doi.
org/10.1016/j.rse.2020.111664, URL: https://linkinghub.elsevier.com/retrieve/pii/
S003442572030033X.

Doan, T.N., Le-Thi, D.N., 2025. A novel deep learning model for flood detection from 
synthetic aperture radar images. J. Adv. Inf. Technol. 16 (1), 57–70. http://dx.doi.
org/10.12720/jait.16.1.57-70, URL: https://www.jait.us/show-249-1626-1.html.

Dostalova, A., Navacchi, C., Greimeister-Pfeil, I., Small, D., Wagner, W., 2022. The 
effects of radiometric terrain flattening on SAR-based forest mapping and classifi-
cation. Remote. Sens. Lett. 13 (9), 855–864. http://dx.doi.org/10.1080/2150704X.
2022.2092911, URL: https://www.tandfonline.com/doi/full/10.1080/2150704X.
2022.2092911.

Fakhri, F., Gkanatsios, I., 2025. Quantitative evaluation of flood extent detection using 
attention U-net case studies from Eastern South Wales Australia in March 2021 and 
July 2022. Sci. Rep. 15 (1), 12377. http://dx.doi.org/10.1038/s41598-025-92734-x, 
URL: https://www.nature.com/articles/s41598-025-92734-x.

Fichtner, F., Mandery, N., Wieland, M., Groth, S., Martinis, S., Riedlinger, T., 
2023. Time-series analysis of Sentinel-1/2 data for flood detection using a dis-
crete global grid system and seasonal decomposition. Int. J. Appl. Earth Obs. 
Geoinf. 119, 103329. http://dx.doi.org/10.1016/j.jag.2023.103329, URL: https://
linkinghub.elsevier.com/retrieve/pii/S1569843223001516.

Franks, S., Rengarajan, R., 2023. Evaluation of copernicus DEM and comparison to 
the DEM used for landsat collection-2 processing. Remote. Sens. 15 (10), 2509. 
http://dx.doi.org/10.3390/rs15102509, URL: https://www.mdpi.com/2072-4292/
15/10/2509.

Garg, S., Dasgupta, A., Motagh, M., Martinis, S., Selvakumaran, S., 2024. Unlocking 
the full potential of sentinel-1 for flood detection in arid regions. Remote Sens. 
Environ. 315, 114417. http://dx.doi.org/10.1016/j.rse.2024.114417, URL: https:
//linkinghub.elsevier.com/retrieve/pii/S0034425724004437.

Giustarini, L., Hostache, R., Matgen, P., Schumann, G.J.P., Bates, P.D., Mason, D.C., 
2013. A change detection approach to flood mapping in urban areas using terrasar-
X. IEEE Trans. Geosci. Remote Sens. 51 (4), 2417–2430. http://dx.doi.org/10.1109/
TGRS.2012.2210901, URL: http://ieeexplore.ieee.org/document/6297453/.

Godet, J., Gaume, E., Javelle, P., Nicolle, P., Payrastre, O., 2024. Technical note: 
Comparing three different methods for allocating river points to coarse-resolution 
hydrological modelling grid cells. Hydrol. Earth Syst. Sci. 28 (6), 1403–1413. 
http://dx.doi.org/10.5194/hess-28-1403-2024, URL: https://hess.copernicus.org/
articles/28/1403/2024/.

Gomes, V., Queiroz, G., Ferreira, K., 2020. An overview of platforms for big earth 
observation data management and analysis. Remote. Sens. 12 (8), 1253. http:
//dx.doi.org/10.3390/rs12081253, URL: https://www.mdpi.com/2072-4292/12/8/
1253.

Greifeneder, F., Wagner, W., Sabel, D., Naeimi, V., 2014. Suitability of SAR imagery 
for automatic flood mapping in the Lower Mekong Basin. Int. J. Remote Sens. 
35 (8), 2857–2874. http://dx.doi.org/10.1080/01431161.2014.890299, URL: https:
//www.tandfonline.com/doi/full/10.1080/01431161.2014.890299.

Grimaldi, S., Xu, J., Li, Y., Pauwels, V., Walker, J., 2020. Flood mapping under vegeta-
tion using single SAR acquisitions. Remote Sens. Environ. 237, 111582. http://dx.
doi.org/10.1016/j.rse.2019.111582, URL: https://linkinghub.elsevier.com/retrieve/
pii/S0034425719306029.

Groth, S., Wieland, M., Henkel, F., Martinis, S., 2024. Global reference water in-
formation for flood monitoring: Increasing accessibility with STAC. http://dx.
doi.org/10.5194/egusphere-egu24-3849, URL: https://meetingorganizer.copernicus.
org/EGU24/EGU24-3849.html.

Hagen, A., 2003. Fuzzy set approach to assessing similarity of categorical maps. Int. J. 
Geogr. Inf. Sci. 17 (3), 235–249. http://dx.doi.org/10.1080/13658810210157822, 
URL: http://www.tandfonline.com/doi/abs/10.1080/13658810210157822.

Hansen, M.C., Potapov, P.V., Moore, R., Hancher, M., Turubanova, S.A., Tyukav-
ina, A., Thau, D., Stehman, S.V., Goetz, S.J., Loveland, T.R., Kommareddy, A., 
Egorov, A., Chini, L., Justice, C.O., Townshend, J.R.G., 2013. High-resolution 
global maps of 21st-century forest cover change. Science 342 (6160), 850–853. 
http://dx.doi.org/10.1126/science.1244693, URL: https://www.science.org/doi/10.
1126/science.1244693.

Horritt, M.S., Mason, D.C., Luckman, A.J., 2001. Flood boundary delineation from 
synthetic aperture radar imagery using a statistical active contour model. Int. J. 
Remote Sens. 22 (13), 2489–2507. http://dx.doi.org/10.1080/01431160116902, 
URL: https://www.tandfonline.com/doi/full/10.1080/01431160116902.

http://dx.doi.org/10.1109/TGRS.2005.861007
http://ieeexplore.ieee.org/document/1580728/
http://ieeexplore.ieee.org/document/1580728/
http://ieeexplore.ieee.org/document/1580728/
http://dx.doi.org/10.1016/j.rse.2023.113896
https://linkinghub.elsevier.com/retrieve/pii/S0034425723004479
https://linkinghub.elsevier.com/retrieve/pii/S0034425723004479
https://linkinghub.elsevier.com/retrieve/pii/S0034425723004479
http://dx.doi.org/10.1038/s41597-021-01076-6
https://www.nature.com/articles/s41597-021-01076-6
http://dx.doi.org/10.1007/s11430-022-1052-1
https://link.springer.com/10.1007/s11430-022-1052-1
https://link.springer.com/10.1007/s11430-022-1052-1
https://link.springer.com/10.1007/s11430-022-1052-1
http://dx.doi.org/10.5194/nhess-25-2455-2025
http://dx.doi.org/10.5194/nhess-25-2455-2025
http://dx.doi.org/10.5194/nhess-25-2455-2025
https://nhess.copernicus.org/articles/25/2455/2025/
https://nhess.copernicus.org/articles/25/2455/2025/
https://nhess.copernicus.org/articles/25/2455/2025/
http://dx.doi.org/10.1109/TGRS.2017.2737664
http://dx.doi.org/10.1109/TGRS.2017.2737664
http://dx.doi.org/10.1109/TGRS.2017.2737664
http://ieeexplore.ieee.org/document/8017436/
http://dx.doi.org/10.1109/IGARSS39084.2020.9323428
http://dx.doi.org/10.1109/IGARSS39084.2020.9323428
http://dx.doi.org/10.1109/IGARSS39084.2020.9323428
https://ieeexplore.ieee.org/document/9323428/
https://ieeexplore.ieee.org/document/9323428/
https://ieeexplore.ieee.org/document/9323428/
http://dx.doi.org/10.3390/rs11020107
http://dx.doi.org/10.3390/rs11020107
http://dx.doi.org/10.3390/rs11020107
https://www.mdpi.com/2072-4292/11/2/107
http://dx.doi.org/10.1117/12.2240766
http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.2240766
http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.2240766
http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.2240766
http://dx.doi.org/10.1016/j.jenvman.2024.122326
http://dx.doi.org/10.1016/j.jenvman.2024.122326
http://dx.doi.org/10.1016/j.jenvman.2024.122326
https://linkinghub.elsevier.com/retrieve/pii/S0301479724023120
https://linkinghub.elsevier.com/retrieve/pii/S0301479724023120
https://linkinghub.elsevier.com/retrieve/pii/S0301479724023120
http://dx.doi.org/10.1201/9780429052729
http://dx.doi.org/10.1201/9780429052729
http://dx.doi.org/10.1201/9780429052729
https://www.taylorfrancis.com/books/9780429629358
http://dx.doi.org/10.1007/s11554-009-0114-4
http://dx.doi.org/10.1007/s11554-009-0114-4
http://dx.doi.org/10.1007/s11554-009-0114-4
http://link.springer.com/10.1007/s11554-009-0114-4
http://link.springer.com/10.1007/s11554-009-0114-4
http://link.springer.com/10.1007/s11554-009-0114-4
http://dx.doi.org/10.1016/j.rse.2018.06.019
http://dx.doi.org/10.1016/j.rse.2018.06.019
http://dx.doi.org/10.1016/j.rse.2018.06.019
https://linkinghub.elsevier.com/retrieve/pii/S0034425718302979
https://linkinghub.elsevier.com/retrieve/pii/S0034425718302979
https://linkinghub.elsevier.com/retrieve/pii/S0034425718302979
http://dx.doi.org/10.1002/9781119217886.ch4
https://agupubs.onlinelibrary.wiley.com/doi/10.1002/9781119217886.ch4
https://agupubs.onlinelibrary.wiley.com/doi/10.1002/9781119217886.ch4
https://agupubs.onlinelibrary.wiley.com/doi/10.1002/9781119217886.ch4
http://dx.doi.org/10.1109/IGARSS47720.2021.9554018
http://dx.doi.org/10.1109/IGARSS47720.2021.9554018
http://dx.doi.org/10.1109/IGARSS47720.2021.9554018
https://ieeexplore.ieee.org/document/9554018/
https://publications.jrc.ec.europa.eu/repository/handle/JRC40032
https://publications.jrc.ec.europa.eu/repository/handle/JRC40032
https://publications.jrc.ec.europa.eu/repository/handle/JRC40032
http://dx.doi.org/10.1109/TGRS.2006.873853
http://dx.doi.org/10.1109/TGRS.2006.873853
http://dx.doi.org/10.1109/TGRS.2006.873853
http://ieeexplore.ieee.org/document/1677745/
http://dx.doi.org/10.1016/j.actaastro.2016.06.012
http://dx.doi.org/10.1016/j.actaastro.2016.06.012
http://dx.doi.org/10.1016/j.actaastro.2016.06.012
https://linkinghub.elsevier.com/retrieve/pii/S0094576515303337
https://linkinghub.elsevier.com/retrieve/pii/S0094576515303337
https://linkinghub.elsevier.com/retrieve/pii/S0094576515303337
http://dx.doi.org/10.3390/rs17172943
http://dx.doi.org/10.3390/rs17172943
http://dx.doi.org/10.3390/rs17172943
https://www.mdpi.com/2072-4292/17/17/2943
http://dx.doi.org/10.1016/j.rse.2020.111664
http://dx.doi.org/10.1016/j.rse.2020.111664
http://dx.doi.org/10.1016/j.rse.2020.111664
https://linkinghub.elsevier.com/retrieve/pii/S003442572030033X
https://linkinghub.elsevier.com/retrieve/pii/S003442572030033X
https://linkinghub.elsevier.com/retrieve/pii/S003442572030033X
http://dx.doi.org/10.12720/jait.16.1.57-70
http://dx.doi.org/10.12720/jait.16.1.57-70
http://dx.doi.org/10.12720/jait.16.1.57-70
https://www.jait.us/show-249-1626-1.html
http://dx.doi.org/10.1080/2150704X.2022.2092911
http://dx.doi.org/10.1080/2150704X.2022.2092911
http://dx.doi.org/10.1080/2150704X.2022.2092911
https://www.tandfonline.com/doi/full/10.1080/2150704X.2022.2092911
https://www.tandfonline.com/doi/full/10.1080/2150704X.2022.2092911
https://www.tandfonline.com/doi/full/10.1080/2150704X.2022.2092911
http://dx.doi.org/10.1038/s41598-025-92734-x
https://www.nature.com/articles/s41598-025-92734-x
http://dx.doi.org/10.1016/j.jag.2023.103329
https://linkinghub.elsevier.com/retrieve/pii/S1569843223001516
https://linkinghub.elsevier.com/retrieve/pii/S1569843223001516
https://linkinghub.elsevier.com/retrieve/pii/S1569843223001516
http://dx.doi.org/10.3390/rs15102509
https://www.mdpi.com/2072-4292/15/10/2509
https://www.mdpi.com/2072-4292/15/10/2509
https://www.mdpi.com/2072-4292/15/10/2509
http://dx.doi.org/10.1016/j.rse.2024.114417
https://linkinghub.elsevier.com/retrieve/pii/S0034425724004437
https://linkinghub.elsevier.com/retrieve/pii/S0034425724004437
https://linkinghub.elsevier.com/retrieve/pii/S0034425724004437
http://dx.doi.org/10.1109/TGRS.2012.2210901
http://dx.doi.org/10.1109/TGRS.2012.2210901
http://dx.doi.org/10.1109/TGRS.2012.2210901
http://ieeexplore.ieee.org/document/6297453/
http://dx.doi.org/10.5194/hess-28-1403-2024
https://hess.copernicus.org/articles/28/1403/2024/
https://hess.copernicus.org/articles/28/1403/2024/
https://hess.copernicus.org/articles/28/1403/2024/
http://dx.doi.org/10.3390/rs12081253
http://dx.doi.org/10.3390/rs12081253
http://dx.doi.org/10.3390/rs12081253
https://www.mdpi.com/2072-4292/12/8/1253
https://www.mdpi.com/2072-4292/12/8/1253
https://www.mdpi.com/2072-4292/12/8/1253
http://dx.doi.org/10.1080/01431161.2014.890299
https://www.tandfonline.com/doi/full/10.1080/01431161.2014.890299
https://www.tandfonline.com/doi/full/10.1080/01431161.2014.890299
https://www.tandfonline.com/doi/full/10.1080/01431161.2014.890299
http://dx.doi.org/10.1016/j.rse.2019.111582
http://dx.doi.org/10.1016/j.rse.2019.111582
http://dx.doi.org/10.1016/j.rse.2019.111582
https://linkinghub.elsevier.com/retrieve/pii/S0034425719306029
https://linkinghub.elsevier.com/retrieve/pii/S0034425719306029
https://linkinghub.elsevier.com/retrieve/pii/S0034425719306029
http://dx.doi.org/10.5194/egusphere-egu24-3849
http://dx.doi.org/10.5194/egusphere-egu24-3849
http://dx.doi.org/10.5194/egusphere-egu24-3849
https://meetingorganizer.copernicus.org/EGU24/EGU24-3849.html
https://meetingorganizer.copernicus.org/EGU24/EGU24-3849.html
https://meetingorganizer.copernicus.org/EGU24/EGU24-3849.html
http://dx.doi.org/10.1080/13658810210157822
http://www.tandfonline.com/doi/abs/10.1080/13658810210157822
http://dx.doi.org/10.1126/science.1244693
https://www.science.org/doi/10.1126/science.1244693
https://www.science.org/doi/10.1126/science.1244693
https://www.science.org/doi/10.1126/science.1244693
http://dx.doi.org/10.1080/01431160116902
https://www.tandfonline.com/doi/full/10.1080/01431160116902


