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 A B S T R A C T

The development and testing of unmanned aerial vehicle (UAV)-based condition monitoring systems is time 
consuming, costly and poses safety risks. While numerous examples show that simulation environments are well 
suited to support the development process, existing environments fall short of simulating quantities specific to 
the condition monitoring of solar tower power plants. To bridge this gap, we present a simulation environment 
that provides quantities necessary to investigate such systems in simulation, prior to their application in 
real solar tower power plants. The presented environment models the state of the solar field and computes 
observations of the field and reflections of a point light source, as seen from a virtual camera. In addition, 
it allows for the navigation of a simulated UAV in the virtual solar field in response to realistic UAV 
control signals. The simulated concentrator corner points were found to match the concentrator corner points 
determined by a bundle adjustment measurement up to an RMSE = 23.7mm before and RMSE = 4.6mm after 
accounting for translational, rotational and scale errors. The simulated reflections of a point light source were 
found to match the measured reflections up to an RMSE of 2.25mrad in X-direction and 2.09mrad in Y-direction 
in the concentrator coordinate system. After eliminating errors in the camera position estimate, concentrator 
orientations and mirror surface slope errors, the remaining RMSE is 0.35mrad in X-direction and 0.22mrad in 
Y-direction. We conclude that the proposed simulation environment is a valuable tool for the development of 
UAV-based condition monitoring systems of solar tower power plants.
1. Introduction

The efficiency of concentrating solar power (CSP) tower plants is, 
among other factors, negatively affected by optical errors in the solar 
field such as heliostat tracking errors, canting errors and slope errors. 
A common approach to detect such errors is to use computer vision al-
gorithms on images recorded with a camera mounted on an unmanned 
aerial vehicle (UAV) [1–4]. Currently, flight routes for these UAVs are 
planned prior to their flight, while measurement data is evaluated after 
the flight. The measurement data quality is often only recognized to be 
insufficient when the UAV has already landed. Performing the image 
data analysis in real-time, i.e. while the UAV is still flying, opens up 
new possibilities for automated monitoring, as the UAV flight route can 
be planned dynamically, i.e. based on real-time data analysis results. 
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However, the development of UAV-based systems comes with several 
challenges: Field tests are time-intensive, dependent on unplannable 
or unpredictable environmental conditions and always pose the risk of 
material damage. These problems can be mitigated using a simulation 
environment, in which UAV-based systems can be developed and tested 
safely, at low cost, and efficiently prior to their application in the real 
world.

UAV-based CSP condition monitoring systems are typically com-
prised of several components, such as a perception module and a 
geometric computation pipeline [1,4]. While various UAV simulators 
have been proposed [5], none of them offers the simulation of quanti-
ties required for the development of CSP condition monitoring systems, 
such as characteristic features in the solar field or reflections as seen 
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Acronyms

CCS concentrator coordinate system
CSP concentrating solar power
DLR German Aerospace Center
EOR exterior orientation
FCS facet coordinate system
FOMS fitted orientations, measured surfaces
GCS global coordinate system
GPS global positioning system
GSD ground sampling distance
ICS image coordinate system
IOR interior orientation
LED light-emitting diode
MAE mean absolute error
OCS observer coordinate system
RMSE root mean squared error
ROIS raw orientations, ideal surfaces
SITL software-in-the-loop
SSE steady state srror
STJ Solar Tower Jülich
UAV unmanned aerial vehicle

from a UAV camera. Conversely, simulation tools in the CSP com-
munity [6,7] focus on modeling optical properties of the solar field 
but do not provide the quantities required for the development of 
UAV-based systems. This work aims to bridge this gap by presenting 
and validating a novel simulation environment, designed to facilitate 
the development and testing of UAV-based CSP condition monitoring 
systems. It is important to note that the purpose of this work is 
to present the simulation infrastructure itself, rather than a specific 
system. Throughout this paper, the term System Under Development will 
be used in an abstract sense to refer generically to any system being 
developed and tested using the proposed simulation environment.

The presented simulation environment extends AirSim [8], an open-
source UAV simulator that allows for real-time flight dynamics sim-
ulation in response to standard flight control commands. Built on
Unreal Engine [9], AirSim enables realistic rendering of virtual environ-
ments, allowing a System Under Development’s perception module to be 
integrated into the simulation loop. The developed extensions add a 
solar field model and an image feature computation model, enabling 
the simulation of characteristic image features, as seen by a UAV 
camera. The modular structure allows for replacing perception outputs 
with the computed image feature data and systematically controlling 
noise levels during development and testing.

Following this introduction, Section 2 describes the conventions 
and notation used throughout the paper and outlines the mathematical 
preliminaries. Section 3 provides an overview of the simulation system 
and describes the functionality of each components in detail. The val-
idation methodology for key quantities of the simulation environment 
is presented in Section 4. Section 5 presents the validation results and 
discusses their implications for the transferability of systems developed 
in simulation to real-world applications. Finally, Section 6 concludes 
the paper and outlines directions for future research.

2. Preliminaries

2.1. Conventions and notation

The solar field is assumed to consist of 𝑁 heliostats, where each 
heliostat consists of two tracking axes and a concentrator with 𝑀
facets. The concentrator coordinate system (CCS) of a heliostat 𝑛 is 
denoted by CCS𝑛 and the facet coordinate system (FCS) of a facet 𝑚
of concentrator 𝑛 is denoted by FCS . The state of the solar field is 
𝑛,𝑚

2 
Fig. 1. Overview of the coordinate systems for the case 𝑁 = 2 and 𝑀 = 4. The yellow 
rectangle represents the camera sensor plane.

characterized by the pose of every FCS𝑛,𝑚. These coordinate systems 
are defined w.r.t. the global coordinate system (GCS), chosen to be 
a local east-north-up coordinate system on the northern hemisphere 
in accordance with the SolarPACES Guideline for Heliostat Performance 
Testing [10]. Likewise, the pose of a camera moving through the solar 
field is described by its own coordinate system, which changes over 
time as the camera navigates the environment. As the acronym CCS is 
already in use, the camera coordinate system is denoted by observer 
coordinate system (OCS). The 2D coordinate system associated to the 
camera sensor is denoted by image coordinate system (ICS). Fig.  1 
illustrates the coordinate systems used throughout this work.

Scalar values are represented as lowercase letters with regular font, 
vectors as lowercase letter with bold font, and matrices in uppercase 
letters with bold font.

2.2. Coordinate transformations

The spatial relationship of the aforementioned coordinate systems 
is described within the framework of coordinate transformations. The 
transformation between two coordinate systems CS1 and CS2 is conve-
niently summarized in a 4 × 4 matrix of the form 

𝑻 CS1CS2 =

( 𝑟11 𝑟12 𝑟13 𝑡1
𝑟21 𝑟22 𝑟23 𝑡2
𝑟31 𝑟32 𝑟33 𝑡3
0 0 0 1

)

=
(

𝑹CS1
CS2 𝒕CS1CS2
𝟎 1

)

(1)

where 𝒕CS1CS2 denotes the translation from CS1 to CS2 and 𝑹CS1
CS2 denotes 

the rotation from CS1 to CS2.

2.3. Transforming points and point clouds

Characteristic features in the solar field, e.g. facet corner points or a 
point light source, are represented by points and point clouds. A point 
𝒑CS2 = (𝑝CS2X , 𝑝CS2Y , 𝑝CS2Z )𝑇  expressed w.r.t. CS2 can be expressed w.r.t. 
CS1 in the following way: 
(

𝒑CS1
1

)

= 𝑻 CS1CS2 ⋅
(

𝒑CS2
1

)

. (2)

To simplify notation, appending the entry 1 to the multiplied vector 
and only considering the first three entries of the resulting vector is 
implicitly assumed whenever a point is multiplied by a transformation 
matrix, i.e. 
𝒑CS1 = 𝑻 CS1CS2 ⋅ 𝒑

CS2 . (3)

Conversely to Eqs. (2) and (3), a point expressed w.r.t. CS1 can be 
expressed w.r.t. CS2 by multiplying with the inverse of 𝑻 CS1CS2: 

𝒑CS2 =
(

𝑻 CS1CS2
)−1

⋅ 𝒑CS1 = 𝑻 CS2CS1 ⋅ 𝒑
CS1 . (4)
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A point cloud 𝑷  is a collection of 𝑁 points and can be expressed in 
form of a matrix: 

𝑷 CS2 =
⎛

⎜

⎜

⎝

𝑝CS2X1 𝑝CS2Y1 𝑝CS2Z1...
...

...
𝑝CS2XN 𝑝CS2YN 𝑝CS2ZN

⎞

⎟

⎟

⎠

𝑇

. (5)

Analogously to Eqs. (2) and (3), a point cloud can be expressed w.r.t. 
another coordinate system, i.e. 𝑷 CS1 = 𝑻 CS1CS2 ⋅ 𝑷

CS2.

3. Simulation methodology

3.1. Simulation system overview

The simulation environment is designed to enable the development 
and testing of various Systems Under Development. While this paper 
does not aim to provide a detailed description of any specific system, 
Section 3.6 briefly discusses possible configurations and characteristics 
of such systems. Based on the operational principles of typical UAV-
based CSP condition monitoring systems, the following models have 
been identified as necessary:

1. A model representing where the facet corner points of each 
heliostat are located w.r.t. to both GCS and ICS. This infor-
mation is used in systems utilizing the projected facet corner 
points, e.g. camera pose estimation [1] or coarse calibration 
algorithms [2].

