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Objectives

▪ Create soiling loss forecasts to enable

▪ Improved solar energy yield forecasts

▪ Optimized cleaning to reach the best trade-off between the soiling losses & cleaning costs

▪ Avoid unnecessary cleanings just before strong rainfalls or strong soiling events

▪ Evaluate different soiling forecasts based on the most recent soiling 

measurements & different weather forecasts & long-term meteorological data
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Measurement data
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▪ 1 year radiation, soiling loss & precipitation 

measurements from 33 measurement stations of 

the West African Power Pool network 

▪ run by Yandalux Solar GmbH and CSP Services GmbH as 

part of a World Bank Program (ESMAP)

▪ PV soiling loss converted to CST soiling loss (see Ruiz 

Donoso et al. 2025, previous presentation)

▪ Forecasts created for Malanville, Benin

CST soiling Loss (SL) obtained from two reference PV 

modules in Malanville[WAPP,  2025]

• Soiled module 

was cleaned 

about once a 

month

Station in 

Malanville

Malanville
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Soiling forecasting approaches – part 1:
Deposition on days without rain

▪ Persistence model from (Norde Santos et al., 2022)

▪ soiling rate is predicted as the average of the last 20 days without (natural/artificial) cleaning

▪ Kimber model (Kimber et al., 2006) 

▪ fixed soiling loss rate of 2.8%/d (avg. from Niamey in Niger, NCPRE, (2025)

▪ HSU model with different settling velocities for different particle diameters (Coello and Boyle, 2019): 

▪ soiling rate depending on PM & tilt with default settling velocities 𝑣 of 0.0009 m/s for PM2.5 

(Particulate matter, d < 2.5µm) & 0.004 m/s for remaining PM10 particles

▪ Mass deposition per time step t = 𝑣10−2.5 (𝑃𝑀10−𝑃𝑀2.5) + 𝑣2.5𝑃𝑀2.5 ∙ 𝑡 ∙ 𝑐𝑜𝑠 θ

▪ Conversion of PV soiling losses to CST soiling losses with scaling factor 6.5 from (Abraim et al. 2023)

▪ See previous presentation (Ruiz Donoso et al., 2025 for details)

▪ Here accepted as we use the scaling for all tested models & focus on model comparison.

▪ In a real CST plant the local CST soiling measurements should be used for a calibration of the 

forecasts, also reducing the effect of the simple scaling.
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Soiling forecasting approaches – part 2: 
Natural Cleaning Modeling
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Option 1) Full cleaning above threshold of 1 mm daily rain 

sum, no cleaning otherwise

Option 2)  completeness of natural cleaning (CNCSL) model 

(Norde Santos et al., 2024) with logarithmic function:

Partial rain cleaning 
model with 

logarithmic rain sum 
dependence.

Regression based on 
32 soiling stations in 

West Africa².

CNCSL=
SL

before
−SL

after

SL
before

=  𝑚𝑖𝑛𝑖𝑚𝑢𝑛 (𝑎 ∙ l𝑜𝑔 𝑟𝑎𝑖𝑛 𝑠𝑢𝑚 + 𝑏 , CNCSL, max)
 

 CNCSL,max = 1/uncertainty² weighted avg. CNCSL

for rain sums above 40mm 

𝑤𝑖 =
1

𝑢𝑛𝑐2

 𝐶𝑁𝐶𝑆𝐿, 𝑚𝑎𝑥 =
σ 𝑤𝑖∙𝐶𝑁𝐶𝑖

σ 𝑤𝑖
= 𝟎. 𝟗𝟕 



▪ Model combination options

1. Kimber + rain cleaning threshold model

2. Kimber + rain cleaning log model

3. HSU + threshold

4. HSU + log

5. Persistence + threshold

6. Persistence + log

▪ Input options:

i. MERRA2 reanalysis data from 40 years used as forecast with 40 ensemble members

ii. ECMWF Medium Range Ensemble forecast (ENS) for rain  + CAMS global atmospheric composition 

forecasts (in case that PM is used by model) + MERRA2 (200 ensemble members)

▪ First 6 days:

▪ precipitation: ECMWF forecast (1st to 6th day) with 5 of 50 ensemble members

▪ 5 members with rain sum closest to avg./lowest/highest rain sum & 25%, 75% percentile

▪ PM data: 1st to 5th day: CAMS PM forecast, separated into PM2.5 & PM10

▪ 6th day: PMs from 5th day

▪ From ca. 7 days to 365 days: MERRA2 data (40 ensemble members)

Soiling forecasting approaches: model & input data options
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All forecasts are 

probabilistic due 

to input data

Example forecast 

HSU + log with 

combined input 

data



Case study & validation in Malanville, Benin
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Case study & validation in Malanville
Evaluation of different soiling & cleaning models with MERRA2 data
MAD
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• Results shown for mean absolute deviation (MAD) of the 
avg of all ensemble members

• “Persistence+log” & “Persistence+threshold” are 
• among the best models up to day 18 (persistence 

benefits from soiling rate & clear dry / rain seasons)
• better than other models for forecast lead time of ~1 

year (persistence benefits from seasonal effect)
• Although HSU takes into account the MEERA2 PM data it 

performs worse than “Kimber + log” in terms of MAD
• Effect of bias -> calibration of forecast with on site data 

some time after starting forecast for the site could be 
helpful

• conclusions similar for RMSD, less advantage for “Kimber + 
log”

• logarithmic rain cleaning model improves all soiling 
forecasts compared to threshold



Case study & validation in Malanville
Evaluation of different soiling & cleaning models 
with MERRA2 data: CRPS

10
Stefan Wilbert, DLR Institute of Solar Research

▪ CRPS = Continuous Ranked Probability Score

▪ Common error metric for evaluation of probabilistic forecasts that 

describes also if the predicted distributions are good

▪ CRPS is negatively oriented (smaller CRPS = better) 

▪ same unit as the forecasted variable

▪ converts to MAD for deterministic forecasts

▪ More pronounced deviations of models & now 

advantage for HSU models after day 8

▪ Although avg. of ensemble is worse than “Kimber+log” in terms 

of MAD, predicted distributions fit better to observations



Effect of using additional CAMS PM and/or ECMWF rain data

▪ Only minor benefit with 
additional data for 
MAD

▪ & only in first weeks

▪ Small additional 
improvement for CRPS 
for days 8-30

▪ MERRA2 ensemble 
seems to describe avg. 
weather conditions 
quite well for 
Malanville
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Summary

▪ Soiling loss forecasts can be created with various models

▪ Partial cleaning modelling improved all forecast models

▪ More complex deposition models & forecast data might be useful, but not always

▪ Persistence deposition + probabilistic partial cleaning forecast performed best up to ~day 18 

in the case study

▪ forecasts with 40 year reanalysis data ensemble from MERRA2 reach similar or even better 

MAD than those using also ECMWF rain forecasts & CAMS PM forecasts

▪ Advantage found in terms of predicted distributions (CRPS)

▪ Calibration of soiling models is relevant for forecast accuracy

▪ Estimate of forecast errors of soiling loss MAD ~10% compared to up to 90% soiling loss in the 

data set

▪ promising for application for cleaning schedule optimization & improved yield predictions
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Thank you for your attention!
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