W. Wagner et al. Remote Sensing of Environment 333 (2026) 115108 
Hostache, R., Matgen, P., Wagner, W., 2012. Change detection approaches for 
flood extent mapping: How to select the most adequate reference image from 
online archives? Int. J. Appl. Earth Obs. Geoinf. 19, 205–213. http://dx.doi.
org/10.1016/j.jag.2012.05.003, URL: https://linkinghub.elsevier.com/retrieve/pii/
S0303243412000992.

Huang, C., Nguyen, B.D., Zhang, S., Cao, S., Wagner, W., 2017. A comparison of terrain 
indices toward their ability in assisting surface water mapping from sentinel-1 data. 
ISPRS Int. J. Geo-Inform. 6 (5), 140. http://dx.doi.org/10.3390/ijgi6050140, URL: 
http://www.mdpi.com/2220-9964/6/5/140.

Iadanza, C., Trigila, A., Starace, P., Dragoni, A., Biondo, T., Roccisano, M., 2021. 
IdroGEO: A collaborative web mapping application based on REST API services 
and open data on landslides and floods in Italy. ISPRS Int. J. Geo-Inform. 10 (2), 
89. http://dx.doi.org/10.3390/ijgi10020089, URL: https://www.mdpi.com/2220-
9964/10/2/89.

Ignatenko, V., Dogan, O., Radius, A., Nottingham, M., Muff, D., Lamentowski, L., 
Leprovost, P., Vehmas, R., Seilonen, T., Vilja, P., 2024. ICEYE microsatellite 
SAR constellation: SAR data quality improvements and new dwell imaging mode. 
In: EUSAR 2024; 15th European Conference on Synthetic Aperture Radar. pp. 
1118–1192.

Imhoff, M.L., Vermillion, C., Story, M., Choudhury, A., Gafoor, A., Polcyn, F., 1987. 
Monsoon flood boundary delineation and damage assessment using space Borne 
imaging radar and landsat data. Photogramm. Eng. Remote Sens. 53 (4), 405–413.

Keenan, R.J., Reams, G.A., Achard, F., De Freitas, J.V., Grainger, A., Lindquist, E., 
2015. Dynamics of global forest area: Results from the FAO Global forest 
resources assessment 2015. Forest Ecol. Manag. 352, 9–20. http://dx.doi.org/
10.1016/j.foreco.2015.06.014, URL: https://linkinghub.elsevier.com/retrieve/pii/
S0378112715003400.

Kiage, L.M., Walker, N.D., Balasubramanian, S., Babin, A., Barras, J., 2005. Applications 
of Radarsat–1 synthetic aperture radar imagery to assess hurricane–related flooding 
of coastal Louisiana. Int. J. Remote Sens. 26 (24), 5359–5380. http://dx.doi.org/10.
1080/01431160500442438, URL: https://www.tandfonline.com/doi/full/10.1080/
01431160500442438.

Kimutai, J., Vautard, R., Zachariah, M., Tolasz, R., Šustková, V., Cassou, C., Clarke, B., 
Haslinger, K., Vahlberg, M., Singh, R., Stephens, E., Cloke, H., Raju, E., Baum-
gart, N., Thalheimer, L., Otto, F., Koren, G., Philip, S., Kew, S., Haro, P., 
Vibert, J., Von Weissenberg, A., 2024. Climate Change and High Exposure In-
creased Costs and Disruption to Lives and Livelihoods from Flooding Associated 
with Exceptionally Heavy Rainfall in Central Europe. Technical Report, Imperial 
College London, http://dx.doi.org/10.25561/114694, URL: http://spiral.imperial.
ac.uk/handle/10044/1/114694.

Kittler, J., Illingworth, J., 1986. Minimum error thresholding. Pattern Recognit. 
19 (1), 41–47. http://dx.doi.org/10.1016/0031-3203(86)90030-0, URL: https://
linkinghub.elsevier.com/retrieve/pii/0031320386900300.

Krullikowski, C., Chow, C., Wieland, M., Martinis, S., Bauer-Marschallinger, B., Roth, F., 
Matgen, P., Chini, M., Hostache, R., Li, Y., Salamon, P., 2023. Estimating ensem-
ble likelihoods for the sentinel-1-based global flood monitoring product of the 
copernicus emergency management service. IEEE J. Sel. Top. Appl. Earth Obs. 
Remote. Sens. 16, 6917–6930. http://dx.doi.org/10.1109/JSTARS.2023.3292350, 
URL: https://ieeexplore.ieee.org/document/10186373/.

Kurniawan, R., Sujono, I., Caesarendra, W., Nasution, B.I., Gio, P.U., 2025. Detection of 
flood-affected areas using multitemporal remote sensing data: a machine learning 
approach. Earth Sci. Inform. 18 (1), 35. http://dx.doi.org/10.1007/s12145-024-
01549-3, URL: https://link.springer.com/10.1007/s12145-024-01549-3.

Lahsaini, M., Albano, F., Albano, R., Mazzariello, A., Lacava, T., 2024. A synthetic 
aperture radar-based robust satellite technique (RST) for timely mapping of floods. 
Remote. Sens. 16 (12), 2193. http://dx.doi.org/10.3390/rs16122193, URL: https:
//www.mdpi.com/2072-4292/16/12/2193.

Landuyt, L., Van Wesemael, A., Schumann, G.J.P., Hostache, R., Verhoest, N.E.C., 
Van Coillie, F.M.B., 2019. Flood mapping based on synthetic aperture radar: An 
assessment of established approaches. IEEE Trans. Geosci. Remote Sens. 57 (2), 
722–739. http://dx.doi.org/10.1109/TGRS.2018.2860054, URL: https://ieeexplore.
ieee.org/document/8432448/.

Landwehr, T., Dasgupta, A., Waske, B., 2024. Towards robust validation strate-
gies for EO flood maps. Remote Sens. Environ. 315, 114439. http://dx.doi.
org/10.1016/j.rse.2024.114439, URL: https://linkinghub.elsevier.com/retrieve/pii/
S0034425724004656.

Lewis, A.J., 1998. Geomorphic and hydrologic applications of active microwave remote 
sensing. In: Principles & Applications of Imaging Radar, third ed. In: Manual of 
Remote Sensing, vol. 2, John Wiley & Sons, New York, pp. 567–629.

Li, Y., Martinis, S., Plank, S., Ludwig, R., 2018a. An automatic change detection 
approach for rapid flood mapping in Sentinel-1 SAR data. Int. J. Appl. Earth 
Obs. Geoinf. 73, 123–135. http://dx.doi.org/10.1016/j.jag.2018.05.023, URL: https:
//www.sciencedirect.com/science/article/pii/S0303243418302782.

Li, Y., Martinis, S., Wieland, M., 2019. Urban flood mapping with an active self-learning 
convolutional neural network based on TerraSAR-X intensity and interferometric 
coherence. ISPRS J. Photogramm. Remote Sens. 152, 178–191. http://dx.doi.org/
10.1016/j.isprsjprs.2019.04.014, URL: https://linkinghub.elsevier.com/retrieve/pii/
S092427161930111X.
27 
Li, S., Sun, D., Goldberg, M.D., Sjoberg, B., Santek, D., Hoffman, J.P., DeWeese, M., 
Restrepo, P., Lindsey, S., Holloway, E., 2018b. Automatic near real-time flood detec-
tion using Suomi-NPP/VIIRS  data. Remote Sens. Environ. 204, 672–689. http://dx.
doi.org/10.1016/j.rse.2017.09.032, URL: https://linkinghub.elsevier.com/retrieve/
pii/S0034425717304431.

Long, S., Fatoyinbo, T.E., Policelli, F., 2014. Flood extent mapping for Namibia 
using change detection and thresholding with SAR. Environ. Res. Lett. 9 
(3), 035002. http://dx.doi.org/10.1088/1748-9326/9/3/035002, URL: https://
iopscience.iop.org/article/10.1088/1748-9326/9/3/035002.

Manavalan, R., 2017. SAR image analysis techniques for flood area mapping - literature 
survey. Earth Sci. Inform. 10 (1), 1–14. http://dx.doi.org/10.1007/s12145-016-
0274-2, URL: http://link.springer.com/10.1007/s12145-016-0274-2.

Marconcini, M., Metz-Marconcini, A., Ürereyen, S., Palacios-Lopez, D., Hanke, W., 
Bachofer, F., Zeidler, J., Esch, T., Gorelick, N., Kakarla, A., Paganini, M., Strano, E., 
2020. Outlining where humans live, the World Settlement Footprint 2015. Sci. 
Data 7 (1), 242. http://dx.doi.org/10.1038/s41597-020-00580-5, URL: https://
www.nature.com/articles/s41597-020-00580-5.

Martinis, S., Groth, S., Wieland, M., Knopp, L., R̈attich, M., 2022. Towards a 
global seasonal and permanent reference water product from Sentinel-1/2 data 
for improved flood mapping. Remote Sens. Environ. 278, 113077. http://dx.doi.
org/10.1016/j.rse.2022.113077, URL: https://linkinghub.elsevier.com/retrieve/pii/
S0034425722001912.

