
Solar Energy 300 (2025) 113803

A
0
(

Contents lists available at ScienceDirect

Solar Energy

journal homepage: www.elsevier.com/locate/solener

A simulation environment for UAV-based real-time condition monitoring of
solar tower power plants
Alexander Schnerring a,c ,∗, Rafal Broda a,c , Adrian Winter a ,1, Michael Nieslony a ,
Julian J. Krauth a , Marc Röger a , Sonja Kallio a , Robert Pitz-Paal b,c
a German Aerospace Center (DLR), Institute of Solar Research, Calle Doctor Carracido 44, 04005, Almería, Spain
b German Aerospace Center (DLR), Institute of Solar Research, Linder Höhe, 51147, Cologne, Germany
c RWTH Aachen University, Chair of Solar Technology, Linder Höhe, 51147, Cologne, Germany

A R T I C L E I N F O

Keywords:
Unmanned aerial vehicle
Simulation
Condition monitoring
Calibration
Concentrated solar power
Heliostat

 A B S T R A C T

The development and testing of unmanned aerial vehicle (UAV)-based condition monitoring systems is time
consuming, costly and poses safety risks. While numerous examples show that simulation environments are well
suited to support the development process, existing environments fall short of simulating quantities specific to
the condition monitoring of solar tower power plants. To bridge this gap, we present a simulation environment
that provides quantities necessary to investigate such systems in simulation, prior to their application in
real solar tower power plants. The presented environment models the state of the solar field and computes
observations of the field and reflections of a point light source, as seen from a virtual camera. In addition,
it allows for the navigation of a simulated UAV in the virtual solar field in response to realistic UAV
control signals. The simulated concentrator corner points were found to match the concentrator corner points
determined by a bundle adjustment measurement up to an RMSE = 23.7mm before and RMSE = 4.6mm after
accounting for translational, rotational and scale errors. The simulated reflections of a point light source were
found to match the measured reflections up to an RMSE of 2.25mrad in X-direction and 2.09mrad in Y-direction
in the concentrator coordinate system. After eliminating errors in the camera position estimate, concentrator
orientations and mirror surface slope errors, the remaining RMSE is 0.35mrad in X-direction and 0.22mrad in
Y-direction. We conclude that the proposed simulation environment is a valuable tool for the development of
UAV-based condition monitoring systems of solar tower power plants.
1. Introduction

The efficiency of concentrating solar power (CSP) tower plants is,
among other factors, negatively affected by optical errors in the solar
field such as heliostat tracking errors, canting errors and slope errors.
A common approach to detect such errors is to use computer vision al-
gorithms on images recorded with a camera mounted on an unmanned
aerial vehicle (UAV) [1–4]. Currently, flight routes for these UAVs are
planned prior to their flight, while measurement data is evaluated after
the flight. The measurement data quality is often only recognized to be
insufficient when the UAV has already landed. Performing the image
data analysis in real-time, i.e. while the UAV is still flying, opens up
new possibilities for automated monitoring, as the UAV flight route can
be planned dynamically, i.e. based on real-time data analysis results.

∗ Corresponding author at: German Aerospace Center (DLR), Institute of Solar Research, Calle Doctor Carracido 44, 04005, Almería, Spain.
E-mail address: alexander.schnerring@dlr.de (A. Schnerring).

1 Now with Hamburg University of Applied Sciences, Department Aeronautical Engineering, Stiftstraße 69, 20999, Hamburg, Germany.

However, the development of UAV-based systems comes with several
challenges: Field tests are time-intensive, dependent on unplannable
or unpredictable environmental conditions and always pose the risk of
material damage. These problems can be mitigated using a simulation
environment, in which UAV-based systems can be developed and tested
safely, at low cost, and efficiently prior to their application in the real
world.

UAV-based CSP condition monitoring systems are typically com-
prised of several components, such as a perception module and a
geometric computation pipeline [1,4]. While various UAV simulators
have been proposed [5], none of them offers the simulation of quanti-
ties required for the development of CSP condition monitoring systems,
such as characteristic features in the solar field or reflections as seen
https://doi.org/10.1016/j.solener.2025.113803
Received 31 January 2025; Received in revised form 30 April 2025; Accepted 15 J
vailable online 18 August 2025
038-092X/© 2025 The Author(s). Published by Elsevier Ltd on behalf of Internation
 http://creativecommons.org/licenses/by/4.0/).
uly 2025

al Solar Energy Society. This is an open access article under the CC BY license

https://www.elsevier.com/locate/solener
https://www.elsevier.com/locate/solener
https://orcid.org/0009-0004-1700-6481
https://orcid.org/0009-0000-2378-1776
https://orcid.org/0009-0007-0507-039X
https://orcid.org/0000-0002-6110-0895
https://orcid.org/0000-0001-7769-650X
https://orcid.org/0000-0003-0618-4253
https://orcid.org/0000-0002-1409-7793
https://orcid.org/0000-0002-3542-3391
mailto:alexander.schnerring@dlr.de
https://doi.org/10.1016/j.solener.2025.113803
https://doi.org/10.1016/j.solener.2025.113803
http://crossmark.crossref.org/dialog/?doi=10.1016/j.solener.2025.113803&domain=pdf
http://creativecommons.org/licenses/by/4.0/

A. Schnerring et al. Solar Energy 300 (2025) 113803
Acronyms

CCS concentrator coordinate system
CSP concentrating solar power
DLR German Aerospace Center
EOR exterior orientation
FCS facet coordinate system
FOMS fitted orientations, measured surfaces
GCS global coordinate system
GPS global positioning system
GSD ground sampling distance
ICS image coordinate system
IOR interior orientation
LED light-emitting diode
MAE mean absolute error
OCS observer coordinate system
RMSE root mean squared error
ROIS raw orientations, ideal surfaces
SITL software-in-the-loop
SSE steady state srror
STJ Solar Tower Jülich
UAV unmanned aerial vehicle

from a UAV camera. Conversely, simulation tools in the CSP com-
munity [6,7] focus on modeling optical properties of the solar field
but do not provide the quantities required for the development of
UAV-based systems. This work aims to bridge this gap by presenting
and validating a novel simulation environment, designed to facilitate
the development and testing of UAV-based CSP condition monitoring
systems. It is important to note that the purpose of this work is
to present the simulation infrastructure itself, rather than a specific
system. Throughout this paper, the term System Under Development will
be used in an abstract sense to refer generically to any system being
developed and tested using the proposed simulation environment.

The presented simulation environment extends AirSim [8], an open-
source UAV simulator that allows for real-time flight dynamics sim-
ulation in response to standard flight control commands. Built on
Unreal Engine [9], AirSim enables realistic rendering of virtual environ-
ments, allowing a System Under Development’s perception module to be
integrated into the simulation loop. The developed extensions add a
solar field model and an image feature computation model, enabling
the simulation of characteristic image features, as seen by a UAV
camera. The modular structure allows for replacing perception outputs
with the computed image feature data and systematically controlling
noise levels during development and testing.

Following this introduction, Section 2 describes the conventions
and notation used throughout the paper and outlines the mathematical
preliminaries. Section 3 provides an overview of the simulation system
and describes the functionality of each components in detail. The val-
idation methodology for key quantities of the simulation environment
is presented in Section 4. Section 5 presents the validation results and
discusses their implications for the transferability of systems developed
in simulation to real-world applications. Finally, Section 6 concludes
the paper and outlines directions for future research.

2. Preliminaries

2.1. Conventions and notation

The solar field is assumed to consist of 𝑁 heliostats, where each
heliostat consists of two tracking axes and a concentrator with 𝑀
facets. The concentrator coordinate system (CCS) of a heliostat 𝑛 is
denoted by CCS𝑛 and the facet coordinate system (FCS) of a facet 𝑚
of concentrator 𝑛 is denoted by FCS . The state of the solar field is
𝑛,𝑚

2
Fig. 1. Overview of the coordinate systems for the case 𝑁 = 2 and 𝑀 = 4. The yellow
rectangle represents the camera sensor plane.

characterized by the pose of every FCS𝑛,𝑚. These coordinate systems
are defined w.r.t. the global coordinate system (GCS), chosen to be
a local east-north-up coordinate system on the northern hemisphere
in accordance with the SolarPACES Guideline for Heliostat Performance
Testing [10]. Likewise, the pose of a camera moving through the solar
field is described by its own coordinate system, which changes over
time as the camera navigates the environment. As the acronym CCS is
already in use, the camera coordinate system is denoted by observer
coordinate system (OCS). The 2D coordinate system associated to the
camera sensor is denoted by image coordinate system (ICS). Fig. 1
illustrates the coordinate systems used throughout this work.

Scalar values are represented as lowercase letters with regular font,
vectors as lowercase letter with bold font, and matrices in uppercase
letters with bold font.

2.2. Coordinate transformations

The spatial relationship of the aforementioned coordinate systems
is described within the framework of coordinate transformations. The
transformation between two coordinate systems CS1 and CS2 is conve-
niently summarized in a 4 × 4 matrix of the form

𝑻 CS1CS2 =

(𝑟11 𝑟12 𝑟13 𝑡1
𝑟21 𝑟22 𝑟23 𝑡2
𝑟31 𝑟32 𝑟33 𝑡3
0 0 0 1

)

=
(

𝑹CS1
CS2 𝒕CS1CS2
𝟎 1

)

(1)

where 𝒕CS1CS2 denotes the translation from CS1 to CS2 and 𝑹CS1
CS2 denotes

the rotation from CS1 to CS2.