2. A reflection model, enabling to compute how objects reflected by 
the observed heliostats map to the ICS of an observing camera. 
This information is used in systems that estimate the solar field 
state from reflections visible in the observed heliostats [1,4].

3. A model to render image data, allowing to include the Systems 
Under Development’s perception module in the simulation loop. 
Through this, characteristics specific to the perception module 
(such as noise processes) can be considered in simulation.

In addition to the aforementioned models, the development of 
real-time systems introduces the following requirements:

4. A model to compute the UAV position and velocity (and hence 
the camera pose) as a function of UAV control signals.

5. All of the above models should be implemented such that they 
can be run in real-time.

Fig.  2 illustrates the modular architecture of the simulation envi-
ronment (highlighted in gray) in which the System Under Development
(highlighted in yellow) can be developed and tested.

The Solar Field State (Section 3.2) serves as a virtual representation 
of the solar field. It is parametrized by field data such as heliostat posi-
tions, concentrator geometry and surface measurements and describes 
the motion of each FCS𝑛,𝑚 w.r.t. the GCS using a Kinematic Model and 
a Surface Model.

The Ground Truth Image Feature Computation (Section 3.4) simulates 
which image features a virtual camera observes as a function of the
Solar Field State and the Camera State (Section 3.3). These image fea-
tures can represent both facet corner points and object reflections. Since 
the current development of condition monitoring systems by German 
Aerospace Center (DLR) is based on point light reflections, the scope 
of this paper is limited to the simulation of point lights. However, the 
presented framework can easily be extended to the reflection of other 
objects, such as tower edges, astronomical objects, etc.

Alternatively, the UAV & Graphic Simulation (Section 3.5) can be 
used to render entire images, which can be passed to the System 
Under Development’s perception module in order to extract relevant 
image features. In addition, the UAV & Graphic Simulation computes 
the subsequent UAV pose as a function of UAV control signals, which 
can be output by the System Under Development’s UAV control logic.
3 
Fig. 2. The presented simulation environment consists of four components (gray 
colored boxes), communicating with each other and the System Under Development
(yellow colored box). Optional paths are shown as dashed lines. (For interpretation of 
the references to color in this figure legend, the reader is referred to the web version 
of this article.)

3.2. Solar field state

As mentioned in Section 3.1, relevant quantities for solar tower 
power plant condition monitoring systems include facet corner points 
and point light reflections. Prior to their projection onto the ICS, these 
points first have to be expressed w.r.t. the GCS. This computation is 
supported by the Solar Field State, a geometric model composed of the
Kinematic Model and the Surface Model. The Solar Field State describes 
the spatial relation between GCS, CCS𝑛 and FCS𝑛,𝑚. This information, 
combined with the concentrator and facet geometry and the Camera 
State, is used to compute the projection of these points onto the ICS.

3.2.1. Kinematic model
The kinematic model 𝑲𝑛 describes the motion of CCS𝑛 as a function 

of two tracking angles, 𝜃𝑛 and 𝜏𝑛, i.e. 

𝑲𝑛 = 𝑲(𝜃𝑛, 𝜏𝑛|𝒐𝑛,𝒌𝑛) = 𝑻 GCSCCS𝑛
, (6)

where 𝒐𝑛 denotes the heliostat origin w.r.t. the GCS and the set of 
parameters 𝒌𝑛 account for the heliostat geometry and potential mount-
ing errors. In this work, 𝒌𝑛 is obtained by fitting the kinematic model 
to a number of calibration points, collected using the camera-target 
method [11]. 𝜃𝑛 and 𝜏𝑛 are computed from a motor movement model, 
which takes motor positions provided by the field operator as an input 
and outputs the respective tracking angles [6].
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Fig. 3. The Solar Field State is described by a collection of coordinate transformations, 
obtained by chaining the Kinematic Model and the Surface Model.

3.2.2. Surface model
The surface of a concentrator consists of 𝑀 facets, where each facet 

is canted, i.e. slightly adjusted w.r.t. the CCS𝑛 in such a way that 
incoming solar irradiation is concentrated at the focal length 𝑓𝑛. In 
this work, two cases for the Surface Model are considered: The first 
case (referred to as the ideal surface case) assumes each facet to be 
a perfectly flat mirror surface. The transformation 𝑪𝑛,𝑚 from facet 
coordinate system FCS𝑛,𝑚 to CCS𝑛 is described by 

𝑪𝑛,𝑚 = 𝑪(𝑓𝑛,𝒅𝑚) = 𝑻 CCS𝑛FCS𝑛,𝑚
, (7)

where 𝑓𝑛 denotes the concentrator focal length and 𝒅𝑚 is the vector 
pointing from the origin of CCS𝑛 to the origin of FCS𝑛,𝑚. The overall 
transformation 𝑻 𝑛,𝑚 from facet 𝑚 of heliostat 𝑛 to the GCS is obtained 
by chaining the transformations: 
𝑻 𝑛,𝑚 = 𝑲𝑛 ⋅ 𝑪𝑛,𝑚 = 𝑻 GCSCCS𝑛

⋅ 𝑻 CCS𝑛FCS𝑛,𝑚
= 𝑻 GCSFCS𝑛,𝑚

. (8)

A simplified 2D illustration of a heliostat with two facets is shown in 
Fig.  3.

In the second case (referred to as the measured surface case), each 
facet is further subdivided into a collection of smaller tiles, where each 
tile is assumed to be a perfectly flat mirror surface. The orientation 
of each tile is adjusted w.r.t. the ideal surface according to a slope 
deviation map, e.g. obtained by the QDEC-H system [12]. More pre-
cisely, each tile is assigned the orientation of the facet it belongs to 
and corrected by the mean of all measured slope deviations inside 
this tile, effectively discretizing the slope deviation map. This way, 
both the ideal and the measured cases can be treated computationally 
identically, since they both describe a concentrator as a collection of 
flat surfaces. A subdivision of an exemplary concentrator surface into 
a grid of tiles of size 32 × 32 is shown in Appendix  B.

The Solar Field State is implemented in Python, especially building 
on the packages NumPy [13] and SciPy [14] to achieve efficient vec-
torized computations for the entire solar field. The collection of facet 
coordinate transforms 𝑻 𝑛,𝑚 is stored in a Python class. This class is then 
passed to the Ground Truth Image Feature Computation. Additionally, all 
𝑻 𝑛,𝑚 are passed to Unreal Engine in form of a JSON file, from which the 
virtual heliostat field is constructed.

3.3. Camera state

The Camera State is composed of the exterior orientation (EOR) 
and the interior orientation (IOR). The EOR describes the position and 
orientation of the simulated camera w.r.t. the GCS, i.e. EOR = 𝑻 GCSOCS, 
and describes how points defined w.r.t. the GCS are mapped to the OCS. 
4 
The IOR describes how points in the OCS are mapped to points on the 
ICS. The overall projection of points expressed w.r.t. the GCS onto the 
ICS is denoted by 
𝒑ICS = projection(𝒑GCS|IOR,EOR) . (9)

The Camera State is stored in a Python class and passed to the
Ground Truth Image Feature Computation. The projection is implemented 
using the package opencv-python, a Python wrapper for the open-source 
computer vision software OpenCV [15]. A detailed description of the 
camera model is provided in Appendix  A.

In case that the System Under Development controls the simulated 
UAV, the EOR can be sampled from the UAV & Graphic Simulation
through the Python API for AirSim. If no feedback-based control of the 
UAV is required, the UAV & Graphic Simulation can also be excluded 
from the simulation. In this case, the Camera State can be fed with 
a collection of predefined camera poses. For example, a recorded 
flight can be reproduced in simulation by obtaining the camera poses 
from the recorded data, either from image data using computer vision 
techniques or from the UAV sensor data, e.g. recorded using a real-time 
kinematics and an inertial measurement unit.

3.4. Ground truth image feature computation

The Solar Field State provides the coordinate transformation col-
lection 𝑻 𝑛,𝑚, describing the position and orientation of every facet 
coordinate system FCS𝑛,𝑚 w.r.t. the GCS. This information is used in 
the Ground Truth Image Feature Computation component together with 
the Camera State to compute the projection of both facet corner points 
and a point reflected at the facet mirror plane onto the ICS.

3.4.1. Facet corners
The facet geometry is represented by the point cloud 𝑷 FCS𝑛,𝑚

Corner, con-
taining the corner points of each facet expressed w.r.t. FCS𝑛,𝑚. The 
facet geometry is assumed to be identical for every facet in the field, 
i.e. 𝑷 FCS𝑛,𝑚

Corner = 𝑷 FCS
Corner. The facet corners are expressed w.r.t. the GCS 

by applying 𝑻 𝑛,𝑚 and then projected onto the ICS using the previously 
described Camera State: 
𝑷 ICS
Corner = projection(𝑻 𝑛,𝑚 ⋅ 𝑷 FCS

Corner|IOR,EOR) . (10)

Several filters are applied to the collection of all facets to ensure that 
only those facet corner points are projected that lie in front of the 
camera and within the camera field of view.