Martinis, S., Kersten, J., Twele, A., 2015. A fully automated TerraSAR-X based flood 
service. ISPRS J. Photogramm. Remote Sens. 104, 203–212. http://dx.doi.org/
10.1016/j.isprsjprs.2014.07.014, URL: https://linkinghub.elsevier.com/retrieve/pii/
S0924271614001981.

Martinis, S., Plank, S., Ćwik, K., 2018. The use of sentinel-1 time-series data to improve 
flood monitoring in arid areas. Remote. Sens. 10 (4), 583. http://dx.doi.org/10.
3390/rs10040583, URL: https://www.mdpi.com/2072-4292/10/4/583.

Martinis, S., Twele, A., Voigt, S., 2009. Towards operational near real-time flood 
detection using a split-based automatic thresholding procedure on high resolution 
terrasar-X data. Nat. Hazards Earth Syst. Sci. 9 (2), 303–314. http://dx.doi.org/10.
5194/nhess-9-303-2009, URL: https://nhess.copernicus.org/articles/9/303/2009/.

Martinis, S., Wieland, M., Groth, S., 2024. A multi-sensor system for surface water 
extraction: Application examples in the context of disaster management. In: IGARSS 
2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium. 
IEEE, Athens, Greece, pp. 1354–1357. http://dx.doi.org/10.1109/IGARSS53475.
2024.10640717, URL: https://ieeexplore.ieee.org/document/10640717/.

Mason, D.C., Dance, S.L., Vetra-Carvalho, S., Cloke, H.L., 2018. Robust algorithm for 
detecting floodwater in urban areas using synthetic aperture radar images. J. 
Appl. Remote. Sens. 12 (04), 1. http://dx.doi.org/10.1117/1.JRS.12.045011, 
URL: https://www.spiedigitallibrary.org/journals/journal-of-applied-remote-
sensing/volume-12/issue-04/045011/Robust-algorithm-for-detecting-floodwater-in-
urban-areas-using-synthetic/10.1117/1.JRS.12.045011.full.

Mason, D., Giustarini, L., Garcia-Pintado, J., Cloke, H., 2014. Detection of flooded urban 
areas in high resolution synthetic aperture radar images using double scattering. 
Int. J. Appl. Earth Obs. Geoinf. 28, 150–159. http://dx.doi.org/10.1016/j.jag.2013.
12.002, URL: https://linkinghub.elsevier.com/retrieve/pii/S0303243413001700.

Matgen, P., Hostache, R., Schumann, G., Pfister, L., Hoffmann, L., Savenije, H., 2011. 
Towards an automated SAR-based flood monitoring system: Lessons learned from 
two case studies. Phys. Chem. Earth Parts A/B/C 36 (7–8), 241–252. http://dx.doi.
org/10.1016/j.pce.2010.12.009, URL: https://linkinghub.elsevier.com/retrieve/pii/
S1474706510002160.

Matgen, P., Martinis, S., Wagner, W., Freeman, V., Zeil, P., McCormick, N., 2019. 
Feasibility assessment of an automated, global, satellite-based flood monitoring 
product for the Copernicus Emergency Management Service. Technical Report 
JRC116163, European Commission Joint Research Centre, Ispra, Italy, p. 52, URL: 
https://data.europa.eu/doi/10.2760/653891.

Matthews, G., Baugh, C., Barnard, C., De Wiart, C.C., Colonese, J., Decre-
mer, D., Grimaldi, S., Hansford, E., Mazzetti, C., O’Regan, K., Pappenberger, F., 
Ramos, A., Salamon, P., Tasev, D., Prudhomme, C., 2025. On the opera-
tional implementation of the European flood awareness system (EFAS). In: 
Adams, T.E., Gangodagamage, C., Pagano, T.C. (Eds.), Flood Forecasting (Sec-
ond Edition), second ed. Academic Press, pp. 251–298. http://dx.doi.org/10.
1016/B978-0-443-14009-9.00005-5, URL: https://www.sciencedirect.com/science/
article/pii/B9780443140099000055.

Matthews, G., Baugh, C., Barnard, C., De Wiart, C.C., Colonese, J., Grimaldi, S., 
Ham, D., Hansford, E., Harrigan, S., Heiselberg, S., et al., 2024. On the operational 
implementation of the global flood awareness system (GloFAS). In: Flood Fore-
casting: A Global Perspective. Elsevier Doyma, pp. 299–350. http://dx.doi.org/10.
1016/B978-0-443-14009-9.00014-6, URL: https://linkinghub.elsevier.com/retrieve/
pii/B9780443140099000146.

McCormack, T., Campanyá, J., Naughton, O., 2022. A methodology for mapping 
annual flood extent using multi-temporal Sentinel-1 imagery. Remote Sens. En-
viron. 282, 113273. http://dx.doi.org/10.1016/j.rse.2022.113273, URL: https://
linkinghub.elsevier.com/retrieve/pii/S0034425722003790.

Meadows, P., Laur, H., Rosich, B., Schättler, B., 2001. The ERS-1 SAR performance: A 
final update. In: CEOS SAR Workshop 2001 Proceedings. NASDA/EORC.

http://dx.doi.org/10.1016/j.jag.2012.05.003
http://dx.doi.org/10.1016/j.jag.2012.05.003
http://dx.doi.org/10.1016/j.jag.2012.05.003
https://linkinghub.elsevier.com/retrieve/pii/S0303243412000992
https://linkinghub.elsevier.com/retrieve/pii/S0303243412000992
https://linkinghub.elsevier.com/retrieve/pii/S0303243412000992
http://dx.doi.org/10.3390/ijgi6050140
http://www.mdpi.com/2220-9964/6/5/140
http://dx.doi.org/10.3390/ijgi10020089
https://www.mdpi.com/2220-9964/10/2/89
https://www.mdpi.com/2220-9964/10/2/89
https://www.mdpi.com/2220-9964/10/2/89
http://refhub.elsevier.com/S0034-4257(25)00512-7/sb61
http://refhub.elsevier.com/S0034-4257(25)00512-7/sb61
http://refhub.elsevier.com/S0034-4257(25)00512-7/sb61
http://refhub.elsevier.com/S0034-4257(25)00512-7/sb61
http://refhub.elsevier.com/S0034-4257(25)00512-7/sb61
http://refhub.elsevier.com/S0034-4257(25)00512-7/sb61
http://refhub.elsevier.com/S0034-4257(25)00512-7/sb61
http://refhub.elsevier.com/S0034-4257(25)00512-7/sb61
http://refhub.elsevier.com/S0034-4257(25)00512-7/sb61
http://refhub.elsevier.com/S0034-4257(25)00512-7/sb62
http://refhub.elsevier.com/S0034-4257(25)00512-7/sb62
http://refhub.elsevier.com/S0034-4257(25)00512-7/sb62
http://refhub.elsevier.com/S0034-4257(25)00512-7/sb62
http://refhub.elsevier.com/S0034-4257(25)00512-7/sb62
http://dx.doi.org/10.1016/j.foreco.2015.06.014
http://dx.doi.org/10.1016/j.foreco.2015.06.014
http://dx.doi.org/10.1016/j.foreco.2015.06.014
https://linkinghub.elsevier.com/retrieve/pii/S0378112715003400
https://linkinghub.elsevier.com/retrieve/pii/S0378112715003400
https://linkinghub.elsevier.com/retrieve/pii/S0378112715003400
http://dx.doi.org/10.1080/01431160500442438
http://dx.doi.org/10.1080/01431160500442438
http://dx.doi.org/10.1080/01431160500442438
https://www.tandfonline.com/doi/full/10.1080/01431160500442438
https://www.tandfonline.com/doi/full/10.1080/01431160500442438
https://www.tandfonline.com/doi/full/10.1080/01431160500442438
http://dx.doi.org/10.25561/114694
http://spiral.imperial.ac.uk/handle/10044/1/114694
http://spiral.imperial.ac.uk/handle/10044/1/114694
http://spiral.imperial.ac.uk/handle/10044/1/114694
http://dx.doi.org/10.1016/0031-3203(86)90030-0
https://linkinghub.elsevier.com/retrieve/pii/0031320386900300
https://linkinghub.elsevier.com/retrieve/pii/0031320386900300
https://linkinghub.elsevier.com/retrieve/pii/0031320386900300
http://dx.doi.org/10.1109/JSTARS.2023.3292350
https://ieeexplore.ieee.org/document/10186373/
http://dx.doi.org/10.1007/s12145-024-01549-3
http://dx.doi.org/10.1007/s12145-024-01549-3
http://dx.doi.org/10.1007/s12145-024-01549-3
https://link.springer.com/10.1007/s12145-024-01549-3
http://dx.doi.org/10.3390/rs16122193
https://www.mdpi.com/2072-4292/16/12/2193
https://www.mdpi.com/2072-4292/16/12/2193
https://www.mdpi.com/2072-4292/16/12/2193
http://dx.doi.org/10.1109/TGRS.2018.2860054
https://ieeexplore.ieee.org/document/8432448/
https://ieeexplore.ieee.org/document/8432448/
https://ieeexplore.ieee.org/document/8432448/
http://dx.doi.org/10.1016/j.rse.2024.114439
http://dx.doi.org/10.1016/j.rse.2024.114439
http://dx.doi.org/10.1016/j.rse.2024.114439
https://linkinghub.elsevier.com/retrieve/pii/S0034425724004656
https://linkinghub.elsevier.com/retrieve/pii/S0034425724004656
https://linkinghub.elsevier.com/retrieve/pii/S0034425724004656
http://refhub.elsevier.com/S0034-4257(25)00512-7/sb72
http://refhub.elsevier.com/S0034-4257(25)00512-7/sb72
http://refhub.elsevier.com/S0034-4257(25)00512-7/sb72
http://refhub.elsevier.com/S0034-4257(25)00512-7/sb72
http://refhub.elsevier.com/S0034-4257(25)00512-7/sb72
http://dx.doi.org/10.1016/j.jag.2018.05.023
https://www.sciencedirect.com/science/article/pii/S0303243418302782
https://www.sciencedirect.com/science/article/pii/S0303243418302782
https://www.sciencedirect.com/science/article/pii/S0303243418302782
http://dx.doi.org/10.1016/j.isprsjprs.2019.04.014
http://dx.doi.org/10.1016/j.isprsjprs.2019.04.014
http://dx.doi.org/10.1016/j.isprsjprs.2019.04.014
https://linkinghub.elsevier.com/retrieve/pii/S092427161930111X
https://linkinghub.elsevier.com/retrieve/pii/S092427161930111X
https://linkinghub.elsevier.com/retrieve/pii/S092427161930111X
http://dx.doi.org/10.1016/j.rse.2017.09.032
http://dx.doi.org/10.1016/j.rse.2017.09.032
http://dx.doi.org/10.1016/j.rse.2017.09.032
https://linkinghub.elsevier.com/retrieve/pii/S0034425717304431
https://linkinghub.elsevier.com/retrieve/pii/S0034425717304431
https://linkinghub.elsevier.com/retrieve/pii/S0034425717304431
http://dx.doi.org/10.1088/1748-9326/9/3/035002
https://iopscience.iop.org/article/10.1088/1748-9326/9/3/035002
https://iopscience.iop.org/article/10.1088/1748-9326/9/3/035002
https://iopscience.iop.org/article/10.1088/1748-9326/9/3/035002
http://dx.doi.org/10.1007/s12145-016-0274-2
http://dx.doi.org/10.1007/s12145-016-0274-2
http://dx.doi.org/10.1007/s12145-016-0274-2
http://link.springer.com/10.1007/s12145-016-0274-2
http://dx.doi.org/10.1038/s41597-020-00580-5
https://www.nature.com/articles/s41597-020-00580-5
https://www.nature.com/articles/s41597-020-00580-5
https://www.nature.com/articles/s41597-020-00580-5
http://dx.doi.org/10.1016/j.rse.2022.113077
http://dx.doi.org/10.1016/j.rse.2022.113077
http://dx.doi.org/10.1016/j.rse.2022.113077
https://linkinghub.elsevier.com/retrieve/pii/S0034425722001912
https://linkinghub.elsevier.com/retrieve/pii/S0034425722001912
https://linkinghub.elsevier.com/retrieve/pii/S0034425722001912
http://dx.doi.org/10.1016/j.isprsjprs.2014.07.014
http://dx.doi.org/10.1016/j.isprsjprs.2014.07.014
http://dx.doi.org/10.1016/j.isprsjprs.2014.07.014
https://linkinghub.elsevier.com/retrieve/pii/S0924271614001981
https://linkinghub.elsevier.com/retrieve/pii/S0924271614001981
https://linkinghub.elsevier.com/retrieve/pii/S0924271614001981
http://dx.doi.org/10.3390/rs10040583
http://dx.doi.org/10.3390/rs10040583
http://dx.doi.org/10.3390/rs10040583
https://www.mdpi.com/2072-4292/10/4/583
http://dx.doi.org/10.5194/nhess-9-303-2009
http://dx.doi.org/10.5194/nhess-9-303-2009
http://dx.doi.org/10.5194/nhess-9-303-2009
https://nhess.copernicus.org/articles/9/303/2009/
http://dx.doi.org/10.1109/IGARSS53475.2024.10640717
http://dx.doi.org/10.1109/IGARSS53475.2024.10640717
http://dx.doi.org/10.1109/IGARSS53475.2024.10640717
https://ieeexplore.ieee.org/document/10640717/
http://dx.doi.org/10.1117/1.JRS.12.045011
https://www.spiedigitallibrary.org/journals/journal-of-applied-remote-sensing/volume-12/issue-04/045011/Robust-algorithm-for-detecting-floodwater-in-urban-areas-using-synthetic/10.1117/1.JRS.12.045011.full
https://www.spiedigitallibrary.org/journals/journal-of-applied-remote-sensing/volume-12/issue-04/045011/Robust-algorithm-for-detecting-floodwater-in-urban-areas-using-synthetic/10.1117/1.JRS.12.045011.full
https://www.spiedigitallibrary.org/journals/journal-of-applied-remote-sensing/volume-12/issue-04/045011/Robust-algorithm-for-detecting-floodwater-in-urban-areas-using-synthetic/10.1117/1.JRS.12.045011.full
https://www.spiedigitallibrary.org/journals/journal-of-applied-remote-sensing/volume-12/issue-04/045011/Robust-algorithm-for-detecting-floodwater-in-urban-areas-using-synthetic/10.1117/1.JRS.12.045011.full
https://www.spiedigitallibrary.org/journals/journal-of-applied-remote-sensing/volume-12/issue-04/045011/Robust-algorithm-for-detecting-floodwater-in-urban-areas-using-synthetic/10.1117/1.JRS.12.045011.full
http://dx.doi.org/10.1016/j.jag.2013.12.002
http://dx.doi.org/10.1016/j.jag.2013.12.002
http://dx.doi.org/10.1016/j.jag.2013.12.002
https://linkinghub.elsevier.com/retrieve/pii/S0303243413001700
http://dx.doi.org/10.1016/j.pce.2010.12.009
http://dx.doi.org/10.1016/j.pce.2010.12.009
http://dx.doi.org/10.1016/j.pce.2010.12.009
https://linkinghub.elsevier.com/retrieve/pii/S1474706510002160
https://linkinghub.elsevier.com/retrieve/pii/S1474706510002160
https://linkinghub.elsevier.com/retrieve/pii/S1474706510002160
https://data.europa.eu/doi/10.2760/653891
http://dx.doi.org/10.1016/B978-0-443-14009-9.00005-5
http://dx.doi.org/10.1016/B978-0-443-14009-9.00005-5
http://dx.doi.org/10.1016/B978-0-443-14009-9.00005-5
https://www.sciencedirect.com/science/article/pii/B9780443140099000055
https://www.sciencedirect.com/science/article/pii/B9780443140099000055
https://www.sciencedirect.com/science/article/pii/B9780443140099000055
http://dx.doi.org/10.1016/B978-0-443-14009-9.00014-6
http://dx.doi.org/10.1016/B978-0-443-14009-9.00014-6
http://dx.doi.org/10.1016/B978-0-443-14009-9.00014-6
https://linkinghub.elsevier.com/retrieve/pii/B9780443140099000146
https://linkinghub.elsevier.com/retrieve/pii/B9780443140099000146
https://linkinghub.elsevier.com/retrieve/pii/B9780443140099000146
http://dx.doi.org/10.1016/j.rse.2022.113273
https://linkinghub.elsevier.com/retrieve/pii/S0034425722003790
https://linkinghub.elsevier.com/retrieve/pii/S0034425722003790
https://linkinghub.elsevier.com/retrieve/pii/S0034425722003790
http://refhub.elsevier.com/S0034-4257(25)00512-7/sb91
http://refhub.elsevier.com/S0034-4257(25)00512-7/sb91
http://refhub.elsevier.com/S0034-4257(25)00512-7/sb91