2.3. Transforming points and point clouds

Characteristic features in the solar field, e.g. facet corner points or a
point light source, are represented by points and point clouds. A point
𝒑CS2 = (𝑝CS2X , 𝑝CS2Y , 𝑝CS2Z)𝑇 expressed w.r.t. CS2 can be expressed w.r.t.
CS1 in the following way:
(

𝒑CS1
1

)

= 𝑻 CS1CS2 ⋅
(

𝒑CS2
1

)

. (2)

To simplify notation, appending the entry 1 to the multiplied vector
and only considering the first three entries of the resulting vector is
implicitly assumed whenever a point is multiplied by a transformation
matrix, i.e.
𝒑CS1 = 𝑻 CS1CS2 ⋅ 𝒑

CS2 . (3)

Conversely to Eqs. (2) and (3), a point expressed w.r.t. CS1 can be
expressed w.r.t. CS2 by multiplying with the inverse of 𝑻 CS1CS2:

𝒑CS2 =
(

𝑻 CS1CS2
)−1

⋅ 𝒑CS1 = 𝑻 CS2CS1 ⋅ 𝒑
CS1 . (4)

A. Schnerring et al. Solar Energy 300 (2025) 113803
A point cloud 𝑷 is a collection of 𝑁 points and can be expressed in
form of a matrix:

𝑷 CS2 =
⎛

⎜

⎜

⎝

𝑝CS2X1 𝑝CS2Y1 𝑝CS2Z1...
...

...
𝑝CS2XN 𝑝CS2YN 𝑝CS2ZN

⎞

⎟

⎟

⎠

𝑇

. (5)

Analogously to Eqs. (2) and (3), a point cloud can be expressed w.r.t.
another coordinate system, i.e. 𝑷 CS1 = 𝑻 CS1CS2 ⋅ 𝑷

CS2.

3. Simulation methodology

3.1. Simulation system overview

The simulation environment is designed to enable the development
and testing of various Systems Under Development. While this paper
does not aim to provide a detailed description of any specific system,
Section 3.6 briefly discusses possible configurations and characteristics
of such systems. Based on the operational principles of typical UAV-
based CSP condition monitoring systems, the following models have
been identified as necessary:

1. A model representing where the facet corner points of each
heliostat are located w.r.t. to both GCS and ICS. This infor-
mation is used in systems utilizing the projected facet corner
points, e.g. camera pose estimation [1] or coarse calibration
algorithms [2].

2. A reflection model, enabling to compute how objects reflected by
the observed heliostats map to the ICS of an observing camera.
This information is used in systems that estimate the solar field
state from reflections visible in the observed heliostats [1,4].

3. A model to render image data, allowing to include the Systems
Under Development’s perception module in the simulation loop.
Through this, characteristics specific to the perception module
(such as noise processes) can be considered in simulation.

In addition to the aforementioned models, the development of
real-time systems introduces the following requirements:

4. A model to compute the UAV position and velocity (and hence
the camera pose) as a function of UAV control signals.

5. All of the above models should be implemented such that they
can be run in real-time.

Fig. 2 illustrates the modular architecture of the simulation envi-
ronment (highlighted in gray) in which the System Under Development
(highlighted in yellow) can be developed and tested.

The Solar Field State (Section 3.2) serves as a virtual representation
of the solar field. It is parametrized by field data such as heliostat posi-
tions, concentrator geometry and surface measurements and describes
the motion of each FCS𝑛,𝑚 w.r.t. the GCS using a Kinematic Model and
a Surface Model.

The Ground Truth Image Feature Computation (Section 3.4) simulates
which image features a virtual camera observes as a function of the
Solar Field State and the Camera State (Section 3.3). These image fea-
tures can represent both facet corner points and object reflections. Since
the current development of condition monitoring systems by German
Aerospace Center (DLR) is based on point light reflections, the scope
of this paper is limited to the simulation of point lights. However, the
presented framework can easily be extended to the reflection of other
objects, such as tower edges, astronomical objects, etc.

Alternatively, the UAV & Graphic Simulation (Section 3.5) can be
used to render entire images, which can be passed to the System
Under Development’s perception module in order to extract relevant
image features. In addition, the UAV & Graphic Simulation computes
the subsequent UAV pose as a function of UAV control signals, which
can be output by the System Under Development’s UAV control logic.
3
Fig. 2. The presented simulation environment consists of four components (gray
colored boxes), communicating with each other and the System Under Development
(yellow colored box). Optional paths are shown as dashed lines. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)

3.2. Solar field state

As mentioned in Section 3.1, relevant quantities for solar tower
power plant condition monitoring systems include facet corner points
and point light reflections. Prior to their projection onto the ICS, these
points first have to be expressed w.r.t. the GCS. This computation is
supported by the Solar Field State, a geometric model composed of the
Kinematic Model and the Surface Model. The Solar Field State describes
the spatial relation between GCS, CCS𝑛 and FCS𝑛,𝑚. This information,
combined with the concentrator and facet geometry and the Camera
State, is used to compute the projection of these points onto the ICS.

3.2.1. Kinematic model
The kinematic model 𝑲𝑛 describes the motion of CCS𝑛 as a function

of two tracking angles, 𝜃𝑛 and 𝜏𝑛, i.e.

𝑲𝑛 = 𝑲(𝜃𝑛, 𝜏𝑛|𝒐𝑛,𝒌𝑛) = 𝑻 GCSCCS𝑛
, (6)

where 𝒐𝑛 denotes the heliostat origin w.r.t. the GCS and the set of
parameters 𝒌𝑛 account for the heliostat geometry and potential mount-
ing errors. In this work, 𝒌𝑛 is obtained by fitting the kinematic model
to a number of calibration points, collected using the camera-target
method [11]. 𝜃𝑛 and 𝜏𝑛 are computed from a motor movement model,
which takes motor positions provided by the field operator as an input
and outputs the respective tracking angles [6].

A. Schnerring et al. Solar Energy 300 (2025) 113803
Fig. 3. The Solar Field State is described by a collection of coordinate transformations,
obtained by chaining the Kinematic Model and the Surface Model.

3.2.2. Surface model
The surface of a concentrator consists of 𝑀 facets, where each facet

is canted, i.e. slightly adjusted w.r.t. the CCS𝑛 in such a way that
incoming solar irradiation is concentrated at the focal length 𝑓𝑛. In
this work, two cases for the Surface Model are considered: The first
case (referred to as the ideal surface case) assumes each facet to be
a perfectly flat mirror surface. The transformation 𝑪𝑛,𝑚 from facet
coordinate system FCS𝑛,𝑚 to CCS𝑛 is described by

𝑪𝑛,𝑚 = 𝑪(𝑓𝑛,𝒅𝑚) = 𝑻 CCS𝑛FCS𝑛,𝑚
, (7)

where 𝑓𝑛 denotes the concentrator focal length and 𝒅𝑚 is the vector
pointing from the origin of CCS𝑛 to the origin of FCS𝑛,𝑚. The overall
transformation 𝑻 𝑛,𝑚 from facet 𝑚 of heliostat 𝑛 to the GCS is obtained
by chaining the transformations:
𝑻 𝑛,𝑚 = 𝑲𝑛 ⋅ 𝑪𝑛,𝑚 = 𝑻 GCSCCS𝑛

⋅ 𝑻 CCS𝑛FCS𝑛,𝑚
= 𝑻 GCSFCS𝑛,𝑚

. (8)

A simplified 2D illustration of a heliostat with two facets is shown in
Fig. 3.

In the second case (referred to as the measured surface case), each
facet is further subdivided into a collection of smaller tiles, where each
tile is assumed to be a perfectly flat mirror surface. The orientation
of each tile is adjusted w.r.t. the ideal surface according to a slope
deviation map, e.g. obtained by the QDEC-H system [12]. More pre-
cisely, each tile is assigned the orientation of the facet it belongs to
and corrected by the mean of all measured slope deviations inside
this tile, effectively discretizing the slope deviation map. This way,
both the ideal and the measured cases can be treated computationally
identically, since they both describe a concentrator as a collection of
flat surfaces. A subdivision of an exemplary concentrator surface into
a grid of tiles of size 32 × 32 is shown in Appendix B.

The Solar Field State is implemented in Python, especially building
on the packages NumPy [13] and SciPy [14] to achieve efficient vec-
torized computations for the entire solar field. The collection of facet
coordinate transforms 𝑻 𝑛,𝑚 is stored in a Python class. This class is then
passed to the Ground Truth Image Feature Computation. Additionally, all
𝑻 𝑛,𝑚 are passed to Unreal Engine in form of a JSON file, from which the
virtual heliostat field is constructed.

3.3. Camera state

The Camera State is composed of the exterior orientation (EOR)
and the interior orientation (IOR). The EOR describes the position and
orientation of the simulated camera w.r.t. the GCS, i.e. EOR = 𝑻 GCSOCS,
and describes how points defined w.r.t. the GCS are mapped to the OCS.
4
The IOR describes how points in the OCS are mapped to points on the
ICS. The overall projection of points expressed w.r.t. the GCS onto the
ICS is denoted by
𝒑ICS = projection(𝒑GCS|IOR,EOR) . (9)

The Camera State is stored in a Python class and passed to the
Ground Truth Image Feature Computation. The projection is implemented
using the package opencv-python, a Python wrapper for the open-source
computer vision software OpenCV [15]. A detailed description of the
camera model is provided in Appendix A.