3.4.2. Point light reflections
Assuming a point light at position 𝒑GCSSource and a flat mirror surface 

defined by the XY-plane of FCS𝑛,𝑚, the position of the reflection as seen 
from a camera can be computed by projecting the mirrored point onto 
the ICS: 

𝒑FCS𝑛,𝑚Source = 𝑻 −1
𝑛,𝑚 ⋅ 𝒑GCSSource

𝒑FCS𝑛,𝑚Source,Mirrored = (𝑝FCS𝑛,𝑚Source,X, 𝑝
FCS𝑛,𝑚
Source,Y, −𝑝

FCS𝑛,𝑚
Source,Z)

𝑇

𝒑GCSSource,Mirrored = 𝑻 𝑛,𝑚 ⋅ 𝒑FCS𝑛,𝑚Source,Mirrored

𝒑ICSReflection = projection(𝒑GCSSource,Mirrored|IOR,EOR)

(11)

This work describes a HelioPoint measurement setup [4], where the 
light source is mounted next to the camera on the UAV. For simplicity, 
the point light position is assumed to lie in the camera focal point, 
i.e. 𝒑GCSSource = 𝒕GCSOCS. However, any point light position can be assumed 
for the computation in Eq. (11). The reflection 𝒑ICSReflection for facet 
(𝑛, 𝑚) will only be visible in the image if its projection lies inside the 
polygon defined by the projected facet corner points 𝑷 ICS

Corner. This can 
be checked using a simple point-in-polygon test [16].

Fig.  4 illustrates the facet corner computation and the reflection 
computation. While the reflection computation is described based on 



A. Schnerring et al. Solar Energy 300 (2025) 113803 
Fig. 4. The facet corner points and the reflection of 𝒑Source as seen from the virtual 
camera are obtained by means of a camera projection of the facet corner points 𝑷 GCS

Corner
and the point 𝒑GCSSource, Mirrored.

the ideal surface case, the same computation applies to the measured 
surface case by treating each discretization tile as a facet.

The Ground Truth Image Feature Computation is implemented in
Python in a vectorized form to process all facets at once, leveraging 
efficient computations in NumPy, SciPy and OpenCV. The projected facet 
corner points and point light reflections are passed to the System Under 
Development in form of NumPy arrays.

3.5. UAV & Graphic Simulation

3.5.1. AirSim
The UAV & Graphic Simulation is based on AirSim [8], an open-source 

UAV simulator developed by Microsoft. AirSim models the UAV flight 
dynamics using a vehicle model and a physics engine. It supports a 
range of virtual sensors, including the simulation of global positioning 
system (GPS) sensor noise. AirSim supports software-in-the-loop (SITL) 
integration with popular UAV firmware stacks such as ArduPilot [17], 
enabling the communication between simulated sensor inputs and real-
world autopilot software over a User Datagram Protocol connection. 
Implemented primarily in C++, AirSim combines the performance re-
quired for real-time simulation with accessibility through a Python API. 
In the presented simulation environment, the flight control firmware
ArduPilot is used.

AirSim integrates with Unreal Engine [9] to render high-fidelity 3D 
environments, supporting the development and testing of perception 
algorithms under photorealistic conditions. Strictly speaking, the pre-
sented simulation system is built on Colosseum [18], an extension of
AirSim to support Unreal Engine 5. As Collosseum is largely built on
AirSim, the simulator is still referred to as AirSim in this work. For more 
details on the functionality, refer to [8].

3.5.2. ArduPilot SITL
ArduPilot is an open-source autopilot firmware that supports var-

ious types of vehicles, including multirotor UAVs [17]. It provides 
essential functionality for autonomous flight, such as mission planning, 
waypoint navigation, basic fail-safe mechanisms and velocity control.
ArduPilot fuses data from common onboard sensors, such as GPS, 
inertial measurement units, barometer and magnetometer, and supports 
communication over the MAVLink protocol [19]. ArduPilot is designed 
to operate both with physical hardware and in simulation, using the 
same communication interfaces. This enables the seamless transfer from 
an algorithm developed in simulation to a real system.
5 
3.5.3. Unreal engine
Unreal Engine is a real-time 3D rendering engine primarily used for 

game development, but also adopted in simulation and robotics for 
its ability to generate high-fidelity, photorealistic environments. In the 
presented setup, the collection of coordinate transforms 𝑻 𝑛,𝑚 is loaded 
into Unreal Engine. Flat, reflective mirror surfaces of specified facet 
dimensions are instantiated accordingly. AirSim adds a UAV actor to 
the scene, with an attached camera actor to simulate onboard vision.
Unreal Engine provides directional light actors in order to simulate the 
incoming sunlight as a function of geolocation, date and time, enabling 
the simulation of sun reflections. At runtime, Unreal Engine receives the 
UAV pose from AirSim and updates the position and orientation of the 
UAV actor and camera actor accordingly. The rendered images can be 
accessed through the AirSim Python API.

3.6. System under development

To clarify the intended use of the simulation environment, this 
subsection outlines characteristics and components of a possible System 
Under Development. The descriptions are intended to illustrate potential 
designs of a system, without presenting their specific implementation.

The System Under Development is assumed to be implemented in
Python, though other implementations (e.g. C++) are possible if per-
formance or integration requirements demand it. Depending on the 
usecase, the System Under Development receives the facet corner image 
coordinates and point light reflection image coordinates as NumPy
arrays from the Ground Truth Image Feature Computation, or the images 
rendered by Unreal Engine in JPG or PNG format. In addition, the System 
Under Development may require an estimate of the camera EOR. While
AirSim provides a model for GPS noise, it does not include a noise model 
for gimbal inaccuracies. However, the ground truth camera EOR can be 
directly sampled from AirSim and any noise process manually applied 
as needed. This enables the simulation of gimbal inaccuracies, as well 
as more general camera EOR uncertainty in systems that estimate the 
camera EOR from sources other than GPS and gimbal sensors, such 
as vision-based methods. As a result, the system design does not need 
to rely on AirSim’s GPS model, supporting more flexible development 
scenarios. Similarly, the precision of facet corner point positions and 
point light reflection positions can be controlled in both GCS and ICS to 
simulate realistic levels of uncertainty in field data a-priori knowledge 
and perception inaccuracies. Based on this input, the System Under 
Development estimates the Solar Field State and derives UAV control 
actions. These actions are then encoded in MAVLink messages. If the
System Under Development is implemented in Python, these messages 
can be generated using Pymavlink, a Python wrapper for the MAVLink
protocol. This setup allows the system to operate consistently across 
both simulated and real-world environments.

Principally, any system utilizing the previously described quantities 
can be developed and tested within the presented simulation environ-
ment. The quantities estimated by the System Under Development can 
be fed back into the flight route planning in real-time, provided the 
estimated quantities are available in real-time.

One example of such a System Under Development could be a flexible 
exploration system for solar fields. In such a system, a confidence 
measure could be maintained in-flight, to represent the uncertainty as-
sociated with already estimated quantities. Based on this measure, new 
tasks could be scheduled to further explore regions of the solar field that 
have not been sufficiently observed. For instance, a corner-based coarse 
calibration system could plan its next UAV waypoint depending on the 
confidence of already computed concentrator orientation estimates.

Another relevant System Under Development could rely on algorithms 
requiring a certain object or reflection to be seen in the captured images 
during the flight. For instance, specific camera poses are required to 
observe the reflections of a tower edge [1], a light-emitting diode
(LED) [4] or other markers reflected by the heliostats. By incorporating 
a feedback signal derived from the observed reflections, the system can 
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dynamically adjust its flight route to make these quantities more reli-
ably observable. The real-time capability of the simulation environment 
enables the prototyping of such systems.

In this way, the simulation environment can serve as a platform 
for the development and testing of autonomous systems, capable of 
actively managing uncertainty and incorporating feedback to improve 
the measurement data.

4. Validation methodology

This section presents the methodology for validating the simulation 
environment through the evaluation of key quantities relevant to the
System Under Development. Based on the requirements introduced in 
Section 3.1, the following simulated quantities are compared with 
optical data obtained from a measurement campaign conducted at the 
Solar Tower Jülich (STJ):

1. The 3D positions of facet corner points are compared in the GCS 
(see Section 4.3). Only the four outer concentrator corner points 
are selected, as these points can be detected using DLR’s state-
of-the-art AI-based perception module and are most relevant for 
the corner-based heliostat coarse-calibration systems currently 
developed by DLR.

2. The image coordinates of point light reflections are compared in 
the ICS (see Section 4.4). The measured reflection image coor-
dinates are obtained with a HelioPoint measurement setup [4], 
where the reflected object is an LED mounted next to the cam-
era. This measurement setup was selected since the reflections 
of LEDs are most relevant for reflection-based heliostat fine-
calibration systems currently developed by DLR.

The optical measurements focus on the validation of the Solar Field 
State and the Ground Truth Image Feature Computation. For the UAV & 
Graphics Simulation, the consistency of the concentrator corner image 
coordinates (computed by the Ground Truth Image Feature Computation
component) with the images rendered by Unreal Engine is assessed (see 
Section 4.5). If the computed image coordinates align with the rendered 
images, a perception module could, in principle, be integrated into the 
simulation loop and produce outputs equivalent to the ground truth.

In UAV-based condition monitoring systems that incorporate feed-
back for dynamic flight route planning, accurate position and velocity 
control are particularly important. To ensure a realistic simulation of 
the UAV flight dynamics, the responses of both the simulated and a 
real UAVs to identical MAVLink input commands are compared (see 
Section 4.6). As the authors in the original AirSim paper [8] show 
the validity of position control, this work focuses on the validation of 
responses to velocity control commands.