W. Wagner et al. Remote Sensing of Environment 333 (2026) 115108 
Metzger, M.J., Bunce, R.G.H., Jongman, R.H.G., Sayre, R., Trabucco, A., Zomer, R., 
2013. A high–resolution bioclimate map of the world: a unifying framework 
for global biodiversity research and monitoring. In: Sykes, M. (Ed.), Glob. Ecol. 
Biogeogr. 22 (5), 630–638. http://dx.doi.org/10.1111/geb.12022, URL: https://
onlinelibrary.wiley.com/doi/10.1111/geb.12022.

Misra, A., White, K., Nsutezo, S.F., Straka, W., Lavista, J., 2025. Mapping global floods 
with 10 years of satellite radar data. Nat. Commun. 16 (1), http://dx.doi.org/
10.1038/s41467-025-60973-1, URL: https://www.nature.com/articles/s41467-025-
60973-1. Publisher: Springer Science and Business Media LLC.

Morrow, R., Blurmstein, D., Dibarboure, G., 2018. Fine-scale altimetry and the 
future SWOT mission. In: Chassignet, E.P., Pascual, A., Tintoré, J., Verron, J. 
(Eds.), New Frontiers in Operational Oceanography. GODAE OceanView, http://
dx.doi.org/10.17125/gov2018.ch08, URL: http://purl.flvc.org/fsu/fd/FSU_libsubv1_
scholarship_submission_1536170512_b3d57dea.

Mostafiz, R.B., Rohli, R.V., Friedland, C.J., Lee, Y.C., 2022. Actionable information in 
flood risk communications and the potential for new web-based tools for long-term 
planning for individuals and community. Front. Earth Sci. 10, 840250. http://dx.
doi.org/10.3389/feart.2022.840250, URL: https://www.frontiersin.org/articles/10.
3389/feart.2022.840250/full.

Mukherjee, R., Policelli, F., Wang, R., Arellano-Thompson, E., Tellman, B., Sharma, P., 
Zhang, Z., Giezendanner, J., 2024. A globally sampled high-resolution hand-
labeled validation dataset for evaluating surface water extent maps. Earth Syst. 
Sci. Data 16 (9), 4311–4323. http://dx.doi.org/10.5194/essd-16-4311-2024, URL: 
https://essd.copernicus.org/articles/16/4311/2024/.

Mullissa, A., Vollrath, A., Odongo-Braun, C., Slagter, B., Balling, J., Gou, Y., 
Gorelick, N., Reiche, J., 2021. Sentinel-1 SAR backscatter analysis ready data 
preparation in Google Earth engine. Remote. Sens. 13 (10), 1954. http://dx.doi.
org/10.3390/rs13101954, URL: https://www.mdpi.com/2072-4292/13/10/1954.

Nagler, T., Rott, H., 2000. Retrieval of wet snow by means of multitemporal SAR data. 
IEEE Trans. Geosci. Remote Sens. 38 (2), 754–765. http://dx.doi.org/10.1109/36.
842004, URL: http://ieeexplore.ieee.org/document/842004/.

NASA JPL, 2013. NASA shuttle radar topography mission water body data shape-
files and raster files. http://dx.doi.org/10.5067/MEASURES/SRTM/SRTMSWBD.
003, URL: https://lpdaac.usgs.gov/products/srtmswbdv003/.

Navacchi, C., Cao, S., Bauer-Marschallinger, B., Snoeij, P., Small, D., Wagner, W., 2022. 
Utilising sentinel-1’s orbital stability for efficient pre-processing of sigma nought 
backscatter. ISPRS J. Photogramm. Remote Sens. 192, 130–141. http://dx.doi.org/
10.1016/j.isprsjprs.2022.07.023, URL: https://linkinghub.elsevier.com/retrieve/pii/
S0924271622002003.

Nguyen, D.B., Wagner, W., 2017. European rice cropland mapping with sentinel-1 
data: The mediterranean region case study. Water 9 (6), 392. http://dx.doi.org/
10.3390/w9060392, URL: https://www.mdpi.com/2073-4441/9/6/392. Number: 6 
Publisher: Multidisciplinary Digital Publishing Institute.

Nhangumbe, M., Nascetti, A., Ban, Y., 2023. Multi-temporal sentinel-1 SAR and sentinel-
2 MSI data for flood mapping and damage assessment in mozambique. ISPRS 
Int. J. Geo-Inform. 12 (2), 53. http://dx.doi.org/10.3390/ijgi12020053, URL: https:
//www.mdpi.com/2220-9964/12/2/53.

Oberstadler, R., Hönsch, H., Huth, D., 1997. Assessment of the mapping capabilities 
of ERS-1 SAR data for flood mapping: a case study in Germany. Hydrol. Pro-
cess. 11 (10), 1415–1425. http://dx.doi.org/10.1002/(SICI)1099-1085(199708)11:
10<1415::AID-HYP532>3.0.CO;2-2, URL: https://onlinelibrary.wiley.com/doi/10.
1002/(SICI)1099-1085(199708)11:10<1415::AID-HYP532>3.0.CO;2-2.

O’Grady, D., Leblanc, M., Gillieson, D., 2011. Use of ENVISAT ASAR global monitoring 
mode to complement optical data in the mapping of rapid broad-scale flooding in 
Pakistan. Hydrol. Earth Syst. Sci. 15 (11), 3475–3494. http://dx.doi.org/10.5194/
hess-15-3475-2011, URL: https://hess.copernicus.org/articles/15/3475/2011/.

Ohki, M., Takakura, Y., Kawakita, S., Tadono, T., 2024. ALOS-2 disaster mapping 
algorithms and their implementation in an operational system. In: 15th European 
Conference on Synthetic Aperture Radar. EUSAR 2024, VDE, Munich, Germany, 
pp. 779–781, URL: https://ieeexplore.ieee.org/abstract/document/10659532.

Olofsson, P., Foody, G.M., Herold, M., Stehman, S.V., Woodcock, C.E., Wulder, M.A., 
2014. Good practices for estimating area and assessing accuracy of land change. 
Remote Sens. Environ. 148, 42–57. http://dx.doi.org/10.1016/j.rse.2014.02.015, 
URL: https://linkinghub.elsevier.com/retrieve/pii/S0034425714000704.

Panahi, M., Rahmati, O., Kalantari, Z., Darabi, H., Rezaie, F., Moghaddam, D.D., 
Ferreira, C.S.S., Foody, G., Aliramaee, R., Bateni, S.M., Lee, C.W., Lee, S., 2022. 
Large-scale dynamic flood monitoring in an arid-zone floodplain using SAR data 
and hybrid machine-learning models. J. Hydrol. 611, 128001. http://dx.doi.org/
10.1016/j.jhydrol.2022.128001, URL: https://linkinghub.elsevier.com/retrieve/pii/
S0022169422005765.

Paprotny, D., Sebastian, A., Morales-Nápoles, O., Jonkman, S.N., 2018. Trends in flood 
losses in Europe over the past 150 years. Nat. Commun. 9 (1), 1985. http://dx.doi.
org/10.1038/s41467-018-04253-1, URL: https://www.nature.com/articles/s41467-
018-04253-1.

Park, S.-E., Bartsch, A., Sabel, D., Wagner, W., Naeimi, V., Yamaguchi, Y., 2011. 
Monitoring freeze/thaw cycles using ENVISAT ASAR global mode. Remote Sens. 
Environ. 115 (12), 3457–3467. http://dx.doi.org/10.1016/j.rse.2011.08.009, URL: 
https://linkinghub.elsevier.com/retrieve/pii/S0034425711002914.
28 
Paul, S., Ganju, S., 2021. Flood segmentation on sentinel-1 SAR imagery with semi-
supervised learning. http://dx.doi.org/10.48550/arXiv.2107.08369, URL: http://
arxiv.org/abs/2107.08369. arXiv:2107.08369  [cs].

