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Abstract The radiation parameterization is one of the computationally most expensive components of Earth
system models (ESMs). To reduce computational cost, radiation is often calculated on coarser spatial or
temporal scales, or both, than other physical processes in ESMs, leading to uncertainties in cloud‐radiation
interactions and thereby in radiative temperature tendencies. One way to address this issue is to emulate the
radiation parameterization using machine learning (ML), which is typically faster and has good accuracy in
high‐dimensional parameter spaces. This study investigates the development and interpretation of an ML‐based
radiation emulator using the ICOsahedral Non‐hydrostatic model with the RTE+RRTMGP radiation code,
which calculates radiative fluxes based on the atmospheric state and its optical properties. With a Bidirectional
Long Short‐Term Memory architecture, which can account for vertical bidirectional auto‐correlation, we can
accurately emulate shortwave and longwave heating rates with a mean absolute error of 0.045 K/d (2.77%) and
0.060 K/d (4.50%), respectively. Further, we analyze the trained neural networks using Shapley Additive
exPlanations and confirm that the networks have learned physically meaningful relationships among the inputs
and outputs. It is worth noting that we observe that the local temperature is used as a predictive source for the
longwave heating, consistent with physical models of radiation. For shortwave heating, we find that clouds
reflect radiation, leading to reduced heating below the cloud. In contrast, an architecture that is not inspired by
the underlying physics, such as a multilayer perceptron, tends to rely on spurious or less physically meaningful
correlations to make its predictions.

Plain Language Summary To estimate future impacts of climate change, we rely on climate
projections generated by Earth System Models (ESMs). Radiation plays a crucial role in driving the climate
system and is among the most computationally intensive components of ESMs. To save computing resources,
radiation calculations are often performed less frequently or with lower detail, which introduces uncertainties in
how clouds and radiation interact. Here, we develop an ML model to accelerate radiation calculations while
maintaining accuracy. Specifically, we utilize this model to mimic how radiation is calculated in a well‐known
climate model, the ICON model. Our ML‐based model reliably predicts heating rates for both sunlight
(shortwave radiation) and heat from Earth and atmosphere (longwave radiation). We analyze the predictions of
the ML‐based emulator, which is motivated by the underlying physics, and demonstrate that it successfully
captures physical relationships. Further, the interpretability analysis shows that a simpler ML model that is not
inspired by the underlying physics uses non‐causal relationships to make the predictions.

1. Introduction
Climate change is already negatively impacting the current conditions, making it essential to accurately model the
complex Earth system for effective adaptation. Climate models, particularly Earth System Models (ESMs), are
crucial for predicting global and regional changes, but key uncertainties limit their accuracy (Eyring et al., 2016).
ESMs integrate many components representing the atmosphere, ocean, and land, which interact with each other.
However, due to the computational cost of projecting a changing climate over multiple decades, ESMs operate at
a large horizontal resolution of 40− 160 km per grid cell (Chen et al., 2021). Despite these coarse grid scales and
the long model time steps that require coarse scales, the representation of radiation in the shortwave and longwave
spectrum would be overwhelmingly expensive without considerable simplifications (Hogan & Matricardi, 2020),
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as outlined below. Still, such schemes would be too expensive if applied at every model time step, and hence it is
common to compute the radiative transfer only at multiples of the model time step, so that the diurnal cycle of the
shortwave radiation can be reasonably resolved and the interaction with the clouds can be represented to some
degree. These compromises driven by computational constraints entail uncertainties with possible effects on the
projected climates.

Radiation is the driver of many atmospheric processes, but it is very expensive to compute. To reduce the
computational time, many approximations and simplifications are made, such as reduced spectral resolution, and
computation of radiation at lower frequency and sometimes also coarser horizontal resolution than other physical
processes (Mlawer et al., 1997; Morcrette et al., 2007). This requires scaling across time and space. Usually, the
radiative flux is computed for a given state and cloud distribution. If the radiation time step is coarser than the
model time step, then the shortwave flux for model time steps between radiation time steps can be scaled by the
change in incoming radiation at the top of the atmosphere, and the longwave flux can be scaled by the change in
surface temperature. However, effects of changes in the simulated atmospheric composition or cloud distribution
on radiative fluxes and heating remain unaccounted for between radiation time steps. Cloud‐radiation in-
teractions, however, are important because clouds reflect shortwave radiation, leading to less heating. Addi-
tionally, clouds absorb and emit longwave radiation, leading to less or more heating depending on the surrounding
temperature (Wallace & Hobbs, 2006). Therefore, an accurate treatment of cloud‐radiation interactions is
important. One option to increase accuracy is to compute radiation on the same horizontal and temporal scale as
other physical processes, which would take up 10 times more computing time compared to the standard setup with
infrequent radiation calls.

A promising possibility is the use of machine learning (ML), which has been successfully used in various ap-
plications including ML‐based parameterizations for physical processes in ESMs. The ML‐based emulation of
radiation was historically the first application of ML to ESMs (Chevallier et al., 1998). One domain of those
applications is the representation of all physical parameterizations at once or a superparameterization for a speed‐
up (Brenowitz & Bretherton, 2018; Gentine et al., 2018; Kochkov et al., 2024; Rasp et al., 2018; Watt‐Meyer
et al., 2024; Yuval et al., 2021; Yuval & O’Gorman, 2020). Another domain focuses on learning a single
parameterization, such as radiation or convection, for a better representation of this process or speed‐up by using
short high‐resolution and higher fidelity simulations at the same resolution (Bolton & Zanna, 2019; Espinosa
et al., 2022; Grundner et al., 2022; Heuer et al., 2024; O’Gorman & Dwyer, 2018).

The development of an ML‐based radiation scheme can be approached as an emulation or parameterization. The
parameterization approach aims to improve the radiation scheme by learning from another more accurate radi-
ation model than what is present in the climate model, for example, a wide‐band or line‐by‐line model. The first
ML‐based radiation parameterization was presented in Chevallier et al. (1998), which was trained on a more
accurate radiation scheme. They developed parameterizations for longwave radiation based on a wide‐band
model and a line‐by‐line model and trained a fully connected neural network (NN) for the clear‐sky compo-
nent and 2 × M NNs for the cloudy‐sky component, whereM is the number of cloudy layers. Although this was
useful at that time, ESMs have evolved, and this multi‐network approach is not applicable anymore because the
speed‐up depends on the number of cloud‐layers and does not provide speed‐up with more than 60 layers in the
atmosphere (Morcrette et al., 2007).

The emulation approach has the goal to speed up the radiation scheme by emulating the existing parameterization
while preserving substantial accuracy. A fast radiation scheme has the advantage being called more often than
traditional parameterizations. Thereby, interactions with clouds can be better represented, which may indirectly
improve the overall accuracy of simulations. The emulation of radiation can be addressed in different ways by
dividing the radiation parameterizations into two tasks. The first part deals with calculating cloud and gas optics,
and the second part approximates the radiative transfer equations. Some efforts are focusing on gas optics only
(Ukkonen et al., 2020; Veerman et al., 2021). The argument to only emulate gas optics is that the overall radiation
parameterization would be more robust because the radiative transfer approximation is not changed, but the
speed‐up potential would be smaller compared to emulating the full radiation parameterization. The machine‐
learned gas optics module was successfully tested online (Ukkonen & Hogan, 2023). Pal et al. (2019)
emulated only a part of radiation, including gas optics but not cloud and aerosol optics.

