SCALABLE AND ENERGY EFFICIENT COMPOSITING OF SENTINEL-2 TIME SERIES

Pablo d'Angelo, Paul Karlshöfer, Uta Heiden DLR, Remote Sensing Technology Institute

Bare surface composites Scalability, Energy efficiency

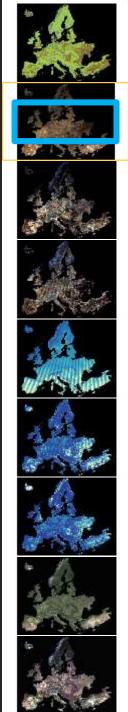
DLR

- Soil is important part of earths ecosystem
- Bare surface composite
 - Average reflectance of bare surface pixels, statistical products and quality layers
 - Applications: Soil Health, Agriculture, Erosion, ...
- Long time series needed to catch bare soil occurrence.
 - "Clean" reflectance, without vegetation or plant residue
 - Cloud Issues
- What about the environmental impact of (re)processing 431 TB (445806 S2 scenes)?

Sentinel-2 Image archive

Reflectance composite

Bare Surface Reflectance composite

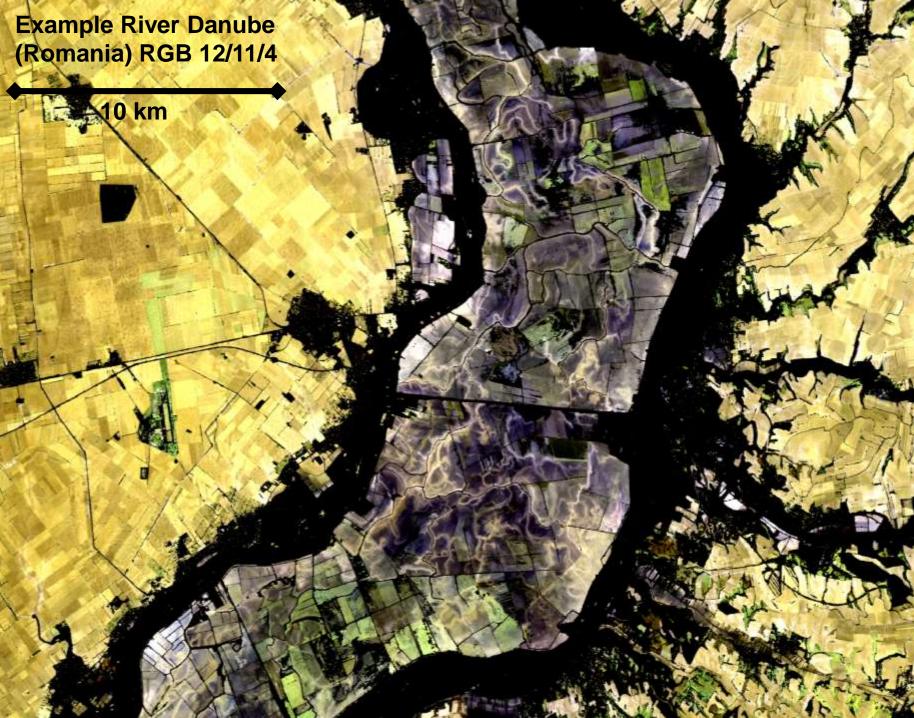


SoilSuite 2018 – 2022

- Sentinel-2
- 2018 2022
- < 80 % cloud cover
- > 20° sun elevation
- 20 m pixel size
- 10 bands

Bare Surface Reflectance Composite

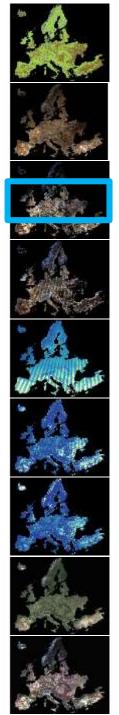
– Mean


SoilSuite 2018 – 2022

- Sentinel-2
- 2018 2022
- < 80 % cloud cover
- > 20° sun elevation
- 20 m pixel size
- 10 bands

Bare Surface Reflectance Composite

– Mean



SoilSuite 2018 – 2022

- Sentinel-2
- 2018 2022
- < 80 % cloud cover
- > 20° sun elevation
- 20 m pixel size
- 10 bands

Bare Surface Reflectance Composite

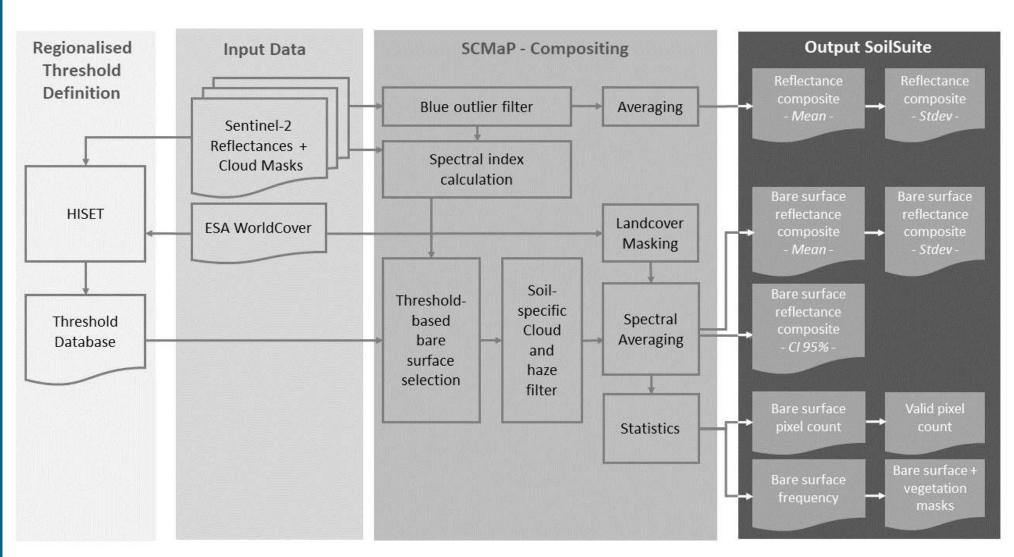
Standard deviation

SoilSuite 2018 – 2022

- Sentinel-2
- 2018 2022
- < 80 % cloud cover
- > 20° sun elevation
- 20 m pixel size
- 10 bands