In case that the System Under Development controls the simulated
UAV, the EOR can be sampled from the UAV & Graphic Simulation
through the Python API for AirSim. If no feedback-based control of the
UAV is required, the UAV & Graphic Simulation can also be excluded
from the simulation. In this case, the Camera State can be fed with
a collection of predefined camera poses. For example, a recorded
flight can be reproduced in simulation by obtaining the camera poses
from the recorded data, either from image data using computer vision
techniques or from the UAV sensor data, e.g. recorded using a real-time
kinematics and an inertial measurement unit.

3.4. Ground truth image feature computation

The Solar Field State provides the coordinate transformation col-
lection 𝑻 𝑛,𝑚, describing the position and orientation of every facet
coordinate system FCS𝑛,𝑚 w.r.t. the GCS. This information is used in
the Ground Truth Image Feature Computation component together with
the Camera State to compute the projection of both facet corner points
and a point reflected at the facet mirror plane onto the ICS.

3.4.1. Facet corners
The facet geometry is represented by the point cloud 𝑷 FCS𝑛,𝑚

Corner, con-
taining the corner points of each facet expressed w.r.t. FCS𝑛,𝑚. The
facet geometry is assumed to be identical for every facet in the field,
i.e. 𝑷 FCS𝑛,𝑚

Corner = 𝑷 FCS
Corner. The facet corners are expressed w.r.t. the GCS

by applying 𝑻 𝑛,𝑚 and then projected onto the ICS using the previously
described Camera State:
𝑷 ICS
Corner = projection(𝑻 𝑛,𝑚 ⋅ 𝑷 FCS

Corner|IOR,EOR) . (10)

Several filters are applied to the collection of all facets to ensure that
only those facet corner points are projected that lie in front of the
camera and within the camera field of view.

3.4.2. Point light reflections
Assuming a point light at position 𝒑GCSSource and a flat mirror surface

defined by the XY-plane of FCS𝑛,𝑚, the position of the reflection as seen
from a camera can be computed by projecting the mirrored point onto
the ICS:

𝒑FCS𝑛,𝑚Source = 𝑻 −1
𝑛,𝑚 ⋅ 𝒑GCSSource

𝒑FCS𝑛,𝑚Source,Mirrored = (𝑝FCS𝑛,𝑚Source,X, 𝑝
FCS𝑛,𝑚
Source,Y, −𝑝

FCS𝑛,𝑚
Source,Z)

𝑇

𝒑GCSSource,Mirrored = 𝑻 𝑛,𝑚 ⋅ 𝒑FCS𝑛,𝑚Source,Mirrored

𝒑ICSReflection = projection(𝒑GCSSource,Mirrored|IOR,EOR)

(11)

This work describes a HelioPoint measurement setup [4], where the
light source is mounted next to the camera on the UAV. For simplicity,
the point light position is assumed to lie in the camera focal point,
i.e. 𝒑GCSSource = 𝒕GCSOCS. However, any point light position can be assumed
for the computation in Eq. (11). The reflection 𝒑ICSReflection for facet
(𝑛, 𝑚) will only be visible in the image if its projection lies inside the
polygon defined by the projected facet corner points 𝑷 ICS

Corner. This can
be checked using a simple point-in-polygon test [16].

Fig. 4 illustrates the facet corner computation and the reflection
computation. While the reflection computation is described based on

A. Schnerring et al. Solar Energy 300 (2025) 113803
Fig. 4. The facet corner points and the reflection of 𝒑Source as seen from the virtual
camera are obtained by means of a camera projection of the facet corner points 𝑷 GCS

Corner
and the point 𝒑GCSSource, Mirrored.

the ideal surface case, the same computation applies to the measured
surface case by treating each discretization tile as a facet.

The Ground Truth Image Feature Computation is implemented in
Python in a vectorized form to process all facets at once, leveraging
efficient computations in NumPy, SciPy and OpenCV. The projected facet
corner points and point light reflections are passed to the System Under
Development in form of NumPy arrays.

3.5. UAV & Graphic Simulation

3.5.1. AirSim
The UAV & Graphic Simulation is based on AirSim [8], an open-source

UAV simulator developed by Microsoft. AirSim models the UAV flight
dynamics using a vehicle model and a physics engine. It supports a
range of virtual sensors, including the simulation of global positioning
system (GPS) sensor noise. AirSim supports software-in-the-loop (SITL)
integration with popular UAV firmware stacks such as ArduPilot [17],
enabling the communication between simulated sensor inputs and real-
world autopilot software over a User Datagram Protocol connection.
Implemented primarily in C++, AirSim combines the performance re-
quired for real-time simulation with accessibility through a Python API.
In the presented simulation environment, the flight control firmware
ArduPilot is used.

AirSim integrates with Unreal Engine [9] to render high-fidelity 3D
environments, supporting the development and testing of perception
algorithms under photorealistic conditions. Strictly speaking, the pre-
sented simulation system is built on Colosseum [18], an extension of
AirSim to support Unreal Engine 5. As Collosseum is largely built on
AirSim, the simulator is still referred to as AirSim in this work. For more
details on the functionality, refer to [8].

3.5.2. ArduPilot SITL
ArduPilot is an open-source autopilot firmware that supports var-

ious types of vehicles, including multirotor UAVs [17]. It provides
essential functionality for autonomous flight, such as mission planning,
waypoint navigation, basic fail-safe mechanisms and velocity control.
ArduPilot fuses data from common onboard sensors, such as GPS,
inertial measurement units, barometer and magnetometer, and supports
communication over the MAVLink protocol [19]. ArduPilot is designed
to operate both with physical hardware and in simulation, using the
same communication interfaces. This enables the seamless transfer from
an algorithm developed in simulation to a real system.
5
3.5.3. Unreal engine
Unreal Engine is a real-time 3D rendering engine primarily used for

game development, but also adopted in simulation and robotics for
its ability to generate high-fidelity, photorealistic environments. In the
presented setup, the collection of coordinate transforms 𝑻 𝑛,𝑚 is loaded
into Unreal Engine. Flat, reflective mirror surfaces of specified facet
dimensions are instantiated accordingly. AirSim adds a UAV actor to
the scene, with an attached camera actor to simulate onboard vision.
Unreal Engine provides directional light actors in order to simulate the
incoming sunlight as a function of geolocation, date and time, enabling
the simulation of sun reflections. At runtime, Unreal Engine receives the
UAV pose from AirSim and updates the position and orientation of the
UAV actor and camera actor accordingly. The rendered images can be
accessed through the AirSim Python API.

3.6. System under development

To clarify the intended use of the simulation environment, this
subsection outlines characteristics and components of a possible System
Under Development. The descriptions are intended to illustrate potential
designs of a system, without presenting their specific implementation.

The System Under Development is assumed to be implemented in
Python, though other implementations (e.g. C++) are possible if per-
formance or integration requirements demand it. Depending on the
usecase, the System Under Development receives the facet corner image
coordinates and point light reflection image coordinates as NumPy
arrays from the Ground Truth Image Feature Computation, or the images
rendered by Unreal Engine in JPG or PNG format. In addition, the System
Under Development may require an estimate of the camera EOR. While
AirSim provides a model for GPS noise, it does not include a noise model
for gimbal inaccuracies. However, the ground truth camera EOR can be
directly sampled from AirSim and any noise process manually applied
as needed. This enables the simulation of gimbal inaccuracies, as well
as more general camera EOR uncertainty in systems that estimate the
camera EOR from sources other than GPS and gimbal sensors, such
as vision-based methods. As a result, the system design does not need
to rely on AirSim’s GPS model, supporting more flexible development
scenarios. Similarly, the precision of facet corner point positions and
point light reflection positions can be controlled in both GCS and ICS to
simulate realistic levels of uncertainty in field data a-priori knowledge
and perception inaccuracies. Based on this input, the System Under
Development estimates the Solar Field State and derives UAV control
actions. These actions are then encoded in MAVLink messages. If the
System Under Development is implemented in Python, these messages
can be generated using Pymavlink, a Python wrapper for the MAVLink
protocol. This setup allows the system to operate consistently across
both simulated and real-world environments.

Principally, any system utilizing the previously described quantities
can be developed and tested within the presented simulation environ-
ment. The quantities estimated by the System Under Development can
be fed back into the flight route planning in real-time, provided the
estimated quantities are available in real-time.

One example of such a System Under Development could be a flexible
exploration system for solar fields. In such a system, a confidence
measure could be maintained in-flight, to represent the uncertainty as-
sociated with already estimated quantities. Based on this measure, new
tasks could be scheduled to further explore regions of the solar field that
have not been sufficiently observed. For instance, a corner-based coarse
calibration system could plan its next UAV waypoint depending on the
confidence of already computed concentrator orientation estimates.