Most of the ML‐based radiation parameterizations emulate full radiation, including cloud and gas optics as well as
radiative transfer equations, because it has more potential to speed up the simulation, thus allowing either to call
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radiation more often or to increase the horizontal resolution of the climate model, or both. First attempts to
perform this emulation were based on fully connected NNs, which were tested online in CAM2 and GFS (V. M.
Krasnopolsky et al., 2005; V. Krasnopolsky, 2012; V. M. Krasnopolsky et al., 2008). About a decade later, the
same approach was used in a modern ESM, for example, for numerical weather prediction in WRF (Roh &
Song, 2020; Song & Roh, 2021) and a 6‐month simulation in GFSv16 (Belochitski & Krasnopolsky, 2021).
Recently, there have been approaches using more advanced deep learning architectures, such as U‐Net, Bidi-
rectional Long Short‐Term Memory (BiLSTM), transformer, and neural operator, to emulate full radiation
(Lagerquist et al., 2021, 2023; Ukkonen, 2022; Yao et al., 2023). Some of these studies compared different ar-
chitectures and found that bidirectional recurrent NNs performed better than fully connected NNs because
recurrent NNs can better handle the autocorrelation in the vertical profile. Despite good overall offline perfor-
mance, the remaining question is why the NNs perform well and how they use specific inputs, that is, which inputs
are important. This is a very relevant question to verify reliability and physical consistency of the ML‐based
emulator.

In this study, we build on the findings from previous studies and develop an ML‐based alternative to emulate the
radiation scheme RTE+RRTMGP (Pincus et al., 2019) used in the atmosphere component of the ICOsahedral
Non‐hydrostatic (ICON‐A) model (Giorgetta et al., 2018). With speed‐up and accuracy in mind, we design NNs
that are as small as possible but also sufficiently complex and expressive for good performance. The speed‐up
allows for more frequent radiation calls, implicitly improving the cloud‐radiation interactions. It is not natu-
rally given that an ML‐based emulator learns the underlying physics of the radiation processes. Therefore, we also
focus on the interpretation of the NNs and explain what they learned physically.

The paper is structured as follows. We first introduce the data used and how we pre‐process and select training
data. In Section 3, we explain the NN architectures and their training process. Then, we analyze the predicted
heating rates and fluxes in Section 4. It is followed by an interpretation using Shapley values in Section 5.

2. Data
We develop an ML‐based radiation emulator for the atmosphere component of the ICOsahedral Non‐hydrostatic
(ICON‐A) model (Giorgetta et al., 2018) and use explainability methods to interpret the prediction post‐hoc. We
use a historical Atmospheric Model Intercomparison Project (AMIP)‐like setup (Eyring et al., 2016) with a
coupled land model. The land model reacts to temperature changes but does not have an interactive carbon cycle.
The AMIP setup includes prescribed sea surface temperature and sea ice concentration. Concentrations of the
well‐mixed greenhouse gases are prescribed as annual global mean mole fractions. Ozone is prescribed using
monthly mean historical values. The prognostic atmospheric variables are initialized from the Integrated Fore-
casting System analysis files. ICON is a flexible, state‐of‐the‐art model using a modern and accurate radiation
scheme. Our ICON setup uses a triangular grid with a resolution of R2B5, where R2 means that every edge of the
icosahedron is divided into 2 parts, creating smaller triangles, and B5 describes 5 subsequent edge bisections. An
R2B5 grid corresponds to a horizontal resolution of 80 km. The vertical dimension has 47 levels using sigma
coordinates. These levels span 80 km in the atmosphere. More details on the horizontal and vertical grids are
given in Section 2 of Giorgetta et al. (2018). Subgrid‐scale processes are parameterized, which include cloud
cover, radiation, vertical diffusion, cumulus convection, stratiform clouds, orographic drag, and non‐orographc
gravity wave drag. The radiation scheme used here is RTE+RRTMGP (Pincus et al., 2019) where RRTMGP
(Rapid Radiative Transfer Model for GCM application—Parallel) defines the radiative transfer problem based on
optical properties and RTE (Radiative Transfer for Energetics) approximates a solution for the radiative transfer
problem. The radiation scheme follows a correlated‐k scheme to represent spectral variations and two‐stream
approximation, which can be described as upward and downward fluxes. Moreover, longwave (terrestrial) and
shortwave (solar) radiation are treated separately because they cover different ranges of the radiative spectrum.
Additionally, the separation has practical reasons because shortwave radiation is only calculated during the day
and scattering is neglected for longwave radiation.

In ICON, the parameterizations are easily interchangeable which is convenient when comparing different pa-
rameterizations (traditional vs. ML‐based). The triangular grid has the advantage that the grid cells are almost
equally sized everywhere while a regular latitude‐longitude grid has a decreasing grid size polewards. A regular
grid has more grid points near the poles that cover a smaller area leading to oversampling in the zonal direction.
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Because of the triangular grid, there is no oversampling of grid points in the polar region with ICON, which is
helpful for ML‐based approaches.

We run ICON‐A for the year 1979 and save 5 hourly instantaneous output for one day every 2 weeks to get a data
set that is as diverse as possible. The first output day saves the output starting at 00:00, the second day at 01:00, the
third day at 02:00, and so on. Lagerquist et al. (2023) used a fixed interval of 6 h, which resulted in four equally
spaced peaks in the spatial error distribution (see their Figure 7). Therefore, the odd output interval of 5 h is
chosen on purpose to cover the diurnal cycle and more solar zenith angles with different local conditions. This is
similar to Bertoli et al. (2025) and could also be achieved by randomly sampling solar zenith angles for a given
state (Ukkonen, 2022). The time step of the physics parameterizations is 6 min including radiation. Usually, the
radiation time step is 1− 2 h. We chose a shorter radiation time step because we want to call the ML‐based ra-
diation emulator more often and more aligned with cloud cover, and therefore get the same distribution of at-
mospheric states as in simulation with high frequent radiation calls. The simulation data are always saved right
before and after the radiation call to save the exact input/output of the traditional parameterization in order to
capture the correct causality for our emulation. For training, we use the first 10 days of every month, for vali-
dation, the center 10 days, and for testing, we use the last 10 days. Although not every month is represented, every
season is represented in each subset. That way, we reduce any type of autocorrelation and save storage space. For
training speed and to increase variability in the training set, we do not use every cell for each time step, which
results in 546k training samples.