4.1. Measurement camera

The measurement images for the validation of both concentrator 
corner points and point light reflections were recorded using a DJI 
Zenmuse P1 camera, mounted on a DJI Matrice 300 UAV platform. This 
camera is equipped with a sensor with a resolution of 8192 px× 5460 px
and a physical sensor size of 35.9mm × 24mm, resulting in a pixel size 
of approximately 4.4 μm. The camera was operated with a fixed focal 
length of 35mm, with the focus set to infinity to ensure consistent 
sharpness across the entire scene and different images. The exposure 
mode was set to manual to ensure consistent brightness and sharpness 
across varying lighting conditions. The images were captured using the 
camera’s global mechanical shutter, ensuring geometric accuracy. The 
camera IOR was obtained through a photogrammetric reconstruction 
using the commercial software Aicon 3D Studio. The calibration was 
performed using image data recorded using a dedicated flight pattern 
over a collection of Aicon optical markers. From this calibration dataset,
Aicon 3D Studio jointly estimates the 3D positions of the markers, the 
camera EORs, and the camera IOR.
6 
4.2. Error metrics

This subsection introduces the error metrics used for the validation 
of two quantities, namely the concentrator corner points and the point 
light reflections. For a given quantity, suppose that 𝑁 pairs of simulated 
points 𝒙Sim𝑛  and measured points 𝒙Meas𝑛  are collected, where 𝑛 = 1,… , 𝑁 . 
The error metric for this quantity is then computed over the collection 
of errors 𝒆𝑛 = 𝒙Meas𝑛 − 𝒙Sim𝑛 . For the validation of concentrator corner 
points, the errors 𝒆𝑛 are three-dimensional vectors, expressed w.r.t. 
the GCS. For the validation of point light reflections, the errors 𝒆𝑛
are two-dimensional vectors, referenced to quantities derived from 
measurements in the ICS.

The estimated mean 𝝁̄ and the estimated standard deviation 𝝈̄ are 
defined as 

𝝁̄ = 1
𝑁

𝑁
∑

𝑛=1
𝒆𝑛 , 𝝈̄ =

√

√

√

√
1

𝑁 − 1

𝑁
∑

𝑛=1
(𝒆𝑛 − 𝝁̄)2 . (12)

The root mean squared error (RMSE) is given as 

RMSE =

√

√

√

√
1
𝑁

𝑁
∑

𝑛=1
|𝒆𝑛|2 (13)

and the mean absolute error (MAE) is given as 

MAE = 1
𝑁

𝑁
∑

𝑛=1
|𝒆𝑛| , (14)

where |𝒆𝑛| denotes the Euclidean norm of the error vector.
When the RMSE is to be expressed for a specific component of the 

quantity, it is denoted with a subscript corresponding to that compo-
nent, e.g. RMSEX for the X-component. In Section 5, both RMSE and 
MAE are presented: As the RMSE penalizes large errors more strongly 
than the MAE, differences between the two metrics may be explained 
by the presence of outliers or a non-symmetric error distribution [20].

4.3. Concentrator corner point validation methodology

4.3.1. Point cloud measurement via photogrammetry
To obtain the 3D positions of the concentrator corner points, a series 

of images is recorded using the camera described in Section 4.1 during 
a measurement flight over the solar field. The 2D image coordinates 
of the concentrator corners are detected in every image by an AI-
based perception module [21]. These coordinates are then processed 
by Aicon 3D Studio, which performs a photogrammetric reconstruction 
by jointly estimating both the camera EORs and the 3D corner point 
cloud, assuming the camera IOR determined in the camera calibration 
process (see Section 4.1). The simulated concentrators are selected to 
match the subset of concentrators for which all four corner points 
were successfully reconstructed in the Aicon 3D Studio evaluation. They 
are oriented using the motor positions provided by the field operator 
at the image recording time as input to the Kinematic Model. Each 
facet is placed according to the ideal Surface Model and the simulated 
points are obtained by selecting those facet corner points that make 
up the four outer corners of the concentrator. The measured point 
cloud is subsequently aligned with the simulated point cloud using a 
Helmert transform, whose parameters are obtained through the Kabsch 
algorithm [22]. This alignment step ensures that both point clouds are 
expressed in the same coordinate frame, namely the GCS in which the 
field data is defined. After the alignment step, the simulated point cloud 
is compared with the measured point cloud by means of an error model, 
described in Section 4.3.3. Fig.  5 illustrates the workflow for generating 
both the simulated and measured point clouds.
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Fig. 5. Overview of the workflow used to generate and align both measured (top) 
and simulated (bottom) concentrator corner point clouds prior to their comparison. 
𝐾 denotes the total number of images used to generate the measured point cloud. 
All measured quantities are depicted as red rectangles, while simulated quantities are 
depicted as gray rectangles. Processing steps are represented by white ellipses.

Fig. 6. Overview of the workflow used to generate and align both reference (top) 
and simulated (bottom) concentrator corner point clouds prior to their comparison. 
𝐾 denotes the total number of images used to generate the measured point cloud. 
All measured quantities are depicted as red rectangles and all reference quantities are 
depicted as blue rectangles, while simulated quantities are depicted as gray rectangles. 
Processing steps are represented by white ellipses.

4.3.2. Reference measurement
Since the corner point positions are estimated using Aicon 3D Studio, 

the resulting measured corner point cloud is subject to noise. This 
uncertainty arises from factors such as noise in the perception module 
and suboptimal camera perspectives during the measurement flight, 
both of which affect the accuracy of the generated corner point cloud. 
To estimate this uncertainty, synthetic concentrator corner image co-
ordinates are computed from the simulated corner point cloud using 
the Ground Truth Image Feature Computation. The required synthetic 
camera EORs are determined from the real concentrator corner image 
coordinates detected in the actual measurement images. More precisely, 
the camera EOR is optimized such that the synthetic image coordinates 
closely resemble the real image coordinates for each image. The syn-
thetic image coordinates are passed to Aicon 3D Studio, generating a 
second point cloud, referred to as the reference corner point cloud. This 
point cloud is then aligned with and compared to the simulated corner 
point cloud, analogously to the workflow outlined in Section 4.3.1. 
Fig.  6 illustrates the workflow used to generate the reference corner 
point cloud. This procedure isolates the error contribution introduced 
by Aicon 3D Studio and provides an estimate of the uncertainty in the 
measured corner point cloud attributable to the measurement process.

4.3.3. Error model and stepwise error elimination
The following analysis models the deviation between simulated and 

measured corner points as a superposition of multiple error compo-
nents. Each concentrator is associated with four error vectors, one 
7 
for each corner, defined as the vector from the simulated to the cor-
responding measured corner point. The four error vectors of each 
concentrator are then explained as the superposition of translational 
errors, rotational errors, scale errors along the concentrator X- and Y-
directions and residual errors. These components reflect the physically 
most plausible error sources:

1. Translational errors explain a uniform shift of all four simu-
lated corner points of a concentrator w.r.t. its measured corner 
points. These errors may occur due to imprecisions in the field 
data: During the field commissioning, each heliostat position is 
measured using a Tachymeter, where translational measurement 
errors can be introduced.

2. Rotational errors explain a rotation of all four simulated corner 
points of a concentrator w.r.t. its measured corner points. These 
errors may occur due to several effects: Tracking errors cause the 
true concentrator orientation to deviate from the set orientation. 
Furthermore, the kinematic parameters  𝒌𝑛 are optimized by the 
camera-target method w.r.t. the optical axis of each heliostat. 
A heliostat rotated around its optical axis produces the same 
calibration point in the camera-target method, since the reflected 
sun beam only depends on the surface normal. However, such a 
rotation alters the positions of the concentrator corner points, 
introducing a rotational discrepancy between the simulated and 
measured corner points. In addition, erroneous assumptions dur-
ing calibration (e.g. errors in the sun position, target position 
and the heliostat position) may propagate into the normal vector 
computation during the calibration process. This may cause the 
kinematic parameters  𝒌𝑛 to not represent the physical condition 
of the field, but rather to compensate for the aforementioned 
erroneous assumptions.

3. Scale errors explain a stretching or compression of all four sim-
ulated corner points along the concentrator X- and Y-direction 
w.r.t. to their measured counterparts. Such errors can arise when 
the assumed concentrator geometry deviates from the actual 
physical geometry, e.g. due to inaccuracies in the modeled facet 
dimensions or gap sizes between facets.

4. Residual errors summarize all remaining errors not explainable 
by the above error components. They may arise due to facet 
mounting or canting errors [23].

During the point cloud comparisons, each error component is elim-
inated sequentially by applying a corresponding alignment step to the 
simulated points, fitting them to the measured/reference points for 
each concentrator. The following description only mentions the align-
ment with the measured points. However, the same steps are carried 
out w.r.t. the reference points. Recomputing the error metrics at each 
stage quantifies the contribution of individual components and provides 
a clearer understanding of how different error sources contribute to the 
overall deviation.

To eliminate translational errors, the simulated points are shifted, 
aligning the centroids of the simulated points with the centroids of 
the measured points for each concentrator. Rotational errors are then 
eliminated by rotating all simulated points around their centroids, such 
that they best fit the measured points for each concentrator. In a last 
step, scale errors are eliminated by scaling the simulated points along 
the X- and Y-axis of the corresponding CCS to best fit the measured 
points for each concentrator. While the order of these elimination 
steps is arbitrary, the chosen sequence is computationally convenient: 
First aligning simulated and measured centroids allows the rotation 
to be applied around this common centroid. Similarly, scaling can be 
performed assuming both point sets lie in the same CCS when they are 
first aligned rotationally.