Another relevant System Under Development could rely on algorithms
requiring a certain object or reflection to be seen in the captured images
during the flight. For instance, specific camera poses are required to
observe the reflections of a tower edge [1], a light-emitting diode
(LED) [4] or other markers reflected by the heliostats. By incorporating
a feedback signal derived from the observed reflections, the system can

A. Schnerring et al. Solar Energy 300 (2025) 113803
dynamically adjust its flight route to make these quantities more reli-
ably observable. The real-time capability of the simulation environment
enables the prototyping of such systems.

In this way, the simulation environment can serve as a platform
for the development and testing of autonomous systems, capable of
actively managing uncertainty and incorporating feedback to improve
the measurement data.

4. Validation methodology

This section presents the methodology for validating the simulation
environment through the evaluation of key quantities relevant to the
System Under Development. Based on the requirements introduced in
Section 3.1, the following simulated quantities are compared with
optical data obtained from a measurement campaign conducted at the
Solar Tower Jülich (STJ):

1. The 3D positions of facet corner points are compared in the GCS
(see Section 4.3). Only the four outer concentrator corner points
are selected, as these points can be detected using DLR’s state-
of-the-art AI-based perception module and are most relevant for
the corner-based heliostat coarse-calibration systems currently
developed by DLR.

2. The image coordinates of point light reflections are compared in
the ICS (see Section 4.4). The measured reflection image coor-
dinates are obtained with a HelioPoint measurement setup [4],
where the reflected object is an LED mounted next to the cam-
era. This measurement setup was selected since the reflections
of LEDs are most relevant for reflection-based heliostat fine-
calibration systems currently developed by DLR.

The optical measurements focus on the validation of the Solar Field
State and the Ground Truth Image Feature Computation. For the UAV &
Graphics Simulation, the consistency of the concentrator corner image
coordinates (computed by the Ground Truth Image Feature Computation
component) with the images rendered by Unreal Engine is assessed (see
Section 4.5). If the computed image coordinates align with the rendered
images, a perception module could, in principle, be integrated into the
simulation loop and produce outputs equivalent to the ground truth.

In UAV-based condition monitoring systems that incorporate feed-
back for dynamic flight route planning, accurate position and velocity
control are particularly important. To ensure a realistic simulation of
the UAV flight dynamics, the responses of both the simulated and a
real UAVs to identical MAVLink input commands are compared (see
Section 4.6). As the authors in the original AirSim paper [8] show
the validity of position control, this work focuses on the validation of
responses to velocity control commands.

4.1. Measurement camera

The measurement images for the validation of both concentrator
corner points and point light reflections were recorded using a DJI
Zenmuse P1 camera, mounted on a DJI Matrice 300 UAV platform. This
camera is equipped with a sensor with a resolution of 8192 px× 5460 px
and a physical sensor size of 35.9mm × 24mm, resulting in a pixel size
of approximately 4.4 μm. The camera was operated with a fixed focal
length of 35mm, with the focus set to infinity to ensure consistent
sharpness across the entire scene and different images. The exposure
mode was set to manual to ensure consistent brightness and sharpness
across varying lighting conditions. The images were captured using the
camera’s global mechanical shutter, ensuring geometric accuracy. The
camera IOR was obtained through a photogrammetric reconstruction
using the commercial software Aicon 3D Studio. The calibration was
performed using image data recorded using a dedicated flight pattern
over a collection of Aicon optical markers. From this calibration dataset,
Aicon 3D Studio jointly estimates the 3D positions of the markers, the
camera EORs, and the camera IOR.
6
4.2. Error metrics

This subsection introduces the error metrics used for the validation
of two quantities, namely the concentrator corner points and the point
light reflections. For a given quantity, suppose that 𝑁 pairs of simulated
points 𝒙Sim𝑛 and measured points 𝒙Meas𝑛 are collected, where 𝑛 = 1,… , 𝑁 .
The error metric for this quantity is then computed over the collection
of errors 𝒆𝑛 = 𝒙Meas𝑛 − 𝒙Sim𝑛 . For the validation of concentrator corner
points, the errors 𝒆𝑛 are three-dimensional vectors, expressed w.r.t.
the GCS. For the validation of point light reflections, the errors 𝒆𝑛
are two-dimensional vectors, referenced to quantities derived from
measurements in the ICS.

The estimated mean 𝝁̄ and the estimated standard deviation 𝝈̄ are
defined as

𝝁̄ = 1
𝑁

𝑁
∑

𝑛=1
𝒆𝑛 , 𝝈̄ =

√

√

√

√
1

𝑁 − 1

𝑁
∑

𝑛=1
(𝒆𝑛 − 𝝁̄)2 . (12)

The root mean squared error (RMSE) is given as

RMSE =

√

√

√

√
1
𝑁

𝑁
∑

𝑛=1
|𝒆𝑛|2 (13)

and the mean absolute error (MAE) is given as

MAE = 1
𝑁

𝑁
∑

𝑛=1
|𝒆𝑛| , (14)

where |𝒆𝑛| denotes the Euclidean norm of the error vector.
When the RMSE is to be expressed for a specific component of the

quantity, it is denoted with a subscript corresponding to that compo-
nent, e.g. RMSEX for the X-component. In Section 5, both RMSE and
MAE are presented: As the RMSE penalizes large errors more strongly
than the MAE, differences between the two metrics may be explained
by the presence of outliers or a non-symmetric error distribution [20].

4.3. Concentrator corner point validation methodology

4.3.1. Point cloud measurement via photogrammetry
To obtain the 3D positions of the concentrator corner points, a series

of images is recorded using the camera described in Section 4.1 during
a measurement flight over the solar field. The 2D image coordinates
of the concentrator corners are detected in every image by an AI-
based perception module [21]. These coordinates are then processed
by Aicon 3D Studio, which performs a photogrammetric reconstruction
by jointly estimating both the camera EORs and the 3D corner point
cloud, assuming the camera IOR determined in the camera calibration
process (see Section 4.1). The simulated concentrators are selected to
match the subset of concentrators for which all four corner points
were successfully reconstructed in the Aicon 3D Studio evaluation. They
are oriented using the motor positions provided by the field operator
at the image recording time as input to the Kinematic Model. Each
facet is placed according to the ideal Surface Model and the simulated
points are obtained by selecting those facet corner points that make
up the four outer corners of the concentrator. The measured point
cloud is subsequently aligned with the simulated point cloud using a
Helmert transform, whose parameters are obtained through the Kabsch
algorithm [22]. This alignment step ensures that both point clouds are
expressed in the same coordinate frame, namely the GCS in which the
field data is defined. After the alignment step, the simulated point cloud
is compared with the measured point cloud by means of an error model,
described in Section 4.3.3. Fig. 5 illustrates the workflow for generating
both the simulated and measured point clouds.

A. Schnerring et al. Solar Energy 300 (2025) 113803
Fig. 5. Overview of the workflow used to generate and align both measured (top)
and simulated (bottom) concentrator corner point clouds prior to their comparison.
𝐾 denotes the total number of images used to generate the measured point cloud.
All measured quantities are depicted as red rectangles, while simulated quantities are
depicted as gray rectangles. Processing steps are represented by white ellipses.

Fig. 6. Overview of the workflow used to generate and align both reference (top)
and simulated (bottom) concentrator corner point clouds prior to their comparison.
𝐾 denotes the total number of images used to generate the measured point cloud.
All measured quantities are depicted as red rectangles and all reference quantities are
depicted as blue rectangles, while simulated quantities are depicted as gray rectangles.
Processing steps are represented by white ellipses.

4.3.2. Reference measurement
Since the corner point positions are estimated using Aicon 3D Studio,

the resulting measured corner point cloud is subject to noise. This
uncertainty arises from factors such as noise in the perception module
and suboptimal camera perspectives during the measurement flight,
both of which affect the accuracy of the generated corner point cloud.
To estimate this uncertainty, synthetic concentrator corner image co-
ordinates are computed from the simulated corner point cloud using
the Ground Truth Image Feature Computation. The required synthetic
camera EORs are determined from the real concentrator corner image
coordinates detected in the actual measurement images. More precisely,
the camera EOR is optimized such that the synthetic image coordinates
closely resemble the real image coordinates for each image. The syn-
thetic image coordinates are passed to Aicon 3D Studio, generating a
second point cloud, referred to as the reference corner point cloud. This
point cloud is then aligned with and compared to the simulated corner
point cloud, analogously to the workflow outlined in Section 4.3.1.
Fig. 6 illustrates the workflow used to generate the reference corner
point cloud. This procedure isolates the error contribution introduced
by Aicon 3D Studio and provides an estimate of the uncertainty in the
measured corner point cloud attributable to the measurement process.

4.3.3. Error model and stepwise error elimination
The following analysis models the deviation between simulated and

measured corner points as a superposition of multiple error compo-
nents. Each concentrator is associated with four error vectors, one
7
for each corner, defined as the vector from the simulated to the cor-
responding measured corner point. The four error vectors of each
concentrator are then explained as the superposition of translational
errors, rotational errors, scale errors along the concentrator X- and Y-
directions and residual errors. These components reflect the physically
most plausible error sources:

1. Translational errors explain a uniform shift of all four simu-
lated corner points of a concentrator w.r.t. its measured corner
points. These errors may occur due to imprecisions in the field
data: During the field commissioning, each heliostat position is
measured using a Tachymeter, where translational measurement
errors can be introduced.