2.1. Variables

The input (predictor) and output (target) variables are column‐wise values of the model's radiation scheme, and
are summarized in Table 1. We divided the training process into two separate components: one focused on
shortwave (SW) radiation and the other on longwave (LW) radiation. This division aligns with how these
components are treated separately in the original radiation scheme, with the SW component excluded during
nighttime. In order to reduce the error from predicting intermediate variables such as the vertically resolved
upward and downward flux, we only predict variables that are needed to couple the ML‐based emulator to ICON,
which involves SW and LW heating rates. Alternatively, we could predict upward and downward flux profiles
and construct heating rates, but that may lead to larger errors in the upper layers (see SI for more details). Pre-
dicting flux profiles directly is not shown here; however, (Bertoli et al., 2025) reported that doing so can lead to
stability issues when coupled to a model such as ICON, requiring additional scaling and smoothing of the upper
layers of the fluxes to ensure stable online performance.

Additionally, we predict downward surface fluxes. The total shortwave downward flux F↓,surf ,SW can be parti-
tioned into near‐infrared (NIR), visible (vis), and photo‐synthetically active radiation (PAR), which can be
partitioned further into a direct and diffuse component. These partial fluxes and also the F↓,surf ,SW are important for
coupling the emulator to ICON and its land model component. We also predict the upward flux at the top of the
atmosphere, which is not needed to couple the emulator to the model but which is a variable that is needed for
model tuning and is also interesting to check for energy consistency.

Unlike other ML‐based radiation emulations, we omit the solar zenith angle as a direct input. In our study, the
solar zenith angle is indirectly included in the incoming flux at the top of the atmosphere F↓,TOA,SW , which is the
solar constant weighted by the Earth‐Sun distance and solar zenith angle. We also neglect changes in greenhouse
gas concentration (in particular CO2) in our input, since our focus was solely on learning the radiation scheme
from 1 year of data. During this period, GHG concentrations were fixed as a single annual global mean value. In
addition, our approach omits aerosols in the input as we focus on the interpretation of an ML‐based radiation
emulation. Additionally, we focus on the impact of clouds and cloud‐related variables because they are the largest
contributor to the overall uncertainty (Forster et al., 2021). Aerosols affect radiation both directly and indirectly,
with the indirect effect occurring through aerosol‐cloud interactions. Since this indirect effect tends to be larger, it
reinforces the importance of accurately representing cloud‐radiation interactions (Forster et al., 2021).

2.2. Normalization

Normalization is essential for ML. One reason is to bring input variables to the same scale preventing the
dominance of larger variables, such as temperature with a magnitude of 102 K while having smaller variables
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such as water vapor with a magnitude of 10− 4. Another reason for normalization is the context of the variables
regarding their physical meaning. For example, the SW flux cannot exceed the incoming flux at the top of the
atmosphere. Therefore, normalizing by a parameter that changes based on the context provides consistency across
different data distributions (Beucler et al., 2024; Connolly et al., 2025; Shamekh et al., 2023). The following
explanation provides more detail on this normalization process for each variable.

Cloud ice and liquid concentrations are normalized using level‐wise total water concentration (qH2O), where
qH2O = qv + ql + qi. This approach places greater focus on cloud‐containing levels, and especially where ice
and liquid concentrations are larger or comparable to water vapor concentrations. We find that this is especially

Table 1
Input and Output Variables for Each Network and Training Phase

Variable Unit SW HR SW flux LW HR LW flux

Input

F↓,TOA,SW W/m2 ✓ ✓ – –

α – ✓ ✓ – –

αNIR,dir – – ✓ – –

αNIR,dif – – ✓ – –

αvis,dir – – ✓ – –

αvis,dif – – ✓ – –

qi→ kg/kg ✓ ✓ ✓ ✓

ql→ kg/kg ✓ ✓ ✓ ✓

q⃗H2O = qv→ + ql→ + qi→ kg/kg ✓ ✓ ✓ ✓

O3
̅→ kg/kg ✓ ✓ ✓ ✓

ρ⃗ kg/m3 ✓ ✓ ✓ ✓

cl
→ – ✓ ✓ ✓ ✓

T⃗ K ✓ ✓ ✓ ✓

Tsurf K – – ✓ ✓

Output

∂T⃗SW/∂t K/d ✓ – – –

∂T⃗LW/∂t K/d – – ✓ –

F↓,surf ,SW W/m2 – ✓ – –

F↓,surf ,SW,NIR,dir W/m2 – ✓ – –

F↓,surf ,SW,NIR,dif W/m2 – ✓ – –

F↓,surf ,SW,vis,dir W/m2 – ✓ – –

F↓,surf ,SW,vis,dif W/m2 – ✓ – –

F↓,surf ,SW,PAR,dir W/m2 – ✓ – –

F↓,surf ,SW,PAR,dif W/m2 – ✓ – –

F↑,TOA,SW W/m2 – ✓ – –

F↓,surf ,LW W/m2 – – – ✓

F↑,TOA,LW W/m2 – – – ✓

Note. The network learns heating rates in the first training phase, denoted as HR. Boundary fluxes are learned in the second
phase, denoted as Flux. F stands for upward (↑) or downward (↓) flux at the surface (surf) or top of the atmosphere (TOA), α
is surface albedo, qi is cloud ice, ql is cloud liquid, qv is specific humidity, O3 is ozone concentration, ρ is density, cl is cloud
area fraction, T is the atmospheric temperature profile, and ∂T /∂t is heating rate (HR). The variable used for each network and
training phase are indicated by ✓. The vector sign indicates that a variable is defined on all vertical levels.
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helpful in reducing the error of shortwave heating rate in the upper troposphere. There, the impact of cloud ice on
heating rate can become larger than that of water vapor but the total concentration is still smaller than in lower
layers as the density decreases. If normalizing the cloud‐related variables only by their global mean values, the
effect that cloud ice can become more important is not as strong.

Furthermore, F↓,TOA,SW is normalized using the solar constant 1360 W/m2. Shortwave fluxes are normalized
using incoming shortwave fluxes F↓,TOA,SW . Longwave fluxes are normalized by σT4

surf . Albedo and cloud fraction
values naturally range between 0 and 1 and thus do not require normalization. Heating rates are not normalized
because the majority of values lie between − 10 and 10. All other variables are normalized using Z‐score
normalization

xnorm =
x − μ
σ

, (1)

where μ is the mean and σ the standard deviation of the variable distribution. The mean and standard deviation are
computed from the data of one time step using all cells and levels.

3. Method
We use PyTorch to develop our ML‐based radiation emulation (Ansel et al., 2024). The training of the networks
for SW and LW radiation is separated by data availability as SW radiation is calculated only during the day.
However, the architecture of the networks is the same for SW and LW. Additionally, we differentiate between
heating rates and fluxes, as heating rates are defined as vertical array variables containing all levels, whereas
fluxes are scalar variables defined at a single level. Moreover, fluxes are defined at half levels, which is the upper
and lower boundaries of a vertical grid cell, whereas heating rates are defined at full levels located at the cell
center. We predict heating rates and fluxes using a single NN but split the training process into two phases. In the
first phase, we optimize the prediction of heating rates (HRSW , HRLW). In the second phase, we learn predicting
the boundary fluxes (FLUXSW , FLUXLW).