Pekel, J.F., Cottam, A., Gorelick, N., Belward, A.S., 2016. High-resolution map-
ping of global surface water and its long-term changes. Nature 540 (7633), 
418–422. http://dx.doi.org/10.1038/nature20584, URL: https://www.nature.com/
articles/nature20584.

Pillai, L.G., Dolly, D.R.J., 2025. Assessing flood mapping with pre- and post-flood SAR 
imagery: Advances, challenges, and performance evaluation. In: 2025 International 
Conference on Data Science and Business Systems. ICDSBS, IEEE, Chennai, India, 
pp. 1–6. http://dx.doi.org/10.1109/ICDSBS63635.2025.11031872, URL: https://
ieeexplore.ieee.org/document/11031872/.

Potin, P., Bargellini, P., Laur, H., Rosich, B., Schmuck, S., 2012. Sentinel-1 mission 
operations concept. In: 2012 IEEE International Geoscience and Remote Sensing 
Symposium. IEEE, Munich, Germany, pp. 1745–1748. http://dx.doi.org/10.1109/
IGARSS.2012.6351183, URL: http://ieeexplore.ieee.org/document/6351183/.

Pulvirenti, L., Marzano, F.S., Pierdicca, N., Mori, S., Chini, M., 2014. Discrimination 
of water surfaces, heavy rainfall, and wet snow using COSMO-SkyMed obser-
vations of severe weather events. IEEE Trans. Geosci. Remote Sens. 52 (2), 
858–869. http://dx.doi.org/10.1109/TGRS.2013.2244606, URL: http://ieeexplore.
ieee.org/document/6488761/.

Qin, Y., Yin, X., Li, Y., Xu, Q., Zhang, L., Mao, P., Jiang, X., 2025. High-precision 
flood mapping from sentinel-1 dual-polarization SAR data. IEEE Trans. Geosci. Re-
mote Sens. 63, 1–15. http://dx.doi.org/10.1109/TGRS.2025.3557330, URL: https:
//ieeexplore.ieee.org/document/10947589/.

Quast, R., Wagner, W., Bauer-Marschallinger, B., Vreugdenhil, M., 2023. Soil moisture 
retrieval from sentinel-1 using a first-order radiative transfer model–A case-
study over the Po-Valley. Remote Sens. Environ. 295, 113651. http://dx.doi.
org/10.1016/j.rse.2023.113651, URL: https://linkinghub.elsevier.com/retrieve/pii/
S003442572300202X.

Rahman, M.R., Thakur, P.K., 2018. Detecting, mapping and analysing of flood water 
propagation using synthetic aperture radar (SAR) satellite data and GIS: A case 
study from the Kendrapara District of Orissa State of India. Egypt. J. Remote. 
Sens. Space Sci. 21, S37–S41. http://dx.doi.org/10.1016/j.ejrs.2017.10.002, URL: 
https://linkinghub.elsevier.com/retrieve/pii/S1110982317301126.

Rambour, C., Audebert, N., Koeniguer, E., Le Saux, B., Crucianu, M., Datcu, M., 2020. 
Flood detection in time series of optical and SAR images. In: The International 
Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 
vol. XLIII-B2-2020, pp. 1343–1346. http://dx.doi.org/10.5194/isprs-archives-XLIII-
B2-2020-1343-2020, URL: https://isprs-archives.copernicus.org/articles/XLIII-B2-
2020/1343/2020/.

Raney, R.K., Luscombe, A.P., Langham, E.J., Ahmed, S., 1991. Radarsat. Proc. IEEE 79 
(6), 839–849.

Rees, W.G., 2000. Technical note: Simple masks for shadowing and highlighting 
in SAR images. Int. J. Remote Sens. 21 (11), 2145–2152. http://dx.doi.org/10.
1080/01431160050029477, URL: https://www.tandfonline.com/doi/full/10.1080/
01431160050029477.

Refice, A., Zingaro, M., D’Addabbo, A., Chini, M., 2020. Integrating C-and L-band SAR 
imagery for detailed flood monitoring of remote vegetated areas. Water 12 (10), 
2745.

Rennó, C.D., Nobre, A.D., Cuartas, L.A., Soares, J.V., Hodnett, M.G., Tomasella, J., 
Waterloo, M.J., 2008. HAND, a new terrain descriptor using SRTM-DEM: Mapping 
terra-firme rainforest environments in Amazonia. Remote Sens. Environ. 112 (9), 
3469–3481. http://dx.doi.org/10.1016/j.rse.2008.03.018, URL: https://linkinghub.
elsevier.com/retrieve/pii/S003442570800120X.

Reuß, F., Navacchi, C., Greimeister-Pfeil, I., Vreugdenhil, M., Schaumberger, A., 
Klingler, A., Mayer, K., Wagner, W., 2024. Evaluation of limiting factors for 
SAR backscatter based cut detection of alpine grasslands. Sci. Remote. Sens. 
100117. http://dx.doi.org/10.1016/j.srs.2024.100117, URL: https://linkinghub.
elsevier.com/retrieve/pii/S2666017224000014.

Risling, A., Lindersson, S., Brandimarte, L., 2024. A comparison of global flood 
models using Sentinel-1 and a change detection approach. Nat. Hazards 120 (12), 
11133–11152. http://dx.doi.org/10.1007/s11069-024-06629-7, URL: https://link.
springer.com/10.1007/s11069-024-06629-7.

Rosen, P.A., Kumar, R., 2021. NASA-ISRO SAR (NISAR) mission status. In: 2021 
IEEE Radar Conference. RadarConf21, IEEE, Atlanta, GA, USA, pp. 1–6. http:
//dx.doi.org/10.1109/RadarConf2147009.2021.9455211, URL: https://ieeexplore.
ieee.org/document/9455211/.

Rossi, C., Acerbo, F., Ylinen, K., Juga, I., Nurmi, P., Bosca, A., Tarasconi, F., 
Cristoforetti, M., Alikadic, A., 2018. Early detection and information extraction for 
weather-induced floods using social media streams. Int. J. Disaster Risk Reduct. 30, 
145–157. http://dx.doi.org/10.1016/j.ijdrr.2018.03.002, URL: https://linkinghub.
elsevier.com/retrieve/pii/S2212420918302735.

Roth, F., Bauer-Marschallinger, B., Tupas, M.E., Reimer, C., Salamon, P., Wagner, W., 
2023. Sentinel-1-based analysis of the severe flood over Pakistan 2022. Nat. 
Hazards Earth Syst. Sci. 23 (10), 3305–3317. http://dx.doi.org/10.5194/nhess-23-
3305-2023, URL: https://nhess.copernicus.org/articles/23/3305/2023/.

http://dx.doi.org/10.1111/geb.12022
https://onlinelibrary.wiley.com/doi/10.1111/geb.12022
https://onlinelibrary.wiley.com/doi/10.1111/geb.12022
https://onlinelibrary.wiley.com/doi/10.1111/geb.12022
http://dx.doi.org/10.1038/s41467-025-60973-1
http://dx.doi.org/10.1038/s41467-025-60973-1
http://dx.doi.org/10.1038/s41467-025-60973-1
https://www.nature.com/articles/s41467-025-60973-1
https://www.nature.com/articles/s41467-025-60973-1
https://www.nature.com/articles/s41467-025-60973-1
http://dx.doi.org/10.17125/gov2018.ch08
http://dx.doi.org/10.17125/gov2018.ch08
http://dx.doi.org/10.17125/gov2018.ch08
http://purl.flvc.org/fsu/fd/FSU_libsubv1_scholarship_submission_1536170512_b3d57dea
http://purl.flvc.org/fsu/fd/FSU_libsubv1_scholarship_submission_1536170512_b3d57dea
http://purl.flvc.org/fsu/fd/FSU_libsubv1_scholarship_submission_1536170512_b3d57dea
http://dx.doi.org/10.3389/feart.2022.840250
http://dx.doi.org/10.3389/feart.2022.840250
http://dx.doi.org/10.3389/feart.2022.840250
https://www.frontiersin.org/articles/10.3389/feart.2022.840250/full
https://www.frontiersin.org/articles/10.3389/feart.2022.840250/full
https://www.frontiersin.org/articles/10.3389/feart.2022.840250/full
http://dx.doi.org/10.5194/essd-16-4311-2024
https://essd.copernicus.org/articles/16/4311/2024/
http://dx.doi.org/10.3390/rs13101954
http://dx.doi.org/10.3390/rs13101954
http://dx.doi.org/10.3390/rs13101954
https://www.mdpi.com/2072-4292/13/10/1954
http://dx.doi.org/10.1109/36.842004
http://dx.doi.org/10.1109/36.842004
http://dx.doi.org/10.1109/36.842004
http://ieeexplore.ieee.org/document/842004/
http://dx.doi.org/10.5067/MEASURES/SRTM/SRTMSWBD.003
http://dx.doi.org/10.5067/MEASURES/SRTM/SRTMSWBD.003
http://dx.doi.org/10.5067/MEASURES/SRTM/SRTMSWBD.003
https://lpdaac.usgs.gov/products/srtmswbdv003/
http://dx.doi.org/10.1016/j.isprsjprs.2022.07.023
http://dx.doi.org/10.1016/j.isprsjprs.2022.07.023
http://dx.doi.org/10.1016/j.isprsjprs.2022.07.023
https://linkinghub.elsevier.com/retrieve/pii/S0924271622002003
https://linkinghub.elsevier.com/retrieve/pii/S0924271622002003
https://linkinghub.elsevier.com/retrieve/pii/S0924271622002003
http://dx.doi.org/10.3390/w9060392
http://dx.doi.org/10.3390/w9060392
http://dx.doi.org/10.3390/w9060392
https://www.mdpi.com/2073-4441/9/6/392
http://dx.doi.org/10.3390/ijgi12020053
https://www.mdpi.com/2220-9964/12/2/53
https://www.mdpi.com/2220-9964/12/2/53
https://www.mdpi.com/2220-9964/12/2/53
http://dx.doi.org/10.1002/(SICI)1099-1085(199708)11:10<1415::AID-HYP532>3.0.CO;2-2
http://dx.doi.org/10.1002/(SICI)1099-1085(199708)11:10<1415::AID-HYP532>3.0.CO;2-2
http://dx.doi.org/10.1002/(SICI)1099-1085(199708)11:10<1415::AID-HYP532>3.0.CO;2-2
https://onlinelibrary.wiley.com/doi/10.1002/(SICI)1099-1085(199708)11:10<1415::AID-HYP532>3.0.CO;2-2
https://onlinelibrary.wiley.com/doi/10.1002/(SICI)1099-1085(199708)11:10<1415::AID-HYP532>3.0.CO;2-2
https://onlinelibrary.wiley.com/doi/10.1002/(SICI)1099-1085(199708)11:10<1415::AID-HYP532>3.0.CO;2-2
http://dx.doi.org/10.5194/hess-15-3475-2011
http://dx.doi.org/10.5194/hess-15-3475-2011
http://dx.doi.org/10.5194/hess-15-3475-2011
https://hess.copernicus.org/articles/15/3475/2011/
https://ieeexplore.ieee.org/abstract/document/10659532
http://dx.doi.org/10.1016/j.rse.2014.02.015
https://linkinghub.elsevier.com/retrieve/pii/S0034425714000704
http://dx.doi.org/10.1016/j.jhydrol.2022.128001
http://dx.doi.org/10.1016/j.jhydrol.2022.128001
http://dx.doi.org/10.1016/j.jhydrol.2022.128001
https://linkinghub.elsevier.com/retrieve/pii/S0022169422005765
https://linkinghub.elsevier.com/retrieve/pii/S0022169422005765
https://linkinghub.elsevier.com/retrieve/pii/S0022169422005765
http://dx.doi.org/10.1038/s41467-018-04253-1
http://dx.doi.org/10.1038/s41467-018-04253-1
http://dx.doi.org/10.1038/s41467-018-04253-1
https://www.nature.com/articles/s41467-018-04253-1
https://www.nature.com/articles/s41467-018-04253-1
https://www.nature.com/articles/s41467-018-04253-1
http://dx.doi.org/10.1016/j.rse.2011.08.009
https://linkinghub.elsevier.com/retrieve/pii/S0034425711002914
http://dx.doi.org/10.48550/arXiv.2107.08369
http://arxiv.org/abs/2107.08369
http://arxiv.org/abs/2107.08369
http://arxiv.org/abs/2107.08369
http://arxiv.org/abs/2107.08369
http://dx.doi.org/10.1038/nature20584
https://www.nature.com/articles/nature20584
https://www.nature.com/articles/nature20584
https://www.nature.com/articles/nature20584
http://dx.doi.org/10.1109/ICDSBS63635.2025.11031872
https://ieeexplore.ieee.org/document/11031872/
https://ieeexplore.ieee.org/document/11031872/
https://ieeexplore.ieee.org/document/11031872/
http://dx.doi.org/10.1109/IGARSS.2012.6351183
http://dx.doi.org/10.1109/IGARSS.2012.6351183
http://dx.doi.org/10.1109/IGARSS.2012.6351183
http://ieeexplore.ieee.org/document/6351183/
http://dx.doi.org/10.1109/TGRS.2013.2244606
http://ieeexplore.ieee.org/document/6488761/
http://ieeexplore.ieee.org/document/6488761/
http://ieeexplore.ieee.org/document/6488761/
http://dx.doi.org/10.1109/TGRS.2025.3557330
https://ieeexplore.ieee.org/document/10947589/
https://ieeexplore.ieee.org/document/10947589/
https://ieeexplore.ieee.org/document/10947589/
http://dx.doi.org/10.1016/j.rse.2023.113651
http://dx.doi.org/10.1016/j.rse.2023.113651
http://dx.doi.org/10.1016/j.rse.2023.113651
https://linkinghub.elsevier.com/retrieve/pii/S003442572300202X
https://linkinghub.elsevier.com/retrieve/pii/S003442572300202X
https://linkinghub.elsevier.com/retrieve/pii/S003442572300202X
http://dx.doi.org/10.1016/j.ejrs.2017.10.002
https://linkinghub.elsevier.com/retrieve/pii/S1110982317301126
http://dx.doi.org/10.5194/isprs-archives-XLIII-B2-2020-1343-2020
http://dx.doi.org/10.5194/isprs-archives-XLIII-B2-2020-1343-2020
http://dx.doi.org/10.5194/isprs-archives-XLIII-B2-2020-1343-2020
https://isprs-archives.copernicus.org/articles/XLIII-B2-2020/1343/2020/
https://isprs-archives.copernicus.org/articles/XLIII-B2-2020/1343/2020/
https://isprs-archives.copernicus.org/articles/XLIII-B2-2020/1343/2020/
http://refhub.elsevier.com/S0034-4257(25)00512-7/sb119
http://refhub.elsevier.com/S0034-4257(25)00512-7/sb119
http://refhub.elsevier.com/S0034-4257(25)00512-7/sb119
http://dx.doi.org/10.1080/01431160050029477
http://dx.doi.org/10.1080/01431160050029477
http://dx.doi.org/10.1080/01431160050029477
https://www.tandfonline.com/doi/full/10.1080/01431160050029477
https://www.tandfonline.com/doi/full/10.1080/01431160050029477
https://www.tandfonline.com/doi/full/10.1080/01431160050029477
http://refhub.elsevier.com/S0034-4257(25)00512-7/sb121
http://refhub.elsevier.com/S0034-4257(25)00512-7/sb121
http://refhub.elsevier.com/S0034-4257(25)00512-7/sb121
http://refhub.elsevier.com/S0034-4257(25)00512-7/sb121
http://refhub.elsevier.com/S0034-4257(25)00512-7/sb121
http://dx.doi.org/10.1016/j.rse.2008.03.018
https://linkinghub.elsevier.com/retrieve/pii/S003442570800120X
https://linkinghub.elsevier.com/retrieve/pii/S003442570800120X
https://linkinghub.elsevier.com/retrieve/pii/S003442570800120X
http://dx.doi.org/10.1016/j.srs.2024.100117
https://linkinghub.elsevier.com/retrieve/pii/S2666017224000014
https://linkinghub.elsevier.com/retrieve/pii/S2666017224000014
https://linkinghub.elsevier.com/retrieve/pii/S2666017224000014
http://dx.doi.org/10.1007/s11069-024-06629-7
https://link.springer.com/10.1007/s11069-024-06629-7
https://link.springer.com/10.1007/s11069-024-06629-7
https://link.springer.com/10.1007/s11069-024-06629-7
http://dx.doi.org/10.1109/RadarConf2147009.2021.9455211
http://dx.doi.org/10.1109/RadarConf2147009.2021.9455211
http://dx.doi.org/10.1109/RadarConf2147009.2021.9455211
https://ieeexplore.ieee.org/document/9455211/
https://ieeexplore.ieee.org/document/9455211/
https://ieeexplore.ieee.org/document/9455211/
http://dx.doi.org/10.1016/j.ijdrr.2018.03.002
https://linkinghub.elsevier.com/retrieve/pii/S2212420918302735
https://linkinghub.elsevier.com/retrieve/pii/S2212420918302735
https://linkinghub.elsevier.com/retrieve/pii/S2212420918302735
http://dx.doi.org/10.5194/nhess-23-3305-2023
http://dx.doi.org/10.5194/nhess-23-3305-2023
http://dx.doi.org/10.5194/nhess-23-3305-2023
https://nhess.copernicus.org/articles/23/3305/2023/