2. Rotational errors explain a rotation of all four simulated corner
points of a concentrator w.r.t. its measured corner points. These
errors may occur due to several effects: Tracking errors cause the
true concentrator orientation to deviate from the set orientation.
Furthermore, the kinematic parameters 𝒌𝑛 are optimized by the
camera-target method w.r.t. the optical axis of each heliostat.
A heliostat rotated around its optical axis produces the same
calibration point in the camera-target method, since the reflected
sun beam only depends on the surface normal. However, such a
rotation alters the positions of the concentrator corner points,
introducing a rotational discrepancy between the simulated and
measured corner points. In addition, erroneous assumptions dur-
ing calibration (e.g. errors in the sun position, target position
and the heliostat position) may propagate into the normal vector
computation during the calibration process. This may cause the
kinematic parameters 𝒌𝑛 to not represent the physical condition
of the field, but rather to compensate for the aforementioned
erroneous assumptions.

3. Scale errors explain a stretching or compression of all four sim-
ulated corner points along the concentrator X- and Y-direction
w.r.t. to their measured counterparts. Such errors can arise when
the assumed concentrator geometry deviates from the actual
physical geometry, e.g. due to inaccuracies in the modeled facet
dimensions or gap sizes between facets.

4. Residual errors summarize all remaining errors not explainable
by the above error components. They may arise due to facet
mounting or canting errors [23].

During the point cloud comparisons, each error component is elim-
inated sequentially by applying a corresponding alignment step to the
simulated points, fitting them to the measured/reference points for
each concentrator. The following description only mentions the align-
ment with the measured points. However, the same steps are carried
out w.r.t. the reference points. Recomputing the error metrics at each
stage quantifies the contribution of individual components and provides
a clearer understanding of how different error sources contribute to the
overall deviation.

To eliminate translational errors, the simulated points are shifted,
aligning the centroids of the simulated points with the centroids of
the measured points for each concentrator. Rotational errors are then
eliminated by rotating all simulated points around their centroids, such
that they best fit the measured points for each concentrator. In a last
step, scale errors are eliminated by scaling the simulated points along
the X- and Y-axis of the corresponding CCS to best fit the measured
points for each concentrator. While the order of these elimination
steps is arbitrary, the chosen sequence is computationally convenient:
First aligning simulated and measured centroids allows the rotation
to be applied around this common centroid. Similarly, scaling can be
performed assuming both point sets lie in the same CCS when they are
first aligned rotationally.

After each error elimination step, the following error quantities are
derived from the remaining error vectors 𝒆 = (𝑒X, 𝑒Y, 𝑒Z), pointing from
each simulated point to its measured counterpart: Since the mean of

A. Schnerring et al. Solar Energy 300 (2025) 113803
Fig. 7. Overview of the locations of each heliostat group for the three measurement
images.

the error distributions is zero for all components due the definition of
the Kabsch algorithm [22], the standard deviations 𝜎̄𝑒X , 𝜎̄𝑒Y and 𝜎̄𝑒Z are
computed for each error component as defined in Eq. (12). In addition,
the error magnitude |𝒆| is characterized by the RMSE and MAE, as
defined in Eqs. (13) and (14). The RMSEs after every error elimination
step are denoted:

1. RMSEU: RMSE obtained when leaving the simulated point cloud
Unmodified (i.e. when no error elimination step is applied).

2. RMSEET: RMSE obtained after Eliminating Translational errors.
3. RMSEETR: RMSE obtained after Eliminating Translational and
Rotational errors.

4. RMSEETRS: RMSE obtained after Eliminating Translational,
Rotational and Scale errors.

Since the individual error types are orthogonal (e.g. a rotation around
the simulated concentrator centroid does not effect the translational
error of this concentrator), the overall RMSEU is composed by the
RMSEs of the individual error components:
RMSE2U = RMSE2Trans + RMSE

2
Rot + RMSE

2
Scale + RMSE

2
Res . (15)

Since each elimination step removes its respective component from its
preceding RMSE, the individual RMSE components are obtained as
RMSE2Trans = RMSE

2
U − RMSE2ET ,

RMSE2Rot = RMSE
2
ET − RMSE

2
ETR ,

RMSE2Scale = RMSE
2
ETR − RMSE2ETRS ,

RMSE2Res = RMSE
2
ETRS .

(16)

4.4. Point light reflection validation methodology

The measurement data for the validation of point light reflec-
tions is recorded using the camera described in Section 4.1 with a
HelioPoint [4] measurement setup: An LED is mounted to the cam-
era lens and both camera and LED are oriented toward a group of
heliostats, pointing to the expected UAV position. This way, three
measurement images are recorded, which are shown in Appendix B.
Fig. 7 illustrates the locations of the recorded heliostat groups in the
solar field for each measurement image.

Both LED reflections and concentrator corner points are detected in
the ICS for each concentrator. The image coordinates of the reflections
are transformed from pixel space to metric coordinates w.r.t. the CCS,
using a homography defined by the four concentrator corner points
and the known concentrator geometry. The simulated concentrators are
aligned using the Kinematic Model and the camera EOR is estimated by
8
Fig. 8. Magnified view of validation image 1. For the validation of point light
reflections, both concentrator corner points and LED reflections are measured (red
rectangles and circles) and simulated (yellow rectangles and triangles) in the ICS and
converted to their respective CCSs. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

means of a Perspective-n-Point algorithm [24], using the concentrator
center points as correspondences. Concentrator corner points and point
light reflections are then simulated (see Section 3.4) and expressed
w.r.t. the CCS, using a homography as described above.

The simulation of point reflections makes various assumptions,
potentially leading to deviations between simulated and measured
reflections: As discussed in Section 4.3.3, the simulated concentrator
orientations may deviate from the true concentrator orientations by
rotational errors, leading to a shift of the simulated reflections w.r.t.
the measured reflections in the ICS. For instance, misalignments be-
tween the GCS, the target coordinate system, or a true east-north-up
frame [25] may go undetected during the determination of kinematic
parameters using the camera-target method. In such cases, the kine-
matic parameters could converge such that the reflected solar beam
still reaches the target for all calibration points, thereby compensating
for the erroneous coordinate assumptions. However, the resulting con-
centrator normal vectors would deviate from the true physical normals,
leading to discrepancies between simulated and measured reflections.
Similarly, errors in the image-based camera pose estimation (and hence
in the assumed LED position) may lead to shifted simulated reflections
w.r.t. the measured reflections. Furthermore, the measured reflections
are effected by distortions, caused by slope errors in the facet mirror
surfaces. To account for these errors, the validation process is repeated
for two cases:

1. In the raw orientations, ideal surfaces (ROIS) case, the reflec-
tions are simulated using the ‘‘raw’’ concentrator orientations
obtained from the kinematic model and assuming the ideal
surface case. Fig. 8 shows the magnified view of image 1 with
reflections simulated under the ROIS assumptions.

2. In the fitted orientations, measured surfaces (FOMS) case, errors
stemming from inaccurate concentrator orientations and noise
in the camera pose estimate are eliminated by a fit of the con-
centrator orientations: Starting from the raw orientation, each
concentrator is rotated around its X- and Y-axis, such that the
deviations between measured and simulated reflections are min-
imized. During this fit, the point light reflections are simulated
taking into account a measurement of the concentrator mirror
surface: As described in Section 3.2.2 the concentrator’s slope
deviation map (obtained from a QDEC-H measurement [12])
is discretized into a 32 × 32 grid. Hence, a total number of
1024 potential reflections are computed for each concentrator in
every orientation optimization step. If more than one reflection
is classified as visible for a facet, the final reflection position is
computed as the mean of all visible reflections for this facet.

For both cases, the distributions of the error vectors 𝒆 = (𝑒X, 𝑒Y) from
simulated reflections to measured reflections is converted from mil-
limeter units to milliradian units by considering the distance between

A. Schnerring et al. Solar Energy 300 (2025) 113803
the UAV and each concentrator. The resulting distributions are then
characterized by the estimated mean values 𝜇̄𝑒X and 𝜇̄𝑒Y , as well as the
estimated standard deviations 𝜎̄𝑒X and 𝜎̄𝑒Y . In addition, the component-
wise RMSEX and RMSEY as well as the component-wise MAEX and
MAEY are computed.

Note that only those pairs of measured and simulated reflections
are considered where a measured reflection is available. All simulated
reflections without a measured counterpart are neglected. On the other
hand, a pair of a measured reflection and its non-visible simulated
counterpart (i.e. a simulated reflection that does not lie inside the facet
frame on the ICS) is still considered, as the position of the simulated
reflection outside of the facet frame can be computed.

4.5. Image data consistency

To enable the comparison between the concentrator corner point
image coordinates computed by the Ground Truth Image Feature Com-
putation with the images rendered by Unreal Engine, both components
are initialized using the same Camera State. Specifically, the simulated
camera is positioned at a height of ℎ = 30m and oriented toward
the solar field with a pitch angle of 𝜃 = 30◦. For simplicity, the
camera IOR is modeled as a pinhole projection (see Appendix A) with
a 4K resolution and a horizontal field of view of 60◦. The choices of
camera EOR and IOR reflect a realistic use case, in which the camera
is operated in video mode and positioned and oriented considering the
STJ solar field layout and concentrator dimensions. The rendered image
is then overlaid by the simulated concentrator corner point image
coordinates.