3.1. Energy Consistency

During training of the ML schemes, we enforce energy consistency, which is an inherent property of the physics‐
based radiation scheme. Ensuring this consistency is crucial for applying the ML schemes in climate simulations
and for maintaining online stability. An unphysical energy source or sink can cause spurious local temperature
changes, which in turn may trigger unrealistic responses in circulation and cloud distribution. Over time, these
effects can accumulate to unphysical values, and potentially lead to a model crash. Therefore, we assess here the
statistics of the imbalance between radiative energy changes in atmospheric columns and the accompanying
divergence of radiative net fluxes at the atmospheric boundaries. This imbalance can arise because the ML
scheme predicts heating rates and fluxes separately. The radiative balance is defined as follows:

(F↓,TOA − F↑,TOA) − (F↓,surf − F↑,surf ) =∫
TOA

surf

∂T
∂t
cp,airρdz ≈ ∑

nlev

l=0
(Fnet,l+1∕2 − Fnet,l− 1∕2), (2)

where l is defined at the layer center and l ± 1/2 at the layer boundaries. The incoming flux at the top of the
atmosphere F↓,TOA defined by the solar constant, eccentricity and solar zenith angle for SW radiation and is zero
for LW radiation. The fluxes F↑,TOA and F↓,surf are calculated by the NNs. The upward flux at the surface F↑,surf is
αF↓,surf for SW radiation and εσT4

surf for LW radiation where ε is emissivity of the surface, and σ is the Stefan‐
Boltzmann constant. We approximate the vertical integral of radiative energy as the sum of the vertical net flux
divergence. Here, we construct the net flux divergence from the heating rates predicted by the NN, heat capacity
cp,air, density ρ, and vertical thickness of a layer dz. In the physics‐based scheme, all terms of the sum over the net
flux divergence except the boundary fluxes cancel each other. Therefore, the energy consistency is an inherent
property.
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3.2. First Training Phase: Heating Rates

The radiation scheme we aim to emulate computes two column‐wise streams of radiation throughout the at-
mosphere—the upward and downward fluxes—and then derives heating rates from the divergence of these flux
profiles (Pincus et al., 2019). Given that radiation processes involve non‐locality, with fluxes influenced by
conditions in distant atmospheric layers, we chose a BiLSTM network. This non‐locality can arise from various
sources, such as clouds or moisture anomalies in distant layers. This model is well‐suited to handle the bidi-
rectional nature of the radiation streams and the complex dependencies across different layers. In a BiLSTM, each
LSTM cell looks at one element of a sequence at a time. Here, the sequence corresponds to the levels of the
atmospheric profile. The term bidirectional means that the network analyzes the vertical sequence (i.e., atmo-
spheric layers) from the top of the atmosphere to the surface and the other way around, just like upward and
downward fluxes in the radiation scheme. Bidirectional architectures have been found to perform better than a
multi‐layer perceptron (Ukkonen, 2022). The architecture choice is motivated by Yao et al. (2023), who
compared various advanced architectures for radiative transfer problems and found that BiLSTM architectures
were among the best performing models. Note that here, however, we only learn heating rates using a BiLSTM
with significantly less trainable parameters (10 times less). The only parameter that controls the number of
trainable parameters is the hidden dimension of the BiLSTM which we set to 96. The dense layer uses the hidden
dimension as input and has one output feature. The total number of trainable parameters is 82.4k for SW and 81.6k
for LW.

Figure 1 shows the architecture, where the dark blue boxes represent the layers trained during the first training
phase. The BiLSTM takes a two‐dimensional array as input, where the first dimension corresponds to the vertical
dimension, and the second dimension, also known as channel, represents the physical properties of the current
atmospheric state at each level. To match the size of the other variables in the vertical dimension, we expand
scalar variables into a vertical array by repeating their value. Then, they are stacked with all other variables to
create the 2D input array. Each LSTM cell processes all variables at the vertical level it is scanning as well as all
scalar variables. The downward stream of the BiLSTM uses latent features from all levels above, whereas the

Figure 1. Schematic of the neural network architectures to emulate radiative heating rates and boundary fluxes. On the left,
example input variables are density, atmospheric temperature, and albedo. Profile variables span all height levels, such as
atmospheric temperature T⃗ . Scalar variables, such as surface albedo α, are defined on one level and are expanded to match the
height. In the first training phase, the LSTM cells predict one height level at a time, scanning the input by height level in both
directions. A dense layer transforms the learned features of every height level to a heating rate (∂T⃗ /∂t). In the second training
phase, we freeze the LSTM weights, predicting the boundary fluxes using the Bidirectional Long Short‐Term Memory output,
and for SW, we add the albedos to compute partial fluxes. The size of the input and output of every layer is given in brackets,
where bs stands for batch size, n_nlev is the number of vertical levels, n_in_var is the number of input variables, n_hidden is the
number of nodes in an LSTM cell, n_ fluxes is the number of boundary fluxes.
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upward stream uses information from the levels below. The latent features contain information from all cells that
the BiLSTM looked at before. This feature is known as memory, and informs the current cell if there was
something important such as a cloud above or below which has a strong effect on the state of the cell. This
bidirectional aspect represent the upward and downward direction of radiative fluxes, which is similar to the two‐
stream approximation in traditional radiation schemes. In other words, each LSTM cell learns to estimate the
amount of radiation reflected, transmitted and absorbed by the atmosphere above or below. Then, the network
returns a set of learned features for each level, with the length determined by the hidden dimension parameter,
which controls the number of trainable parameters. Next, a dense layer combines the learned features at each level
to compute heating rates. Note, the dense layer works only on the last dimension and has only one output feature,
which is the heating rate at the current level. The dense layer shares the weight for all levels. For the shortwave
network, we use a Rectified Linear Unit (ReLU) activation for the output to ensure that the prediction remains
positive. Longwave heating rates are typically negative (indicating cooling), but they can also be positive when
the surface is warmer than the air above, leading to atmospheric heating. To accommodate this variability, the
longwave network does not use an output activation function, allowing it to handle both positive and negative
values effectively.

To accurately model the large variability in our data and make reliable predictions for cloudy pixels, which are
more difficult compared to clear‐sky pixels, we construct a tailored loss function using multiple components as
follows:

LHR = MSE +MAE +min(10− 8 ∗ 10
e− es
ne , 10− 1) ∗ energy, (3)

where the mean squared error (MSE) governs the loss during the early stage of training. However, as the MSE
tends to diminish significantly due to its squared operation, the optimization process shifts its focus on the mean
absolute error (MAE). The last term enforces energy consistency by minimizing the difference between the left‐
and right‐hand side of Equation 2. This term is introduced after epoch es, which we defined as the epoch where
MSE and MAE almost converged. Then, this term increases by a factor of 10 every ne epochs, which we set as 10,
whereas e is the current epoch. However, the maximum weight of this term is 10− 1 so that it will not be much
larger than the other terms. Model data provides the boundary flux terms in the energy term, allowing adjustments
to the heating rate to maintain energy conservation.