W. Wagner et al. Remote Sensing of Environment 333 (2026) 115108 
Roth, F., Tupas, M.E., Navacchi, C., Zhao, J., Wagner, W., Bauer-Marschallinger, B., 
2025. Evaluating the robustness of Bayesian flood mapping with Sentinel-1 
data: A multi-event validation study. Sci. Remote. Sens. 100210. http://dx.doi.
org/10.1016/j.srs.2025.100210, URL: https://linkinghub.elsevier.com/retrieve/pii/
S2666017225000161.

Salamon, P., Mctlormick, N., Reimer, C., Clarke, T., Bauer-Marschallinger, B., Wag-
ner, W., Martinis, S., Chow, C., Bohnke, C., Matgen, P., Chini, M., Hostache, R., 
Molini, L., Fiori, E., Walli, A., 2021. The new, systematic global flood moni-
toring product of the copernicus emergency management service. In: 2021 IEEE 
International Geoscience and Remote Sensing Symposium. IGARSS, IEEE, Brussels, 
Belgium, pp. 1053–1056. http://dx.doi.org/10.1109/IGARSS47720.2021.9554214, 
URL: https://ieeexplore.ieee.org/document/9554214/.

Santoro, M., Cartus, O., 2018. Research pathways of forest above-ground biomass 
estimation based on SAR backscatter and interferometric SAR observations. Remote. 
Sens. 10 (4), 608. http://dx.doi.org/10.3390/rs10040608, URL: https://www.mdpi.
com/2072-4292/10/4/608.

Schiavina, M., Freire, S., MacManus, K., 2023. GHS-POP R2023A - GHS population 
grid multitemporal (1975–2030). http://dx.doi.org/10.2905/2FF68A52-5B5B-4A22-
8F40-C41DA8332CFE, URL: http://data.europa.eu/89h/2ff68a52-5b5b-4a22-8f40-
c41da8332cfe.

Schlaffer, S., Chini, M., Dettmering, D., Wagner, W., 2016. Mapping wetlands in 
Zambia using seasonal backscatter signatures derived from ENVISAT ASAR time 
series. Remote. Sens. 8 (5), 402. http://dx.doi.org/10.3390/rs8050402, URL: http:
//www.mdpi.com/2072-4292/8/5/402.

Schlaffer, S., Chini, M., Giustarini, L., Matgen, P., 2017. Probabilistic mapping of flood-
induced backscatter changes in SAR time series. Int. J. Appl. Earth Obs. Geoinf. 
56, 77–87. http://dx.doi.org/10.1016/j.jag.2016.12.003, URL: https://linkinghub.
elsevier.com/retrieve/pii/S0303243416301994.

Schlaffer, S., Matgen, P., Hollaus, M., Wagner, W., 2015. Flood detection from multi-
temporal SAR data using harmonic analysis and change detection. Int. J. Appl. 
Earth Obs. Geoinf. 38, 15–24. http://dx.doi.org/10.1016/j.jag.2014.12.001, URL: 
https://linkinghub.elsevier.com/retrieve/pii/S0303243414002645.

Seewald, M., Gruber, C., Innerbichler, F., Pasik, A., Duffy, C., Riffler, M., Reimer, C., 
Stachl, T., Kidd, R., McCormick, N., Salamon, P. (Eds.), 2024. Global Flood Moni-
toring: Annual Product and Service Quality Assessment Report 2023. Publications 
Office of the European Union, Luxembourg, http://dx.doi.org/10.2760/41122.

Small, D., 2011. Flattening Gamma: Radiometric terrain correction for SAR imagery. 
IEEE Trans. Geosci. Remote Sens. 49 (8), 3081–3093. http://dx.doi.org/10.1109/
TGRS.2011.2120616.

Solbo, S., Solheim, I., 2004. Towards operational flood mapping with satellite SAR. 
In: Proeedings of the 2004 ENVISAT & ERS Symposium. European Space Agency, 
Salzburg, Austria, pp. 1–7.

Stehman, S.V., Czaplewski, R.L., 1998. Design and analysis for thematic map accu-
racy assessment. Remote Sens. Environ. 64 (3), 331–344. http://dx.doi.org/10.
1016/S0034-4257(98)00010-8, URL: https://linkinghub.elsevier.com/retrieve/pii/
S0034425798000108.

Tanim, A.H., McRae, C.B., Tavakol-Davani, H., Goharian, E., 2022. Flood detection in 
urban areas using satellite imagery and machine learning. Water 14 (7), 1140. 
http://dx.doi.org/10.3390/w14071140, URL: https://www.mdpi.com/2073-4441/
14/7/1140.

Tarpanelli, A., Mondini, A.C., Camici, S., 2022. Effectiveness of sentinel-1 and 
sentinel-2 for flood detection assessment in Europe. Nat. Hazards Earth Syst. 
Sci. 22 (8), 2473–2489. http://dx.doi.org/10.5194/nhess-22-2473-2022, URL: https:
//nhess.copernicus.org/articles/22/2473/2022/.

Toma, A., Şandric, I., Mihai, B.A., 2024. Flooded area detection and mapping from 
sentinel–1 imagery. complementary approaches and comparative performance 
evaluation. Eur. J. Remote. Sens. 57 (1), 2414004. http://dx.doi.org/10.1080/
22797254.2024.2414004, URL: https://www.tandfonline.com/doi/full/10.1080/
22797254.2024.2414004.

Torres, R., Geudtner, D., Davidson, M., Bibby, D., Navas-Traver, I., Garcia Hernan-
dez, A.I., Laduree, G., Poupaert, J., Bollian, T., Graham, S., 2024. Sentinel-1 next 
generation: Enhanced C-band data continuity. In: 15th European Conference on 
Synthetic Aperture Radar. EUSAR 2024, VDE, Munich, Germany, pp. 1–4, URL: 
https://ieeexplore.ieee.org/abstract/document/10659647/.

Torres, R., Snoeij, P., Geudtner, D., Bibby, D., Davidson, M., Attema, E., Potin, P., 
Rommen, B., Floury, N., Brown, M., Traver, I.N., Deghaye, P., Duesmann, B., 
Rosich, B., Miranda, N., Bruno, C., L’Abbate, M., Croci, R., Pietropaolo, A., 
Huchler, M., Rostan, F., 2012. GMES sentinel-1 mission. Remote Sens. Environ. 
120, 9–24. http://dx.doi.org/10.1016/j.rse.2011.05.028, URL: https://linkinghub.
elsevier.com/retrieve/pii/S0034425712000600.

Tradowsky, J.S., Philip, S.Y., Kreienkamp, F., Kew, S.F., Lorenz, P., Arrighi, J., 
Bettmann, T., Caluwaerts, S., Chan, S.C., De Cruz, L., De Vries, H., Demuth, N., 
Ferrone, A., Fischer, E.M., Fowler, H.J., Goergen, K., Heinrich, D., Henrichs, Y., 
Kaspar, F., Lenderink, G., Nilson, E., Otto, F.E.L., Ragone, F., Seneviratne, S.I., 
Singh, R.K., Skålevåg, A., Termonia, P., Thalheimer, L., Van Aalst, M., Van 
Den Bergh, J., Van De Vyver, H., Vannitsem, S., Van Oldenborgh, G.J., Van Schaey-
broeck, B., Vautard, R., Vonk, D., Wanders, N., 2023. Attribution of the heavy 
29 
rainfall events leading to severe flooding in Western Europe during July 2021. 
Clim. Change 176 (7), 90. http://dx.doi.org/10.1007/s10584-023-03502-7, URL: 
https://link.springer.com/10.1007/s10584-023-03502-7.