After each error elimination step, the following error quantities are 
derived from the remaining error vectors 𝒆 = (𝑒X, 𝑒Y, 𝑒Z), pointing from 
each simulated point to its measured counterpart: Since the mean of 



A. Schnerring et al. Solar Energy 300 (2025) 113803 
Fig. 7. Overview of the locations of each heliostat group for the three measurement 
images.

the error distributions is zero for all components due the definition of 
the Kabsch algorithm [22], the standard deviations 𝜎̄𝑒X , 𝜎̄𝑒Y  and 𝜎̄𝑒Z  are 
computed for each error component as defined in Eq. (12). In addition, 
the error magnitude |𝒆| is characterized by the RMSE and MAE, as 
defined in Eqs. (13) and (14). The RMSEs after every error elimination 
step are denoted:

1. RMSEU: RMSE obtained when leaving the simulated point cloud
Unmodified (i.e. when no error elimination step is applied).

2. RMSEET: RMSE obtained after Eliminating Translational errors.
3. RMSEETR: RMSE obtained after Eliminating Translational and
Rotational errors.

4. RMSEETRS: RMSE obtained after Eliminating Translational,
Rotational and Scale errors.

Since the individual error types are orthogonal (e.g. a rotation around 
the simulated concentrator centroid does not effect the translational 
error of this concentrator), the overall RMSEU is composed by the 
RMSEs of the individual error components: 
RMSE2U = RMSE2Trans + RMSE

2
Rot + RMSE

2
Scale + RMSE

2
Res . (15)

Since each elimination step removes its respective component from its 
preceding RMSE, the individual RMSE components are obtained as 
RMSE2Trans = RMSE

2
U − RMSE2ET ,

RMSE2Rot = RMSE
2
ET − RMSE

2
ETR ,

RMSE2Scale = RMSE
2
ETR − RMSE2ETRS ,

RMSE2Res = RMSE
2
ETRS .

(16)

4.4. Point light reflection validation methodology

The measurement data for the validation of point light reflec-
tions is recorded using the camera described in Section 4.1 with a 
HelioPoint [4] measurement setup: An LED is mounted to the cam-
era lens and both camera and LED are oriented toward a group of 
heliostats, pointing to the expected UAV position. This way, three 
measurement images are recorded, which are shown in Appendix  B. 
Fig.  7 illustrates the locations of the recorded heliostat groups in the 
solar field for each measurement image.

Both LED reflections and concentrator corner points are detected in 
the ICS for each concentrator. The image coordinates of the reflections 
are transformed from pixel space to metric coordinates w.r.t. the CCS, 
using a homography defined by the four concentrator corner points 
and the known concentrator geometry. The simulated concentrators are 
aligned using the Kinematic Model and the camera EOR is estimated by 
8 
Fig. 8. Magnified view of validation image 1. For the validation of point light 
reflections, both concentrator corner points and LED reflections are measured (red 
rectangles and circles) and simulated (yellow rectangles and triangles) in the ICS and 
converted to their respective CCSs. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.)

means of a Perspective-n-Point algorithm [24], using the concentrator 
center points as correspondences. Concentrator corner points and point 
light reflections are then simulated (see Section 3.4) and expressed 
w.r.t. the CCS, using a homography as described above.

The simulation of point reflections makes various assumptions, 
potentially leading to deviations between simulated and measured 
reflections: As discussed in Section 4.3.3, the simulated concentrator 
orientations may deviate from the true concentrator orientations by 
rotational errors, leading to a shift of the simulated reflections w.r.t. 
the measured reflections in the ICS. For instance, misalignments be-
tween the GCS, the target coordinate system, or a true east-north-up 
frame [25] may go undetected during the determination of kinematic 
parameters using the camera-target method. In such cases, the kine-
matic parameters could converge such that the reflected solar beam 
still reaches the target for all calibration points, thereby compensating 
for the erroneous coordinate assumptions. However, the resulting con-
centrator normal vectors would deviate from the true physical normals, 
leading to discrepancies between simulated and measured reflections. 
Similarly, errors in the image-based camera pose estimation (and hence 
in the assumed LED position) may lead to shifted simulated reflections 
w.r.t. the measured reflections. Furthermore, the measured reflections 
are effected by distortions, caused by slope errors in the facet mirror 
surfaces. To account for these errors, the validation process is repeated 
for two cases:

1. In the raw orientations, ideal surfaces (ROIS) case, the reflec-
tions are simulated using the ‘‘raw’’ concentrator orientations 
obtained from the kinematic model and assuming the ideal 
surface case. Fig.  8 shows the magnified view of image 1 with 
reflections simulated under the ROIS assumptions.

2. In the fitted orientations, measured surfaces (FOMS) case, errors 
stemming from inaccurate concentrator orientations and noise 
in the camera pose estimate are eliminated by a fit of the con-
centrator orientations: Starting from the raw orientation, each 
concentrator is rotated around its X- and Y-axis, such that the 
deviations between measured and simulated reflections are min-
imized. During this fit, the point light reflections are simulated 
taking into account a measurement of the concentrator mirror 
surface: As described in Section 3.2.2 the concentrator’s slope 
deviation map (obtained from a QDEC-H measurement [12]) 
is discretized into a 32 × 32 grid. Hence, a total number of 
1024 potential reflections are computed for each concentrator in 
every orientation optimization step. If more than one reflection 
is classified as visible for a facet, the final reflection position is 
computed as the mean of all visible reflections for this facet.

For both cases, the distributions of the error vectors 𝒆 = (𝑒X, 𝑒Y) from 
simulated reflections to measured reflections is converted from mil-
limeter units to milliradian units by considering the distance between 
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the UAV and each concentrator. The resulting distributions are then 
characterized by the estimated mean values 𝜇̄𝑒X  and 𝜇̄𝑒Y , as well as the 
estimated standard deviations 𝜎̄𝑒X  and 𝜎̄𝑒Y . In addition, the component-
wise RMSEX and RMSEY as well as the component-wise MAEX and 
MAEY are computed.

Note that only those pairs of measured and simulated reflections 
are considered where a measured reflection is available. All simulated 
reflections without a measured counterpart are neglected. On the other 
hand, a pair of a measured reflection and its non-visible simulated 
counterpart (i.e. a simulated reflection that does not lie inside the facet 
frame on the ICS) is still considered, as the position of the simulated 
reflection outside of the facet frame can be computed.

4.5. Image data consistency

To enable the comparison between the concentrator corner point 
image coordinates computed by the Ground Truth Image Feature Com-
putation with the images rendered by Unreal Engine, both components 
are initialized using the same Camera State. Specifically, the simulated 
camera is positioned at a height of ℎ = 30m and oriented toward 
the solar field with a pitch angle of 𝜃 = 30◦. For simplicity, the 
camera IOR is modeled as a pinhole projection (see Appendix  A) with 
a 4K resolution and a horizontal field of view of 60◦. The choices of 
camera EOR and IOR reflect a realistic use case, in which the camera 
is operated in video mode and positioned and oriented considering the 
STJ solar field layout and concentrator dimensions. The rendered image 
is then overlaid by the simulated concentrator corner point image 
coordinates.

While Unreal Engine offers various reflection models with varying 
degrees of computational complexity, an analysis of the reflection 
accuracy exceeds the scope of this work. Initial experiments show that
Unreal Engine can provide point light reflections matching the reflec-
tions of the Ground Truth Image Feature Computation. However, these 
experiments assume ideal facet surfaces and short distances (< 20m) 
between simulated UAV and concentrator. At larger distances, the 
reflection accuracy decreases.

4.6. UAV flight dynamics validation methodology

To validate the UAV flight dynamics simulation, the responses of 
both real and virtual UAVs to a velocity step command are compared. 
The real UAV runs ArduPilot on a physical flight controller, while 
the virtual UAV operates ArduPilot in a SITL. Due to the symmetric 
configuration of the rotors, the system response in the X-direction is 
representative of any direction within the horizontal (XY-) plane and 
is therefore presented as the horizontal case. In contrast, the response 
in the Z-direction (vertical) is analyzed separately, as it exhibits dif-
ferent dynamics due to the influence of gravity. Each UAV begins in 
a hover state at 0m∕s before receiving a step velocity command. The 
command causes the UAVs to accelerate to a target velocity, which is 
then held constant at 1m∕s for a duration of 𝑇 = 18 s, controlled by 
the ArduPilot velocity controller. This is done for both horizontal and 
vertical directions. The recorded flight logs of both simulated and real 
UAV are interpolated at a rate of 100Hz for comparability. To reduce 
random effects such as sensor noise and disturbances due to wind and 
turbulences, the UAV is accelerated and stopped 10 times. The system 
response is computed as the mean over all responses.

Several performance metrics are derived from the averaged system 
responses to characterize the UAV flight dynamics: The rise time 𝑡Rise
is defined as the time required for the velocity to increase from 0.1m∕s
to 0.9m∕s. The settling time 𝑡Settling denotes the time elapsed until the 
velocity remains within a specified tolerance band of ±0.05m∕s around 
the target velocity of 1m∕s. The steady state srror (SSE) is calculated 
as the deviation between the mean velocity within this tolerance band 
and the commanded velocity.
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Fig. 9. The measured point cloud is obtained by following the process depicted in Fig. 
5.

Fig. 10. Graphical representation of the error metrics 𝜎̄𝑒X , 𝜎̄𝑒Y , 𝜎̄𝑒Z , MAE and RMSE 
remaining after each error elimination step applied to the simulated point cloud to fit 
both measurement and reference point cloud.

