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ARTICLE INFO ABSTRACT
Edited by Marie Weiss Sentinel-1 is a unique resource for global flood monitoring, providing systematic, weather-independent

Synthetic Aperture Radar (SAR) imagery with unprecedented coverage. To overcome limitations of on-
demand flood mapping services that depend on human operators to collect and interpret satellite images,
a fundamentally new approach was adopted by the Global Flood Monitoring (GFM) service. This service,
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Sentinel-1 which was launched in 2021 as part of the Copernicus Emergency Management Service (CEMS), processes all
SAR Sentinel-1 land images acquired in VV polarisation fully automatically in near-real time. This article presents
Datacube the first comprehensive analysis of GFM’s scientific achievements and challenges during its initial years of
Copernicus operation. To map floods reliably under diverse environmental conditions, GFM combines three complementary

flood-mapping algorithms with reference water datasets to differentiate flooded areas from permanent and
seasonal water bodies. The service also offers a novel flood-likelihood layer and contextual information to
highlight areas where flood mapping is unreliable or not feasible. These data layers were derived from a
global 20 m backscatter datacube containing approximately 379 billion land surface pixels. This datacube
also made it possible to generate the first global Sentinel-1 flood archive (2015 to present). Our performance
analysis shows that GFM typically delivers flood maps within five hours of image acquisition. However, a
significant percentage of floods may go undetected due to coverage gaps. Initial evaluation results show that
good accuracies are achieved for larger-scale floods and regions in the temperate and tropical zones, while
accuracies are lower for smaller-scale floods and arid environments. The GFM service will continue to improve
service quality by enhancing flood detection capabilities using improved algorithms and additional data, such
as the VH channel from Sentinel-1 or L-band data from the upcoming ROSE-L mission.

* This article is part of a Special issue entitled: ‘Ten years of Sentinel-1 in space (Invitation Only)’ published in Remote Sensing of Environment.
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1. Introduction
1.1. Satellite-based flood monitoring

Significant efforts have been made over recent years to improve
flood risk management. European and global policy frameworks such as
the Floods Directive of the European Union and the Sendai Framework
for Disaster Risk Reduction have enabled the strengthening of pre-
vention, preparedness, and response to floods. While this has resulted
in a decrease in flood fatalities and economic losses for Europe (Pa-
protny et al., 2018), this is not true for other regions of the world.
In addition, the increase in weather- and climate-related extremes
thwarts the achievements in flood risk management. According to the
Intergovernmental Panel on Climate Change (IPCC), human-caused
climate change is already affecting many weather and climate extremes
including floods in every region across the globe (Calvin et al., 2023).
The large-scale floods in central Europe in mid-September 2024, for
example, which were caused by record-breaking rainfall over a period
of four days, have demonstrated again the increasing challenges that
civil protection and emergency responders are facing in order to reduce
the impacts of floods on our society and economy (Kimutai et al., 2024).

With the increasing availability of satellite imagery, particularly
through Europe’s Earth observation programme Copernicus, satellite-
based flood monitoring has become a crucial tool for flood response.
It offers a rapid and efficient overview of flood situations, especially
for large-scale flood events. As part of the Copernicus Emergency
Management Service (CEMS), satellite imagery is routinely used to
generate flood maps within hours or days, following activation by
authorised users from European Member States and other countries
participating in the European Civil Protection Mechanism (Denis et al.,
2016). This on-demand CEMS Rapid Mapping service operates 24/7,
providing geospatial information on the impact of selected disasters
worldwide using both optical and radar satellite images (Ajmar et al.,
2017). It involves human experts to collect and process flood data. This
can cause delays in the delivery of the flood maps, potentially rendering
the flood maps less effective for rapid response activities.

To accelerate map delivery and maximise coverage, CEMS launched
the new Global Flood Monitoring (GFM) service in 2021. Using
Sentinel-1 Synthetic Aperture Radar (SAR) data, GFM provides in near
real-time, continuously, and fully automatically, flood maps together
with uncertainly information and contextual auxiliary layers. Unlike
existing regional services or semi-automatic cloud-based workflows,
GFM enables truly global operations in a cloud computing environment
without human intervention (except for system maintenance). This
capability is underpinned by a global Sentinel-1 backscatter datacube as
described by Wagner et al. (2021). A major scientific innovation is the
GFM ensemble approach, which integrates three complementary flood-
mapping algorithms. In the following, we outline the key concepts and
milestones leading to the success of the Sentinel-1 mission and the
subsequent establishment of the GFM service.

1.2. Systematic observation capabilities of Sentinel-1

The potential of SAR sensors for flood mapping has been recognised
since the inception of spaceborne SAR missions in the second half of
the 20th century. Following the launch of Seasat in 1978, the first
civil satellite equipped with an L-band SAR sensor, researchers started
exploring the data for flood mapping and water resources evalua-
tion (Imhoff et al., 1987). SAR technology is particularly effective in
detecting surface water features under cloudy conditions, thanks to
its ability to penetrate the atmosphere at microwave frequencies and
the contrasting return signals from smooth water surfaces compared
to rough terrain (Lewis, 1998). This capability allows SAR to overcome
the limitations posed by cloud cover, which often obscures visibility for
optical satellite systems, particularly during the initial phases of a flood.
Consequently, Imhoff et al. (1987) predicted that SAR would become
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a powerful tool for measuring and monitoring flood progression as
satellite-acquired SAR imagery becomes available worldwide in the
1990s.

This prediction turned out to be only partially true. While the
first generation of SAR satellites launched in the 1990s, including
ERS-1 and ERS-2 from Europe, JERS-1 from Japan, and Radarsat from
Canada, enabled numerous scientific studies that investigated algo-
rithms for extracting flood extent (Oberstadler et al., 1997; Wang,
2004), their impact on real-world flood monitoring efforts was limited.
The problem was not the quality of the data, which was excellent
for a first-generation technology (Meadows et al., 2001), but rather
data availability. Essentially, due to the lack of frequent observations,
one had to be “fortunate” to obtain a high-resolution SAR image of
a flood (Kiage et al., 2005). This had technical and organisational
reasons. The main technical constraints stem from fixed satellite orbits
and the high energy demand of high-resolution SAR imaging modes.
Space agencies tried to mitigate these restrictions by developing SAR
instruments with multiple imaging modes that enable the acquisition
of SAR images with varying spatial extents, resolutions, and incidence
angles (Raney et al., 1991). Consequently, users had to select and
request appropriate SAR images several days in advance of acquisitions,
which is very problematic, particularly for flood mapping applications.

Improving data availability during flood situations can be accom-
plished through various strategies. The most straightforward solution
is to gather data from as many SAR (and optical) satellites as possi-
ble (Voigt et al., 2007), a concept adopted by the International Charter
on Space and Major Disasters. This strategy is gaining momentum with
the deployment of large fleets of small, programmable SAR satellites, as
seen with new commercial SAR data providers (Ignatenko et al., 2024).
A crucial component for the success of this strategy is to have advance
knowledge of the locations requiring data collection. This can be facil-
itated by leveraging hydrological model predictions (Boni et al., 2016;
Wania et al., 2021) and monitoring social media posts (Rossi et al.,
2018). An alternative strategy is to develop SAR missions that provide
frequent high-resolution coverage without the need for programming-
specific image acquisitions. This was the road chosen for the Sentinel-1
mission. Instead of offering many different imaging modes like its
predecessors, Sentinel-1 was developed to operate in a limited number
of pre-programmed, conflict-free modes, allowing for high-resolution
imaging of the Earth’s surface with extended swath width and duty
cycles (Torres et al., 2012). Additionally, from the outset, Sentinel-1
acquisitions have been scheduled according to a stable and predefined
observation scenario, with sufficient resource margin to flexibly handle
emergency requests (Potin et al., 2012). The duty cycle, which deter-
mines the sensor’s effective ground coverage per orbit revolution, is
probably one of the most overlooked SAR mission characteristics. With
a duty cycle of 28 min and a swath width of up to 250 km, even a single
Sentinel-1 satellite achieves a daily global coverage unmatched by any
of its predecessors or small SAR satellite swarms. For the Sentinel-1
Next Generation, the duty cycle will be further extended to approxi-
mately 38 min and the swath width to 400 km (Torres et al., 2024).

Sentinel-1 was developed as a constellation of two SAR satellites
flying in a near-polar sun-synchronous orbit with a 12-day repeat cycle
(i.e. the time between two successive identical orbits). Together, the
two satellites achieve a combined orbit repeat cycle of 6 days. The
first two satellites, Sentinel-1A and Sentinel-1B, were launched in April
2014 and April 2016, respectively. Unfortunately, Sentinel-1B failed
prematurely in December 2021. Sentinel-1C was launched in December
2024 and Sentinel-1D will follow in 2025. The principle Sentinel-1 ac-
quisition mode over land is the Interferometric Wide (IW) swath mode,
which captures three sub-swaths using an advanced ScanSAR technique
introduced by De Zan and Monti Guarnieri (2006). This results in 250
km wide images with a spatial resolution of approximately 3 m in
range and 22 m in azimuth directions (single look). The on-board SAR
sensor can emit and receive polarised electromagnetic waves along both
vertical (V) and horizontal (H) planes. The base configuration over land
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Fig. 1. Average revisit time of the Sentinel-1 two-satellite constellation over non-polar land. The image was created by collecting all Interferometric Wide (IW)
swath data acquired by Sentinel-1A and Sentinel-1B in the years from 2016 to 2021.
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Fig. 2. Overview of GFM’s main algorithms and workflows, with NRT processes in the top, and offline model layer generation in the bottom.

is to collect IW imagery in VV and VH polarisation. According to the
Copernicus Sentinel Data Access Annual Report 2023, the Sentinel-1
mission produces up to 6 terabytes daily and the delivery time of near-
real-time products can be as fast as 1 h after data acquisition. The
average revisit time (i.e. the time between two subsequent images of
the same area, which may be observed from different orbits) of two
Sentinel-1 satellites is illustrated in Fig. 1, based on all IW images
acquired by Sentinel-1A and Sentinel-1B from 2016 to 2021. Europe
is covered best, with revisit times generally ranging from 1 to 3 days.
For other priority regions, as outlined in the observation scenario, the
average revisit time is between 4 and 6 days. Most other land areas are
observed every 6 to 12 days, although some individual orbits covering
high-latitude regions, Africa, islands, and coastal regions have even
longer revisit intervals.

1.3. SAR-based flood mapping

Flood mapping is among the first and most important applications of
spaceborne SAR missions (Amitrano et al., 2024). Most flood mapping
studies start from the premise that backscatter from water surfaces is
lower than that from surrounding land. Consequently, many algorithms
concentrate on detecting areas of low backscatter within individual SAR
images. Assuming that all detected areas represent water surfaces, flood

extent is obtained by subtracting permanent water bodies (Twele et al.,
2016; Rahman and Thakur, 2018). The techniques used for mapping
water surfaces are diverse, ranging from multi-scale thresholding meth-
ods to fuzzy classifiers and deep learning approaches, often enhanced
by post-processing steps for image improvement (Bentivoglio et al.,
2022; Amitrano et al., 2024). While these algorithms generally perform
well under ideal conditions, various physical factors can disrupt the
assumption that backscatter from flooded areas is consistently lower
than from land. Some effects can even completely obstruct the detection
of flooded areas.

The physical mechanism responsible for the high contrast in radar
imagery between flooded and non-flooded terrain is the specular,
mirror-like reflection of SAR signals from smooth water surfaces, which
produces very low backscattered amplitude. However, various factors —
wind, rain, variable water depths, and obstacles obstructing water flow
- can induce ripples and waves on the water surface that significantly
increase backscatter (Dasgupta et al., 2018b). Additionally, vegetation
and other objects that extend above the water’s surface can increase
backscatter due to direct scattering from these objects and double
bounce effects occurring between the water surface and the scattering
elements. In these situations, the contrast between flooded and non-
flooded areas may lessen or disappear entirely. When double bounce
effects are pronounced, it may even be possible to identify flooded



W. Wagner et al

vegetation and urban regions by detecting very strong backscatter
echoes (Tsyganskaya et al., 2018; Mason et al., 2014).

Even when backscatter from the water surface is low, confusion
can arise with water-free land areas that also appear dark in SAR
images (Lewis, 1998; Zhang et al., 2020). These water-lookalike areas
include sandy (beaches, sand dunes, etc.) and paved (airport runways,
parking lots, etc.) surfaces, which have a smooth texture at radar
wavelengths, resulting in consistently low backscatter throughout the
year. Other land surfaces may exhibit low backscatter only during
specific seasons or environmental conditions, such as when the soils
and vegetation are dry, frozen or covered by wet snow (Pulvirenti
et al.,, 2014). Additionally, SAR imagery exhibits dark, noisy patches
in radar shadow regions. All these water-lookalike areas contribute to
ambiguities in SAR image classification, leading to false alarms. Such
false alarms can be removed in sloping terrain by using topographic
indices that derive drainage patterns or valley bottoms from digital
elevation models (DEMs) (Huang et al., 2017). In flood mapping, prob-
ably the most widely used terrain index is the Height Above Nearest
Drainage (HAND) index that expresses the height difference between a
DEM cell and the closest cell of the drainage network along the actual
flow path (Renno et al., 2008).

Another, more important way to reduce false alarms is to employ
change detection techniques that compare a SAR image acquired during
the flood with a reference SAR image depicting non-flooded condi-
tions (Carincotte et al., 2006; Giustarini et al., 2013; Long et al., 2014).
The assumption is that only SAR pixels showing a drop in backscatter
value from the non-flood image to the flood image correspond to
flooded areas. In addition to minimising the false alarm rate, change
detection techniques simplify the process of establishing thresholds that
are effective across various environments and weather conditions (Tu-
pas et al., 2023b), and they eliminate the need for external datasets
to delineate permanent water surfaces. However, one challenge is
to select suitable SAR reference images that best represent ‘normal’
conditions (Hostache et al., 2012). Furthermore, change detection does
not solve the problem of underdetection in case the backscatter from
the flooded areas is elevated due to a rough water surface, emergent
vegetation, or buildings.

In their review of SAR-based flood monitoring, Amitrano et al.
(2024) highlight that monitoring floods in vegetated and urban ar-
eas still presents significant challenges due to the complex scatter-
ing mechanisms that impede accurate water region extraction. They
recommend employing multi-dimensional SAR data (e.g. multi-phase,
multi-polarisation, multi-frequency) to isolate the different scattering
mechanisms that contribute to the overall received signal. Further-
more, the thematic accuracy of flood mapping algorithms is often
enhanced through the integration of ancillary datasets, such as land
cover information (Wang et al., 2022), radar shadow masks (Rees,
2000), and topographic indices (Tupas et al., 2023a). Beyond im-
proving mapping accuracy, multi-dimensional SAR data and ancillary
datasets play a crucial role in estimating retrieval uncertainties and
delineating exclusion areas where the presence of water simply cannot
be determined from SAR backscatter observations due to physical
reasons (Zhao et al., 2021a), as is, for example, the case in tropical
forest regions (Carreno-Luengo et al., 2024).