Tsyganskaya, V., Martinis, S., Marzahn, P., Ludwig, R., 2018. SAR-based detection of 
flooded vegetation – a review of characteristics and approaches. Int. J. Remote 
Sens. 39 (8), 2255–2293. http://dx.doi.org/10.1080/01431161.2017.1420938, 
URL: https://www.tandfonline.com/doi/full/10.1080/01431161.2017.1420938.

Tsyganskaya, V., Martinis, S., Twele, A., Cao, W., Schmitt, A., Marzahn, P., Ludwig, R., 
2016. A fuzzy logic-based approach for the detection of flooded vegetation by 
means of synthetic aperture radar data. Int. Arch. Photogramm. Remote. Sens. 
Spat. Inf. Sci. XLI-B7, 371–378. http://dx.doi.org/10.5194/isprs-archives-XLI-B7-
371-2016, URL: https://isprs-archives.copernicus.org/articles/XLI-B7/371/2016/.

Tupas, M.E., Roth, F., Bauer-Marschallinger, B., Wagner, W., 2023a. Improving sentinel-
1 flood maps using a topographic index as prior in Bayesian inference. Water 15 
(23), 4034. http://dx.doi.org/10.3390/w15234034, URL: https://www.mdpi.com/
2073-4441/15/23/4034.

Tupas, M.E., Roth, F., Bauer-Marschallinger, B., Wagner, W., 2023b. An intercomparison 
of sentinel-1 based change detection algorithms for flood mapping. Remote. Sens. 
15 (5), 1200. http://dx.doi.org/10.3390/rs15051200, URL: https://www.mdpi.
com/2072-4292/15/5/1200.

Tupas, M.E., Roth, F., Bauer-Marschallinger, B., Wagner, W., 2024. Assessment of 
time-series-derived no-flood references for SAR-based Bayesian flood mapping. 
GIScience Remote. Sens. 61 (1), 2427304. http://dx.doi.org/10.1080/15481603.
2024.2427304, URL: https://www.tandfonline.com/doi/full/10.1080/15481603.
2024.2427304.

Twele, A., Cao, W., Plank, S., Martinis, S., 2016. Sentinel-1-based flood mapping: a 
fully automated processing chain. Int. J. Remote Sens. 37 (13), 2990–3004. http://
dx.doi.org/10.1080/01431161.2016.1192304, URL: https://www.tandfonline.com/
doi/full/10.1080/01431161.2016.1192304.

Uddin, K., Hossain, S., Bajracharya, B., Ahmed, B., Islam, M.K., 2025. Rapid flood 
inundation mapping for effective management: A machine learning and pixel–
based classification approach in Feni District, Bangladesh. J. Flood Risk Manag. 
18 (2), e70087. http://dx.doi.org/10.1111/jfr3.70087, URL: https://onlinelibrary.
wiley.com/doi/10.1111/jfr3.70087.

Vanama, V., Musthafa, M., Khati, U., Gowtham, R., Singh, G., Tao, Y., 2021. Inundation 
mapping of kerala flood event in 2018 using ALOS-2 and temporal sentinel-1 
SAR images. Current Sci. 120 (5), 915–925, URL: https://www.jstor.org/stable/
27310296.

Velastegui-Montoya, A., Montalván-Burbano, N., Carrión-Mero, P., Rivera-Torres, H., 
Sadeck, L., Adami, M., 2023. Google earth engine: A global analysis and future 
trends. Remote. Sens. 15 (14), 3675. http://dx.doi.org/10.3390/rs15143675, URL: 
https://www.mdpi.com/2072-4292/15/14/3675.

Voigt, S., Kemper, T., Riedlinger, T., Kiefl, R., Scholte, K., Mehl, H., 2007. Satellite 
image analysis for disaster and crisis-management support. IEEE Trans. Geosci. 
Remote Sens. 45 (6), 1520–1528. http://dx.doi.org/10.1109/TGRS.2007.895830, 
URL: http://ieeexplore.ieee.org/document/4215094/.

Wagner, W., Bauer-Marschallinger, B., Navacchi, C., Reuß, F., Cao, S., Reimer, C., 
Schramm, M., Briese, C., 2021. A sentinel-1 backscatter datacube for global land 
monitoring applications. Remote. Sens. 13 (22), 4622. http://dx.doi.org/10.3390/
rs13224622, URL: https://www.mdpi.com/2072-4292/13/22/4622.

Wagner, W., Bauer-Marschallinger, B., Roth, F., Briese, C., Reimer, C., Lacaze, R., 
Moroz, M., Salamon, P., Davidson, M., 2024. Requirements from the copernicus 
soil moisture and flood monitoring services for sentinel-1 and ROSE-L mission 
operations. In: Proceedings of the 15th European Conference on Synthetic Aperture 
Radar. EUSAR 2024, VDE Verlag, Munich, Germany, pp. 114–118, URL: https:
//ieeexplore.ieee.org/abstract/document/10659679.

Wagner, W., Freeman, V., Cao, S., Matgen, P., Chini, M., Salamon, P., McCormick, N., 
Martinis, S., Bauer-Marschallinger, B., Navacchi, C., Schramm, M., Reimer, C., 
Briese, C., 2020. Data processing architectures for monitoring floods using sentinel-
1. In: ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Informa-
tion Sciences, vol. V-3-2020, Copernicus GmbH, pp. 641–648. http://dx.doi.org/10.
5194/isprs-annals-V-3-2020-641-2020, URL: https://www.isprs-ann-photogramm-
remote-sens-spatial-inf-sci.net/V-3-2020/641/2020/. iSSN: 2194-9042.

Wagner, W., Lindorfer, R., Melzer, T., Hahn, S., Bauer-Marschallinger, B., Morri-
son, K., Calvet, J.C., Hobbs, S., Quast, R., Greimeister-Pfeil, I., Vreugdenhil, M., 
2022. Widespread occurrence of anomalous C-band backscatter signals in arid 
environments caused by subsurface scattering. Remote Sens. Environ. 276, 
113025. http://dx.doi.org/10.1016/j.rse.2022.113025, URL: https://linkinghub.
elsevier.com/retrieve/pii/S0034425722001390.

Wang, Y., 2004. Seasonal change in the extent of inundation on floodplains 
detected by JERS-1 synthetic aperture radar data. Int. J. Remote Sens. 25 
(13), 2497–2508. http://dx.doi.org/10.1080/01431160310001619562, URL: https:
//www.tandfonline.com/doi/full/10.1080/01431160310001619562.

Wang, Z., Zhang, C., Atkinson, P.M., 2022. Combining SAR images with land cover 
products for rapid urban flood mapping. Front. Environ. Sci. 10, 973192. http://
dx.doi.org/10.3389/fenvs.2022.973192, URL: https://www.frontiersin.org/articles/
10.3389/fenvs.2022.973192/full.

http://dx.doi.org/10.1016/j.srs.2025.100210
http://dx.doi.org/10.1016/j.srs.2025.100210
http://dx.doi.org/10.1016/j.srs.2025.100210
https://linkinghub.elsevier.com/retrieve/pii/S2666017225000161
https://linkinghub.elsevier.com/retrieve/pii/S2666017225000161
https://linkinghub.elsevier.com/retrieve/pii/S2666017225000161
http://dx.doi.org/10.1109/IGARSS47720.2021.9554214
https://ieeexplore.ieee.org/document/9554214/
http://dx.doi.org/10.3390/rs10040608
https://www.mdpi.com/2072-4292/10/4/608
https://www.mdpi.com/2072-4292/10/4/608
https://www.mdpi.com/2072-4292/10/4/608
http://dx.doi.org/10.2905/2FF68A52-5B5B-4A22-8F40-C41DA8332CFE
http://dx.doi.org/10.2905/2FF68A52-5B5B-4A22-8F40-C41DA8332CFE
http://dx.doi.org/10.2905/2FF68A52-5B5B-4A22-8F40-C41DA8332CFE
http://data.europa.eu/89h/2ff68a52-5b5b-4a22-8f40-c41da8332cfe
http://data.europa.eu/89h/2ff68a52-5b5b-4a22-8f40-c41da8332cfe
http://data.europa.eu/89h/2ff68a52-5b5b-4a22-8f40-c41da8332cfe
http://dx.doi.org/10.3390/rs8050402
http://www.mdpi.com/2072-4292/8/5/402
http://www.mdpi.com/2072-4292/8/5/402
http://www.mdpi.com/2072-4292/8/5/402
http://dx.doi.org/10.1016/j.jag.2016.12.003
https://linkinghub.elsevier.com/retrieve/pii/S0303243416301994
https://linkinghub.elsevier.com/retrieve/pii/S0303243416301994
https://linkinghub.elsevier.com/retrieve/pii/S0303243416301994
http://dx.doi.org/10.1016/j.jag.2014.12.001
https://linkinghub.elsevier.com/retrieve/pii/S0303243414002645
http://dx.doi.org/10.2760/41122
http://dx.doi.org/10.1109/TGRS.2011.2120616
http://dx.doi.org/10.1109/TGRS.2011.2120616
http://dx.doi.org/10.1109/TGRS.2011.2120616
http://refhub.elsevier.com/S0034-4257(25)00512-7/sb137
http://refhub.elsevier.com/S0034-4257(25)00512-7/sb137
http://refhub.elsevier.com/S0034-4257(25)00512-7/sb137
http://refhub.elsevier.com/S0034-4257(25)00512-7/sb137
http://refhub.elsevier.com/S0034-4257(25)00512-7/sb137
http://dx.doi.org/10.1016/S0034-4257(98)00010-8
http://dx.doi.org/10.1016/S0034-4257(98)00010-8
http://dx.doi.org/10.1016/S0034-4257(98)00010-8
https://linkinghub.elsevier.com/retrieve/pii/S0034425798000108
https://linkinghub.elsevier.com/retrieve/pii/S0034425798000108
https://linkinghub.elsevier.com/retrieve/pii/S0034425798000108
http://dx.doi.org/10.3390/w14071140
https://www.mdpi.com/2073-4441/14/7/1140
https://www.mdpi.com/2073-4441/14/7/1140
https://www.mdpi.com/2073-4441/14/7/1140
http://dx.doi.org/10.5194/nhess-22-2473-2022
https://nhess.copernicus.org/articles/22/2473/2022/
https://nhess.copernicus.org/articles/22/2473/2022/
https://nhess.copernicus.org/articles/22/2473/2022/
http://dx.doi.org/10.1080/22797254.2024.2414004
http://dx.doi.org/10.1080/22797254.2024.2414004
http://dx.doi.org/10.1080/22797254.2024.2414004
https://www.tandfonline.com/doi/full/10.1080/22797254.2024.2414004
https://www.tandfonline.com/doi/full/10.1080/22797254.2024.2414004
https://www.tandfonline.com/doi/full/10.1080/22797254.2024.2414004
https://ieeexplore.ieee.org/abstract/document/10659647/
http://dx.doi.org/10.1016/j.rse.2011.05.028
https://linkinghub.elsevier.com/retrieve/pii/S0034425712000600
https://linkinghub.elsevier.com/retrieve/pii/S0034425712000600
https://linkinghub.elsevier.com/retrieve/pii/S0034425712000600
http://dx.doi.org/10.1007/s10584-023-03502-7
https://link.springer.com/10.1007/s10584-023-03502-7
http://dx.doi.org/10.1080/01431161.2017.1420938
https://www.tandfonline.com/doi/full/10.1080/01431161.2017.1420938
http://dx.doi.org/10.5194/isprs-archives-XLI-B7-371-2016
http://dx.doi.org/10.5194/isprs-archives-XLI-B7-371-2016
http://dx.doi.org/10.5194/isprs-archives-XLI-B7-371-2016
https://isprs-archives.copernicus.org/articles/XLI-B7/371/2016/
http://dx.doi.org/10.3390/w15234034
https://www.mdpi.com/2073-4441/15/23/4034
https://www.mdpi.com/2073-4441/15/23/4034
https://www.mdpi.com/2073-4441/15/23/4034
http://dx.doi.org/10.3390/rs15051200
https://www.mdpi.com/2072-4292/15/5/1200
https://www.mdpi.com/2072-4292/15/5/1200
https://www.mdpi.com/2072-4292/15/5/1200
http://dx.doi.org/10.1080/15481603.2024.2427304
http://dx.doi.org/10.1080/15481603.2024.2427304
http://dx.doi.org/10.1080/15481603.2024.2427304
https://www.tandfonline.com/doi/full/10.1080/15481603.2024.2427304
https://www.tandfonline.com/doi/full/10.1080/15481603.2024.2427304
https://www.tandfonline.com/doi/full/10.1080/15481603.2024.2427304
http://dx.doi.org/10.1080/01431161.2016.1192304
http://dx.doi.org/10.1080/01431161.2016.1192304
http://dx.doi.org/10.1080/01431161.2016.1192304
https://www.tandfonline.com/doi/full/10.1080/01431161.2016.1192304
https://www.tandfonline.com/doi/full/10.1080/01431161.2016.1192304
https://www.tandfonline.com/doi/full/10.1080/01431161.2016.1192304
http://dx.doi.org/10.1111/jfr3.70087
https://onlinelibrary.wiley.com/doi/10.1111/jfr3.70087
https://onlinelibrary.wiley.com/doi/10.1111/jfr3.70087
https://onlinelibrary.wiley.com/doi/10.1111/jfr3.70087
https://www.jstor.org/stable/27310296
https://www.jstor.org/stable/27310296
https://www.jstor.org/stable/27310296
http://dx.doi.org/10.3390/rs15143675
https://www.mdpi.com/2072-4292/15/14/3675
http://dx.doi.org/10.1109/TGRS.2007.895830
http://ieeexplore.ieee.org/document/4215094/
http://dx.doi.org/10.3390/rs13224622
http://dx.doi.org/10.3390/rs13224622
http://dx.doi.org/10.3390/rs13224622
https://www.mdpi.com/2072-4292/13/22/4622
https://ieeexplore.ieee.org/abstract/document/10659679
https://ieeexplore.ieee.org/abstract/document/10659679
https://ieeexplore.ieee.org/abstract/document/10659679
http://dx.doi.org/10.5194/isprs-annals-V-3-2020-641-2020
http://dx.doi.org/10.5194/isprs-annals-V-3-2020-641-2020
http://dx.doi.org/10.5194/isprs-annals-V-3-2020-641-2020
https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/V-3-2020/641/2020/
https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/V-3-2020/641/2020/
https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/V-3-2020/641/2020/
http://dx.doi.org/10.1016/j.rse.2022.113025
https://linkinghub.elsevier.com/retrieve/pii/S0034425722001390
https://linkinghub.elsevier.com/retrieve/pii/S0034425722001390
https://linkinghub.elsevier.com/retrieve/pii/S0034425722001390
http://dx.doi.org/10.1080/01431160310001619562
https://www.tandfonline.com/doi/full/10.1080/01431160310001619562
https://www.tandfonline.com/doi/full/10.1080/01431160310001619562
https://www.tandfonline.com/doi/full/10.1080/01431160310001619562
http://dx.doi.org/10.3389/fenvs.2022.973192
http://dx.doi.org/10.3389/fenvs.2022.973192
http://dx.doi.org/10.3389/fenvs.2022.973192
https://www.frontiersin.org/articles/10.3389/fenvs.2022.973192/full
https://www.frontiersin.org/articles/10.3389/fenvs.2022.973192/full
https://www.frontiersin.org/articles/10.3389/fenvs.2022.973192/full