While Unreal Engine offers various reflection models with varying
degrees of computational complexity, an analysis of the reflection
accuracy exceeds the scope of this work. Initial experiments show that
Unreal Engine can provide point light reflections matching the reflec-
tions of the Ground Truth Image Feature Computation. However, these
experiments assume ideal facet surfaces and short distances (< 20m)
between simulated UAV and concentrator. At larger distances, the
reflection accuracy decreases.

4.6. UAV flight dynamics validation methodology

To validate the UAV flight dynamics simulation, the responses of
both real and virtual UAVs to a velocity step command are compared.
The real UAV runs ArduPilot on a physical flight controller, while
the virtual UAV operates ArduPilot in a SITL. Due to the symmetric
configuration of the rotors, the system response in the X-direction is
representative of any direction within the horizontal (XY-) plane and
is therefore presented as the horizontal case. In contrast, the response
in the Z-direction (vertical) is analyzed separately, as it exhibits dif-
ferent dynamics due to the influence of gravity. Each UAV begins in
a hover state at 0m∕s before receiving a step velocity command. The
command causes the UAVs to accelerate to a target velocity, which is
then held constant at 1m∕s for a duration of 𝑇 = 18 s, controlled by
the ArduPilot velocity controller. This is done for both horizontal and
vertical directions. The recorded flight logs of both simulated and real
UAV are interpolated at a rate of 100Hz for comparability. To reduce
random effects such as sensor noise and disturbances due to wind and
turbulences, the UAV is accelerated and stopped 10 times. The system
response is computed as the mean over all responses.

Several performance metrics are derived from the averaged system
responses to characterize the UAV flight dynamics: The rise time 𝑡Rise
is defined as the time required for the velocity to increase from 0.1m∕s
to 0.9m∕s. The settling time 𝑡Settling denotes the time elapsed until the
velocity remains within a specified tolerance band of ±0.05m∕s around
the target velocity of 1m∕s. The steady state srror (SSE) is calculated
as the deviation between the mean velocity within this tolerance band
and the commanded velocity.
9
Fig. 9. The measured point cloud is obtained by following the process depicted in Fig.
5.

Fig. 10. Graphical representation of the error metrics 𝜎̄𝑒X , 𝜎̄𝑒Y , 𝜎̄𝑒Z , MAE and RMSE
remaining after each error elimination step applied to the simulated point cloud to fit
both measurement and reference point cloud.

5. Validation results and discussion

5.1. Concentrator corners

5.1.1. Results
Following the process described in Section 4.3 a simulated, mea-

sured and reference point cloud are obtained. Each point cloud has a
total number of 𝑁 = 36 heliostats, which amounts to 144 concentrator
corner points. The measured point cloud is depicted in Fig. 9. The
simulated and reference point clouds can be found in Appendix B.

Fig. 10 shows the error metrics as a function of the error elimi-
nation steps: The ‘‘Measurement’’ graph shows the quantities for the
comparison between the measured point cloud and the simulated point
cloud. The ‘‘Reference’’ graph shows the quantities for the comparison
between the synthetically generated reference point cloud and the
simulated point cloud. The error distributions from which the error
metrics are derived can be found in Appendix B, alongside the numeric
data for Fig. 10.

In each error elimination step and for both measured and reference
data, the RMSE is only slightly higher than the MAE, indicating that the
error magnitude distributions are free of outliers and show symmetric

A. Schnerring et al. Solar Energy 300 (2025) 113803
Table 1
RMSEs for each error component, derived for both measurement and
reference from the data depicted in Fig. 10.
 Comparison RMSE [mm]

 Trans Rot Scale Res
 Measured 12.8 17.7 8.0 4.6
 Reference 8.4 4.6 1.4 0.8

behavior. Therefore, the discussion is limited to the RMSE, noting that
the same behavior also applies to the MAE. The RMSEs for each error
component are obtained by applying Eq. (16) to the data depicted in
Fig. 10. The resulting RMSEs are listed in Table 1.

The measured RMSE reduction after eliminating translational er-
rors is RMSEMeasTrans = 12.8mm, while the corresponding reference error
amounts to RMSERefTrans = 8.4mm. Subsequent elimination of rotational
errors further reduces both the measured and reference RMSEs, with
an impact of RMSEMeasRot = 17.7mm and RMSERefRot = 4.6mm, respec-
tively. Eliminating scale errors leads to an additional reduction in the
measured RMSE, with only a minor reduction in the reference RMSE.
The corresponding scale error components are RMSEMeasScale = 8.0mm and
RMSERefScale = 1.4mm. The residual error components after eliminating
all error components are RMSEMeasRes = 4.6mm and RMSERefRes = 0.8mm,
respectively.

5.1.2. Discussion and impact on system development
The following discussion interprets the resulting error components

identified through the stepwise error elimination process. While the
physical origins of each error type have already been outlined in
Section 4.3.3, the focus here lies on assessing the impact of the ob-
served error magnitudes on the transferability of a system developed
in simulation to the real world.

Since measured and reference translation RMSEs lie in the same
order of magnitude, significant parts of the translational errors can
be attributed to Aicon 3D Studio. Even if all translational deviation is
attributed to inaccuracies in the field data, the heliostat positions are
determined to be known with an accuracy of RMSEMeasTrans = 12.8mm.
However, the translational error quantities should be interpreted as
indicators of field data consistency : The initial Helmert alignment is
necessary to express the measured point cloud w.r.t. the GCS despite the
lack of a reference frame in the Aicon 3D Studio evaluation. Potential
misalignments of the field data w.r.t. a world coordinate system are not
detectable in this measurement setup.

For systems that estimate concentrator orientations based on corner
point positions, translational errors of the observed magnitude have
minimal impact on orientation estimates in the OCS. This is because
slight shifts of all corner points do not significantly alter their relative
projections on the camera sensor at typical distances between camera
and concentrators. However, these systems may also rely on camera
pose estimates derived from field data, such as the Perspective-n-
Point algorithm utilized in Section 4.4. In this case, translational errors
may propagate into the final estimate. These errors can be accounted
for during development by simulating translational errors at levels
consistent with those identified in this work.

The observed RMSERefRot = 4.6mm indicates that part of the ro-
tational error originates from the photogrammetric reconstruction in
Aicon 3D Studio. However, the significantly larger measured value
of RMSEMeasRot = 17.7mm suggests that the simulated concentrators are
indeed rotated w.r.t. the real-world concentrators.

Rotational discrepancies may cause the System Under Development
to yield different orientation estimates in simulation than in the real
world when both the simulated field and the real system are initialized
with identical motor positions. However, further experiments show that
these rotational errors occur primarily around the concentrator surface
normal vector. This normal vector, typically the output of corner-based
orientation estimation algorithms, hence remains largely unaffected.
10
Table 2
Component-wise RMSE, MAE, mean and standard deviation in milliradian for the ROIS
case.
 Image RMSE [mrad] MAE [mrad] 𝜇̄ [mrad] 𝜎̄ [mrad]

 X Y X Y 𝑒X 𝑒Y 𝑒X 𝑒Y
 Image 1 2.08 2.43 1.71 1.32 1.50 0.47 1.45 2.39
 Image 2 1.69 2.18 1.30 1.58 −1.22 −0.85 1.18 2.02
 Image 3 2.76 1.56 2.34 1.33 −2.31 −0.85 1.52 1.32
 Overall 2.25 2.09 1.81 1.39 −0.57 −0.35 2.18 2.07

This is supported by the fact that rotational deviations of the normal
vectors remain below 3mrad on average, as shown in Section 5.2.1.
Corner-based methods are typically used for coarse calibration ap-
plications, aiming for accuracies around 3mrad to 10mrad [26]. The
deviations identified in this work are not expected to be critical to the
development of such systems. Even if the underlying kinematic model
produces slightly incorrect orientations, the simulation environment
still provides consistent corner point positions. As a result, an algorithm
developed and tested in simulation can adapt to concentrators oriented
differently in a real solar field without compromising its functionality.

For scaling errors, the fact that the measured scale RMSE is larger
than the reference scale RMSE supports the interpretation that the
assumed concentrator geometry deviates from the true physical geom-
etry. In this case, fine-tuning the assumed geometry could improve
algorithm performance when applied to real world data. Systematic
errors introduced by the perception module, such as a consistent bias
toward detecting corner points closer to the concentrator center, may
also contribute to the observed discrepancies.

Random noise in the perception module also likely contributes to
the remaining residual errors. These residuals may additionally be
caused by physical imperfections not represented by the error model. In
contrast to RMSEMeasRes , RMSERefRes is significantly smaller, as the genera-
tion of the reference point cloud does not model noise in the perception
module or physical imperfections (see Section 4.3.2).

To assess the practical significance of the remaining geometric
errors, their projected size in the pixel space can be compared to the
ground sampling distance (GSD), describing the physical distance cov-
ered by one pixel. The measured combined scaling and residual RMSE
components amount to RMSEMeasETR = 9.2mm. Assuming a flight height of
ℎ = 30m, a pitch angle of 𝜃 = 30◦ and a DJI Mavic 3 Enterprise camera
in video mode (pixel size of 𝑠px = 3.3 μm, focal length of 𝑓 = 8.8mm),
the GSD amounts to GSD = (ℎ ⋅ 𝑠px)∕(𝑓 ⋅ cos 𝜃) = 12.86mm∕px. This im-
plies that the combined scaling and residual RMSE projects to less than
one pixel on the ICS, indicating that these inaccuracies are unlikely to
pose a significant limitation to an image-based processing pipeline.