5. Validation results and discussion

5.1. Concentrator corners

5.1.1. Results
Following the process described in Section 4.3 a simulated, mea-

sured and reference point cloud are obtained. Each point cloud has a 
total number of 𝑁 = 36 heliostats, which amounts to 144 concentrator 
corner points. The measured point cloud is depicted in Fig.  9. The 
simulated and reference point clouds can be found in Appendix  B.

Fig.  10 shows the error metrics as a function of the error elimi-
nation steps: The ‘‘Measurement’’ graph shows the quantities for the 
comparison between the measured point cloud and the simulated point 
cloud. The ‘‘Reference’’ graph shows the quantities for the comparison 
between the synthetically generated reference point cloud and the 
simulated point cloud. The error distributions from which the error 
metrics are derived can be found in Appendix  B, alongside the numeric 
data for Fig.  10.

In each error elimination step and for both measured and reference 
data, the RMSE is only slightly higher than the MAE, indicating that the 
error magnitude distributions are free of outliers and show symmetric 
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Table 1
RMSEs for each error component, derived for both measurement and 
reference from the data depicted in Fig.  10.
 Comparison RMSE [mm]

 Trans Rot Scale Res 
 Measured 12.8 17.7 8.0 4.6 
 Reference 8.4 4.6 1.4 0.8 

behavior. Therefore, the discussion is limited to the RMSE, noting that 
the same behavior also applies to the MAE. The RMSEs for each error 
component are obtained by applying Eq. (16) to the data depicted in 
Fig.  10. The resulting RMSEs are listed in Table  1.

The measured RMSE reduction after eliminating translational er-
rors is RMSEMeasTrans = 12.8mm, while the corresponding reference error 
amounts to RMSERefTrans = 8.4mm. Subsequent elimination of rotational 
errors further reduces both the measured and reference RMSEs, with 
an impact of RMSEMeasRot = 17.7mm and RMSERefRot = 4.6mm, respec-
tively. Eliminating scale errors leads to an additional reduction in the 
measured RMSE, with only a minor reduction in the reference RMSE. 
The corresponding scale error components are RMSEMeasScale = 8.0mm and 
RMSERefScale = 1.4mm. The residual error components after eliminating 
all error components are RMSEMeasRes = 4.6mm and RMSERefRes = 0.8mm, 
respectively.

5.1.2. Discussion and impact on system development
The following discussion interprets the resulting error components 

identified through the stepwise error elimination process. While the 
physical origins of each error type have already been outlined in 
Section 4.3.3, the focus here lies on assessing the impact of the ob-
served error magnitudes on the transferability of a system developed 
in simulation to the real world.

Since measured and reference translation RMSEs lie in the same 
order of magnitude, significant parts of the translational errors can 
be attributed to Aicon 3D Studio. Even if all translational deviation is 
attributed to inaccuracies in the field data, the heliostat positions are 
determined to be known with an accuracy of RMSEMeasTrans = 12.8mm. 
However, the translational error quantities should be interpreted as 
indicators of field data consistency : The initial Helmert alignment is 
necessary to express the measured point cloud w.r.t. the GCS despite the 
lack of a reference frame in the Aicon 3D Studio evaluation. Potential 
misalignments of the field data w.r.t. a world coordinate system are not 
detectable in this measurement setup.

For systems that estimate concentrator orientations based on corner 
point positions, translational errors of the observed magnitude have 
minimal impact on orientation estimates in the OCS. This is because 
slight shifts of all corner points do not significantly alter their relative 
projections on the camera sensor at typical distances between camera 
and concentrators. However, these systems may also rely on camera 
pose estimates derived from field data, such as the Perspective-n-
Point algorithm utilized in Section 4.4. In this case, translational errors 
may propagate into the final estimate. These errors can be accounted 
for during development by simulating translational errors at levels 
consistent with those identified in this work.

The observed RMSERefRot = 4.6mm indicates that part of the ro-
tational error originates from the photogrammetric reconstruction in
Aicon 3D Studio. However, the significantly larger measured value 
of RMSEMeasRot = 17.7mm suggests that the simulated concentrators are 
indeed rotated w.r.t. the real-world concentrators.

Rotational discrepancies may cause the System Under Development
to yield different orientation estimates in simulation than in the real 
world when both the simulated field and the real system are initialized 
with identical motor positions. However, further experiments show that 
these rotational errors occur primarily around the concentrator surface 
normal vector. This normal vector, typically the output of corner-based 
orientation estimation algorithms, hence remains largely unaffected. 
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Table 2
Component-wise RMSE, MAE, mean and standard deviation in milliradian for the ROIS 
case.
 Image RMSE [mrad] MAE [mrad] 𝜇̄ [mrad] 𝜎̄ [mrad]

  X Y X Y 𝑒X 𝑒Y 𝑒X 𝑒Y  
 Image 1 2.08 2.43 1.71 1.32 1.50 0.47 1.45 2.39 
 Image 2 1.69 2.18 1.30 1.58 −1.22 −0.85 1.18 2.02 
 Image 3 2.76 1.56 2.34 1.33 −2.31 −0.85 1.52 1.32 
 Overall 2.25 2.09 1.81 1.39 −0.57 −0.35 2.18 2.07 

This is supported by the fact that rotational deviations of the normal 
vectors remain below 3mrad on average, as shown in Section 5.2.1. 
Corner-based methods are typically used for coarse calibration ap-
plications, aiming for accuracies around 3mrad to 10mrad [26]. The 
deviations identified in this work are not expected to be critical to the 
development of such systems. Even if the underlying kinematic model 
produces slightly incorrect orientations, the simulation environment 
still provides consistent corner point positions. As a result, an algorithm 
developed and tested in simulation can adapt to concentrators oriented 
differently in a real solar field without compromising its functionality.

For scaling errors, the fact that the measured scale RMSE is larger 
than the reference scale RMSE supports the interpretation that the 
assumed concentrator geometry deviates from the true physical geom-
etry. In this case, fine-tuning the assumed geometry could improve 
algorithm performance when applied to real world data. Systematic 
errors introduced by the perception module, such as a consistent bias 
toward detecting corner points closer to the concentrator center, may 
also contribute to the observed discrepancies.

Random noise in the perception module also likely contributes to 
the remaining residual errors. These residuals may additionally be 
caused by physical imperfections not represented by the error model. In 
contrast to RMSEMeasRes , RMSERefRes is significantly smaller, as the genera-
tion of the reference point cloud does not model noise in the perception 
module or physical imperfections (see Section 4.3.2).

To assess the practical significance of the remaining geometric 
errors, their projected size in the pixel space can be compared to the 
ground sampling distance (GSD), describing the physical distance cov-
ered by one pixel. The measured combined scaling and residual RMSE 
components amount to RMSEMeasETR = 9.2mm. Assuming a flight height of 
ℎ = 30m, a pitch angle of 𝜃 = 30◦ and a DJI Mavic 3 Enterprise camera 
in video mode (pixel size of 𝑠px = 3.3 μm, focal length of 𝑓 = 8.8mm), 
the GSD amounts to GSD = (ℎ ⋅ 𝑠px)∕(𝑓 ⋅ cos 𝜃) = 12.86mm∕px. This im-
plies that the combined scaling and residual RMSE projects to less than 
one pixel on the ICS, indicating that these inaccuracies are unlikely to 
pose a significant limitation to an image-based processing pipeline.

5.2. Point light reflections

5.2.1. Results
An ROIS validation is possible for all heliostats with a visible 

reflection, i.e. 38 heliostats in group 1, 31 heliostats in group 2 and 
43 heliostats in group 3. Fig.  11 shows the scatter plots of 𝑒Y over 𝑒X
in milliradian units for all three validation images for the ROIS case. 
The error metrics of the distributions are summarized in Table  2 for 
each image/heliostat group. The scatter plots of 𝑒Y over 𝑒X in millimeter 
units as well as the corresponding error metric summary can be found 
in Appendix  B.

The error distributions vary for the different images/heliostat
groups: Especially the estimated mean value 𝜇̄𝑒X  strongly varies as a 
function of the measured group, with 𝜇̄𝑒X = 1.50mrad for group 1, 
𝜇̄𝑒X = −1.22mrad for group 2 and 𝜇̄𝑒X = −2.31mrad for group 3. The 
image-wise estimated standard deviations lie below 2mrad, which is 
the expected tracking accuracy at the STJ. An exception to this are 
the error Y-components for group 1 and 2 with 𝜎̄𝑒Y = 2.39mrad and 
𝜎̄ = 2.02mrad, respectively. The overall RMSE  lies at 2.25mrad and 
𝑒Y X
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Fig. 11. Scatter plots of 𝑒Y over 𝑒X in milliradian units for the ROIS case. It can be 
seen that both image 1 and image 2 contain an outlier, resulting in increased error 
quantities.

Fig. 12. Scatter plots of 𝑒Y over 𝑒X in milliradian units for the FOMS case.

Table 3
Component-wise RMSE, MAE, mean and standard deviation in milliradian for the FOMS 
case.
 Image RMSE [mrad] MAE [mrad] 𝜇̄ [mrad] 𝜎̄ [mrad]

  X Y X Y 𝑒X 𝑒Y 𝑒X 𝑒Y  
 Image 1 0.37 0.18 0.26 0.15 0.10 −0.01 0.36 0.19 
 Image 3 0.32 0.29 0.23 0.20 0.07 −0.13 0.32 0.26 
 Overall 0.35 0.22 0.25 0.17 0.09 −0.04 0.35 0.22 

the overall RMSEY lies at 2.09mrad. The MAE is smaller for both error 
components in all images.