We use the Adam optimizer with a learning rate of 5 ∗ 10− 3, along with a learning rate scheduler that reduces the
learning rate by a factor of 2 when a plateau is reached. The plateau is reached when the minimum of the vali-
dation loss does not decrease by 0.01% for 20 subsequent epochs. Additionally, we employ early stopping with
patience of 150 epochs to avoid overfitting (Goodfellow et al., 2016).

3.3. Second Training Phase: Boundary Fluxes

For the fluxes, we want to leverage what the BiLSTM has learned already. Therefore, we use the BiLSTM output
in the second training phase and add three dense layers (see Figure 1 light blue). The first dense layer has an input
size depending on the hidden dimension and one output feature. In other words, it combines the BiLSTM output to
one feature per height level. For SW, we include the partial albedos in the input feature vector. The idea is that the
first dense layer extracts sufficient spectral and vertical information, which is then combined with the partial
albedos to predict the fluxes. After the first dense layer, we apply a tanh activation, followed by another dense
layer and a second tanh activation. This dense layer has a hidden dimension of 32. The last dense layer depends
on the number of output variables and is 8 for SW and 2 for LW. The output is limited between 0 and 1 for SW and
0 and 2 for LW which is due to normalization. The total incoming flux at the top of the atmosphere normalizes the
SW fluxes, whereas surface emission limits the LW fluxes. The normalized LW fluxes can be larger than one if
the cell above the surface is warmer than the surface itself. The three dense layers add in total 2.1k trainable
parameters to the SW NN and 1.8k to the LW NN.

The loss function is the same as before (Equation 3) but all components in the energy term come from the NN. We
choose the optimization and early stopping configuration as for the first training phase but start training with a
learning rate of 1 ∗ 10− 3 and use the AdamW optimizer.
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4. Results
In this section, we evaluate the performance of all four components, HRSW ,
HRLW , FLUXSW and FLUXLW , using the test set of the ICON‐A simulation
described above. This is an offline evaluation and comparison to the output of
the traditional radiation parameterization.

4.1. Heating Rates

We begin by evaluating the predictions of the machine‐learned heating rates,
as summarized in Table 2. The overall MAE for both shortwave (SW) and
longwave (LW) heating rates is 0.045 K/d and 0.060 K/d with biases of
0.004 K/d and 0.008 K/d, respectively. Although the longwave radiation
calculation neglects scattering, it is not easier to compute than shortwave
radiation because it has a source of radiation in every layer of the atmosphere
itself. The coefficient of determination R2 is 0.98 for SW and 0.98 for LW,

where 0 indicates that the mean network prediction matches the mean value of the data distribution, which means
that the sample‐by‐sample comparison could be bad. The closer the value is to 1, the better the prediction accuracy
in a sample‐by‐sample comparison.

Figure 2 shows the vertical profiles of MAE and biases, averaged globally and over all time steps of the test set, as
well as the coefficient of determination (R2) for both longwave and shortwave heating rates. The prediction of the
SW HR and LW HR components are virtually bias‐free in the troposphere and stratosphere. For SW heating rates,
the pronounced peak and spread in MAE in the upper stratosphere result from the significantly larger heating rates
in that region, induced by ozone absorption. For LW heating rates, the MAE and its spread are very small in the
stratosphere due to an overall reduced variability in heating rates. The spread in the troposphere primarily results
from the presence of clouds. When evaluating clear‐sky and cloudy‐sky samples separately, the results show a
reduced error and error spread for clear‐sky samples in the troposphere (see Figures S2 and S3 in Supporting
Information S1). The R2 is very close to one for all levels for both, SW and LW heating rates. Nevertheless, the R2

is slightly smaller in the troposphere than in stratosphere, which is also visible in the vertically resolved R2. The
R2 has the MSE in the nominator and the deviation from the mean in the denominator. A larger variability in states
is usually hard to capture for a model. The cloud variability is larger in the troposphere compared to the
stratosphere, resulting in a larger MSE and therefore a smaller R2 in the troposphere. If the variability in states is
very small, the states are usually close to their mean value which means the denominator of R2 gets very small.
Despite a small MSE, the R2 can be smaller in those cases, which can be seen at the upper troposphere and lower
stratosphere at around 10–12 km. This region is cloud‐free with ozone effects beginning at higher levels.

Table 2
Bulk Statistics for Heating Rate Results

MAE [K/d] Bias [K/d] R2 RMSE [K/d]

SW HR–total 0.045 (2.77%) 0.004 (0.38%) 0.98 0.154 (12.50%)

SW HR–clear 0.036 (1.90%) 0.005 (0.63%) 0.99 0.090 (6.47%)

SW HR–cloudy 0.047 (3.13%) 0.002 (0.30%) 0.98 0.166 (14.26%)

LW HR–total 0.060 (4.50%) 0.008 (0.60%) 0.99 0.214 (16.86%)

LW HR–clear 0.038 (7.00%) 0.007 (1.09%) 0.98 0.130 (18.03%)

LW HR–cloudy 0.069 (4.87%) 0.008 (0.60%) 0.99 0.230 (17.12%)

Note. MAE is mean absolute error and R2 is coefficient of determination.
RMSE is root mean squared error. The percentage values in brackets denote
the relative values of MAE, bias, and RMSE.

Figure 2. Global and time mean vertical profiles of heating rates. Mean absolute error, bias, and R2 are shown for shortwave
heating rates (left) and longwave heating rates (right). The shaded area shows 90% of error spread.
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Figure 3 presents the bias of the heating rates in a height‐latitude projection, covering both SW and LW heating
rates. In the troposphere, the heating rate shows a small positive bias in the tropics and small negative bias in high
latitudes. The LW heating rates are overall unbiased except for a small negative bias near the surface in the
southern hemisphere and a small positive bias near the surface in the northern hemisphere. The bias is an
important measure that does not guarantee online stability, but is a prerequisite.

For comparison with other studies, we also present the root mean squared error (RMSE) (Table 2). Hogan and
Matricardi (2022) developed a tool for generating fast gas‐optics models and report an RMSE of less than
0.18 K/d for clear‐sky samples. Czarnecki et al. (2023) use an approach based on a linear weighted sum of
optimally chosen frequencies and report an RMSE of 0.2 K/d for clear‐sky longwave heating rates while we can
reduce the RMSE to 0.13 K/d. A similar ML‐based study is Lagerquist et al. (2023) using a U‐Net variant and also
covering 80 km of the vertical profile. They report in their Tables 8 and 9 an RMSE of 0.14 K/d for shortwave and
0.22 K/d for longwave heating rates, whereas having 107.52 (approx. 33 million) and 107.28 (approx. 19 million)
trainable parameters. Ukkonen (2022) report an MAE of 0.07 K/d and an RMSE of 0.16 K/d for shortwave
heating rates (their Figure 6) using a bidirectional NN with only 5,698 trainable parameters and a model top of
10 Pa. In comparison, Yao et al. (2023) report an RMSE of 0.032 K/d for shortwave heating rates and 0.139 K/d
for longwave heating rates (their Table 3), using a BiLSTM with 1.12 million trainable parameters and a model
top at 30 km. We can get a similar RMSE for heating rates of 0.154 K/d for shortwave and 0.214 K/d for
longwave heating rates and an MAE of 0.045 K/d and 0.060 K/d, respectively, while using only a fraction of
trainable parameters (80k).