W. Wagner et al. Remote Sensing of Environment 333 (2026) 115108 
Wania, A., Joubert-Boitat, I., Dottori, F., Kalas, M., Salamon, P., 2021. Increasing 
timeliness of satellite-based flood mapping using early warning systems in the 
copernicus emergency management service. Remote. Sens. 13 (11), 2114. http://
dx.doi.org/10.3390/rs13112114, URL: https://www.mdpi.com/2072-4292/13/11/
2114.

Wieland, M., Fichtner, F., Martinis, S., Groth, S., Krullikowski, C., Plank, S., Motagh, M., 
2024. S1S2-water: A global dataset for semantic segmentation of water bodies 
from sentinel- 1 and sentinel-2 satellite images. IEEE J. Sel. Top. Appl. Earth Obs. 
Remote. Sens. 17, 1084–1099. http://dx.doi.org/10.1109/JSTARS.2023.3333969, 
URL: https://ieeexplore.ieee.org/document/10321672/.

Wieland, M., Martinis, S., 2019. A modular processing chain for automated flood 
monitoring from multi-spectral satellite data. Remote. Sens. 11 (19), 2330. http://
dx.doi.org/10.3390/rs11192330, URL: https://www.mdpi.com/2072-4292/11/19/
2330.

Wilks, D., 2011. Forecast verification. In: International Geophysics, vol. 100, Elsevier, 
pp. 301–394. http://dx.doi.org/10.1016/B978-0-12-385022-5.00008-7, URL: https:
//linkinghub.elsevier.com/retrieve/pii/B9780123850225000087.

Zhang, M., Chen, F., Liang, D., Tian, B., Yang, A., 2020. Use of sentinel-1 GRD 
SAR images to delineate flood extent in Pakistan. Sustainability 12 (14), 5784. 
http://dx.doi.org/10.3390/su12145784, URL: https://www.mdpi.com/2071-1050/
12/14/5784.

Zhao, J., Li, M., Li, Y., Matgen, P., Chini, M., 2025. Urban flood mapping using 
satellite synthetic aperture radar data: A review of characteristics, approaches, and 
datasets. IEEE Geosci. Remote. Sens. Mag. 2–34. http://dx.doi.org/10.1109/MGRS.
2024.3496075, URL: https://ieeexplore.ieee.org/document/10795465/.
30 
Zhao, J., Li, Y., Matgen, P., Pelich, R., Hostache, R., Wagner, W., Chini, M., 2022. 
Urban-aware U-Net for large-scale urban flood mapping using multitemporal 
sentinel-1 intensity and interferometric coherence. IEEE Trans. Geosci. Remote Sens. 
60, 1–21. http://dx.doi.org/10.1109/TGRS.2022.3199036, URL: https://ieeexplore.
ieee.org/document/9857936/.

Zhao, J., Pelich, R., Hostache, R., Matgen, P., Cao, S., Wagner, W., Chini, M., 
2021a. Deriving exclusion maps from C-band SAR time-series in support of 
floodwater mapping. Remote Sens. Environ. 265, 112668. http://dx.doi.org/10.
1016/j.rse.2021.112668, URL: https://www.sciencedirect.com/science/article/pii/
S0034425721003886.

Zhao, J., Pelich, R., Hostache, R., Matgen, P., Wagner, W., Chini, M., 2021b. A large-
scale 2005–2012 flood map record derived from ENVISAT-ASAR data: United 
Kingdom as a test case. Remote Sens. Environ. 256, 112338. http://dx.doi.
org/10.1016/j.rse.2021.112338, URL: https://linkinghub.elsevier.com/retrieve/pii/
S0034425721000560.

Zhao, J., Roth, F., Bauer-Marschallinger, B., Wagner, W., Chini, M., Zhu, X.X., 2023. 
A preliminary comparison of two exclusion maps for large-scale flood mapping 
using Sentinel-1 data. ISPRS Ann. Photogramm. Remote. Sens. Spatial Inf. Sci. 
X-1/W1-2023, 911–918. http://dx.doi.org/10.5194/isprs-annals-X-1-W1-2023-911-
2023, URL: https://isprs-annals.copernicus.org/articles/X-1-W1-2023/911/2023/.

Zhu, L., Walker, J.P., Ye, N., Rüdiger, C., 2019. Roughness and vegetation change 
detection: A pre-processing for soil moisture retrieval from multi-temporal SAR 
imagery. Remote Sens. Environ. 225, 93–106. http://dx.doi.org/10.1016/j.rse.2019.
02.027, URL: https://linkinghub.elsevier.com/retrieve/pii/S0034425719300823.

http://dx.doi.org/10.3390/rs13112114
http://dx.doi.org/10.3390/rs13112114
http://dx.doi.org/10.3390/rs13112114
https://www.mdpi.com/2072-4292/13/11/2114
https://www.mdpi.com/2072-4292/13/11/2114
https://www.mdpi.com/2072-4292/13/11/2114
http://dx.doi.org/10.1109/JSTARS.2023.3333969
https://ieeexplore.ieee.org/document/10321672/
http://dx.doi.org/10.3390/rs11192330
http://dx.doi.org/10.3390/rs11192330
http://dx.doi.org/10.3390/rs11192330
https://www.mdpi.com/2072-4292/11/19/2330
https://www.mdpi.com/2072-4292/11/19/2330
https://www.mdpi.com/2072-4292/11/19/2330
http://dx.doi.org/10.1016/B978-0-12-385022-5.00008-7
https://linkinghub.elsevier.com/retrieve/pii/B9780123850225000087
https://linkinghub.elsevier.com/retrieve/pii/B9780123850225000087
https://linkinghub.elsevier.com/retrieve/pii/B9780123850225000087
http://dx.doi.org/10.3390/su12145784
https://www.mdpi.com/2071-1050/12/14/5784
https://www.mdpi.com/2071-1050/12/14/5784
https://www.mdpi.com/2071-1050/12/14/5784
http://dx.doi.org/10.1109/MGRS.2024.3496075
http://dx.doi.org/10.1109/MGRS.2024.3496075
http://dx.doi.org/10.1109/MGRS.2024.3496075
https://ieeexplore.ieee.org/document/10795465/
http://dx.doi.org/10.1109/TGRS.2022.3199036
https://ieeexplore.ieee.org/document/9857936/
https://ieeexplore.ieee.org/document/9857936/
https://ieeexplore.ieee.org/document/9857936/
http://dx.doi.org/10.1016/j.rse.2021.112668
http://dx.doi.org/10.1016/j.rse.2021.112668
http://dx.doi.org/10.1016/j.rse.2021.112668
https://www.sciencedirect.com/science/article/pii/S0034425721003886
https://www.sciencedirect.com/science/article/pii/S0034425721003886
https://www.sciencedirect.com/science/article/pii/S0034425721003886
http://dx.doi.org/10.1016/j.rse.2021.112338
http://dx.doi.org/10.1016/j.rse.2021.112338
http://dx.doi.org/10.1016/j.rse.2021.112338
https://linkinghub.elsevier.com/retrieve/pii/S0034425721000560
https://linkinghub.elsevier.com/retrieve/pii/S0034425721000560
https://linkinghub.elsevier.com/retrieve/pii/S0034425721000560
http://dx.doi.org/10.5194/isprs-annals-X-1-W1-2023-911-2023
http://dx.doi.org/10.5194/isprs-annals-X-1-W1-2023-911-2023
http://dx.doi.org/10.5194/isprs-annals-X-1-W1-2023-911-2023
https://isprs-annals.copernicus.org/articles/X-1-W1-2023/911/2023/
http://dx.doi.org/10.1016/j.rse.2019.02.027
http://dx.doi.org/10.1016/j.rse.2019.02.027
http://dx.doi.org/10.1016/j.rse.2019.02.027
https://linkinghub.elsevier.com/retrieve/pii/S0034425719300823

	The fully-automatic Sentinel-1 Global Flood Monitoring service: Scientific challenges and future directions
	Introduction
	Satellite-based flood monitoring
	Systematic observation capabilities of Sentinel-1
	SAR-based flood mapping
	Scope of the flood monitoring service and this article

	Methods
	Approach
	Flood mapping algorithms
	Single-image classifier
	Dual-image classifier
	Time-series classifier
	Ensemble algorithms

	Contextual information
	Reference water extent
	Exclusion mask
	Advisory flags
	Flood impact indicators

	Implementation
	Sentinel-1 backscatter datacube
	Near real-time workflow
	Open data access


	Results
	GFM data product
	Timeliness of production
	Archive processing
	Exclusion mask
	Coverage of flood events
	Accuracy of flood maps

	Discussion
	A paradigm shift in SAR-based flood monitoring
	Temporal coverage requirements
	Suitability of the exclusion mask
	Suitability of reference water maps
	Overdetection in non-flood situations
	Underdetection in flood situations
	How accurate are the GFM flood maps?
	Adequacy of accuracy metrics

	Conclusions
	CRediT authorship contribution statement
	Declaration of generative AI in scientific writing
	Declaration of competing interest
	Acknowledgements
	Appendix. List of flood events
	Data availability
	References


