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Objectives ‘#7
DLR

» Create soiling loss forecasts to enable
» Improved solar energy yield forecasts

= Optimized cleaning to reach the best trade-off between the soiling losses & cleaning costs
= Avoid unnecessary cleanings just before strong rainfalls or strong soiling events

» Evaluate different soiling forecasts based on the most recent soiling
measurements & different weather forecasts & long-term meteorological data

Images taken at CIEMAT‘S PSA.
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Measurement data

= 1 year radiation, soiling loss & precipitation
measurements from 33 measurement stations of
the West African Power Pool network

» run by Yandalux Solar GmbH and CSP Services GmbH as
part of a World Bank Program (ESMAP)

= PV soiling loss converted to CST soiling loss (see Ruiz
Donoso et al. 2025, previous presentation)

= Forecasts created for Malanville, Benin

CST soiling Loss (SL) obtained from two reference PV
modules in Malanville[WAPP. 2025]

S é « Soiled module
@
R 757 Lo o was cleaned
)
4 50 L= about once a
2 7 £R = month
5 257 - T8
. Vg Statlon‘Tﬂ ” "E =
o - - - ! — R \V\alanvitle .
2021 09 2021-11 2022-01 2022-03 2022-05 2022-07 =

time [days]
—— soiling loss @® manual cleaning ----  rain sum

Stefan Wilbert, DLR Institute of Solar Research




Soiling forecasting approaches — part 1: #7
Deposition on days without rain DLR

» Persistence model from (Norde Santos et al., 2022)
» soiling rate is predicted as the average of the last 20 days without (natural/artificial) cleaning

= Kimber model (Kimber et al., 2006)
» fixed soiling loss rate of 2.8%/d (avg. from Niamey in Niger, NCPRE, (2025)

= HSU model with different settling velocities for different particle diameters (Coello and Boyle, 2019):

» soiling rate depending on PM & tilt with default settling velocities v of 0.0009 m/s for PM2.5
(Particulate matter, d < 2.5um) & 0.004 m/s for remaining PM10 particles

= Mass deposition per time step t = (vyg_25 (PM19—PM, <) + v, sPM,c) - t - cos(0)

= Conversion of PV soiling losses to CST soiling losses with scaling factor 6.5 from (Abraim et al. 2023)
= See previous presentation (Ruiz Donoso et al., 2025 for details)
» Here accepted as we use the scaling for all tested models & focus on model comparison.

» |In areal CST plant the local CST soiling measurements should be used for a calibration of the
forecasts, also reducing the effect of the simple scaling.
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Soiling forecasting approaches — part 2:

Natural Cleaning Modeling

Option 1) Full cleaning above threshold of 1 mm daily rain
sum, no cleaning otherwise

Option 2) completeness of natural cleaning (CNCg ) model
(Norde Santos et al., 2024) with logarithmic function:

C N CSL= SLbefore_ SLafter

SLbefore
= minimun (a - log(rain sum) + b,CNCq ...)

CNCg, nax = Luncertainty? weighted avg. CNCg

for rain sums above 40mm
1

unc?

Wi =
__ X W;CNC;
SL’ max Z w;

CNC = 0.97
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Soiling forecasting approaches: model & input data options

Forecast time 2022-01-11
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I.  MERRAZ2 reanalysis data from 40 years used as forecast with 40 ensemble members

ii. ECMWEF Medium Range Ensemble forecast (ENS) for rain + CAMS global atmospheric composition
forecasts (in case that PM is used by model) + MERRA2 (200 ensemble members)

» First 6 days:
- precipitation: ECMWEF forecast (15t to 6™ day) with 5 of 50 ensemble members
= 5 members with rain sum closest to avg./lowest/highest rain sum & 25%, 75% percentile
~ = PMdata: 1stto 5" day: CAMS PM forecast, separated into PM2.5 & PM10
. 6t day: PMs from 51" day
* From ca. 7 days to 365 days: MERRAZ2 data (40 ensemble members)
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Case study & validation in Malanville, Benin 4#7
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Case study & validation in Malanville
Evaluation of different soiling & cleaning models with MERRA2 data DLR
MAD

17.51

* Results shown for mean absolute deviation (MAD) of the
avg of all ensemble members _

* “Persistence+log” & “Persistence+threshold” are %122 — —
* among the best models up to day 18 (persistence 2 s — —— ;i
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» Effect of bias -> calibration of forecast with on site data
some time after starting forecast for the site could be §

helpful 2 s
e conclusions similar for RMSD, less advantage for “Kimber + 5.0
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Case study & validation in Malanville
Evaluation of different soiling & cleaning models
with MERRA2 data: CRPS

» CRPS = Continuous Ranked Probability Score

Common error metric for evaluation of probabilistic forecasts that
describes also if the predicted distributions are good

CRPS is negatively oriented (smaller CRPS = better)
same unit as the forecasted variable
converts to MAD for deterministic forecasts
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= More pronounced deviations of models & now
advantage for HSU models after day 8
= Although avg. of ensemble is worse than “Kimber+log” in terms

of MAD, predicted distributions fit better to observations
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Effect of using additional CAMS PM and/or ECMWEF rain data#

DLR
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Summary 4
DLR

Soiling loss forecasts can be created with various models

Partial cleaning modelling improved all forecast models

More complex deposition models & forecast data might be useful, but not always

= Persistence deposition + probabilistic partial cleaning forecast performed best up to ~day 18
In the case study

» forecasts with 40 year reanalysis data ensemble from MERRAZ2 reach similar or even better
MAD than those using also ECMWEF rain forecasts & CAMS PM forecasts

= Advantage found in terms of predicted distributions (CRPS)
= Calibration of soiling models is relevant for forecast accuracy

Estimate of forecast errors of soiling loss MAD ~10% compared to up to 90% solling loss in the
data set

= promising for application for cleaning schedule optimization & improved yield predictions
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