On the algorithmic side, machine learning (ML) has become a
powerful approach for mapping floods using SAR imagery (Bentivoglio
et al., 2022). Using labelled datasets for training, ML techniques are
capable of learning complex spatial patterns from the SAR images
which enhances flood detection and mapping accuracy (Dasgupta et al.,
2018a; Pillai and Dolly, 2025; Fakhri and Gkanatsios, 2025). Earlier-
generation ML methods, such as Random Forests and Support Vector
Machines, generally yield strong performance within the regions where
they are trained (Tanim et al., 2022; Panahi et al., 2022; Kurni-
awan et al., 2025; Uddin et al., 2025). However, these methods often
lack robustness and transferability when applied to different flood
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events. To address this limitation, deep learning approaches are in-
creasingly adopted, offering improved generalisability across diverse
scenarios (Bentivoglio et al., 2022; Bereczky et al., 2022; Andrew et al.,
2023; Doan and Le-Thi, 2025). Nevertheless, key drawbacks are the
need for large, high-quality training datasets and the significant com-
putational time required for model training (Toma et al., 2024; Wieland
et al., 2024). Furthermore, most machine learning frameworks are still
black boxes that provide deterministic outputs without uncertainty
quantification — a critical limitation for decision-making in emergency
contexts (Destefanis et al., 2025).

1.4. Scope of the flood monitoring service and this article

As noted by Solbo and Solheim already in 2004, operational flood
monitoring services require fully-automated methods capable of pro-
cessing available SAR data in near real-time (NRT). One of the pioneer-
ing studies that investigated the use of Sentinel-1 SAR data for NRT
flood mapping was conducted by Twele et al. (2016). They demon-
strated that, without requiring user intervention at any stage of the
flood mapping process, time-sensitive disaster information could be
produced in less than 45 min after a new dataset was made available
on one of the Sentinel data hubs. Recognising the unique opportu-
nities presented by such NRT capabilities to enhance the timeliness
of information during emergencies, the European Commission initi-
ated a feasibility study for an automated, global, satellite-based flood
monitoring product. The main conclusion of this feasibility study was
that state-of-the-art scientific methods for automatically detecting and
identifying flood events are mature and ready for operational imple-
mentation for Sentinel-1 (Matgen et al., 2019). Following the study’s
recommendations on the design of the data processing architecture and
system requirements (Wagner et al., 2020), a fully-automatic global
Sentinel-1 processing system was set up in less than a year and put
into operations at the end of 2021 (Salamon et al., 2021). This so-
called Global Flood Monitoring (GFM) service is a new and independent
component of CEMS, complementing its flood early warnings and on-
demand mapping services (Matthews et al., 2024; Denis et al., 2016).
All worldwide GFM flood data are freely available in NRT, as well
as the historic data from an archive covering the complete Sentinel-1
observation period (from 2015 to present).

The CEMS GFM service is designed to provide continuous global
flood monitoring by automatically processing and analysing all incom-
ing Sentinel-1 IW images over ice-free land. The flood maps need to
be accompanied by uncertainty information and a variety of ancillary
data to enable emergency managers to assess the reliability of the fully-
automatically generated maps. For cost reasons, the service utilises
so far only one polarisation of the IW images. VV polarisation was
selected over VH polarisation because studies have shown that VV
polarisation offers slightly higher thematic accuracy compared to VH
polarisation (Twele et al., 2016). When there are no delays in the pro-
vision of Sentinel-1 data on the Copernicus data hubs, users can expect
20 m resolution flood maps within a few hours after image acquisition,
and as GFM being based on radar, even during cloud coverage or poor
light conditions. The service employs three independently developed
flood mapping algorithms to enhance the robustness and accuracy of
flood and water extent maps, and to build a high degree of redundancy
into the service. The outputs are binary flood maps together with flood
likelihood values and detailed contextual information, including data
layers showing permanent and seasonal water bodies, exclusion areas
where Sentinel-1 is unable to provide flood data, and environmental
conditions that may affect the quality of the flood information.

In terms of the data processing efforts alone — without even con-
sidering the complexity of the scientific algorithms — the CEMS GFM
service stands out as the largest systematic initiative for operational
SAR-based flood monitoring. Other SAR-based systems typically focus
on specific regions, lack transparency, or still require some degree of
user interaction to start SAR data processing. For instance, Ohki et al.



W. Wagner et al

Remote Sensing of Environment 333 (2026) 115108

New S-1 ) )
Image Thematic Exclusion
Relative Orbit — Layers
e of $-1 Image
Month of S-1 Monthly Ensemble
Observation > Water Mapping
NN
VV ¢° Backscatter 3
Image
9 Exclusion
& Mask
N
Reference
3 Water Extent
Algorithm 3
Time-series Classifier
h (only change)
Algorithm 2 > Vask
¥ Dglal»ln}age oo 0 Flood
Algorithm 1 e -
Single-image Permanent Water

Classifier

Flood +
Classification

Likelihood
Estimation

high Like‘hoo%
low Likelihood

Seasonal Water

20m sampling k
Ensemble
Output

Fig. 3. Illustration of the GFM ensemble approach for merging the flood maps and likelihood estimates produced by three independent flood mapping algorithms.
Prior-computed monthly reference water maps and an exclusion mask are used for masking the ensemble flood map.

All 3 algos have valid

o
(majority vote)

2 or 3 algos consent on Flood ?

No Flood

K (= consensus)
&

A

Flood / No Flood

/
>

Flood / No Flood

2 algos consent ?

1 algo has greater

result ?

S (=split
D
\Go decision)

Likelihood ?

’;/ (:_equ_al
% Likelihood)

o

Flood

Flood / No Flood no output

Fig. 4. Decision tree on pixel level for generating the GFM ensemble flood map.

(2024) recently introduced the first ALOS-2-based algorithms designed
for rapid and automated flood detection in Japan. Efforts to create
regional-scale Sentinel-1-based flood monitoring capabilities have of-
ten leveraged the Google Earth Engine (GEE), which has emerged as
a powerful web platform for managing large satellite datasets effi-
ciently (Velastegui-Montoya et al., 2023). For example, DeVries et al.
(2020) describe a method for NRT flood monitoring that combines
contemporary SAR time series with historical Landsat data on the
GEE, enabling rapid discrimination of floods and previously inun-
dated areas. Tsyganskaya et al. (2018) present an advanced GEE so-
lution by incorporating both ascending and descending passes, inte-
grating slope and elevation parameters to reduce false positives in hilly

terrains, and optimising on-the-fly processing to eliminate unnecessary
computations.

The purpose of this paper is to give a comprehensive overview of
the CEMS GFM service, discussing in Section 2 how the service was set
up to benefit from novel scientific algorithms and Big Data solutions in
a cloud platform environment. The service rests on a global Sentinel-1
backscatter datacube system that allows analysing the complete mission
data archive for all continental land surface areas. After presenting
results in Section 3, the technical and scientific challenges encountered
during the first three years of operations are discussed in Section 4.
This includes pinpointing the main limitations of the GFM service from
a user’s point of view and outlining directions for scientific research and
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system development to enhance the GFM service. Finally, conclusions
are presented in Section 5.

2. Methods
2.1. Approach

The task of SAR-based flood mapping is commonly approached from
an image classification perspective (Manavalan, 2017). In contrast, the
CEMS GFM service treats it as a geophysical variable retrieval problem,
similar to methodologies used for soil moisture (Quast et al., 2023)
or biomass (Santoro and Cartus, 2018) retrievals. The key distinction
is that image-oriented approaches focus on classifying water surfaces
visible in SAR images, while geophysical approaches emphasise the
physical aspects of the problem, taking into account the sensitivity of
backscatter measurements to the target variable under varying envi-
ronmental conditions. This perspective calls for an accurate description
of retrieval uncertainties accounting for both the visible and hidden
components present within a SAR image. Consequently, the CEMS
GFM service was designed not only to map flooded areas evident in
the Sentinel-1 images but also to describe the associated uncertainties
and exclusion cases. It achieves this by leveraging the information
content of the Sentinel-1 time series and by fusing single-image, dual-
image, and time series-based flood mapping algorithms using ensemble
approaches. Additionally, contextual information layers are derived by
combining Sentinel-1 data with ancillary datasets, such as surface water
data, forest maps and a global settlement dataset.

The GFM workflow is depicted in Fig. 2, illustrating the step-by-
step generation of the GFM data products from the Sentinel-1 IW
Ground Range Detected (GRD) images and ancillary data. The first
step of the NRT workflow is to preprocess the GRD images, producing
geometrically and radiometrically corrected images of the backscat-
tering coefficient ¢°. The ¢° images are then ingested in a global
Sentinel-1 datacube (Section 2.4.1) and forwarded to the three flood
classification algorithms (Sections 2.2.1 to 2.2.3) and the advisory
flag module (Section 2.3.3). After classifying each ¢° image using the
three complementary flood mapping algorithms, they are combined
using two ensemble approaches that produce a binary flood map and a
flood likelihood layer, respectively (Section 2.2.4). The NRT workflows
utilises additional inputs that were derived offline by analysing the
historic data within the Sentinel-1 datacube along with high-resolution
ancillary datasets, namely a harmonic backscatter model required by
the time series algorithm, monthly reference water maps (Section 2.3.1)
and the exclusion mask (Section 2.3.2). In the following subsections,
we examine the scientific literature and key arguments that influenced
the design of the different algorithms and technical solutions. More de-
tailed descriptions of each processing step and the associated technical
specifications can be found on the Wiki pages of the GFM service (https:
//extwiki.eodc.eu/en/GFM). The Wiki pages also serve as a register of
the changes made in the GFM implementation. This paper describes
GFM version v3.2.0 released on 27th November 2024.

2.2. Flood mapping algorithms

The three algorithms used for mapping flood extent have been
developed by the German Aerospace Centre (DLR), the Luxembourg In-
stitute of Science and Technology (LIST), and the Vienna University of
Technology (TU Wien). Each algorithm employs distinct strategies and
data inputs to address the complex scattering mechanisms, resulting in
outputs that are not directly comparable at first glance (see Table 1).
The single-image algorithm from DLR estimates the total water extent
captured in an image, which includes both seasonal and permanent
water bodies as well as flooded areas. Next, the dual-image algorithm
from LIST compares the flood image with a recent SAR scene acquired
from the same orbit, analysing the statistical properties of both the
backscatter intensity and the changes observed between the two SAR
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images. It can therefore describe recent water and flood dynamics.
Finally, the time-series algorithm developed by TU Wien focuses on
the difference between the flood image and a reference SAR image
simulated by a harmonic backscatter model that was trained on historic
Sentinel-1 observations. As a result, the TU Wien algorithm provides
the flood area in relation to a long-term seasonal mean. The differences
in the target variables of the three algorithms can be reconciled by us-
ing reference water maps that allow distinguishing between permanent
inland water, seasonal flooding, and the real flood extent. The main
scientific concepts behind each of the three algorithms are discussed in
the following.

2.2.1. Single-image classifier

The algorithm from DLR is designed to derive individual scene-
dependent threshold values for data of various SAR sensors acquired
with different sensor configurations (i.e., polarisation, beam mode,
and incidence angle) and estimates the total water extent captured
in one single image. It was originally developed by Martinis et al.
(2009, 2015) for automatic flood detection in TerraSAR-X/TanDEM-X
data, and was adapted to Sentinel-1 data by Twele et al. (2016). The
classification is initialised by an unsupervised hierarchical tile-based
thresholding procedure, which solves the water detection problem even
in large-size SAR data with small a priori probabilities of the class-
conditional densities of water in a time-efficient manner. First, the
SAR imagery is tiled according to a bi-level quadtree structure and
a limited number of tiles are selected, which are characterised by a
high probability of representing a bimodal distribution of the classes
to be separated (i.e., water and non-water areas). Local threshold
values are computed from histograms of the selected tiles using a
parametric thresholding approach (Kittler and Illingworth, 1986). A
global threshold computed based on the arithmetic mean of the local
thresholds is applied to the SAR data to derive an initial water mask.
In order to exclude water-lookalikes and to reduce underestimations,
the initial classification result is optimised using a fuzzy logic-based
post-classification approach by combining different information sources
(backscatter, elevation and slope information as well as size of initially
derived water bodies). Fuzzy region growing is performed in order
to iteratively enlarge the water bodies until a tolerance criterion is
reached and to increase the spatial homogeneity of the detected water
areas. The HAND index is used to reduce potential misclassification in
non-flood-prone regions with an empirically defined value above the
drainage network. Finally, the monthly reference water reference maps
are used to separate flooded areas from permanent or seasonal water
bodies.

2.2.2. Dual-image classifier

LIST’s flood mapping algorithm is fundamentally based on a dual-
image approach utilising SAR from the same orbit, applying a sequence
of statistical backscatter modelling, region growing and change de-
tection (Matgen et al., 2011). It was initially designed to enable an
automated on-demand mapping of water bodies to support disaster risk
reduction at large scale. It later evolved into an always-on systematic
monitoring tool that analyses newly obtained pairs of SAR images
acquired from the same orbit and updates a regional floodwater extent
with each new image acquisition (Chini et al., 2017, 2020). This
algorithm operates iteratively, enforcing a systematic mapping of water
body and flood dynamics on a large scale. The process is initiated by
calibrating the parameters of the probability density functions (PDFs)
to automatically and adaptively retrieve thresholds for the region-
growing process. This involves modelling backscatter values linked
to open water bodies and changes derived from flood and difference
images, respectively. The employed hierarchical split-based approach
identifies specific subsets of the images characterised by a substantial
amount of water and changed pixels, where the bimodality of the
histogram becomes evident. This characteristic facilitates a more robust
estimation of the model parameters. The advantages of this dual-image
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Fig. 5. GFM’s monthly reference water maps for Bangladesh, with permanent (dark blue) and seasonal water bodies (light blue). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

method include its ability to distinguish between floodwater and pre-
flood water bodies while simultaneously leveraging the fact that image
pairs allow distinguishing slow and fast changing processes impacting
backscatter. This allows filtering out categories that exhibit water-
like backscattering values, including shadows and smooth surfaces, as
well as improving the detection of backscatter reduction caused by
vegetation and dry soils. Utilising reference and flood images from the
same relative orbit and with identical incidence angles minimises false

alarms resulting from varying geometrical acquisition characteristics.
Furthermore, selecting images that are temporally closest reduces the
effects of variations in vegetated regions (Zhao et al., 2021b), rendering
this method particularly effective for Sentinel-1 data, which features a
6-day repeat cycle and ensures systematic and consistent image collec-
tion. This change detection configuration allows for the identification
of waters that have emerged since the previous satellite acquisition.
Subsequently, the algorithm analyses regions where the floodwater
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Table 1
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Main characteristics of the three flood mapping algorithms used within the GFM service.

Algorithm Single-image Dual-image Time-series
Developer DLR LIST TU Wien
Target variables Total water area Total water and recently flooded Flood area compared to seasonal
area mean
Reference image None Last image from same orbit Image simulated with harmonic
model
Method Hierarchical tile-based Hierarchical split-based Bayesian inference
thresholding thresholding
Thresholds Automatic tile-based thresholds Automatic tile-based thresholds Fixed threshold of Bayesian
for backscatter for backscatter and backscatter posteriori probability
change
Likelihood Fuzzy logic Bayesian inference Bayesian inference

Post-processing Region-growing

Region-growing Noise filter

Main reference Martinis et al. (2015)

Chini et al. (2017) Bauer-Marschallinger et al. (2022)
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Fig. 6. Illustration of the approach to estimate the number of affected people
by superimposing the 100 m Global Human Settlement Layer with the 20 m
GFM flood map.

might have diminished in comparison to the reference image. The two
types of detected changes are ultimately employed to update the flood
extent map generated in the previous satellite cycle.