5.2. Point light reflections

5.2.1. Results
An ROIS validation is possible for all heliostats with a visible

reflection, i.e. 38 heliostats in group 1, 31 heliostats in group 2 and
43 heliostats in group 3. Fig. 11 shows the scatter plots of 𝑒Y over 𝑒X
in milliradian units for all three validation images for the ROIS case.
The error metrics of the distributions are summarized in Table 2 for
each image/heliostat group. The scatter plots of 𝑒Y over 𝑒X in millimeter
units as well as the corresponding error metric summary can be found
in Appendix B.

The error distributions vary for the different images/heliostat
groups: Especially the estimated mean value 𝜇̄𝑒X strongly varies as a
function of the measured group, with 𝜇̄𝑒X = 1.50mrad for group 1,
𝜇̄𝑒X = −1.22mrad for group 2 and 𝜇̄𝑒X = −2.31mrad for group 3. The
image-wise estimated standard deviations lie below 2mrad, which is
the expected tracking accuracy at the STJ. An exception to this are
the error Y-components for group 1 and 2 with 𝜎̄𝑒Y = 2.39mrad and
𝜎̄ = 2.02mrad, respectively. The overall RMSE lies at 2.25mrad and
𝑒Y X

A. Schnerring et al. Solar Energy 300 (2025) 113803
Fig. 11. Scatter plots of 𝑒Y over 𝑒X in milliradian units for the ROIS case. It can be
seen that both image 1 and image 2 contain an outlier, resulting in increased error
quantities.

Fig. 12. Scatter plots of 𝑒Y over 𝑒X in milliradian units for the FOMS case.

Table 3
Component-wise RMSE, MAE, mean and standard deviation in milliradian for the FOMS
case.
 Image RMSE [mrad] MAE [mrad] 𝜇̄ [mrad] 𝜎̄ [mrad]

 X Y X Y 𝑒X 𝑒Y 𝑒X 𝑒Y
 Image 1 0.37 0.18 0.26 0.15 0.10 −0.01 0.36 0.19
 Image 3 0.32 0.29 0.23 0.20 0.07 −0.13 0.32 0.26
 Overall 0.35 0.22 0.25 0.17 0.09 −0.04 0.35 0.22

the overall RMSEY lies at 2.09mrad. The MAE is smaller for both error
components in all images.

The validation process is repeated for the FOMS case, additionally
fitting the concentrator orientations and considering the discretized
slope deviation maps. The resulting error vector scatter plots in millira-
dian units as well as the summary of error metrics are shown in Fig. 12
and Table 3 respectively. The scatter plots and error metric summary
in millimeter units can be found in Appendix B. It is important to note
that an FOMS validation is only possible for those heliostats with an
available slope deviation map, leaving 14 concentrators in group 1, no
heliostats in group 2 and five heliostats in group 3. An overview of all
measured heliostats in the ROIS dataset, with those contained in the
FOMS subset marked by a dot, is provided in Appendix B.
11
Fig. 13. Scatter plots of 𝑒Y over 𝑒X in milliradian units for the ROIS case, evaluated
on the FOMS heliostat subset.

Table 4
Component-wise RMSE, MAE, mean and standard deviation in milliradian for the ROIS
case, evaluated on the FOMS data.
 Image RMSE [mrad] MAE [mrad] 𝜇̄ [mrad] 𝜎̄ [mrad]

 X Y X Y 𝑒X 𝑒Y 𝑒X 𝑒Y
 Image 1 1.99 3.60 1.53 1.78 1.23 0.90 1.58 3.52
 Image 3 2.46 1.77 2.12 1.46 −2.12 −0.90 1.28 1.57
 Overall 2.13 3.21 1.69 1.69 0.33 0.42 2.12 3.21

The errors are significantly reduced by the additional processing
step: 𝜇̄ is slightly shifted in positive X-direction but lies close to zero
for both groups. The standard deviation is slightly higher in X- than
in Y-direction. The overall error is reduced to RMSEX = 0.35mrad and
RMSEY = 0.22mrad and to MAEX = 0.25mrad and MAEY = 0.17mrad.

Since the FOMS validation data is a subset of the ROIS validation
data, the ROIS case is additionally evaluated on the FOMS heliostat
subset only. This ensures that differences are not caused by random
sampling effects of the FOMS subset. The resulting error vector scatter
plots in milliradian units as well as the summary of error metrics are
shown in Fig. 13 and Table 4 respectively. The scatter plots and error
metric summary in millimeter units can be found in Appendix B.

The error metrics for the ROIS evaluated on the FOMS subset are
generally comparable to those obtained from the full dataset. A notable
exception is the Y-direction in image 1, where both the RMSE and the
standard deviation 𝜎̄𝑒Y are increased by more than 1mrad relative to
the evaluation on the full dataset.

5.2.2. Discussion and impact on system development
As previously described in Section 4.4, errors in the ROIS case

can originate from multiple sources. The spread observed in the error
distributions can partly be attributed to tracking inaccuracies. Specif-
ically, the increased spread along the Y-direction in groups 1 and 2
is likely caused by concentrator orientation outliers, as visible in Fig.
11. One such outlier causing three reflections in image 1 to largely
deviate from the remaining reflections is included in both the ROIS
and the FOMS datasets. This leads to an increased standard deviation
𝜎̄𝑒Y when validating the ROIS case on the FOMS dataset as compared
to a validation on the ROIS dataset, because the reduced number of
heliostats included in the FOMS dataset provides less opportunity for
such outliers to be statistically compensated. In addition to heliostat

A. Schnerring et al. Solar Energy 300 (2025) 113803
Fig. 14. An exemplary X-slope deviation map, overlaid by the measured reflections
(red circles) and the simulated reflections for both the ROIS case (yellow triangles)
and the FOMS case (white squares).

orientation errors, surface slope deviations contribute to the spread
across all error distributions.

The systematic variation in the estimated mean values could be
explained by an inaccurate camera EOR estimate, as discussed in
Section 4.4. However, Monte-Carlo simulations using the field data
uncertainty derived in Section 5.1 suggest that the effect of camera EOR
inaccuracies is not large enough to fully explain the observed effects.
This indicates that additional factors are contributing to these system-
atic deviations. As discussed in Section 4.4, erroneous assumptions
in the camera-target method could also lead to systematic heliostat
tracking errors, depending on the concentrator’s position or orientation.
However, the presence of such errors stays speculative and further
investigation is required to explain the cause of the observed systematic
deviations.

To illustrate how the concentrator orientation fit and the incorpora-
tion of measured slope deviation data in the surface model reduces the
observed errors, an example is shown in Fig. 14. The figure shows the
distribution of simulated reflections for both the FOMS and ROIS cases
for a representative heliostat from the FOMS dataset. For reference,
the corresponding measured reflections are also included. The figure
highlights the significant reduction in both spread and systematic shift
of the error achieved in the FOMS case. The remaining inaccuracies
lie in the order of magnitude necessary to develop fine-calibration
systems [26].

The ROIS validation indicates that the simulation does not perfectly
reproduce the true solar field state, potentially due to noise in the
camera EOR estimation, inaccuracies in the tracking angles caused by
coordinate system mismatches or other error sources. However, the
FOMS dataset demonstrates that the surface properties are accurately
modeled. Even if the heliostats are oriented differently in simulation
compared to the real system, the same argument as in the corner point
validation applies (see Section 5.1.2): Since point light reflections are
modeled in fine-calibration accuracy, the system’s ability to estimate
the solar field state is still meaningfully developed and tested under
realistic conditions.

5.3. Image data consistency

Fig. 15 shows the image rendered by Unreal Engine, overlaid with
the concentrator corner point image coordinates computed by the
Ground Truth Image Feature Computation. The alignment of the com-
puted points and the corner points in the rendered image confirms the
consistency of the two components. This indicates that the rendered
image can be used within the simulation loop, allowing a perception
module under test to extract image features directly, rather than relying
on the Ground Truth Image Feature Computation.
12
Fig. 15. Image rendered with Unreal Engine, overlaid by the concentrator corner point
image coordinates obtained from the Ground Truth Image Feature Computation. The top
left image and the top right image show zoomed-in sections of the bottom image.

Fig. 16. Horizontal step responses for both the simulated UAV (left side) and the real
UAV (right side), alongside the derived metrics. The thin light blue lines show the
responses for each repetition, the black thick lines show the averaged responses. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

Table 5
Comparison between the metrics derived from the simulated and measured velocity
step responses in horizontal and vertical direction.
 Direction 𝑡Rise [s] 𝑡Settling [s] SSE [%]
 Sim Meas Sim Meas Sim Meas
 Horizontal 1.13 1.39 5.53 4.64 −0.45 0.26
 Vertical 0.66 0.72 7.96 1.72 3.04 0.80

5.4. UAV flight dynamic

Fig. 16 shows the horizontal step responses and the derived metrics
for both simulated and real UAVs. The step responses for the vertical
direction can be found in Appendix B. Table 5 shows the comparison of
the metrics derived from the simulated and the measured step responses
in horizontal and vertical direction.