Bare Surface Reflectance Composite

Standard deviation



SoilSuite for Europe

Soil Composite Mapping Processor (SCMAP)

Karlshöfer et al. 2024 https://doi.org/10.1016/j. geoderma.2025.117340

Heiden et al., 2025: Tech report. https://doi.org/10.15489/gkud8cudg596

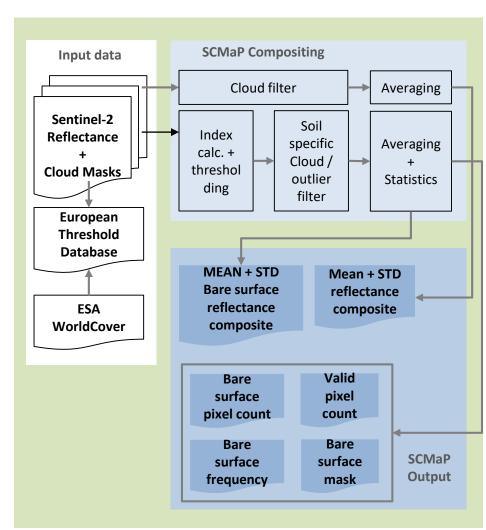
Heiden, U. et al.,2022: https://doi.org/10.3390/r s14184526

Rogge et al., 2018: https://doi.org/10.1016/j.rse.2017.11.004

Computation platform terrabyte

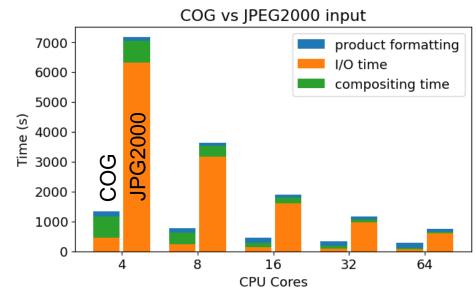
- Joint Leibnitz Rechenzentrum (LRZ), DLR High performance data analytics platform
- Compute Cluster
 - 272 CPU-Nodes with ~44.000 Intel Xeon Platinum CPU vCores und 273 TB RAM
 - 48 Nvidia A 100 GPU-Nodes with 188 GPUs and 47 TB RAM
 + 14 TB GPU RAM
- Online-Storage (DSS), EO data archive
 - 53 PB net, 6 PB user space
 - GPFS Filesystem with 360 Gbit/s Infiniband
- Highly efficient hot water cooling (~3% overhead)
- User friendly cloud services
 - STAC API, Jupyter, remote desktop etc.
- More info: Talk by Peter Friedl, 14:00 Hall L3

slido.com #3944109


Guess SoilSuite energy requirements

SCMaP Implementation

- Python frontend/orchestration
 - Multi Platform support: local workstations, cloud platforms (OTC), HPC
 - Input from: file system, STAC collections, Google cloud storage, any source supported by EODAG
- Core algorithm: C++ Implementation
 - Data I/O via GDAL
 - Local (per-pixel) computations, processing in chunks
 - Parallel processing using OpenMP both at data loading and compositing stage.
- Python product formatting
 - Applying cutlines, COG generation, reprojection etc.


SCMaP Implementation Scalability

Parallelization:

- Linear speedup up to 32 threads
- Balanced IO vs compositing times
- Product formatting step does not scale well.
- Impact of input file formats
 - cloud optimized GeoTIFF vs JPEG 2000
 - JPEG 2000 6 times slower

Continent wide processing Format and IO limits.

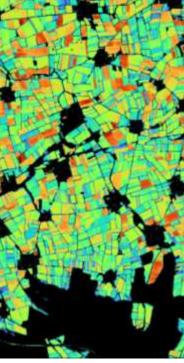
- Naïve parallel processing I/O limited
 - 80 parallel jobs
 - 2000 to 10000 COG files per job
 - GPFS file system optimized for large chunks
 - Parallel reading of tiny chunks from ~400000 simultaneously open files overloads file system
 - Solution: Parallel loading/decompression of full time series into RAM.
- Scalable processing, EU in 4:08 h
 - single SLURM array job for 1150 S2 Tiles
 - Input data throughput: ~200 Gbit/s
- Power consumption: 26 kWh

S2 tile grid and bare surface composite

Conclusions

- SoilSuite energy consumption equivalent to driving 150 km with an electric car.
 - Consider algorithms, data formats and platform.
 - Importance of data storage formats.
 - Don't ignore time series access patterns.
 - Is multiple files per band storage really the best way?
 - "High performance" in HPC is true.

Future


- Data storage vs compute costs?
- Release SCMaP as OpenEO custom function.
- Comparison to resource consumption of other continent wide products?

Open Data access

Bare surface

Bare frequency

Poll results

Multiple Choice Poll	23 votes	음 23 participan	its		
4-16 - 0 votes					
•					0%
16-64 - 4 votes					
					17%
64-256 - 3 votes					
					13%
256-1024 - 1 vote					
256-1024 - 1 vote					4%
4004 4000 7					
1024-4096 - 7 vot	tes				30%
					30%
4096 - 16384 - 4	votes		k		
					17%
16384 + - 4 votes					
					17%