2.2.3. Time-series classifier

The time-series based flood mapping algorithm is based on two
decades of research carried out at TU Wien aimed at large-scale mon-
itoring of surface water dynamics from SAR data. Initial research
concentrated on monitoring wetlands in boreal and sub-arctic envi-
ronments, where simple thresholding methods proved effective due
to the strong contrast between water bodies and surrounding land
areas (Bartsch et al., 2007). However, when applying these meth-
ods to regions in Africa (Bartsch et al., 2009) and Asia (Greifeneder
et al., 2014), it became clear that more sophisticated approaches were
necessary to account for spatial backscatter patterns. This realisation
led Schlaffer et al. (2015, 2016) to develop a harmonic backscatter
model that, after calibration with historical backscatter time series,
enables the simulation of expected backscatter values for each pixel
and day of the year. By comparing observed backscatter with ex-
pected values, it becomes possible to identify anomalously low or high
backscatter, with low values indicating open flood water and high
values pointing to flooded vegetation. To quantify the uncertainty, the
difference between observed and expected backscatter was interpreted
as a measure of confidence, prompting the introduction of PDFs for land
and open water surfaces, and the estimation of flood probabilities using
Bayes’ theorem. While Schlaffer et al. (2017) worked with Advanced
Synthetic Aperture Radar (ASAR) data from the ENVISAT mission,
which sampled backscatter observations quite uniformly over the entire
incidence angle range, the application of this method to Sentinel-1 data
proved challenging due to the mission’s systematic coverage, which
results in very uneven data sampling at different locations on the Earth.
Therefore, Bauer-Marschallinger et al. (2022) adopted the Bayesian
inference model for application with Sentinel-1 IW data collected from

different ascending and descending orbits. They also refined the meth-
ods for the masking of radar shadow areas, water-lookalike areas,
areas of no-sensitivity due to obstructive land cover, and ill-posed SAR
settings, thereby enhancing classification robustness.

2.2.4. Ensemble algorithms

The GFM ensemble algorithms integrate at the pixel level the results
from the three individual flood mapping algorithms in order to produce
two output layers, namely a binary flood map and a flood likelihood
layer (Fig. 3). The binary flood map is the main GFM output and
is based on the idea of combining the three flood maps by means
of a majority voting mechanism. However, there are instances when
only two or one of the three individual flood mapping algorithms
produce valid output files for an incoming Sentinel-1 scene. Therefore,
in order to make best use of all acquired scenes, the ensemble algorithm
producing the binary flood maps is essentially a decision tree that
considers several cases (Fig. 4). In the standard case, when all three
flood mapping algorithms yield valid results, the binary flood map is
generated by classifying pixels as flooded when at least two of the
three algorithms had classified the pixels as flooded. In cases where
one algorithm fails to provide a result, the remaining two algorithms
ideally reach a consensus. If there is disagreement between them, the
classification with the greater likelihood is selected. If both algorithms
disagree but have equal likelihood, the ensemble defaults to classifying
the pixel as flooded. If only a single algorithm returns a result, this
result is adopted by the ensemble.

To ensure that known water bodies are not mistakenly marked as
flooded areas, all results are corrected using the monthly reference
water maps, which include permanent and seasonal water extents (Sec-
tion 2.3.1). If the majority of algorithms classify a pixel as water but
it overlaps with a (semi-)permanent water body in the reference water
map, this flood detection is overwritten. The total water extent can then
by determined by blending the flood extent and the reference water
maps. In addition, an exclusion mask as described in Section 2.3.2 is ap-
plied to remove misclassified flood pixels arising from non-sensitivity,
radar shadow, permanent low backscatter, or topographic distortions.
Finally, ocean areas are excluded based on the Copernicus Water Body
Mask.

The second output from the GFM ensemble module, the flood
likelihood layer, is derived independently from the binary flood layer
by fusing the flood likelihoods estimates from the three individual
algorithms (Krullikowski et al., 2023). The flood likelihood indicates
the probability of flood detection for each pixel. Lower likelihood
scores signify greater confidence in non-flood classifications, while
higher values indicate increasing confidence in flood classifications.
Since the TU Wien’s Bayesian algorithm outputs uncertainties, these
are inverted to align with the likelihood values of the DLR and LIST
algorithms before combining them in the ensemble. The ensemble flood
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likelihood is then computed as the arithmetic mean of all successfully
computed likelihood layers from the three individual algorithms. While
not carried out by the GFM service itself, the flood likelihood layer can
be easily converted into a binary flood map adapted to local conditions
by fine-tuning a threshold above which a pixel is classified as flood and
below it as non-flood.

2.3. Contextual information

Contextual information on local conditions and how they impact
the SAR measurements is crucial for the correct interpretation of SAR-
based flood maps, allowing users to assess the usability of the flood
product and the impact of the flood. The first important contextual
data layers are reference water maps that allow distinguishing between
flooded areas and the ‘normal’ permanent and seasonal water extent
as seen by the SAR sensors. To achieve this, the reference water maps
must also be derived from the same SAR sensor. Failing to do so,
such as when comparing SAR-derived flood maps with optical surface
water data, leads to systematic differences related to the different
physical sensitivities of the sensors. Furthermore, emergency managers
and other users must be aware of the areas where the SAR sensor
cannot detect floods due to physical factors. Unfortunately, explicit
information about exclusion areas is often missing in operational ser-
vices and scientific studies (Lahsaini et al., 2024; Al-Ruzouq et al.,
2024). Furthermore, users must be informed about environmental and
meteorological conditions that could interfere with flood detection.

The following subsections describe the methods used by the GFM
service to generate monthly reference water maps, an exclusion mask,
and advisory flags, which are all tailored to the physical characteristics
of the Sentinel-1 VV data. Finally, to help GFM users quickly evaluate
potential flood impacts, the flood maps are combined with land cover
and population datasets.

2.3.1. Reference water extent

In satellite-based flood mapping, inundation extent is typically
derived by comparing crisis data with water extent under normal
hydrologic conditions, either through change detection or by using
static reference water masks. Change detection often involves man-
ually (O’Grady et al., 2011; Ban and Yousif, 2012) or automatically
(Hostache et al., 2012; Li et al., 2018a) selecting pre-event images
from the same season. Reference water maps, derived from indepen-
dent sources, can also differentiate flood waters from normal condi-
tions (Martinis et al., 2015; Twele et al., 2016), though their suitability
depends not only on matching sensor characteristics but also stable hy-
drologic conditions. For areas with seasonal changes, month-by-month
mapping is preferable to capture temporal variations in surface water
extent (Martinis et al., 2022). In this context, statistical computations
on remote sensing time-series data are promising to reflect seasonality
in the products (Fichtner et al., 2023). Water frequency approaches
rely on calculating the frequency of water presence over time to
distinguish permanent water bodies from seasonal ones (Wieland and
Martinis, 2019). Median image approaches, in contrast, use the median
pixel values over a reference time period to generate a single, stable
representation of water extent that smoothens out transient changes,
making it well-suited for identifying consistent water features.

As recommended by Martinis et al. (2022), the GFM service has
derived twelve monthly reference water maps, each reflecting the
extent of both permanent and seasonal water bodies. These reference
water maps were produced using an ensemble water mapping algo-
rithm based on Sentinel-1 median backscatter intensity data over a
predefined time period of several years. The first version of the data
was based upon two years (2019-2020), the most recent one upon
five years (2017-2021). The ensemble method uses only the DLR and
LIST algorithms that map water extent and calculate likelihoods for
each pixel. The TU Wien algorithm was not used as it maps only
flood areas. In cases where the DLR and LIST algorithms disagree on
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water classification, the one with the higher likelihood dictates the
final result. In a post-processing step, an exclusion layer, based on a
buffered version of the maximum extent of the Landsat-based Global
Surface Water (GSW) product (Pekel et al., 2016) and the Copernicus
DEM Water Body Mask (Franks and Rengarajan, 2023), is applied to
address potential misclassification caused by radar shadows or rough
surfaces. Fig. 5 shows an example of the GFM reference water maps for
Bangladesh with strong hydrological variability throughout the year.

2.3.2. Exclusion mask

Even though it may not be apparent from visual inspection, a
SAR image typically contains many pixels where flood mapping is
impossible due to land cover and topography (Boni et al., 2016; Zhao
et al.,, 2021a). For example, over dense vegetation and urban areas
C-band backscatter is normally quite stable, making the SAR mea-
surements insensitive to surface inundation. Moreover, water-lookalike
areas (e.g., flat and impervious surfaces, sandy surfaces) and radar
distortion areas (e.g., layover and shadow) pose challenges. For identi-
fying affected pixels, a variety of methods and ancillary datasets have
been developed. Urban areas and dense vegetation can be masked using
existing land use maps and lidar-derived digital surface models (Mason
et al., 2018; Grimaldi et al., 2020). Sandy areas, which often mimic
water surfaces in SAR imagery, can be excluded using a sand exclusion
layer derived from SAR time series (Martinis et al., 2018). Addition-
ally, geometric and radiometric distortions in SAR images caused by
topography can be filtered using the HAND index (Huang et al., 2017)
and DEM-based shadow and layover masks (Mason et al., 2018). For
the systematic mapping of all these effects at large scales, Zhao et al.
(2021a) introduced a decision-tree-based approach for generating ex-
clusion maps solely from SAR time series. Similarly, the GFM service
derived a global exclusion mask based on a statistical analysis of the
Sentinel-1 datacube, refined using various ancillary datasets. This ex-
clusion mask is an overlay of several thematic sub-masks, each designed
to address specific effects:

1. No-sensitivity areas: Pixels, where SAR backscatter is largely
insensitive to flooding, are identified using the Sentinel-1 Global
Backscatter Model developed by Bauer-Marschallinger et al.
(2021), a Global Forest Change dataset for vegetation (Hansen
et al.,, 2013), as well as static masks for urban regions (Mar-
concini et al., 2020).

2. Non-water low-backscatter areas: Tarmac, sand, and other smooth
surfaces often display consistently low backscatter values, sim-
ilar to those of open water surfaces. Since it is not feasible
to differentiate these surface types from water surfaces based
solely on their backscatter characteristics, all pixels showing low
backscatter (below —15 dB) in more than 70% of the time series
and not belonging to the reference water layer are masked.

3. Topographic distortions: Topography can distort the geometric
and radiometric properties of SAR images. Taking benefit of
the fact that floods are unlikely at high elevations above the
nearest drainage, areas with HAND values greater than 15 m are
excluded (Chow et al., 2016).

4. Sentinel-1 radar shadows: Shadows caused by terrain (e.g., rough
terrain or forest edges) and non-terrain factors are masked by
comparing temporal mean backscatter values between ascending
and descending Sentinel-1 tracks.

5. Insufficient coverage: Areas with no or insufficient historic
Sentinel-1 coverage are excluded, as in these areas no parametri-
sation of the algorithms is possible.

The obtained binary GFM exclusion mask integrates all pixel loca-
tions where the SAR data cannot deliver the necessary information for
robust flood delineation.
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Fig. 7. (a)-(c) show the thematic exclusion layers, the monthly reference water extent, and the individual floods maps from the three contributing scientific
algorithms. The GFM ensemble output is shown with the flood likelihood in (d), and the ensemble flood in (e). The scene shows the flood situation on July
17, 2021, along the river Rhine in Germany, near the city of Wesel. The background shows the temporally aggregated VV backscatter from Sentinel-1 Global

Backscatter Model from Bauer-Marschallinger et al. (2021).

2.3.3. Advisory flags

While the GFM exclusion masks deal with static effects at high
resolution, there are many highly dynamic phenomena that can impair
the detection of flooded areas in SAR images over larger areas. In par-
ticular, the intermittent or semi-permanent occurrence of phenomena
such as wet snow, frost and dry soil or wind-roughened water can result
in limited flood mapping capabilities (Pulvirenti et al., 2014; Wieland
and Martinis, 2019). To address this issue, the GFM service provides an
advisory flag output layer, whose function is to raise the user’s attention
in carefully handling flood mapping results within flagged regions. In
contrast to the exclusion layer, pixels highlighted by the advisory flags
are not removed from the flood maps. For each incoming Sentinel-1
scene processed by the flood mapping algorithm, two distinct flags are
produced in NRT:

1. Low-regional backscatter flag: Dry soil conditions, snow and frost
can lead to a drop in backscatter, leading to wrongful flood
mapping results over large areas affected by the specific weather
conditions. In the GFM service those areas are outlined by
comparing the monthly backscatter signature with the incoming
Sentinel-1 scene at a 20 km scale. Pixels with detected low-
backscatter values are then enclosed into a 14 km buffer zone,
constituting the final advisory-flagged region.

2. Rough water surface flag: Water bodies can be affected by wind
disturbances on the surface, altering significantly the typical
backscatter behaviour observed by SAR. Thus, given the calm
water signature from the backscatter time-series data as a refer-
ence, it becomes possible to delineate water pixels (as indicated
by the reference water layer) that exhibit a significant increase in
backscatter. A 5 km buffer zone around the wind-altered water
pixels is flagged for potential wind impact.

10

Areas overlapped by both flags are highlighted separately.

2.3.4. Flood impact indicators

When complete and accurate flood maps are available it is possible
to carry out rapid flood impact assessments by superimposing different
exposure layers to the final flood map (Cian et al., 2024). While
Sentinel-1 cannot map flooding in dense urban settings and other exclu-
sion zones, as discussed in Section 2.3.2, the GFM service still computes
two rapid flood impact indicators to address the critical need for such
information during emergency situations, namely indices estimating
the affected population and land cover respectively. The source of
information for estimating the affected population is the Global Human
Settlement Layer (GHSL), specifically the GHS-POP dataset (Schiavina
et al., 2023). This dataset provides a raster representation of population
distribution and density, indicating the number of people living within
each grid cell. It is available at various spatial resolutions and for
different time periods. For the GFM service, the dataset at 100 m
resolution and with the Epoch 2020 of version R2022A is used. This
dataset was resampled from 100 m to the 20 m grid used for the
Sentinel-1 datacube Section 2.4.1. This involved dividing the input
pixels by the number of 20 m pixels that fit into one 100 m pixel. As
illustrated by Fig. 6, the affected number of people is then estimated
by superimposing the GFM flood layer with the resampled human
population layer.

For obtaining a quick estimate of the affected landcover the GFM
flood maps are superimposed upon the Global Land Cover dataset
provided by the Copernicus Land Monitoring Service. The Copernicus
Global Land Cover dataset includes 23 classes, is available globally
at a 100 m resolution and is updated annually. This dataset was also
resampled from 100 m to the 20 m grid. This information allows for
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an initial assessment of affected land cover or land use types, such
as determining the extent of agricultural areas impacted by the flood
within the observed flood extent area.