The validation process is repeated for the FOMS case, additionally 
fitting the concentrator orientations and considering the discretized 
slope deviation maps. The resulting error vector scatter plots in millira-
dian units as well as the summary of error metrics are shown in Fig.  12 
and Table  3 respectively. The scatter plots and error metric summary 
in millimeter units can be found in Appendix  B. It is important to note 
that an FOMS validation is only possible for those heliostats with an 
available slope deviation map, leaving 14 concentrators in group 1, no 
heliostats in group 2 and five heliostats in group 3. An overview of all 
measured heliostats in the ROIS dataset, with those contained in the 
FOMS subset marked by a dot, is provided in Appendix  B.
11 
Fig. 13. Scatter plots of 𝑒Y over 𝑒X in milliradian units for the ROIS case, evaluated 
on the FOMS heliostat subset.

Table 4
Component-wise RMSE, MAE, mean and standard deviation in milliradian for the ROIS 
case, evaluated on the FOMS data.
 Image RMSE [mrad] MAE [mrad] 𝜇̄ [mrad] 𝜎̄ [mrad]

  X Y X Y 𝑒X 𝑒Y 𝑒X 𝑒Y  
 Image 1 1.99 3.60 1.53 1.78 1.23 0.90 1.58 3.52 
 Image 3 2.46 1.77 2.12 1.46 −2.12 −0.90 1.28 1.57 
 Overall 2.13 3.21 1.69 1.69 0.33 0.42 2.12 3.21 

The errors are significantly reduced by the additional processing 
step: 𝜇̄ is slightly shifted in positive X-direction but lies close to zero 
for both groups. The standard deviation is slightly higher in X- than 
in Y-direction. The overall error is reduced to RMSEX = 0.35mrad and 
RMSEY = 0.22mrad and to MAEX = 0.25mrad and MAEY = 0.17mrad.

Since the FOMS validation data is a subset of the ROIS validation 
data, the ROIS case is additionally evaluated on the FOMS heliostat 
subset only. This ensures that differences are not caused by random 
sampling effects of the FOMS subset. The resulting error vector scatter 
plots in milliradian units as well as the summary of error metrics are 
shown in Fig.  13 and Table  4 respectively. The scatter plots and error 
metric summary in millimeter units can be found in Appendix  B.

The error metrics for the ROIS evaluated on the FOMS subset are 
generally comparable to those obtained from the full dataset. A notable 
exception is the Y-direction in image 1, where both the RMSE and the 
standard deviation 𝜎̄𝑒Y  are increased by more than 1mrad relative to 
the evaluation on the full dataset.

5.2.2. Discussion and impact on system development
As previously described in Section 4.4, errors in the ROIS case 

can originate from multiple sources. The spread observed in the error 
distributions can partly be attributed to tracking inaccuracies. Specif-
ically, the increased spread along the Y-direction in groups 1 and 2 
is likely caused by concentrator orientation outliers, as visible in Fig. 
11. One such outlier causing three reflections in image 1 to largely 
deviate from the remaining reflections is included in both the ROIS 
and the FOMS datasets. This leads to an increased standard deviation 
𝜎̄𝑒Y  when validating the ROIS case on the FOMS dataset as compared 
to a validation on the ROIS dataset, because the reduced number of 
heliostats included in the FOMS dataset provides less opportunity for 
such outliers to be statistically compensated. In addition to heliostat 
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Fig. 14. An exemplary X-slope deviation map, overlaid by the measured reflections 
(red circles) and the simulated reflections for both the ROIS case (yellow triangles) 
and the FOMS case (white squares).

orientation errors, surface slope deviations contribute to the spread 
across all error distributions.

The systematic variation in the estimated mean values could be 
explained by an inaccurate camera EOR estimate, as discussed in 
Section 4.4. However, Monte-Carlo simulations using the field data 
uncertainty derived in Section 5.1 suggest that the effect of camera EOR 
inaccuracies is not large enough to fully explain the observed effects. 
This indicates that additional factors are contributing to these system-
atic deviations. As discussed in Section 4.4, erroneous assumptions 
in the camera-target method could also lead to systematic heliostat 
tracking errors, depending on the concentrator’s position or orientation. 
However, the presence of such errors stays speculative and further 
investigation is required to explain the cause of the observed systematic 
deviations.

To illustrate how the concentrator orientation fit and the incorpora-
tion of measured slope deviation data in the surface model reduces the 
observed errors, an example is shown in Fig.  14. The figure shows the 
distribution of simulated reflections for both the FOMS and ROIS cases 
for a representative heliostat from the FOMS dataset. For reference, 
the corresponding measured reflections are also included. The figure 
highlights the significant reduction in both spread and systematic shift 
of the error achieved in the FOMS case. The remaining inaccuracies 
lie in the order of magnitude necessary to develop fine-calibration 
systems [26].

The ROIS validation indicates that the simulation does not perfectly 
reproduce the true solar field state, potentially due to noise in the 
camera EOR estimation, inaccuracies in the tracking angles caused by 
coordinate system mismatches or other error sources. However, the 
FOMS dataset demonstrates that the surface properties are accurately 
modeled. Even if the heliostats are oriented differently in simulation 
compared to the real system, the same argument as in the corner point 
validation applies (see Section 5.1.2): Since point light reflections are 
modeled in fine-calibration accuracy, the system’s ability to estimate 
the solar field state is still meaningfully developed and tested under 
realistic conditions.

5.3. Image data consistency

Fig.  15 shows the image rendered by Unreal Engine, overlaid with 
the concentrator corner point image coordinates computed by the
Ground Truth Image Feature Computation. The alignment of the com-
puted points and the corner points in the rendered image confirms the 
consistency of the two components. This indicates that the rendered 
image can be used within the simulation loop, allowing a perception 
module under test to extract image features directly, rather than relying 
on the Ground Truth Image Feature Computation.
12 
Fig. 15. Image rendered with Unreal Engine, overlaid by the concentrator corner point 
image coordinates obtained from the Ground Truth Image Feature Computation. The top 
left image and the top right image show zoomed-in sections of the bottom image.

Fig. 16. Horizontal step responses for both the simulated UAV (left side) and the real 
UAV (right side), alongside the derived metrics. The thin light blue lines show the 
responses for each repetition, the black thick lines show the averaged responses. (For 
interpretation of the references to color in this figure legend, the reader is referred to 
the web version of this article.)

Table 5
Comparison between the metrics derived from the simulated and measured velocity 
step responses in horizontal and vertical direction.
 Direction 𝑡Rise [s] 𝑡Settling [s] SSE [%]
 Sim Meas Sim Meas Sim Meas 
 Horizontal 1.13 1.39 5.53 4.64 −0.45 0.26  
 Vertical 0.66 0.72 7.96 1.72 3.04 0.80  

5.4. UAV flight dynamic

Fig.  16 shows the horizontal step responses and the derived metrics 
for both simulated and real UAVs. The step responses for the vertical 
direction can be found in Appendix  B. Table  5 shows the comparison of 
the metrics derived from the simulated and the measured step responses 
in horizontal and vertical direction.
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The measured step velocity responses exhibit a higher noise level 
compared to the simulation. While the rise times 𝑡Rise are similar in 
both directions for simulation and measurement, the simulated vertical 
settling time 𝑡Settling is noticeably longer than the measured one. A 
similar pattern is observed for the SSE: In the horizontal direction, it 
remains below 1% for both simulation and measurement, whereas in 
the vertical direction, only the measured response meets this threshold.

The increased noise level in the measured responses is likely caused 
by sensor noise as well as environmental influences such as wind or 
turbulence during the measurement flight. The observed qualitative 
differences in the step responses can be explained by different factors. 
In this work the same UAV parameters as in Shah et al. [8] were used as 
a proof of concept, since an adjustment of mass, dimensions and other 
parameters to match the real UAV was considered beyond the scope of 
this work.

As a result, the flight dynamics of the real UAV deviate from those 
observed in simulation. In addition, the ArduPilot velocity controller 
may be tuned differently in simulation compared to the real system. 
This discrepancy is particularly evident in the vertical direction, where 
velocity must be controlled against the gravitational force. Despite 
these differences in the step responses of the simulated and measured 
flight velocities, velocity-based UAV control logic developed in simula-
tion is expected to be transferable to real-world systems, as controllers 
are typically designed to tolerate variations in system dynamics. How-
ever, fine-tuning of the transferred algorithm may be necessary to 
account for differences between simulation and real world.

6. Conclusion and outlook

In this work, we have presented a simulation environment for 
the development and testing of UAV-based CSP condition monitoring 
systems, aiming to bridge the gap between existing UAV simulators and 
simulation tools used in the CSP community. Validation results show 
that the concentrator corner points at the STJ can be simulated with 
an accuracy of up to RMSE = 23.7mm. By eliminating translational 
and rotational errors, the RMSE is reduced to 9.2mm, corresponding to 
sub-pixel accuracy under typical camera configurations. Additionally 
eliminating scale errors results in a remaining RMSE of 4.6mm. The 
origin of the observed scale errors remains an open question for future 
investigation.