4.2. Fluxes

The SW flux component predicts in total eight scalar SW fluxes and the LW flux component predicts two scalar
fluxes. Table 3 summarizes the performance statistics. The upward flux at the top of the atmosphere F↑,TOA,SW was
predicted well with an error of 5.7 W/m2. The downward fluxes at the surface are in general predicted worse,
where F↓,surf ,SW has an error of around 30 W/m2. The partial fluxes exhibit a smaller MAE of around 9 W/m2 for
diffuse fluxes and 15 W/m2 for direct fluxes, but direct fluxes are on average larger than diffuse fluxes. The bias
remains minimal, ranging from − 0.6 to 0.4 W/m2. The NIR and visible fluxes approximately add up to the total
SW downward flux (see Figure S4 in Supporting Information S1). The R2 of >0.76 is generally high, and we
observe that direct fluxes usually have higher R2 values of >0.83. However, the R2 values for SW fluxes
are smaller than for LW fluxes, where the R2 exceeds 0.99. The LW fluxes have a smaller MAE of 2 W/m2 and
bias of − 0.29 − 0.17 W/m2. For further analysis, we focus on the SW and LW downward flux at the surface and
refer to the Supporting Information S1 for the other fluxes.

The MAE errors are larger in the tropics, see Figure 4. However, the map plot shows no clear spatial pattern,
indicating that these errors are distributed relatively evenly across the globe. This is an important detail to note, as
other studies, such as in Figures 7e–7f of Lagerquist et al. (2023), show peaks in the MAE at regular intervals,
corresponding to their regular time step sampling. The larger errors in the tropics can be explained mainly by the
frequent presence of clouds. The bias, Figure 4 right, appears somewhat erratic but is overall slightly negative.

Figure 3. Zonal‐ and time‐mean machine learned biases for (left) shortwave heating rates, and (right) longwave heating rates.
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For LW, the MAE is very small everywhere, Figure 5, but slightly larger in
elevated areas such as the Andes and the Tibetan plateau and the bias is very
small.

4.3. Energy Consistency

Taking the difference of the left and right side of Equation 2, we expect a
mean of 0 W/m2 if the training of the heating rates and the fluxes can
approximate the energy consistency on average. The histograms of differ-
ences, computed separately for the SW and LW radiation, are shown in
Figure 6. The mean for SW radiation is 0.59 W/m2 and for LW radiation
− 0.07 W/m2. The values are within ±0.5 W/m2 which is acceptable.

When heating rate profiles and boundary fluxes are trained separately using
distinct NNs (not shown but tested in a previous version), their predictions
can become inconsistent, particularly in terms of energy balance. To address
this, we train both components jointly with an energy constraint, ensuring that
the predicted fluxes and heating rates are physically consistent. Compared to

separate NNs for fluxes and heating rates, the presented approach also improves efficiency: the flux component
now contains only a fraction of the trainable parameters and leverages shared representations learned by the
BiLSTM. As a result, the spread in energy imbalance is reduced by a factor of two, the R2 scores improve, and
biases—especially in stratospheric shortwave heating rates—are significantly reduced. Although the MAE for
total downward shortwave surface flux is slightly higher, this may reflect compensation for residual energy in-
consistencies. Crucially, the bias in total shortwave boundary fluxes is reduced by an order of magnitude.

5. Interpretation
Neural networks do not necessarily learn the underlying physical relationships. Instead, they might rely on
spurious links, which could lead to false heating rates and fluxes when applying the network to states that only
slightly deviate from the training distribution. Therefore, we now focus on interpreting the predictions of the
different networks. Here, our interest lies in understanding and assessing the extent of physically meaningful
relationships within the networks. To achieve this, we employ a Shapley Additive exPlanations (SHAP) analysis
(Lundberg & Lee, 2017), a method used for interpreting complex ML models by attributing predictions to input
features. For the calculation of Shapley values, we use the captum package (Kokhlikyan et al., 2020). Here, we
assess the strength of the contribution of specific inputs to specific outputs by comparing the mean absolute
Shapley values using a subset of the data. Specifically, we use the test set as background data set and a random
subset that corresponds to 1% of the background data set.

5.1. Shortwave Radiation

The top panel of Figure 7 shows the mean absolute Shapley values for the SW heating rates, predicted by a
BiLSTM. Looking at the air density ρ (Figure 7f), the large Shapley values are present in the troposphere and
lower stratosphere. Air density decreases exponentially with height. So, there is almost no impact of density on

Table 3
Bulk Statistics for all Fluxes

Variable MAE [W/m2] Bias [W/m2] R2

F↑,TOA,SW 5.70 − 0.34 0.99

F↓,surf ,SW 28.95 0.22 0.88

F↓,surf ,SW,vis,dir 13.51 − 0.57 0.85

F↓,surf ,SW,vis,dif 8.21 0.03 0.81

F↓,surf ,SW,NIR,dir 16.08 − 0.52 0.83

F↓,surf ,SW,NIR,dif 8.55 0.42 0.76

F↓,surf ,SW,PAR,dir 14.71 − 0.62 0.84

F↓,surf ,SW,PAR,dif 8.57 0.21 0.78

F↑,TOA,LW 2.06 − 0.29 0.99

F↓,surf ,LW 1.78 0.17 0.99

Figure 4. Time‐averaged maps of shortwave downward flux at the surface. Mean absolute error (left) and (right) bias are
shown. Right panels show zonal‐mean values.
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the heating rates in the stratosphere and mesosphere. Consequently, the network learned a sensible relation, as it
directly links density and the amount of SW radiation absorbed and emitted. The temperature input for the SW HR
output has non‐negligible values that are primarily concentrated around the diagonal, indicating that the model
uses temperature at each level to predict the heating rate at the same level, demonstrating a local dependency
(Figure 7g). The BiLSTM primarily relies on local atmospheric variables to predict the heating rates, which are
locally affected by absorption and emission of matter that is locally available (Figures 7a, 7b, and 7e).