2.4. Implementation

The scientific methods outlined in the previous section were imple-
mented within a dedicated cloud platform environment to enable its
global and automatic processing in near real-time, utilising a datacube-
centric processing architecture (Wagner et al., 2020). This allows for
straightforward comparisons of each incoming backscatter image with
the entire backscatter history, making it possible to run any type of
time-series analysis on a per-pixel basis. In terms of storage and compu-
tational requirements, such a datacube solution is far more demanding
than single-image SAR processing pipelines, such as the one used
by Twele et al. (2016) to demonstrate the potential of Sentinel-1 IW
images for fully-automatic flood mapping. However, as already pointed
out by Cossu et al. in 2009, fast access to both recent and historical
data requires more advanced cloud platform solutions. Since then,
advancements in cloud computing technologies (Gomes et al., 2020)
and datacube solutions (Chatenoux et al., 2021) have greatly enhanced
capabilities for storing, processing, analysing, and disseminating large
datasets like those generated by Sentinel-1. The following subsections
describe the solutions adopted by the GFM service.

2.4.1. Sentinel-1 backscatter datacube

The GFM service builds upon the Sentinel-1 backscatter datacube
as described by Wagner et al. (2021), which represents a complete
collection of Sentinel-1 IW data for all continents (except Antarctic)
sampled to a 20 m fixed-Earth grid. The datacube runs on the cloud
infrastructure of the Earth Observation Data Center (EODC) (https:
//portal.services.eodc.eu/), enabling both near real-time image-based
applications and offline analyses of multi-year time series. Like other
SAR datacube solutions such as realised by the Google Earth En-
gine (Mullissa et al., 2021), it solves the problem of providing fast
and efficient access to Sentinel-1 backscatter time series by projecting
all Sentinel-1 IW images, which come as variable swath-based images,
onto a fixed-Earth grid before tiling. This preprocessing step, though
resource-intensive, is essential because performing on-demand Range-
Doppler terrain correction is time-consuming, especially when covering
large regions and/or extended time periods (Navacchi et al., 2022).
A key feature of this datacube solution is the use of the Equi7Grid
that employs the equidistant azimuthal projection and divides the
Earth surface into seven continental zones (Bauer-Marschallinger et al.,
2014). Unlike other commonly used large-area grids, the Equi7Grid
minimises shape distortions even near the zone boundaries. In compar-
ison to the Universal Transverse Mercator (UTM) based grid as used for
Landsat and Sentinel-2, the Equi7Grid offers the advantages of a smaller
number of zones (7 instead of 62) and reduced data redundancy (3%
instead of 34%) (Bauer-Marschallinger and Falkner, 2023). Thanks to
these specifications, the yearly data volume per satellite is less than
50 TB, whereas the number of pixels is approximately 379 billion.
The backscatter data are stored as sigma nought (¢°) values and not
as radiometrically-terrain-corrected gamma nought (y;Tc) values as
proposed by Small (2011). While the latter was recognised by the
Committee on Earth Observation Satellites (CEOS) as the Analysis
Ready Data (ARD) format for normalised radar backscatter data, it
primarily improves the classification of SAR data over undulating
terrain Dostalova et al. (2022). Its benefits are less obvious in valley
bottoms and flat areas, which are most relevant for flood mapping.
Therefore, for the GFM service, we will await the official switch to
Yrrc» Which is expected to happen in the 2026+ timeframe.
2.4.2. Near real-time workflow

The NRT data production workflow operates on a fully independent
processing environment within EODC’s cloud infrastructure. This setup
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includes 570 virtual CPUs (vCPUs) and 3 TB of memory, distributed
across multiple worker units to ensure a service availability of 99%. As
illustrated by Fig. 2, the NRT workflow starts from fetching the latest
Sentinel-1 IW images. Only Ground Range Detected at High resolution
(GRDH) images in VV polarisation are used, while VH polarisation is
neglected. The incoming scenes are then preprocessed and registered
in the datacube. The output of the preprocessing routine is encoded
and gridded SAR data ready for both spatial and temporal analysis.
The Equi7Grid with a 20 m pixel spacing and a 300 km gridding (T3
level) serves as efficient working grid representation for all steps in
the data processing workflow. Therefore, all input datasets, including
auxiliary datasets from external sources, must be re-projected to the
Equi7Grid beforehand. This effort during ingestion enables direct and
fast access during service operations. After the successful preprocessing,
the NRT flood data production workflow is triggered. First, the tiled
backscatter as well as auxiliary datasets are mosaicked and cut to cover
the whole extent of the input Sentinel-1 scene. As a next step, the
processing of the individual flood mapping algorithms is initiated. For
the dual-image classifier described in Section 2.2.2 the previous image
acquired from the same orbit is extracted as additional input. Once the
individual algorithms have been executed, their results are registered
in dedicated databases and the ensemble algorithm is triggered. In
the ensemble, described in Section 2.2.4, the observed flood extent,
likelihood values, observed water extent and the exclusion mask are
produced and afterwards registered. As a last step, the ensemble out-
puts are re-projected to the WebMercator projection which is used in
the dissemination system described in Section 2.4.3.

2.4.3. Open data access

As highlighted by Mostafiz et al. (2022), flood information should
be easily accessible and continuously evaluated to maximise its use-
fulness for both the public and professionals. Accordingly, GFM data
are freely available and accessible to all stakeholders upon registration.
To meet the needs of diverse users, several dissemination systems
have been established (Table 2). One way to visualise the GFM flood
maps is to use the map viewers of the European Flood Awareness
System (Matthews et al., 2025) and the Global Flood Awareness Sys-
tem (Matthews et al., 2024). These map viewers enable users to visu-
alise all GFM product layers and manually download data for specific
areas of interest (AOI). For more flexible downloading, including single
files or time series for one or multiple GFM output layers, a set of ap-
plication programming interfaces (APIs) following the Representational
State Transfer (REST) standard has been implemented. This standard
facilitates access to web resources using a predefined set of opera-
tions, allowing for seamless integration with virtually any programming
language (Iadanza et al., 2021). For the analysis of the GFM data in
Geographic Information System (GIS) environments, a web mapping
service based on the GeoServer technology was established. Finally, a
dedicated webportal was set up to enable users to define AOIs, display
and download the available products for the AOI, and configure the
notifications for any new available data. All mentioned systems provide
the latest available imagery for each Sentinel-1 overpass. Moreover,
users can also request the full time-series (or a subset) of all the
archived data products. Considering the constantly growing volume
of the generated GFM output data, encompassing the whole archive
as well as NRT data, easy discoverability and access in a program-
matic way is vital to include GFM data into processing workflows
and applications (Groth et al., 2024). That is why, additionally to the
aforementioned data access methods, we have published the GFM data
as an open access collection utilising Spatio-temporal Asset Catalogs
(STAQ). This enables users to search the whole GFM output data for
regions and time ranges of interest. Filtering based on output-specific
metadata such as the amount of flooded pixels is also possible. The GFM
output data itself is stored in the cloud-optimised GeoTiff (COG) format
in order to improve data reading efficiency and be ready for scaleable
processing workflows.
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Table 2
Access mechanisms for the GFM flood products.
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Access Description

Link

Web viewers

GFM viewers integrated into the web viewers of
the Global Flood Awareness System (GloFAS) and

https://global-flood.emergency.copernicus.eu/
https://european-flood.emergency.copernicus.eu/

the European Flood Awareness System (EFAS)

REST API
framework for web applications

RESTful APIs written in Python with the Flask

https://api.gfm.eodc.eu/v2/

Web Map Service
GIS analysis

GeoServer implementation to support web-based

https://geoserver.gfm.eodc.eu/geoserver/gfm/wms

Web portal
applications

Dedicated webportal tailored for operational GFM

https://portal.gfm.eodc.eu/

Table 3

The ten data layers of the CEMS GFM product. COG stands for cloud optimised GeoTIFF, GeoJSON is a format for encoding a different geographic data structures,

and KML is a file format used to display geographic data in Earth browsers.

Name Description Sections Data formats
Observed Flood Flooded areas observed by Sentinel-1, mapped by applying 22,224 Raster (COG) and
extent an ensemble majority voting on three scientific algorithms vector (GeoJSON)
Total water Total water extent by blending observed flood extent and 2.2.4 Raster (COG) and
extent reference water extent vector (GeoJSON)
Reference water Monthly maps of permanent and seasonal water extent 2.2,23.1 Raster (COG) and
extent derived from median Sentinel-1 backscatter images using the vector (GeoJSON)
single- and dual-image algorithms
Exclusion mask Unclassified areas due to topography and lack of sensitivity 2.3.2 Raster (COG)
of Sentinel-1 (forests, cities, smooth surfaces, insufficient
coverage)
Flood likelihood Likelihood of a pixel being flooded derived by averaging the 2.2.4 Raster (COG)
likelihoods from the three scientific algorithms
Advisory flags Flags indicating potential misclassifications due to 2.3.3 Raster (COG)
environmental conditions (dry soils, frost, snow, wind)
S-1 footprint & Sentinel-1 acquisition parameters inherited from IW image 2.4.2 KML
Metadata
S-1 schedule Next scheduled Sentinel-1 acquisition 2.4.2 KML
Affected Number of people in affected areas, mapped by overlaying 2.4.2 Raster (COG)
population the flood map with population data
Affected land Flood land cover classes, mapped by overlaying flood map 2.4.2 Raster (COG)
cover with land cover data
3. Results The different landscape features are well captured by the exclusion

3.1. GFM data product

The fully-automatic algorithms and workflows described in the
previous section yield ten data layers that are included in the GFM
data product. As can be seen from Table 3, the main output layer is
the observed flood extent. Context is provided by the reference water
maps, the exclusion mask, the advisory flags, and the flood impact
indicators. The observed water extent is the combination of the ob-
served flood extent and the reference water extent. The flood likelihood
layer quantifies the uncertainty of the flood mapping algorithms and
has turned out to be a valuable output layer in its own right. These
data fields are complemented by metadata inherited from the Sentinel-1
IW swath products, including the image boundaries (footprint), and
the next scheduled Sentinel-1 acquisition. The latter is important for
emergency managers who are awaiting updates on the flood situation.

An exemplary GFM data product is shown in Fig. 7. This scene
depicts flooded areas along the river Rhine in the province of North
Rhine-Westphalia, Germany, during the disastrous flooding that hit
Germany and the Benelux countries in July 2021 (Tradowsky et al.,
2023). As can be learned from the backscatter image shown as back-
ground of the flood map in Fig. 7e, the region is characterised by a
mix of agricultural fields, forests, urban areas (including the city of
Wesel in the southwestern part of the image), and several permanent
water bodies. Many forest areas, such as the “Uedemer High Forest” in
the western part of the image, are located in more elevated terrain.
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mask layers as discussed in Section 2.3.2. Most of the exclusion areas
are a result of the presence of forests and urban areas (no backscatter
sensitivity) and elevated terrain (high HAND index values). In this area
there are few non-water low-backscatter areas, mostly situated near
water bodies contained in the reference water map. Potentially these
represent new water bodies or errors in the reference water map. Radar
shadow areas are very small and mostly located along forest edges, as
is typical outside mountainous regions. Some erroneous radar shadow
areas can be observed along the river course, likely caused by river
currents or ships, which can impact ascending and descending SAR
acquisitions differently.

As can be seen by comparing Figs. 7a to 7c, the flood maps gen-
erated by the three individual algorithms agree very well. While a
systematic evaluation of the differences between the three algorithms
is outside the scope of this paper, we found a satisfying agreement for
most of the analysed large-scale flood events. However, local differ-
ences near the borders of the flooded areas may arise, for instance,
from the way in which each algorithm incorporates region-growing
and filtering processes. Nevertheless, for our example, the ensemble
flood map shown in Fig. 7e closely resembles the individual maps. Of
particular interest is the comparison with the flood likelihood layer dis-
played in Fig. 7d. As expected, high flood likelihood values correspond
to areas identified as flooded in the ensemble flood map. Additionally,
it is encouraging to note that in this particular case medium likelihood
values are found only near the flooded areas and permanent water
bodies, while further away flood likelihood values are consistently
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small. This suggests that the flood likelihood layers can provide a more
complete picture of the flood situation, by allowing to identify even
pixels that are only partially flooded or more challenging to interpret.
This impression is further strengthened when checking other flood
cases where the flood likelihood values often depict the river course,
whereas the flood map remains patchy.

3.2. Timeliness of production

As the timely dissemination of flood maps is crucial for disaster re-
sponse efforts, a core requirement of the GFM service is delivering GFM
output data within 8 h after each Sentinel-1 SAR acquisition. In line
with the technical specifications issued by the European Commission in
2020, procedures have been put in place to ensure and evaluate service
quality. A set of Key Performance Indicators (KPIs) is used for quarterly
monitoring of GFM product performance (Seewald et al., 2024). The
first KPI measures the percentage of time the service was available to
users, with a target value of > 99%. A monitoring system keeps track
of the availabilities of all user-facing components of the GFM service.
For the year 2023, a value of 99.80% was reached. The second KPI
tracks the percentage of products delivered within the required 8 h
timeframe from actual observation of a Sentinel-1 scene to availability
of the data on the user front ends. A typical timeline is illustrated in Fig.
8: The availability of new Sentinel-1 IW GRDH images is monitored by
querying the Copernicus Data Space Ecosystem every 10 min. Down-
loading and pre-processing the data on the EODC cloud infrastructure
takes less than 10 min and 35 min respectively. The time required for
the three scientific algorithms and the ensemble product varies more
strongly, from 15 to 60 min with an average of approximately 45 min
depending on the complexity of the SAR scene. Post-processing and
placing the data on the user front ends takes less than 10 min. On days
when the Sentinel-1 ground segment operates nominally, the total time
from sensing to dissemination is under 5 h, whereas the time from data
upload on the Copernicus Data Space Ecosystem to delivery to the users
is less than 2 h. In best-case scenarios, the system achieved a timeliness
from sensing to dissemination even below 90 min.

3.3. Archive processing

In addition to the NRT delivery of the GFM flood products, we have
created a complete GFM data archive using all available Sentinel-1
IW acquisitions from 2015 onwards, totalling approximately 2 million
scenes. This offline processing was conducted in the high-performance-
computing environment at the Vienna Scientific Cluster (https://vsc.ac.
at/). The GFM archive is continuously expanding, with efforts focused
on ensuring compatibility between the software versions used for both
NRT and archive processing chains. The first version of the GFM data
archive, based on GFM NRT version v2.1.0, was released end of 2023.
The current version of the archive was processed with GFM NRT
version v3.1.0 in early 2024, and was released in early 2025. The
GFM data archive can be accessed as described in Section 2.4.3. The
GFM archive processing precedes a comparable effort by Misra et al.
(2025), who create a 10 year-long Sentinel-1 flood data record using
a Neural Network model trained with manually labelled SAR images
from selected large-scale flood events.

3.4. Exclusion mask

Table 4 summarises the percentage of land covered by the exclusion
mask and its three main thematic sub-masks for the six continents
as well as the global total. On average, 69.9% of global land area is
covered by the GFM exclusion mask. The largest contribution comes
from the topographic distortions sub-mask (54.2%, including large
portions of elevated areas that are not prone to floods), followed by
non-sensitive areas (31.98%, primarily dense forests and urban areas),
and low-backscatter areas (11.78% of global land, mainly arid regions).
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max 3 h (NRT-3h)
max 24 h (FAST-24h)

Sentinel-1
Observation

Copernicus Data

max 10 min Space Ecosystem

Downloading

& Queueing max 10 min

max 35 min Pre-processing

Flood Mapping max 60 min

max 10 min Post-processing

User Uptake

Data Dissemination

Fig. 8. Timeliness of the GFM service, with maximum durations under regular
conditions between acquisition from Copernicus, GFM main processing mod-
ules, and product dissemination. NRT-3 h and FAST-24 h refer to Copernicus’
Sentinel-1 timeliness categories.