Using a HelioPoint measurement setup, we determined that the 
simulated reflections match the measured reflections with an accuracy 
of up to RMSEX = 2.25mrad and RMSEY = 2.09mrad. The results assume 
raw motor positions from the field operator, ideal mirror surfaces, and a 
camera EOR estimated using a Perspective-n-Point algorithm with field 
data as 2D–3D point correspondences. In addition to statistical heliostat 
tracking and surface slope errors, we observed systematic deviations 
between simulated and measured reflections. These deviations may be 
attributed to inaccuracies in the camera EOR estimation, misalignments 
between the GCS and the world coordinate system or other unknown 
factors. Further investigation is required to clarify their origin. After 
compensating for these effects by fitting the simulated concentrators to 
the measured data while considering measured slope deviation maps, 
the RMSE is reduced to RMSEX = 0.35mrad and RMSEY = 0.22mrad.

We simulated and measured a UAV’s response to velocity control 
commands and compare the responses using three derived metrics. 
While differences between simulation and measurement are observed, 
the responses are similar in both the vertical and horizontal directions. 
This indicates that the simulation environment provides a sufficiently 
accurate dynamic model for developing and testing UAV control logic. 
Remaining deviations may stem from parameter mismatches and sensor 
noise in the real-world system.

The results show that the simulation environment cannot replicate 
the optical measurement data with perfect accuracy: Perception noise, 
field data uncertainties, misalignments between coordinate systems 
and other factors inevitably introduce discrepancies. However, these 
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differences can be quantified and their impact understood. The algo-
rithm’s ability to estimate the Solar Field State from camera observations 
can still be developed and tested meaningfully, since the simulated 
camera observations are consistent with the simulated Solar Field State
and the simulation captures all aspects critical to the System Under 
Development’s functionality.

We conclude that the presented simulation environment offers the 
added value of safe, fast and cheap prototyping to the development 
and testing process of new UAV-based CSP condition monitoring algo-
rithms. Some adaptation of system parameters may be required when 
transferring a system from simulation to real world.

Further investigation is needed to assess the suitability of Unreal 
Engine for accurately simulating reflections, and to explore whether 
measured surface maps can be incorporated into the rendering process. 
Currently, rendered images are used primarily as a qualitative reference 
to help developers assess whether the simulated observations behave 
as expected. Since the projected concentrator corner points align with 
the rendered images, we conclude that the images can be passed to 
a perception module as part of the simulation loop. However, future 
research is required to evaluate how well such modules perform when 
applied to fully simulated image data.
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Fig. B.1. Exemplary slope deviation map, overlaid by the discretization grid. In this 
work, the slope deviation of a concentrator is discretized in a 32 × 32 grid of tiles 
with the same aspect ratio as the concentrator. Each tile is treated as a perfectly flat 
mirror surface and orientated according to the slope deviations measured inside the 
tile.

Appendix A. Camera model

The projection of a point 𝒑GCS onto the ICS is denoted by 
𝒑ICS = projection(𝒑GCS|IOR,EOR). (A.1)

The projection can be split into two subsequent steps, considering the 
EOR and the IOR separately: First, the point is expressed w.r.t. the OCS, 
using the camera EOR which is equivalent to applying the coordinate 
transform 𝑻 OCSGCS : 

𝒑OCS = 𝑻 OCSGCS ⋅ 𝒑
GCS =

(

𝑥OCS
𝑦OCS

𝑧OCS

)

. (A.2)

The projection of 𝒑OCS onto the camera sensor used in OpenCV
is described by a pinhole projection, followed by the Brown-Conrady 
lens distortion model [27,28], where the camera IOR is comprised 
of the focal lengths 𝑓X, 𝑓Y, the principal point (𝑐X, 𝑐Y) and the distor-
tion parameters 𝑘1, 𝑘2, 𝑘3, 𝑝1, 𝑝2. The normalized coordinates are then 
computed as 
𝑥′ = 𝑥OCS∕𝑧OCS, 𝑦′ = −𝑦OCS∕𝑧OCS. (A.3)

To account for camera distortions, the normalized coordinates are 
extended: 
𝑥′′ = 𝑥′(1 + 𝑘1𝑟

2 + 𝑘2𝑟
4 + 𝑘3𝑟

6) + 2𝑝1𝑥′𝑦′ + 𝑝2(𝑟2 + 2𝑥′2)

𝑦′′ = 𝑦′(1 + 𝑘1𝑟
2 + 𝑘2𝑟

4 + 𝑘3𝑟
6) + 2𝑝2𝑥′𝑦′ + 𝑝1(𝑟2 + 2𝑦′2),

(A.4)

where 
𝑟2 = 𝑥′2 + 𝑦′2. (A.5)

Using the focal lengths 𝑓X, 𝑓Y and the principal point (𝑐X, 𝑐Y), the 
projected point in the image plane is expressed in pixel units as 

𝒑ICS =
(

𝑢
𝑣

)

=
(

𝑓X ⋅ 𝑥′′ + 𝑐X
𝑓Y ⋅ 𝑦′′ + 𝑐Y

)

. (A.6)

Analogously to Eq. (A.1), a point cloud 𝑷 GCS can be projected: 
𝑷 ICS = projection(𝑷 GCS

|IOR,EOR). (A.7)

Appendix B. Supplementary material

B.1. Supplementary material for Section 3

See Fig.  B.1.

B.2. Supplementary material for Section 4

See Fig.  B.2.
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Fig. B.2. Overview of the three heliostat groups measured with the HelioPoint [4] 
setup. Heliostats with available slope deviation maps are depicted with a dot in the 
corresponding color.

Table B.1
Numeric values for the error statistics shown in Fig.  10. The acronyms in the first 
column denote the error elimination steps applied to the simulated data in order to 
best fit the measured data, where U=Unmodified, ET=Eliminated Translational Errors, 
ETR=Eliminated Translational & Rotational Errors and ETRS=Eliminated Translational, 
Rotational & Scale Errors. Each column denoted by Meas (=Measured) shows the 
quantities for the comparison between measured point cloud and the simulated data. 
Each column denoted by Ref (=Reference) shows the quantities for the comparison 
between synthetically generated reference point cloud and the simulated data.
 Elimination 
step

RMSE [mm] MAE [mm] 𝜎̄𝑒X [mm] 𝜎̄𝑒Y [mm] 𝜎̄𝑒Z [mm]

 Meas Ref Meas Ref Meas Ref Meas Ref Meas Ref 
 U 23.7 9.7 22.4 9.0 12.3 5.4 11.9 6.8 16.5 4.5 
 ET 19.9 4.9 18.8 4.0 8.6 0.8 9.7 3.6 15.2 3.2 
 ETR 9.2 1.6 8.8 1.5 3.9 1.3 6.1 0.6 5.7 0.9 
 ETRS 4.6 0.8 4.3 0.8 2.9 0.6 1.9 0.5 3.0 0.4 

B.3. Supplementary material for Section 5

B.3.1. Concentrator corner point validation
See Figs.  B.3 and B.4 and Table  B.1.

B.3.2. Point light reflection validation
See Figs.  B.5–B.7 and Tables  B.2–B.4.

B.3.3. UAV Flight Dynamics Validation
See Fig.  B.8.
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Fig. B.3. Scatter plots of the reference point cloud and simulated point cloud. A total 
number of 𝑁 = 36 concentrators are evaluated, amounting to 144 concentrator corner 
points.

Table B.2
Component-wise RMSE, MAE, mean and standard deviation in millimeter units for the 
ROIS case.
 Image RMSE [mm] MAE [mm] 𝜇̄ [mm] 𝜎̄ [mm]

  X Y  X Y 𝑒X 𝑒Y 𝑒X 𝑒Y  
 Image 1 307 338 253 193 221 67 215 332 
 Image 2 254 317 196 234 −184 −130 175 290 
 Image 3 416 232 350 198 −347 −125 231 196 
 Overall 337 299 271 206 −88 −54 326 294 

Table B.3
Component-wise RMSE, MAE, mean and standard deviation in millimeter units for the 
FOMS case.
 Image RMSE [mm] MAE [mm] 𝜇̄ [mm] 𝜎̄ [mm]

  X Y  X Y 𝑒X 𝑒Y 𝑒X 𝑒Y  
 Image 1 57 28 41 23 15 −1 55 28 
 Image 3 43 39 31 27 9 −17 43 36 
 Overall 53 31 38 24 13 −5 52 31 
15 
Fig. B.4. Histograms for the error magnitude (top) and the error components 𝑒X
(bottom left), 𝑒Y (bottom center) and 𝑒Z (bottom right) after each error elimination 
step described in Section 4.3.3.
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Fig. B.5. Scatter plots of 𝑒Y over 𝑒X in millimeter units for the ROIS case.

Fig. B.6. Scatter plots of 𝑒Y over 𝑒X in millimeter units for the FOMS case.

Fig. B.7. Scatter plots of 𝑒Y over 𝑒X in millimeter units for the ROIS case, evaluated 
on the FOMS dataset.
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Table B.4
Component-wise RMSE, MAE, mean and standard deviation in millimeter units for the 
ROIS case, evaluated on the FOMS dataset.
 Image RMSE [mm] MAE [mm] 𝜇̄ [mm] 𝜎̄ [mm]

  X Y  X Y 𝑒X 𝑒Y 𝑒X 𝑒Y  
 Image 1 301 492 231 258 184 125 241 481 
 Image 3 347 239 299 198 −299 −117 181 214 
 Overall 314 439 250 242 54 60 312 438 

Fig. B.8. Vertical step responses for both the simulated UAV (left side) and the real 
UAV (right side), alongside the derived metrics. The thin light blue lines show the 
responses for each repetition, the black thick lines show the averaged responses. (For 
interpretation of the references to color in this figure legend, the reader is referred to 
the web version of this article.)
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