The cloud fraction has the strongest contribution in the troposphere and affects the heating rate at the location of
the cloud. However, it also exhibits strong non‐local effects on all levels, particularly on lower levels below the
cloud layer for SW, due to cloud shading. The non‐local effects of clouds are consistent with our physical un-
derstanding, as clouds block or reflect SW radiation from the top, thereby reducing heating in the lower layers.
Additionally, there is a moderate contribution from reflected radiation in the troposphere to the cloudless
stratosphere at an approximate height of 30 km, which leads to heating in the stratosphere. This non‐local
contribution in the stratosphere is smaller than the local contribution in the troposphere potentially due to the
following reasons: only a fraction of radiation gets reflected, there is less matter to heat and also the contribution
of incoming radiation is the strongest in the stratosphere to mesosphere (see Fin,TOA in Figure 7o). The upper
stratosphere to mesosphere is cloud‐free, and therefore, there is no impact on any level. Similar effects, local, non‐
local as well as affected layers, can be found for the cloud liquid ql, and cloud ice qi variables (Figures 7a and 7b).
Unlike cloud variables, the contribution of ozone is concentrated in the stratosphere and mesosphere (Figure 7d).
Ozone mixing ratio is highest in the stratosphere at 15− 32 km and is the dominating factor that influences the
shortwave heating rate and therefore the vertical temperature profile in the stratosphere (Wallace & Hobbs, 2006).
The contribution of surface albedo α is strongest closer to the surface, associated with reflected radiation
(Figure 7o).

The middle panel of Figure 7 shows the mean absolute Shapley values for the shortwave fluxes. In general, the
fluxes F↑,TOA,SW and F↓,surf ,SW have higher Shapley values than the partial fluxes, which are fractions of F↓,surf ,SW .

Figure 5. Same as Figure 4 but for longwave downward flux at the surface.

Figure 6. Energy balance check for combined neural networks (NNs) for SW radiation (left) and LW radiation (right). The
histogram shows the difference between boundary fluxes and the vertical integral of radiative energy, both predicted by
the NNs.
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The albedo has a strong effect on F↑,TOA,SW because it sets a lower limit to how much SW radiative flux can go out
at the top of the atmosphere. Overall, input variables show a greater influence where they have larger values. For
example, cloud cover is largest in the troposphere, and is associated with a strong effect on shortwave fluxes.
Interestingly, almost all variables influence diffuse fluxes to a greater extent than direct fluxes. The stronger effect
for diffuse fluxes can be attributed to the scattering of radiation in the presence of clouds, which contributes to the
diffuse component.

The SW fluxes include both broadband fluxes at the TOA and surface, and the partial fluxes specific to certain
bands (NIR, vis, PAR). In principle, the BiLSTM output at the top and bottom levels should retain sufficient
vertical and spectral information to predict the corresponding boundary fluxes. However, our SHAP analysis
(Figures 7h, 7i, and 7l) reveals that the model relies heavily on the nonlocal information from across the column
when predicting these fluxes, in contrast to the heating rate predictions (Figures 7a–7g), which are dominated by
local input features from most variables. This suggests that, in practice, the BiLSTM latent states at the boundaries
do not encapsulate all necessary context for accurate flux prediction, likely due to the partial forgetting and
compression inherent to the recurrent network but also heating rate prediction requirement.

To test this directly, we implemented at alternative version of the model that used only the top and bottom
BiLSTM latent vectors to predict TOA and surface fluxes respectively. This variant resulted in higher biases (on
the order of 20 W/m2) and worse energy consistency, despite slightly improved accuracy for some partial SW
flux component. These results reinforce the SHAP‐based conclusion that explicitly using the full‐column latent
information leads to more reliable and physically consistent flux estimation in our case. However, we note that
other studies have successfully predicted boundary fluxes when their approach was predicting flux profiles with a
biLSTM (Ukkonen, 2022; Yao et al., 2023). As mentioned above and discussed in Supporting Information S1, we
did not investigate this approach.

5.2. Longwave Radiation

Figure 8 displays the mean absolute Shapley values for the BiLSTM used to compute the LW heating rate. One of
the strongest contributions comes from the surface temperature (Figure 8o), which is strongest directly above the

Figure 7. Mean absolute Shapley values for the neural network used for predicting SW heating rates and SW boundary fluxes. The x‐axis represents the input variables,
whereas the y‐axis represents the predicted output, indicating how each layer of the input affects the corresponding layers of the output. The height scale is in model
levels. 1, 10, and 50 km are marked for reference. Panels (a–g and o) show the input variables for the SW heating rate, whereas panels (h–n and p) show the input
variables for SW boundary fluxes.
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surface and decreases with height. Another significant contribution comes from the local temperature, which
primarily exhibits a local impact. The impact of temperature on longwave heating rate is strongest at the same
level (diagonal in Figure 8g) and also affects neighboring layers due to emission. The contribution from air
density is strongest in lower layers because there is more matter radiating and absorbing in the longwave spectrum
(Figure 8f). As density decreases with height, there is a smaller contribution to longwave radiation above the
troposphere. Cloud‐related variables—namely cloud fraction, cloud liquid ql, and cloud ice qi—contribute
similarly to longwave heating rates as they do to shortwave heating rates (Figures 8a and 8b). Their effect is
strongest locally, concentrated within the troposphere, and closely associated with convective processes. A
notable difference, however, is that cloud‐related variables exhibit slightly weaker and diffuse non‐local effects.
This is a physically meaningful effect, as scattering does not occur in longwave radiation. Instead, the effect is
primarily driven by the absorption and emission of radiation, leading to diffuse local impacts. Moreover, the
effect of ozone is much smaller on longwave heating rates and mostly local.

F↓,surf ,LW is more influenced by lower levels because they are closer to the surface, whereas F↑,TOA,LW is more
influenced by higher levels of the variables. For example, cloud fraction of the lower to middle troposphere
strongly influences F↓,surf ,LW , whereas cloud fraction up to the upper troposphere influences F↑,TOA,LW (Figure 8l).
Furthermore, F↓,surf ,LW is influenced by low tropospheric water vapor and cloud liquid, whereas F↑,TOA,LW gets
more impact from high ice clouds. This can be associated with locality, meaning the largest contribution comes
from closer emission points. There is almost no contribution to F↑,TOA,LW from the stratosphere and mesosphere
except from ozone because the air density is very small and thereby also the emitted radiation.

The training process and architecture design did not include physical constraints, except energy conservation.
However, the explainable AI analysis using Shapley values revealed physically meaningful relations between
input and output for all networks. For instance, it showed the non‐local cloud dependence of SW heating rate.
Additionally, it demonstrated the local temperature dependence of LW heating rate. The BiLSTM has an
important feature that is close to the physical scheme: the bidirectional scanning of the atmospheric column
mimics the upward and downward fluxes of the radiation scheme.

5.3. Comparison to Multilayer Perceptron

For comparison, we conducted the same analysis using a multilayer perceptron (MLP). Unlike the BiLSTM,
which efficiently leverages spatial structure and shared weights, the MLP requires more trainable parameters to
achieve comparable performance. Specifically, the MLP consists of four hidden layers with 256 nodes each,
totaling approximately 300,000 trainable parameters. Apart from the architecture, the training procedure—
including the two‐phase training strategy—was kept identical to that of the BiLSTM. In the first training

Figure 8. Similar to Figure 7 but for longwave radiation.
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phase, the learning rate is set to 5 ∗ 10− 4. The bulk statistics for heating rates
are shown in Table 4. The corresponding plots as in Figures 2–6 and statistics
for the boundary fluxes are provided in Supporting Information S1.