Note that the values are not additive due to overlap of the sub-masks,
e.g., mountain forests are contained in both the topographic distortions
and non-sensitive areas sub-masks.

The extent of the exclusion mask varies between continents, re-
flecting differences in land cover, climate, and topography. South
America shows the highest overall exclusion rate (81.7%), resulting
from the combined effect of the Amazon rainforest, which dominates
the non-sensitive areas sub-mask (51.7%), and the Andes mountains,
which contribute substantially to the topographic-distortion sub-mask
(59.3%). In contrast, Oceania has the lowest exclusion fraction (58.8%),
likely due to a strong overlap between the topographic-distortion
sub-mask (56.0%) and the non-sensitive areas sub-mask (31.1%). For
low-backscatter areas, Africa shows by far the highest excluded fraction
(25.1%), followed by Asia (14.5%) and Oceania (11.5%), whereas
South America, North America, and Europe each remain below 10%.
This distribution is consistent with the geography of arid and sandy
environments: Africa contains the world’s largest hot desert regions,
Asia includes extensive arid zones such as the Arabian and Gobi
deserts, and Oceania covers much of the Australian outback. In con-
trast, low-backscatter areas are less extensive in the Americas and
Europe. Topographic distortions affect a much larger share of land
across all continents, with exclusion rates ranging between 47% and
59%. Since all pixels more than 15 m above the nearest drainage
are masked (HAND>15), these consistently high fractions are expected
given the ubiquity of mountainous and elevated terrain.

3.5. Coverage of flood events

A high spatio-temporal data coverage is essential for effective flood
monitoring. To identify gaps in Sentinel-1 satellite observations and
detection capabilities, we evaluated the data coverage by assessing
the performance of the GFM service in detecting 104 flood events
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Fig. 9. Overview on the coverage analysis of 104 flood events from 2022-2024 listed in Table 8. See results also in Table 5. Flood events are detected (blue
circles) or missed (dark yellow circles) by GFM with Sentinel-1A. The red circles show cases where no Sentinel-1 image was acquired over the entire flood
duration as reported in the GDACS database. The size of the circles illustrates the events’ duration. (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this article.)

Table 4

Percentage of land [%] covered by the exclusion mask (all layers combined) and its three most important thematic sub-masks for the six continents (AF: Africa,
AS: Asia, EU: Europe, NA: North America, OC: Oceania, SA: South America) and all global land area (except Antarctica). Values are not additive due to overlap

among sub-masks.

Layer AF AS EU NA oC SA Global
Non-sensitive areas 25.3 26.9 27.5 29.5 31.1 51.7 32.0
Low-backscatter areas 25.1 14.5 5.3 9.4 11.5 4.9 11.8
Topographic distortions 47.7 54.6 56.6 51.0 56.0 59.3 54.2
Combined Exclusion mask 71.6 71.1 70.3 66.0 58.8 81.7 69.9
Table 5 For 10 events (9.6%) no Sentinel-1 data were acquired. Fig. 9 illus-
Summary of flood events detection performance by continent. trates how detection performance of Sentinel-1A varied significantly
Continent Events Detected Missed No Data across continents: Europe, benefitting from the best overall coverage,
Europe 20 19 1 0 demonstrated the highest success rate, detecting 95% of events (19 out
Asia 20 14 3 3 of 20). Asia and South America followed with a 70% detection rate,
i‘f’;‘itcl; America ig i; ; (2) although several events were missed in both regions. Africa showed a
North America 15 9 3 3 detection rate of 65%, with 7 out of 20 events undetected, while in
Oceania 9 4 3 2 North America, 60% of events (9 out of 15) were detected and 3 were
Total 104 73 21 10 missed. Oceania, with the smallest sample size of 9 events, exhibited

from all continental regions (except Antarctica). These events were
identified using the Global Disaster Alert and Coordination System
(GDACS), a cooperation framework between the United Nations, the
European Commission, and disaster management organisations world-
wide (https://gdacs.org/). GDACS provides details such as affected
regions, event duration, fatalities, and displacement figures, supporting
disaster response and coordination during major emergencies. Our
dataset contains all large- and medium-scale flood events that occurred
between 2022 and 2024, ensuring comprehensive coverage of signifi-
cant global floods during this period. In addition, 67 small-scale flood
events were included to obtain up to 20 flood events per continental
region and test the ability of the GFM service to detect less severe
events. Note that during this period only Sentinel-1A was operational.
With Sentinel-1C now in orbit the mission re-established the nominal
coverage with a two-satellite constellation in the course of 2025. The
results of this analysis are summarised in Fig. 9 and Table 5; the
complete list of flood events is provided in the Appendix in Table 8.
As can be seen from Table 5, the GFM service detected 70.2% of
the selected flood events (73 out of 104), while 21 events (20.2%)
were not detected, most likely due to unfavourable timing of the
Sentinel-1 acquisition or possible failures of more than one algorithm:
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the lowest performance, with GFM detecting 4 events, missing 3, and
encountering 2 instances of unavailable Sentinel-1 observations.

3.6. Accuracy of flood maps

In addition to timeliness and coverage, the thematic accuracy is
the third KPI for evaluating the effectiveness of the GFM service. As
stipulated by the European Commission, the thematic accuracy of the
flood maps is quantitatively evaluated based on a comparison with
independent reference datasets generated by regular off-line visual
interpretation and digitisation of flood extent, by experienced image
interpreters, using the same Sentinel-1 image datasets. Given that the
scope of the GFM service is to provide a fully operational, automated
global monitoring of all major flood events, continuously and in near
real-time, this is considered an apposite method for assessing the
thematic quality of the GFM product.

As the GFM service cannot exploit more information than what is
contained in the Sentinel-1 VV-polarised IW imagery itself, the main
question is how well do the algorithms extract the flooded areas visible
in the Sentinel-1 images? Note that this is a different question from
asking how well do Sentinel-1 flood maps capture the total flood
extent? In the latter case, also the basic sensor limitations play a big
role. Nevertheless, since these questions are closely related, also efforts
targeted to deepen our understanding of the physical characteristics of
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C-band VV backscatter measurements and the efficacy of the various
contextual layers were undertaken. At the individual algorithm level,
the algorithm development teams have conducted a series of case
studies to examine specific aspects of their algorithms and advanced
techniques for exploiting the Sentinel-1 data (Zhao et al., 2022; Tupas
et al., 2023b,a; Roth et al., 2023; Martinis et al., 2024; Tupas et al.,
2024; Garg et al., 2024; Roth et al., 2025). At the GFM product level,
the ensemble flood maps have been evaluated for selected flood cases
(3 every quarter of a year) and systematically on a global level, as
discussed in the following.

In the dedicated GFM evaluation activities, the accuracy is de-
termined by comparing the automatically derived GFM binary flood
maps with human-interpreted Sentinel-1 images and computing various
accuracy metrics based upon the error matrix, primarily the Overall
Accuracy (OA) and the Critical Success Index (CSI). The OA can be
regarded as a detection-oriented measure (binary presence/absence),
providing a global assessment of correctly classified flood and non-flood
pixels. However, as the non-flood class dominates outside of flood-
affected areas, the OA can be biased towards non-flood accuracies. The
CSI, by contrast, reflects the extent-oriented accuracy (spatial precision)
of the flood mapping by quantifying the overlap between predicted
and reference inundation, and it is particularly suited for accuracy
assessments where the classified events (in our case floods) are much
less frequent than the non-occurrence of the event (Wilks, 2011). In
our context, the CSI is the number of correct flood pixels divided by the
total number of flood pixels in either the GFM flood map or the human-
interpreted reference map. Like the OA, it scales between 0 (worst
possible) and 100% (best possible value). For service implementation
purposes, the GFM accuracy target, or the minimum accuracy that
should be achieved for considering the flood mapping results to be
“good”, was defined by the European Commission as a CSI value of
at least 70%. This threshold balances user needs for reliable flood
information in emergency response with practical performance limits
of fully-automatic workflows. It is also consistent with the scientific
literature, where a CSI score exceeding 70% is commonly considered
indicative of a good model performance, while values below 50% are
generally regarded as poor (Risling et al., 2024). Indeed, if the range
of CSI values (0%-100%) is considered as a five-category increasing
qualitative scale of classification accuracy (e.g. “very poor”, “poor”,
“fair”, “good”, and “very good”), then the mid-point of the fourth
quantile (i.e. 70%) is an appropriate threshold for considering classi-
fication results to be “good”. We note that the CSI has several other
denominations (Godet et al., 2024), such as the Threat score, Jaccard
Index, or Intersection over Union (IoU) score.

We acknowledge that using human-interpreted Sentinel-1 images to
evaluate the quality of the GFM algorithms introduces some uncertainty
due to the subjective nature of manual image analysis (Landwehr
et al., 2024). Although interpreters were trained and had access to
optical imagery and other supplementary data, human errors are likely
and were not systematically quantified (e.g., through inter-annotator
disagreement studies). Consequently, lower CSI and OA values may
not solely reflect limitations in the GFM algorithms but could also
arise from human interpretation errors. Nonetheless, given the lack of
other systematic reference data, we consider these expert-interpreted
reference maps to be crucial for regularly verifying product quality and
gaining insights into potential errors within the GFM maps. It is also
worth noting that hand-labelled reference datasets are commonly used
in machine learning (Bonafilia et al., 2020; Bountos et al., 2023).

As results for the current GFM version v3.2.0 are not yet available,
we report here results from version v2.1.0 that was used for generating
the first version of the GFM data archive (Section 3.3). When computing
OA and CSI values for 12 selected flood events, which occurred between
2017 and 2023, Seewald et al. (2024) found consistently high OA val-
ues (>95.0%), while CSI values varied strongly, from 11.0% to 81.1%.
The accuracy target was reached for 7 of the 12 events. For the system-
atic evaluation at global scale, a method similar to the one used for the

15

Remote Sensing of Environment 333 (2026) 115108

Table 6

Global evaluation results for permanent water, seasonal water,
and flood pixels, showing Overall Accuracy (OA) and Critical
Success Index (CSI) together with their 95% confidence intervals.

Class OA [%] CSI [%]

Permanent water 95.9 + 0.2 64.1 + 0.7
Seasonal water 74.4 + 0.4 55.2 + 0.8
Flood 72.0 + 0.4 43.7 £ 0.8

evaluation of the GSW product of Pekel et al. (2016) was employed. Fol-
lowing the guidelines given by Card (1982) and Olofsson et al. (2014),
a stratified random sampling approach was implemented to evaluate
how accurately a particular pixel is mapped into the categories of per-
manent water, seasonal water, flood, or other areas. For establishing the
reference data base consisting of tens of thousands of individual points,
a tool was implemented that allowed trained interpreters to perform a
blind validation (i.e., without prior knowledge of the mapped class) of
the sample points based on the production imagery (i.e., Sentinel-1),
with visual support from Sentinel-2, and various very high resolution
images provided via Google and Bing Areal maps. For Sentinel-1 and
Sentinel-2, pre- and post-event time series were provided to facilitate
the identification of flood events. Each sample point was interpreted
multiple times to assess interpretation uncertainty. The results of the
global assessment are summarised in Table 6. This table shows globally-
aggregated and area-weighted OA and CSI values for the three water
classes: permanent water, seasonal water, and flooded areas. Whereas
the OA values suggest a high accuracy for the permanent water body
class, seasonal water and flooded areas reach OA values of 74.4%
and 72.0%, respectively. The CSI values are lower, ranging between
43.7% for the flood class to 64.1% for the permanent water body
class. To get a better understanding of the flood detection capability
under various environmental conditions, the ~55,000 sample points
were assigned to global environmental zones as proposed by Metzger
et al. (2013). These zones are mainly differentiated according to their
temperature (growing degree-days) and aridity (from arid, xeric, dry,
mesic, moist, to wet). As can be seen in Table 7, the best validation
results are obtained for regions in the temperate and tropical zones,
while lower accuracies are typically observed in arid environments.
This is in line with expectations given the difficulties in distinguishing
sand from water in SAR images (Martinis et al., 2018; Garg et al.,
2024). Overall, these results suggest that the accuracy target had not
yet been reached for the investigated archive version. Further work is
required to determine of how much the CSI values can be increased
through improvements in the algorithms, or, as will be discussed in
Section 4.8, whether lower CSI values could partially be attributed to
intrinsic constraints in the statistical analysis and uncertain reference
data.

4. Discussion
4.1. A paradigm shift in SAR-based flood monitoring

While there are already fully-automatic global flood monitoring
services based upon optical satellite data (Li et al., 2018b), the GFM
service is the first of its kind in the SAR domain, benefitting from
the radars’ capability to observe day and night under all weather
conditions. Some of the experiences made during its first three years of
operation aligned with our anticipations while others were unexpected.
From a scientific perspective, probably the most notable aspect is the
shift in perspective, away from the scientific focus on mapping flood
scenes as accurately as possible to designing the algorithms such that
they perform equally well for flood and non-flood scenes. In fact, given
that only a small fraction of SAR images depict flooding, the detection
of false positives was one of the biggest concern during the initial
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Table 7
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Evaluation results for different bio-geographic regions as defined by Metzger et al. (2013). The third column shows the number of sample points per environmental
zone. Note that results from the arctic biome are not included in this table due to the small number of sample points (<100).

Biome Environmental zone No. OA [%] CSI [%]
Boreal/Alpine E. Cold and wet 543 78.1 + 3.6 419 + 4.9
F. Extremely cold and mesic 4521 69.7 + 1.4 57.5 + 1.7
G. Cold and mesic 4542 80.9 + 1.2 64.2 + 1.6
Cool temperate H. Cool temperate and dry 3931 77.2 + 1.4 58.3 + 1.8
1. Cool temperate and xeric 3130 787 + 1.5 55.2 + 2.0
J. Cool temperate and moist 1185 947 + 1.3 68.4 + 3.1
Warm temperate K. Warm temperate and mesic 3273 929 + 0.9 63.8 + 1.9
L. Warm temperate and xeric 3439 823 + 1.3 47.8 + 2.0
Sub-tropical M. Hot and mesic 2286 89.4 + 1.3 63.7 + 2.3
Drylands N. Hot and dry 4149 731 £ 1.4 53.1 £ 1.8
O. Hot and arid 2319 64.2 + 2.1 36.2 + 2.3
P. Extremely hot and arid 1412 67.2 + 2.6 37.4 + 3.0
Q. Extremely hot and xeric 4875 79.2 + 1.2 59.4 + 1.6
Tropical R. Extremely hot and moist 8458 85.8 + 0.8 742 £ 1.1

phase of the GFM service. Since it is impossible to create an error-
free scientific algorithm that entirely eliminates classification errors,
this issue cannot be resolved purely through scientific and technical
methods but requires careful consideration of the way of how the
results are communicated to the users of the data.

Although the rapid uptake of the GFM service demonstrates that
it meets the need of users for a freely accessible near-real-time service
for monitoring flood worldwide in a fully-automatic manner, significant
challenges remain to be addressed in future evolutions of the service.
An important limitation encountered during the first three years of op-
eration has been the insufficient temporal coverage, especially during
the period when only one Sentinel-1 satellite was operational. Solutions
to this challenge are discussed in Section 4.2. Another limitation is
that Sentinel-1, like any other instrument, cannot detect all flooded
areas due to various technical and scientific constraints. From the user
perspective, a major shortcoming is the current inability of the GFM
service to map flooding in urban areas. In this context, a high quality of
the GFM exclusion mask is crucial, as it informs users where Sentinel-1
measurements cannot provide flood information. Minimising the extent
of this mask maximises the coverage of the service, but increases the
risk of classification errors if it becomes unrealistically narrow. Also
the quality of the reference water maps has a strong influence on clas-
sification accuracy. For instance, if these maps are outdated or fail to
correctly capture seasonal dynamics as seen by Sentinel-1, the resulting
errors propagate into the flood products. For these reasons, we first
address the quality of the GFM exclusion mask in Section 4.3 and the
reference water maps in Section 4.4, before discussing common over-
and underdetection errors observed in non-masked areas in Sections 4.5
and 4.6, respectively. As a result of both over- and underestimation
errors, validation outcomes have been mixed so far. In Section 3.6
we therefore address the question of how accurate the GFM data are,
comparing our results with those of other Sentinel-1 flood mapping
studies. Due to the challenges encountered when interpreting validation
results from different studies, we highlight the need for further research
to refine best practices for validating satellite-derived flood maps in
Section 4.8.

4.2. Temporal coverage requirements

Despite the fact that the Sentinel-1 mission provides better global
coverage than any other single SAR satellite or SAR satellite constel-
lation, GFM users have to cope with the fact that Sentinel-1 may miss
flood events entirely. Based upon their analysis of discharge data from
nearly 2000 in situ gauge stations across Europe, Tarpanelli et al.
(2022) estimated that only about 58% of flood events are potentially
observable by two Sentinel-1 satellites over any section of a catch-
ment or runoff area. In our analysis of 104 flood events presented in
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Section 3.5, we searched for evidence of flood detection over entire
river catchments. We found Sentinel-1 flood maps in 73 cases; for the
remaining 31 events, either no image was acquired, or there were
no flood pixels in the acquired SAR images. It is not surprising that
all undetected events and cases of unavailable Sentinel-1 observations
corresponded to small- or medium-scale floods. This highlights a critical
limitation of the GFM service: its reduced capability to detect smaller
and short-lived flood events, particularly in regions with low tempo-
ral revisit frequencies of Sentinel-1 satellites. The most crucial factor
influencing how well GFM captures flood dynamics is the spatial cov-
erage pattern and the actual overpass time of the satellite(s) (Wagner
et al.,, 2024). When overpasses coincide with local flood peaks, the
GFM product aligns best with the perception of affected populations
and authorities, offering the most useful information. Additionally, a
dense revisit frequency enables monitoring the progression of floods
over entire catchments from onset to peak and eventual retreat. This
shows that, at present, the GFM service is most valuable for large-scale
flood events, such as the 2022 Pakistan floods (Roth et al., 2023). For
small- to medium-scale events, however, additional satellite observa-
tions or improved revisit strategies are needed to enhance detection
capabilities.

Through improvements in swath width and duty cycle, the situation
will become better with the Sentinel-1 Next Generation (Torres et al.,
2024). Nonetheless, substantial improvements in the GFM coverage can
only be achieved by integrating further satellites into the service. The
most logical candidates are other SAR missions that match the global
and systematic monitoring capabilities of Sentinel-1. In this regard,
two L-band SAR missions stand out, namely the NASA-ISRO Synthetic
Aperture Radar (NISAR) satellite (Rosen and Kumar, 2021), which was
launched in July 2025, and the Radar Observing System for Europe
at L-band (ROSE-L) two-satellites constellation mission (Davidson and
Furnell, 2021), planned for launch in the 2028+ timeframe. ROSE-L
belongs to the Copernicus programme, and its two satellites will be
operated in synergy with the two Sentinel-1 satellites, with the or-
bit phasing yet to be determined. One option is to fly the ROSE-L
satellites in convoy with the Sentinel-1 satellites, acquiring matching
dual-frequency SAR imagery just minutes apart. The alternative is to
phase the orbits of the four satellites to maximise daily global coverage.
As we already highlighted in Wagner et al. (2024), the second option is
clearly preferred by the GFM service. While dual-frequency retrievals
can be expected to improve the accuracy of the flood maps to some
extent (Refice et al.,, 2020), the more critical issue is whether the
satellites can effectively capture flood dynamics, especially near the
flood peak. Irrespective of the choice for the orbit phasing, research
will be needed to optimally exploit the availability of interleaved C-
and L-band backscatter time series.
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4.3. Suitability of the exclusion mask

While most SAR flood mapping studies have used ad hoc criteria for
masking (e.g., Misra et al., 2025), few have investigated the optimal
design of the exclusion mask. The challenge is that the capability of
SAR to detect surface water varies in space and time in a gradual
manner, implying that there is usually no clear defined threshold
beyond which surface water can be mapped or not. Therefore, it is nec-
essary to balance the size of the exclusion areas and the magnitude of
classification errors, which are, by definition, only assessed in the non-
excluded areas. Furthermore, land cover datasets derived from optical
satellite observations and other ancillary data often do not adequately
capture those areas where the SAR data should be masked. To address
these challenges, Zhao et al. (2021a) proposed a method for creating
exclusion maps from C-band SAR backscatter time-series. A subsequent
inter-comparison study demonstrated that the GFM exclusion mask is
similar, with only minor regional differences, confirming the overall
suitability of the GFM approach (Zhao et al., 2023).

As reported in Section 3.4, the GFM exclusion mask covers 69,9%
of the global land surface, which may seem extensive at first glance.
However, one has to consider that only a portion of land is prone
to flooding in the first place, mostly following valleys and plains.
Therefore, the largest contribution to the global GFM exclusion mask
comes from the HAND index that is used for creating the topographic
distortions sub-mask. Earlier work by Chow et al. (2016) evaluated dif-
ferent HAND threshold values and demonstrated that 15 m provides a
meaningful and conservative global cutoff. This value has subsequently
been adopted in numerous studies (e.g., Tsyganskaya et al., 2016; Zhao
et al., 2021b; Chimata et al., 2025), and we therefore also apply it in
the GFM service to ensure consistency with established practice. While
this choice inevitably reduces potential coverage in hilly regions, it
represents a pragmatic compromise to minimise false detections and
enhance overall reliability.

The second largest contribution to the exclusion mask comes from
the non-sensitive areas sub-mask that comprises forests and urban
areas. This sub-mask covers 31.98% of the global land surface, closely
aligning with the estimated 31% global forest cover (Keenan et al.,
2015). While urban areas account for only a small portion of this sub-
mask, they represent some of the most critical regions for flood impact
assessment. The current GFM products rely solely on Sentinel-1 VV
intensity, which is not sufficient to capture inundation processes in
built-up environments where radar backscatter becomes highly com-
plex during flood events (Zhao et al., 2025). Consequently, urban floods
are excluded by design. Rather than a limitation, this exclusion should
be viewed as a safeguard, as it prevents the dissemination of potentially
unreliable flood extent information. At the same time, it provides an
implicit indication to end-users that complementary products or data
sources are required for analysing urban flood impacts.

Finally, the third largest contribution comes from non-water low-
backscatter areas. Globally, this mask covers 11.78% of the land sur-
face, a figure that closely matches the 12% of the terrestrial land
surface occupied by deserts (Chen et al., 2023). However, this sub-mask
exhibits substantial spatial variability and extends much beyond desert
areas, primarily covering arid and semi-arid land with low vegetation
cover and smooth soil surfaces.

4.4. Suitability of reference water maps

The suitability of the monthly reference water maps depends on
their ability to match the level of detail as provided by Sentinel-1
and to reflect accurately the normal water extent for the same sea-
son. Unfortunately, these requirements could not have been fulfilled
by using existing global surface water datasets. For example, relying
on static water products such as the SRTM Water Body Data (NASA
JPL, 2013) or the Copernicus DEM Water Body Mask (Franks and
Rengarajan, 2023) would lead to an overestimation of flood extent
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particularly in hydrologically dynamic regions like monsoon-affected
Bangladesh (Fig. 5). Martinis et al. (2022) confirm this effect through
comparing different water mask products. They stress that only few
studies explicitly address seasonality, and that not all seasonal water
products are useful for flood mapping. The latter point is also true for
the widely used Landsat-based GSW dataset from Pekel et al. (2016).
This dataset contains a “Monthly History” product that offers intra-
annual water extent through monthly layers from the past 32 years, but
is sensitive to single-image artifacts such as extreme events or cloud
cover. Such artifacts are removed in the GSW “Monthly Recurrence”
product, which provides monthly water coverage but is averaged over
a long period, thus not reflecting river dynamics or climate shifts. Last
but not least, it needs to be remembered that water maps derived from
optical and topographic data do not capture the same water areas as
observed by Sentinel-1’s SAR, which would lead to systematic errors in
the Sentinel-1 flood maps.

For these reasons, a dedicated effort was needed to produce 20 m
reference water maps directly from the Sentinel-1 datacube, meaning
that the GFM service has delivered a completely new global high-
resolution surface water dataset quasi as a by-product. As our global
evaluation has shown (Section 3.6), the quality of the GFM reference
water maps appears to be quite good, with overall accuracies of 95.6%
for the permanent water extent and 74.4% for the seasonal water
bodies respectively. Nonetheless, it needs to be remembered that these
water extent maps only show water surfaces as sensed by Sentinel-1.
More complete water maps could be derived by adopting multi-sensor
approaches that combine the Sentinel-1 data with multi-spectral optical
data from Landsat or Sentinel-2 (Martinis et al., 2022) or novel bi-static
measurements such as provided by Global Navigation Satellite Systems
Reflectometry (GNSS-R) missions (Carreno-Luengo et al.,, 2024) or
swath-based altimetry missions (Morrow et al., 2018).

An open question for flood mapping is the optimal length of the time
series used to compute the reference water maps. Following Martinis
et al. (2022), GFM uses time series of a few years from the recent past.
Whereas the first versions of the reference water maps was based upon
two years (2019-2020), the most recent on five years (2017-2021).
While the longer time series helped to reduce misclassification and
mitigate the impact of extreme events, longer aggregation periods
may blur dynamic hydrological features, such as braided rivers and
water reservoirs. Hence, some water surfaces that should be part of
the reference water maps are wrongly shown as flooded (e.g. water
reservoirs that are being filled up). An interesting special case is flooded
fields used for growing rice and other semiaquatic crops. These fields
are sometimes included in the reference water maps and sometimes in
the flood maps. As this is confusing for the GFM users, a dedicated
effort for mapping these fields based upon their pronounced seasonal
backscatter behaviour, as for example done by Nguyen and Wagner
(2017) over European rice fields, might be useful.

4.5. Overdetection in non-flood situations

Overdetection in non-flood situations occurs when dynamic land
surface processes other than flooding cause backscatter to drop to
low values typical for water surfaces. Fig. 10 shows three common
cases of overdetection encountered during the first three years of
operation. Probably the most problematic case from a service point
of view is overdetection in agricultural and grassland areas, as illus-
trated in the example of Fig. 10a. This has several causes, including
signal attenuation during the early stages of crop growth (Arias et al.,
2022; Reullet al., 2024) and rapid changes in surface roughness and
crop cover due to farming activities (Zhu et al., 2019). These effects
are exacerbated when the soils are dry, as this reduces backscatter
from fertile soils. As a result, depending on crop type and weather
conditions, false positive rates can be quite high in some agricul-
tural regions. Not only the single-image algorithm is impacted, but
also time-series algorithm as described by Bauer-Marschallinger et al.
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Fig. 10. Examples of overdetection in non-flood situations: (a) Agricultural areas in the USA, and (b) dry soil in Iran. (c) Shows in the Netherlands an actual
flood event, but an exceptional one under frozen soils conditions. The GFM low regional backscatter advisory flag is displayed in transparent blue, indicating
backscatter decrease at the larger scale. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this

article.)

(2022), given that the harmonic backscatter model — which is used to
predict non-flood backscatter — cannot account for crop rotation prac-
tices. Therefore, Tupas et al. (2024) suggested replacing the harmonic
backscatter model with an exponential filtering approach that better
accounts for changing land surface backscatter.

The second, and most significant case in terms of the area affected,
is the overestimation of flood areas in arid environments. While this
issue is more pronounced in certain desert regions, such as northwest-
ern Iraq, anomalies appear and disappear in many arid regions without
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clear spatio-temporal patterns. Due to the lack of systematic studies,
the exact causes of these anomalies remain speculative. One likely
reason is that many arid regions have low backscatter values, close to
the threshold used to create the non-water low-backscatter exclusion
layer. As a result, even minor changes in land surface conditions or
speckle can cause pixels to be mistakenly classified as flooded. Poten-
tial natural causes for changes in backscatter include the movement
of sand Abdelkareem et al. (2020), which seems to be the primary
factor contributing to the false positives shown in Fig. 10b, erosion
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and deposition processes triggered by rainfall, and variations in soil
moisture levels. The effect of soil moisture on backscatter can vary
in arid environments; it may increase or decrease depending on the
presence of subsurface scatterers (Wagner et al., 2022).

The third case of overdetection occurs when the land surface freezes
or gets covered by snow and ice, which can cause a significant drop
in backscatter (Nagler and Rott, 2000; Park et al., 2011; Pulvirenti
et al.,, 2014). When this happens over larger areas, it is often well
captured by GFM’s low-regional-backscatter advisory flag. However,
when temperatures fluctuate around 0 °C, there may be considerable
spatial variability in the Sentinel-1 images, with small patches of low
backscatter caused by either frost, ice, wet snow, or flooding. In this
case it is impossible to decide where the GFM flood map is correct
or where not. An outstanding example is a flood that affected large
areas in northwestern Europe in early January 2024 (see Fig. 10c). As
temperatures started to drop below 0 °C in the Netherlands, flooded
meadows and agricultural fields began to freeze, likely leading to
scattered patches of overestimation.

In addition to these three common causes, other factors can also
contribute to overdetection. These include rare instances of corrupt
Sentinel-1 images, topographic effects and radar shadows that are not
removed by the exclusion mask, and changes in land cover that lead to
a drop in backscatter (e.g., land clearance). For all these cases, further
research is needed to gain a deeper understanding of the physical mech-
anisms behind false alarms and to develop methods for correcting — or
at least improving the flagging of these effects. As mentioned earlier,
GFM’s low-regional-backscatter advisory flag generally performs well in
identifying potential issues caused by snow or frost. However, flagging
changes in already dry areas, such as deserts, remains a challenge.
Additionally, advisory flags are typically not raised for overdetection in
agricultural areas, as the impact of this phenomenon is usually confined
to smaller areas than in the case of frost or drought.