The MAE for the heating rate profiles ranges from 0.29 to 0.61 K/d for the
MLP, which is roughly an order of magnitude larger than that of the BiLSTM
(0.036− 0.069 K/d). For the longwave heating rates, the average bias of the
MLP (− 0.001− 0.004 K/d) is slightly smaller than that of the BiLSTM
(0.007− 0.008 K/d). However, the MLP's vertical bias profile is noticeably
noisier (see in Supporting Information S1) compared to the BiLSTM (see
Figure 2). For the shortwave heating rates, the MLP exhibits a much larger
bias of 0.31− 0.32 K/d compared to only 0.002− 0.005 K/d for the BiLSTM.
Although the MLP achieves an R2 value above zero, indicating some pre-
dictive skill, its performance remains inferior to that of the BiLSTM across all
metrics.

Overall, the MAE is comparable with similar MLP architectures, where Ukkonen (2022) report an MAE of
0.49 K/d for shortwave heating rates and Roh and Song (2020) report an RMSE of 0.92− 1.03 K/d for longwave
heating rates and 0.40− 0.47 K/d for shortwave heating rates. Yao et al. (2023) reports an RMSE of 0.189 K/d for
shortwave heating rates and 0.394 K/d for longwave heating rates, which is better, but their NN has twice as many
trainable parameters and their model top is 30 km.

Figure 9 shows the mean absolute Shapley values for shortwave radiation using an MLP. The MLP captures some
local relationships, particularly for specific humidity, cloud liquid water, and cloud ice (Figures 9a–9c). However,
for variables such as ozone, density, and temperature, the MLP relies on non‐physical or non‐causal associations
to predict heating rates. For example, it learns to use stratospheric ozone to predict tropospheric temperature
tendencies (Figure 9d) or lower tropospheric density to predict heating rates in the upper stratosphere (Figure 9f).

The mean absolute Shapley values for longwave radiation are shown in Figure 10. As for the MLP applied to
shortwave radiation, the longwave MLP identifies the importance of certain local features such as cloud liquid
water influencing the longwave heating rate at the same vertical level (Figure 10c). However, the MLP also
attributes strong non‐local influence to temperature, with significant contributions from levels above and below

Table 4
Bulk Statistics for Heating Rate Results With the MLP

MAE [K/d] Bias [K/d] R2 RMSE [K/d]

SW HR–total 0.59 (19%) 0.32 (2.8%) 0.33 0.93 (48%)

SW HR–clear 0.52 (14%) 0.31 (2.1%) 0.31 0.67 (25%)

SW HR–cloudy 0.61 (22%) 0.31 (3.2%) 0.37 0.99 (55%)

LW HR–total 0.44 (31%) 0.003 (1.1%) 0.72 0.89 (64%)

LW HR–clear 0.29 (62%) 0.004 (0.7%) 0.72 0.49 (89%)

LW HR–cloudy 0.52 (33%) − 0.001 (1.4%) 0.72 1.02 (68%)

Note. MAE is mean absolute error and R2 is coefficient of determination.
RMSE is root mean squared error. The percentage values in brackets denote
the relative values of MAE, bias, and RMSE.

Figure 9. Similar to Figure 7 but using a multilayer perceptron for shortwave radiation.
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the target level (Figure 10g). This contrasts with the BiLSTM, which predominantly relies on local temperature
information for predicting longwave heating rates.

The SHAP plots show that the MLP learns some important things, such as stratospheric ozone is important, or the
density in the troposphere is more important than the density in the stratosphere, where the values are larger.
However, the MLP fails to attribute it to the correct location for the heating rates. For instance, stratospheric ozone
affects heating on all levels. Additionally, some levels appear completely irrelevant, leading to the checkerboard
pattern. This suggests that physics‐inspired networks, such as BiLSTMs, are able to capture important aspects of
the underlying physics.

6. Conclusion and Discussion
Radiation is one of the most computationally expensive components in ESMs, despite several simplifications
built into radiation parameterization and its application in ESMs. Machine learning can potentially help to speed
up the calculation related to radiation—a key energy transfer in the climate system—while retaining accuracy.
There have been attempts to emulate radiation using ML for different applications, but so far none for
RTE+RRTMGP tailored to ICON. Additionally, the interpretation of the ML‐based radiation emulation has often
been missing. Here, we develop two NNs to emulate shortwave and longwave heating rates and surface fluxes.
We use Bidirectional Long Short‐Term Memory (BiLSTMs) to compute vertically resolved heating rates and a
fully connected NN that computes boundary fluxes from the BiLSTM output.

Our ML‐based model accurately emulates heating rates. The shortwave heating rates have an MAE of 0.045 K/d
(2.77%) and a bias of 0.004 K/d (0.38%). The longwave heating rates have an MAE of 0.060 K/d (4.50%) and a
bias of 0.008 K/d (0.60%). Both networks perform better on clear sky conditions than under cloudy sky condi-
tions, emphasizing the need for further research on handling clouds with ML‐based emulation. This is a subgrid
process, as coarse resolutions do not resolve clouds, and clouds are not homogeneously distributed horizontally.

Using SHAP, we found that the networks learned relationships consistent with established physical principles.
The BiLSTM predicting shortwave heating rates learned that locally absorbed and non‐locally reflected radiation
by clouds is significant, whereas the BiLSTM model for longwave heating rates identified the temperature profile
as the most important contributor, given that the atmosphere itself is a source of longwave radiation. Additionally,
the local cloud effect due to absorption and emission extends non‐locally to influence adjacent regions in the
atmosphere. In contrast, an MLP cannot account for such spatial dependencies and instead relies on correlations
that may not reflect the underlying physics, highlighting the advantage of BiLSTMs for radiative transfer
problems.

Figure 10. Similar to Figure 8 but using a multilayer perceptron for longwave radiation.
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In this study, we focus on developing an accurate and interpretable data‐driven architecture for implementation
into the coarse‐resolution version of the ICON model, providing a framework to overcome the “black box”
approach in previous ML‐based radiation developments. We neglected greenhouse gases and aerosols in this
study, as we used only 1 year of training data, and they are prescribed by global annual mean values. This
limitation is planned to be addressed in future work targeting long‐term projections. We show that the NNs have
good offline accuracy, and our interpretability analysis shows that the networks learned physically meaningful
input‐output connections. Additionally, we show that the NNs are statistically energy consistent, enforcing it
during training. These connections and approximate energy consistency hold promise for our ML‐based emu-
lators to also perform well online when coupled to a model. The analysis of online performance will be presented
in a future study. This study is paving the way for trustworthy physically consistent ML‐based radiation calcu-
lations in a state‐of‐the‐art ESM such as ICON, which may allow for more frequent radiation calls, and thereby an
improved representation of cloud‐radiation interactions.
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