4.6. Underdetection in flood situations

The problem of underdetection during flood events is another major
concern of GFM users. Whilst the exclusion mask limits the area for
which flood information is expected, GFM flood maps may still miss
out on flooded areas, even within areas not masked. In order to identify
suitable strategies to improve this situation, it is crucial to clearly
differentiate between the two distinct causes that contribute to the un-
derdetection of flood extent during flood events. The first cause lies in
algorithmic limitations and shortcomings that hinder the accurate map-
ping of all water pixels observed in the Sentinel-1 VV data. This cause
can be overcome with improved algorithms, possibly benefitting from
topographic indices and land cover maps. The second cause stems from
the inherent limitations of the Sentinel-1 VV polarisation data itself,
and can only be overcome by using additional data in the retrieval algo-
rithm, such as VH polarisation, InSAR coherence, or L-band SAR data.

Let us first examine the issues within GFM algorithms that have
contributed to underdetection of flooded areas. Ironically, initial con-
cerns about overdetection errors in non-flood scenarios inadvertently
led to an increase in underdetection errors during actual flood events.
In an attempt to reduce “noise” (e.g. speckle, isolated pixels) in the
GFM flood maps, refining post-processing and merging strategies were
implemented that effectively acted as low-pass filters. While this helped
mitigating the impact of speckle and small-scale land cover effects,
they inadvertently hampered the capability to detect small-scale and
spatially scattered flood areas (Roth et al., 2025). This problem was
partly solved by an update of the post-processing algorithms in 2025.

One important fundamental cause for underdetection are mixed
pixels covering both open water and non-water features. During flood
events, the high backscatter from vegetation and wet soils can quickly
overshadow the signal from open water in these mixed pixels, leading
to ragged flood water boundaries. One way to reduce such effects
are active contour models that refine the flood boundaries (Horritt
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et al,, 2001; Asadi et al., 2025) or segmentation approaches, like
those used by the LIST and DLR algorithms. For TU Wien’s Bayesian
method, Tupas et al. (2023a) experimented with a HAND-based prior
probability function to enhance flood classification. They found notice-
able improvement particularly near the borders of the flooded areas.
However, while the HAND-based priors reduced false negatives, they
slightly increased false positives in non-flood situations. This shows that
more research will be needed to balance overestimation errors in non-
flood cases and underestimation of actual flood areas. This challenge
is not unique to the GFM service but is a broader issue within the
field of SAR-based flood mapping. To date, many studies are limited to
selected datasets coinciding with flood events, while disregarding the
much more common non-flood situations. In contrast, the GFM service
— to fulfil its monitoring mission — processes hundreds of individual
data takes to flood products per day. Naturally, most of these products
do not cover any flood and may be exposed to overestimation.

The second root cause for underestimation can be tackled by adding
additional datasets that add features not contained in the Sentinel-1 VV
data. As already discussed in Section 4.2, the inclusion of L-band SAR
data in the GFM service would be highly beneficial to increase both
the temporal coverage and the mapping accuracy. From a technical
perspective, the dataset that would be the easiest to add to the GFM
workflow is the VH polarisation also acquired by the Sentinel-1 IW
mode. As noted before, this second image channel is currently discarded
due to cost reasons. But as e.g. shown by Qin et al. (2025), the use of
both VV and VH data can reduce the impact of feature mixing, improv-
ing flood mapping accuracy. Boni et al. (2016) and Roth et al. (2025)
noted that not using the VH channel can lead to an underestimation in
the presence of certain types of vegetation and wind. For the vegetation
case, Fig. 11 illustrates the comparison between VV and VH images
for a flood along the river Shire in Malawi in January 2022. The VH
image detects more flooded areas than the VV image, particularly along
the tributary rivers Lukhubula and Mwamphanzi, which flow into the
Shire from the western hills. January falls in the middle of the rainy
season in Malawi, so grasses and agricultural crops were tall when the
flood occurred. The better detection of flooded areas by VH, compared
to VV, is likely due to the double-bounce effect created by floodwa-
ter beneath the grasses or crops, which can increase backscatter and
obscure flood detection. The VV polarisation is particularly sensitive
to this effect, while VH remains less affected. Therefore, incorporating
VH polarisation can provide a more complete flood map for tall grass
and crop canopies. This is also true for windy conditions, where VV
backscatter from wind-roughened water surfaces is often more strongly
enhanced than VH backscatter (Roth et al., 2025). However, over low-
vegetated surfaces and water bodies, VH images are characterised by
lower backscatter that is associated with reduced contrast and elevated
noise. As this leads to higher classification errors, care must be taken
that algorithms, which use both polarisations, are designed to extract
the additional flood areas from VH data while avoiding higher false
positive rates.

A second promising SAR-based dataset for flood mapping is the
interferometric coherence, which is calculated by comparing the am-
plitude and phase information of two or more single look complex
(SLC) SAR images. High coherence indicates stable scatterers, while
low coherence signifies a loss of correlation in amplitude and/or phase.
Since flooding causes a loss of correlation, coherence can potentially
enhance flood detection in areas where it is generally high (Chini
et al., 2019). Because this is the case for urban areas and arid envi-
ronments, the interferometric coherence holds particular promise for
these two cases. The urban case was addressed by a recent review
by Zhao et al. (2025) who concluded that the coherence — and even
the interferometric phase — are critical for improving flood detection
in urban areas. Similarly, Garg et al. (2024) highlighted the importance
of the interferometric coherence in arid regions, where floodwaters
reduce coherence, while non-flooded areas exhibit stable and consistent
coherence over time. However, other factors, such as varying soil
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Fig. 11. 2022 flood event in Malawi, an example for underdetection of flooded vegetation due to the limitation to a single polarisation. (a) shows the GFM
products based on Sentinel-1 IW data in VV-polarisation; (b) shows the VH band of the same dataset, with flooded areas underdetected in VV highlighted by
yellow ellipses. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Source: Modified from Roth et al. (2025).

moisture conditions, can also lead to a loss of correlation. Therefore,
further research is required to better understand the environmental
conditions under which interferometric coherence can reliably indicate
flooded areas.

4.7. How accurate are the GFM flood maps?

Our dedicated GFM validation activities encompassed the analysis
of selected flood events and a systematic global analysis, yielding mixed
results. The analysis of individual flood events produced satisfactory
outcomes in most cases (7 out of 12), with CSI values surpassing the
GFM target of 70% and OA values exceeding 97%. Unfortunately, a
comparison with the results of other event-specific Sentinel-1 flood
mapping studies is difficult due to differences in study design, reference
datasets and reported accuracy metrics. For instance, Risling et al.
(2024) compared Sentinel-1 flood maps with MODIS-derived flood
maps over two study sites in Myanmar and Paraguay. They found that
CSI values were around 50% for both sites, and attributed the discrep-
ancies to differences in sensing techniques, spatial resolution, timing of
acquisition, and algorithmic uncertainties. Tupas et al. (2023b) com-
pared Sentinel-1 flood maps derived using different parameterisations
of four change detection techniques against an expert-interpreted flood
map for a flood event in the Philippines and found CSI values in
the range from about 50% to 90%. Vanama et al. (2021) validated
Sentinel-1 flood maps with survey and other government data for
a flood in Kerala, India, finding an OA value of 90.6% and a CSI
value of 81.6%. These and analogous research findings from other
recent regional Sentinel-1 flood mapping studies (e.g., McCormack
et al. (2022), Nhangumbe et al. (2023)) suggest that the quality of the
fully-automatic derived GFM flood maps is in most cases comparable
to the quality of Sentinel-1 flood maps generated for specific study
domains under well-controlled lab conditions.

The results of our systematic global evaluation are even more diffi-
cult to put in context to existing research findings as no other study has
yet evaluated SAR derived flood maps in a similar manner. Although
our approach was inspired by the systematic approach used by Pekel
et al. (2016) to evaluate their Landsat-derived surface water dataset at
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a global scale, these authors focused on assessing the accuracy of the
permanent and seasonal waters using the producer and user accuracy,
respectively. For the permanent water class, they found consistently
high values (> 99%) for both accuracy metrics across three Landsat
generations (Landsat 5, 7 and 8). By contrast, for seasonal water, only
the user accuracy was high (> 98%), while the producer accuracy
dropped to 73.8-77.4%. They explained the lower producer accuracy
value for seasonal water by the fact that there are fewer opportunities
to observe seasonal water bodies, which leads to higher errors of
omission. Our results shown in Section 3.6 indicate somewhat lower
overall classification accuracies for the SAR derived reference water
maps, but also in our case results were much better for permanent
water bodies (95.9%) than for seasonal water bodies (74.4%). Given
the high dynamics of floods, it is remarkable that the OA value for the
GFM flood layer is only somewhat lower (72.0%) than for the seasonal
water layer. Considering the fact that the classification of SAR images is
more challenging than of optical images, we concluded that the results
are satisfying for the first generation of the GFM archive (v2.1.0) even
though the CSI values for all three classes (permanent, seasonal, and
flood) are below the 70% accuracy target. We also note that insights
gained from the different validation activities have already been very
instructive, driving step-by-step improvements in the algorithms and
workflows with each new GFM version. For example, over- and under-
detection errors as discussed in the sections above have already been
reduced, leading to subsequent improvements in CSI values.

Recent advances in machine learning can be expected to promote
systematic evaluations of global flood datasets, as the availability of
high-quality labelled data for model training and testing is a critical
requirement (Rambour et al.,, 2020; Bonafilia et al., 2020; Wieland
et al., 2024). Machine learning and computer vision studies usually
refer to the CSI as the Intersection over Union (IoU) score, a notation
that we keep in the following to be consistent with the cited studies. For
example, Bountos et al. (2023) curated dual-polarisation (VV and VH)
SAR time series data from Sentinel-1 for 43 flood events worldwide,
manually annotated them with the expertise of SAR specialists, and re-
leased the so-created reference dataset under the name Kuro Siwo. The
best-performing models achieved IoU scores up to 76%, demonstrating
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high accuracy for flood mapping tasks. The Kuro Siwo dataset was
already used for an independent assessment of the GFM data by Misra
et al. (2025). The authors did not use the GFM flood maps directly but
created their own GFM-based flood dataset by applying a tuned global
threshold of 0.3 to turn the GFM flood likelihood layer into binary flood
maps. Further, their global model was tuned towards the Kuro Siwo
dataset. This yielded an IoU value of 56% for the GFM, which was lower
than the result (63%) for their own global flood dataset retrieved from
dual-polarised Sentinel-1 images (VV and VH) using a neural network.
This hints again at the importance of including the VH polarised data
in future GFM operations.

Another notable recent study was carried out by Mukherjee et al.
(2024) who created a globally sampled, high spatial-resolution refer-
ence water data comprising 100 images, each with a size of 1024 x 1024
pixels, from 3 m PlanetScope imagery. They used this reference dataset
for evaluating two surface water datasets, one derived from Sentinel-2
(Brown et al.,, 2022) and another from Sentinel-1 using the deep
learning model proposed by Paul and Ganju (2021). As expected the
results for Sentinel-2 were better (mean IoU value of 72.2%) than
for Sentinel-1 (57.6%). Interestingly, their Sentinel-1 results for 14
different biomes show an even more pronounced variability as our CSI
analysis for different environment zones shown in Table 6. They found
the highest IoU values for tropical and sub-tropical broadleave forest
regions (~90%), followed by tundra and boreal regions (70%-90%),
and grasslands and savannas (30%-70%). The worst results (<20%)
were obtained for coniferous forest regions and arid and semi-arid
environments. Despite the different stratification schemes, the observed
dependency on land cover aligns well with our findings.

4.8. Adequacy of accuracy metrics

The challenge of comparing the results of different SAR flood map-
ping studies shows that there is a need for common validation practices.
Furthermore, our experience from analysing numerous flood events
worldwide over the last few years is that the CSI and other accuracy
metrics remain relatively low in some cases, even when the Sentinel-1
flood maps appear visually satisfactory (Roth et al., 2023, 2025). This
raises questions regarding the adequacy of the accuracy metrics. One
key issue is the lack of independent data to serve as objective ground
truth for assessing how well the algorithm extracts flooded areas from
Sentinel-1 images. As a result, expert-interpreted Sentinel-1 flood data
are used to create flood reference datasets. However, this introduces
uncertainties, which likely lower the CSI and other accuracy metrics
to an extent that remains unclear. The second issue is that, so far,
the quality of flood maps has been assessed with methods used for
assessing static land cover. While critical aspects such as sampling
design, response design, and analysis design are well understood for the
latter (Stehman and Czaplewski, 1998; Congalton and Green, 2019),
the high spatiotemporal variability of the sensitivity of the sensor to
the target variable and the highly dynamic nature of floods make the
evaluation of flood data much more challenging. As a result, flood
mapping studies had to cope with inadequacies of metrics derived from
the error matrix. For example, Landuyt et al. (2019) showed that the
CSI has a bias towards large-scale floods and assigns a higher accuracy
in case of overdetection in comparison to underdetection. When using
the whole map for the metric computation, the agreement between the
reference and classification will generally be much larger compared to
their difference. In addition, the expected autocorrelation of neighbour-
ing pixels in satellite observations may lead to many redundant pixels
being validated. Consequently, Landwehr et al. (2024) suggested the
definition of an appropriate sampling design for computing the metrics
and choosing an adequate metric for the corresponding design.

A further, more practical challenge concerns the reliance of GFM
accuracy assessments on pixel-by-pixel comparisons between auto-
matically derived flood maps and independently generated reference
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datasets. While such pixel-level validation is standard in map classifica-
tion evaluation, it overlooks small, spatially localised mismatches along
flood boundaries that can arise from georeferencing inaccuracies, sam-
pling inconsistencies, or filtering procedures. These minor discrepancies
may artificially depress accuracy scores. To mitigate this, a future
improvement in GFM quality assessment could involve complementing
pixel-based validation with fuzzy map comparison approaches, which
evaluate the similarity of neighbourhoods around corresponding pixels
in classified and reference datasets, as outlined by Hagen (2003).

Finally, in line with our methodological approach, which views
flood mapping as a geophysical variable retrieval problem rather than
a classification task (Section 2.1), we believe that also the validation
of flood extent data should be approached from a broader geophysical
perspective. First, validation activities should clearly define their scope.
Is the aim to evaluate the combined effect of sensor and retrieval
algorithm on the quality of the flood extent data, or just one of these
aspects? In all cases, data producers should provide estimates of the
retrieval uncertainty and clearly identify exclusion areas where the
sensor is insensitive to the target variable. Additionally, validation
should not be limited to flood images but should also include non-flood
cases (Tupas et al., 2024). It is likely that most existing algorithms are
optimised for flood detection, which may limit their applicability to
other regions or time periods. Moreover, methods must be developed
to assess the impact of imperfect reference data on accuracy metrics.
All these topics require a community effort to develop best practice
guidelines, which, as already noted by Landwehr et al. (2024), are still
missing. These efforts could be organised as part of the Land Product
Validation subgroup of the Committee on Earth Observation Satellites
(https://Ipvs.gsfc.nasa.gov/).

5. Conclusions

The GFM service constitutes a significant advancement in the field
of satellite-based flood monitoring. Launched in 2021 as part of the
CEMS, the GFM service has demonstrated its capability to deliver flood
maps with high accuracy and reliability in near real-time. When the
Sentinel-1 ground segment operates normally, the service achieves a
rapid turnaround of under five hours, which is essential for timely
disaster response. The flood maps are produced using an innovative
ensemble approach that integrates three complementary flood mapping
algorithms. These algorithms combine single-image, dual-image, and
time-series techniques to improve the robustness and accuracy of the
automatic flood detection. In addition to the binary flood map, a
novel flood likelihood layer is generated, which often offers a more
comprehensive view of the local flood situation. For example, it can
depict river courses more effectively than the binary flood maps. Users
with their on-site knowledge can create a binary flood map that is
better suited to local conditions by fine-tuning a threshold, above which
a pixel is classified as flooded and below which it is classified as
non-flooded.

The scientific algorithms were implemented within a cloud platform
environment, leveraging an efficient datacube-centric processing archi-
tecture. This approach is crucial for framing the flood mapping problem
as a geophysical variable retrieval task, rather than a traditional image
classification problem. A global 20 m Sentinel-1 datacube allows to
compare each incoming backscatter image with the entire historical
backscatter dataset, facilitating time-series analysis on a per-pixel basis.
This setup has enabled the generation of monthly reference water
maps, which differentiate flooded areas from permanent and seasonal
water bodies, as well as an exclusion mask that informs users where
Sentinel-1 cannot effectively map flooded areas. Advisory flags raise
attention in case of ambiguous radar signals stemming from meteo-
rologic or geomorphologic circumstances, and flood impact indicators
give quick insight into affected population and land cover. Additionally,
the datacube has enabled the creation of a global flood data archive
spanning the entire Sentinel-1 mission from 2015 onwards. The GFM
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flood archive is continuously updated with NRT data, while regular
reprocessing efforts are conducted to ensure compatibility between the
NRT and archive data.

Despite its successes, the GFM service faces several scientific and
technical challenges. One of the primary issues is the reduction of false
positives, especially in agricultural and arid regions, as well as in areas
with frozen or snow-covered land surfaces. These false positives arise
from the complex scattering mechanisms as depicted by SAR imagery,
which are influenced by a range of environmental factors, including
soil moisture and vegetation dynamics. Another significant challenge
is the underdetection of floods in certain conditions. The reliance on
VV polarisation alone, without considering VH polarisation, can lead
to underestimation in areas with dense vegetation or rough water
surfaces. Additionally, urban areas pose difficulties for flood detection
due to the complex interaction of microwaves with building structures.
Preliminary validation results as reported in this paper showed that
algorithmic improvements are still needed, several of which are in the
process of being implemented and tested. Moreover, work is needed to
advance validation practices, approaching the problem from a broader
geophysical perspective and accounting for uncertainties in the flood
reference data. For the users, a pressing issue is that particularly smaller
and short-lived flood events go undetected due to insufficient satel-
lite/sensor coverage. The analysis of 104 global flood events from 2022
to 2024 revealed that the GFM service, relying on only one Sentinel-1
satellite during this period, detected 70.2% of these events. However,
the detection performance varied significantly across continents, with
Europe demonstrating the highest success rate and Oceania the lowest.
The reduced capability to detect smaller flood events, particularly in
regions with low temporal revisit frequencies of Sentinel-1 satellites,
highlights the need for improved sensor coverage.

To enhance the GFM service, several future directions are pro-
posed. First, the integration of VH polarisation data could improve
flood detection in vegetated areas. Additionally, the development of
more sophisticated algorithms that account for the complex scattering
mechanisms in SAR imagery is essential. For instance, the consideration
of double bounce signals and interferometric coherence may improve
food mapping in urban areas and dense vegetation (Mason et al., 2014;
Chini et al., 2019; Li et al., 2019). Flood maps may be refined by
improved use of ancillary data such as topographic indices and land
cover (Tupas et al., 2023a). Machine learning is expected to be useful
for better modelling of spatio-temporal patterns, though challenges
related to over- and under-detection remain significant (Misra et al.,
2025). The GFM service should also continue to refine and update
its exclusion mask and reference water maps, making sure that these
data layers reflect changing land cover and water body dynamics.
After the premature loss of Sentinel-1B, the expansion of the Sentinel-1
constellation with Sentinel-1C and the upcoming Sentinel-1D satellite
is essential to maintain the performance of the service. Additionally,
adopting a multi-sensor approach, which includes data from other satel-
lite missions such as ROSE-L, would significantly improve the ability
to capture flood dynamics and reduce over- and underdetection. The
aim is to gather enough satellite imagery to monitor the progression of
floods from onset to peak and retreat with improved thematic accuracy.
Although not discussed in this article, the integration of the GFM
flood maps with topographic data and their assimilation into hydraulic
models to provide more complete flood extent maps and improved
hydrological predictions holds significant potential.

The Sentinel-1-based Global Flood Monitoring service has made
significant strides in operational satellite-based flood monitoring, pro-
viding timely and accurate flood maps to support disaster response
efforts. While challenges remain, ongoing research and development
efforts are poised to enhance the service’s capabilities, ensuring it meets
the evolving needs of users worldwide. By leveraging advancements in
SAR technology and integrating data from multiple satellite missions,
the GFM service is well set to continue to play a leading role in global
flood risk management and mitigation.
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Appendix. List of flood events

The 104 flood events selected for this study were derived from
the Global Disaster Alert and Coordination System (GDACS). GDACS
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offers real-time flood alerts and comprehensive data to aid disaster
response (De Grove et al., 2007). The alerts issued by GDACS are based
on information gathered from authoritative institutions, media outlets,
and scientific institutions, rather than automated systems. Small-scale
floods in data-poor regions may be underrepresented. These alerts rely
on manual evaluations of the flood impacts, which are performed by the
Dartmouth Flood Observatory. The assessments include various metrics
such as the area affected, the duration of the flood, severity, fatalities,
and the number of displaced persons. The magnitude of each event is
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computed according to:

affected region

Magnitude = In(duration) x severity class x 100

where the affected region is measured in km?, estimated from the
polygon that encompasses all the place names reported in the media.
Duration is measured in days, and for single-day events, the duration is
set to 1.1 d for calculation purposes. The GDACS alert score is translated
into an alert level or colour as follows:

Table 8
Selected flood events from the GDACS flood events record (2022-2024).
D Country From Date To Date GDACS Score Deaths Displaced
AF01 Libya 08-09-2023 14-09-2023 2.5 3500 33000
AF02 Nigeria 10-09-2022 26-10-2022 2.5 605 1306000
AF03 Chad 01-09-2024 17-10-2024 1.5 576 -
AF04 South Sudan 03-08-2024 05-08-2024 1.5 0 571989
AF05 Kenya 12-04-2024 06-05-2024 1.5 219 206 000
AF06 Burundi 17-03-2024 03-05-2024 1.5 5 209 486
AF07 Ethiopia 29-04-2024 01-05-2024 1.5 18 106193
AF08 Tanzania 28-03-2024 28-04-2024 1.5 169 1660
AF09 Ethiopia 07-11-2023 06-12-2023 1.5 53 347600
AF10 Kenya 23-10-2023 06-12-2023 1.5 136 462160
AF11 Somalia 04-10-2023 06-12-2023 1.5 87 458126
AF12 Democratic Republic of 01-05-2023 10-05-2023 1.5 478 3300
Congo
AF13 Rwanda 01-05-2023 03-05-2023 1.5 109 -
AF14 Democratic Republic of 01-04-2023 15-04-2023 1.5 20 100500
Congo
AF15 Somalia 20-03-2023 14-04-2023 1.5 30 140000
AF16 Malawi 13-03-2023 16-03-2023 1.5 225 88312
AF17 Mozambique 22-03-2024 24-03-2024 0.5 4 7658
AF18 Nigeria 14-10-2024 19-10-2024 0.5 25 5328
AF19 Nigeria 23-06-2024 23-09-2024 0.5 5 10284
AF20 Angola 25-11-2022 05-12-2022 0.5 15 405
ASO1 India 20-10-2024 26-10-2024 2.5 9 803,888
AS02 Bangladesh, India, 13-05-2023 15-05-2023 2.5 41 850,000
Myanmar
AS03 China, Taiwan 14-09-2022 16-09-2022 2.5 0 1,233,000
AS04 Pakistan 14-06-2022 31-08-2022 2.5 1,061 215,997
AS05 Nepal 26-09-2024 28-09-2024 1.5 148 -
AS06 India 30-08-2024 05-09-2024 0.5 45 45,369
AS07 Indonesia 03-02-2024 12-06-2024 1.5 79 84,943
AS08 Afghanistan 09-05-2024 25-05-2024 1.5 387 -
AS09 Kazakhstan 28-03-2024 10-04-2024 1.5 2 104,694
AS10 Bangladesh 24-10-2023 26-10-2023 1.5 3 273,000
AS11 Pakistan 16-08-2023 18-08-2023 1.5 0 100,000
AS12 China 27-06-2023 23-07-2023 1.5 15 284,100
AS13 India 07-07-2023 10-07-2023 1.5 169 47,790
AS14 India, Pakistan 14-06-2023 16-06-2023 1.5 7 175,925
AS15 Philippines 10-12-2022 23-01-2023 1.5 63 330,071
AS16 Oman, Yemen 23-10-2023 25-10-2023 0.5 1 9,000
AS17 Indonesia 18-09-2024 04-11-2024 0.5 18 1,100
AS18 Azerbaijan 12-10-2024 23-10-2024 0.5 2 67
AS19 Philippines 12-10-2024 23-10-2024 0.5 3 12,793
AS20 Sri Lanka 08-10-2024 10-10-2024 0.5 3 9,591
EUO1 Spain 27-10-2024 04-11-2024 2.5 221 447
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Table 8 (continued).

D Country From Date To Date GDACS Score Deaths Displaced
EU02 Bosnia and Herzegovina 03-10-2024 05-10-2024 1.5 14 -
EUO3 Austria, Czech Republic, 12-09-2024 18-09-2024 1.5 13 7,042

Germany, Poland,
Romania, Slovakia

EU04 France 3-12-2023 03-01-2024 1.5 1 743
EUO05 Germany 18-12-2023 03-01-2024 1.5 0 -
EUO6 Norway 31-10-2024 05-11-2024 0.5 0 98
EU07 Greece 04-09-2023 15-09-2023 0.5 20 4,506
EU08 Italy 16-10-2024 28-10-2024 0.5 1 290
EU09 Italy 17-09-2024 25-09-2024 0.5 0 1,550
EU10 France 01-10-2024 26-10-2024 0.5 1 347
EU11 Italy 30-10-2023 04-11-2023 0.5 10 510
EU12 Italy 01-05-2023 26-05-2023 0.5 17 36,450
EU13 Slovenia 03-08-2023 05-08-2023 0.5 3 4,000
EU14 United Kingdom 28-12-2023 01-01-2024 0.5 3 1,120
EU15 United Kingdom 19-10-2023 12-11-2023 0.5 1 1,620
EUl6 Russia 01-07-2023 10-07-2023 0.5 0 407
EU17 Austria 03-08-2023 13-08-2023 0.5 1 57
EU18 Russia 11-08-2023 21-08-2023 0.5 8 2,500
EU19 Kosovo, Serbia 18-01-2023 22-01-2023 0.5 2 584
EU20 Italy 26-11-2022 10-12-2022 0.5 7 1,304
NAO1 Dominican Republic 02-11-2024 04-11-2024 0.5 0 1,390
NAO02 Costa Rica 06-11-2024 08-11-2024 0.5 1 155
NAO3 United States 09-01-2024 03-02-2024 0.5 1 405
NAO4 United States 16-08-2024 18-09-2024 0.5 1 55
NAO5 Panama 29-09-2024 01-10-2024 0.5 1 12
NAO06 Mexico 16-10-2024 22-10-2024 0.5 7 247
NAO7 United States 22-12-2022 28-01-2023 0.5 4 500
NAO8 Canada 01-07-2023 23-07-2023 0.5 0 1,270
NAO9 United States 16-06-2023 24-08-2023 0.5 5 14,525
NA10 Honduras 03-11-2023 05-11-2023 0.5 4 1,024
NA11l Honduras 07-12-2023 09-12-2023 0.5 2 30
NA12 Cuba, Jamaica 03-11-2024 10-11-2024 0.5 0 38,095
NA13 Costa Rica 06-11-2024 08-11-2024 0.5 1 155
NA14 Mexico 30-08-2024 04-10-2024 0.5 18 92
NA15 United States 22-12-2022 28-01-2023 0.5 4 500
0Co01 New Zealand 03-10-2024 05-10-2024 0.5 0 100
0Co2 Australia 29-12-2022 05-01-2023 0.5 0 700
0C03 Fiji 03-02-2023 05-02-2023 0.5 1 350
0C04 New Zealand 12-02-2023 14-02-2023 0.5 0 3,810
0C05 Australia 01-01-2024 23-02-2024 0.5 0 286
0C06 Fiji 14-03-2024 16-03-2024 0.5 0 230
0Cco7 Papua New Guinea 25-03-2024 27-03-2024 0.5 4 2,250
0Co8 Australia 22-10-2022 05-11-2022 0.5 2 540
0C09 New Zealand 11-11-2022 15-11-2022 0.5 0 200
SA01 Brazil 23-04-2024 17-05-2024 1.5 144 540,548
SA02 Brazil 23-05-2022 26-05-2022 1.5 92 16,619
SA03 Chile 20-06-2024 28-06-2024 0.5 0 1,500
SA04 Uruguay 20-03-2024 22-03-2024 0.5 0 4,687
SA05 Brazil 05-11-2024 08-11-2024 0.5 1 1,950
SA06 Brazil 19-12-2022 06-01-2023 0.5 3 242
SAQ7 Colombia 09-01-2023 17-01-2023 0.5 1 558
SA08 Brazil 17-01-2023 19-02-2023 0.5 5 4,900
SA09 Brazil 18-02-2023 20-02-2023 0.5 40 2,496

(continued on next page)
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Table 8 (continued).
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D Country From Date To Date GDACS Score Deaths Displaced
SA10 Peru 22-02-2023 01-03-2023 0.5 1 740
SAl11 Peru 16-01-2023 18-04-2023 0.5 24 2,045
SA12 Ecuador 22-05-2023 06-06-2023 0.5 3 46
SA13 Brazil 07-07-2023 11-07-2023 0.5 15 3,850
SA14 Chile 19-08-2023 21-08-2023 0.5 1 1,200
SA15 Argentina 26-11-2023 14-12-2023 0.5 2 2,340
SA16 Venezuela 08-10-2022 22-10-2022 0.5 61 -
SA17 Bolivia 10-02-2024 14-02-2024 0.5 2 420
SA18 Brazil 03-03-2024 05-03-2024 0.5 0 1,663
SA19 Peru 26-12-2023 12-03-2024 0.5 21 727
SA20 Argentina 03-03-2024 17-03-2024 0.5 3 1,194

+ Large-scale floods: GDACS score of 2.5, corresponding to a Red
alert for more than 1,000 dead or 800,000 displaced.

* Medium-scale floods: GDACS score of 1.5, corresponding to an
Orange alert if there are more than 100 dead or 80,000 displaced.

+ Small-scale floods: GDACS score of 0.5, corresponding to a Green
alert for all other floods.

Data availability

The Sentinel-1 flood data generated by the CEMS GFM service are
free and open. They can be accessed as described in Section 2.4.3.
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