A. Schnerring et al. Solar Energy 300 (2025) 113803
The measured step velocity responses exhibit a higher noise level
compared to the simulation. While the rise times 𝑡Rise are similar in
both directions for simulation and measurement, the simulated vertical
settling time 𝑡Settling is noticeably longer than the measured one. A
similar pattern is observed for the SSE: In the horizontal direction, it
remains below 1% for both simulation and measurement, whereas in
the vertical direction, only the measured response meets this threshold.

The increased noise level in the measured responses is likely caused
by sensor noise as well as environmental influences such as wind or
turbulence during the measurement flight. The observed qualitative
differences in the step responses can be explained by different factors.
In this work the same UAV parameters as in Shah et al. [8] were used as
a proof of concept, since an adjustment of mass, dimensions and other
parameters to match the real UAV was considered beyond the scope of
this work.

As a result, the flight dynamics of the real UAV deviate from those
observed in simulation. In addition, the ArduPilot velocity controller
may be tuned differently in simulation compared to the real system.
This discrepancy is particularly evident in the vertical direction, where
velocity must be controlled against the gravitational force. Despite
these differences in the step responses of the simulated and measured
flight velocities, velocity-based UAV control logic developed in simula-
tion is expected to be transferable to real-world systems, as controllers
are typically designed to tolerate variations in system dynamics. How-
ever, fine-tuning of the transferred algorithm may be necessary to
account for differences between simulation and real world.

6. Conclusion and outlook

In this work, we have presented a simulation environment for
the development and testing of UAV-based CSP condition monitoring
systems, aiming to bridge the gap between existing UAV simulators and
simulation tools used in the CSP community. Validation results show
that the concentrator corner points at the STJ can be simulated with
an accuracy of up to RMSE = 23.7mm. By eliminating translational
and rotational errors, the RMSE is reduced to 9.2mm, corresponding to
sub-pixel accuracy under typical camera configurations. Additionally
eliminating scale errors results in a remaining RMSE of 4.6mm. The
origin of the observed scale errors remains an open question for future
investigation.

Using a HelioPoint measurement setup, we determined that the
simulated reflections match the measured reflections with an accuracy
of up to RMSEX = 2.25mrad and RMSEY = 2.09mrad. The results assume
raw motor positions from the field operator, ideal mirror surfaces, and a
camera EOR estimated using a Perspective-n-Point algorithm with field
data as 2D–3D point correspondences. In addition to statistical heliostat
tracking and surface slope errors, we observed systematic deviations
between simulated and measured reflections. These deviations may be
attributed to inaccuracies in the camera EOR estimation, misalignments
between the GCS and the world coordinate system or other unknown
factors. Further investigation is required to clarify their origin. After
compensating for these effects by fitting the simulated concentrators to
the measured data while considering measured slope deviation maps,
the RMSE is reduced to RMSEX = 0.35mrad and RMSEY = 0.22mrad.

We simulated and measured a UAV’s response to velocity control
commands and compare the responses using three derived metrics.
While differences between simulation and measurement are observed,
the responses are similar in both the vertical and horizontal directions.
This indicates that the simulation environment provides a sufficiently
accurate dynamic model for developing and testing UAV control logic.
Remaining deviations may stem from parameter mismatches and sensor
noise in the real-world system.

The results show that the simulation environment cannot replicate
the optical measurement data with perfect accuracy: Perception noise,
field data uncertainties, misalignments between coordinate systems
and other factors inevitably introduce discrepancies. However, these
13
differences can be quantified and their impact understood. The algo-
rithm’s ability to estimate the Solar Field State from camera observations
can still be developed and tested meaningfully, since the simulated
camera observations are consistent with the simulated Solar Field State
and the simulation captures all aspects critical to the System Under
Development’s functionality.

We conclude that the presented simulation environment offers the
added value of safe, fast and cheap prototyping to the development
and testing process of new UAV-based CSP condition monitoring algo-
rithms. Some adaptation of system parameters may be required when
transferring a system from simulation to real world.

Further investigation is needed to assess the suitability of Unreal
Engine for accurately simulating reflections, and to explore whether
measured surface maps can be incorporated into the rendering process.
Currently, rendered images are used primarily as a qualitative reference
to help developers assess whether the simulated observations behave
as expected. Since the projected concentrator corner points align with
the rendered images, we conclude that the images can be passed to
a perception module as part of the simulation loop. However, future
research is required to evaluate how well such modules perform when
applied to fully simulated image data.

CRediT authorship contribution statement

Alexander Schnerring: Writing – review & editing, Visualization,
Investigation, Conceptualization, Writing – original draft, Software,
Data curation, Validation, Methodology, Formal analysis. Rafal Broda:
Writing – review & editing, Methodology, Software, Conceptualization.
Adrian Winter: Writing – review & editing, Methodology, Validation,
Investigation, Visualization, Software. Michael Nieslony: Writing –
review & editing, Supervision, Conceptualization, Methodology. Julian
J. Krauth: Supervision, Writing – review & editing, Conceptualization,
Methodology. Marc Röger: Supervision, Conceptualization, Writing –
review & editing, Methodology, Project administration, Funding acqui-
sition. Sonja Kallio: Supervision, Writing – review & editing. Robert
Pitz-Paal: Funding acquisition, Supervision.

Declaration of Generative AI and AI-assisted technologies in the
writing process

During the preparation of this work, the authors used ChatGPT
(GPT-4, OpenAI) to improve the readability and language of the
manuscript. After using this tool, the authors reviewed and edited the
content as needed and take full responsibility for the content of the
publication.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

Financial support from the Ministry of Economic Affairs, Industry,
Climate Action and Energy of the State of North Rhine-Westphalia,
Germany (5hine, contract 005-2108-0068) is gratefully acknowledged.
We also thank CSP Services for providing the image data for the
reflection validation and the support during the measurement cam-
paign. Furthermore, we thank our DLR colleagues Niels Algner, Oliver
Kaufhold, Moritz Wirger, Marcel Sibum, Max Pargmann, Felix Göhring
and Peter Schwarzbözl at the STJ.

A. Schnerring et al. Solar Energy 300 (2025) 113803
Fig. B.1. Exemplary slope deviation map, overlaid by the discretization grid. In this
work, the slope deviation of a concentrator is discretized in a 32 × 32 grid of tiles
with the same aspect ratio as the concentrator. Each tile is treated as a perfectly flat
mirror surface and orientated according to the slope deviations measured inside the
tile.

Appendix A. Camera model

The projection of a point 𝒑GCS onto the ICS is denoted by
𝒑ICS = projection(𝒑GCS|IOR,EOR). (A.1)

The projection can be split into two subsequent steps, considering the
EOR and the IOR separately: First, the point is expressed w.r.t. the OCS,
using the camera EOR which is equivalent to applying the coordinate
transform 𝑻 OCSGCS :

𝒑OCS = 𝑻 OCSGCS ⋅ 𝒑
GCS =

(

𝑥OCS
𝑦OCS

𝑧OCS

)

. (A.2)

The projection of 𝒑OCS onto the camera sensor used in OpenCV
is described by a pinhole projection, followed by the Brown-Conrady
lens distortion model [27,28], where the camera IOR is comprised
of the focal lengths 𝑓X, 𝑓Y, the principal point (𝑐X, 𝑐Y) and the distor-
tion parameters 𝑘1, 𝑘2, 𝑘3, 𝑝1, 𝑝2. The normalized coordinates are then
computed as
𝑥′ = 𝑥OCS∕𝑧OCS, 𝑦′ = −𝑦OCS∕𝑧OCS. (A.3)

To account for camera distortions, the normalized coordinates are
extended:
𝑥′′ = 𝑥′(1 + 𝑘1𝑟

2 + 𝑘2𝑟
4 + 𝑘3𝑟

6) + 2𝑝1𝑥′𝑦′ + 𝑝2(𝑟2 + 2𝑥′2)

𝑦′′ = 𝑦′(1 + 𝑘1𝑟
2 + 𝑘2𝑟

4 + 𝑘3𝑟
6) + 2𝑝2𝑥′𝑦′ + 𝑝1(𝑟2 + 2𝑦′2),

(A.4)

where
𝑟2 = 𝑥′2 + 𝑦′2. (A.5)

Using the focal lengths 𝑓X, 𝑓Y and the principal point (𝑐X, 𝑐Y), the
projected point in the image plane is expressed in pixel units as

𝒑ICS =
(

𝑢
𝑣

)

=
(

𝑓X ⋅ 𝑥′′ + 𝑐X
𝑓Y ⋅ 𝑦′′ + 𝑐Y

)

. (A.6)

Analogously to Eq. (A.1), a point cloud 𝑷 GCS can be projected:
𝑷 ICS = projection(𝑷 GCS

|IOR,EOR). (A.7)

Appendix B. Supplementary material

B.1. Supplementary material for Section 3

See Fig. B.1.

B.2. Supplementary material for Section 4

See Fig. B.2.
14
Fig. B.2. Overview of the three heliostat groups measured with the HelioPoint [4]
setup. Heliostats with available slope deviation maps are depicted with a dot in the
corresponding color.

Table B.1
Numeric values for the error statistics shown in Fig. 10. The acronyms in the first
column denote the error elimination steps applied to the simulated data in order to
best fit the measured data, where U=Unmodified, ET=Eliminated Translational Errors,
ETR=Eliminated Translational & Rotational Errors and ETRS=Eliminated Translational,
Rotational & Scale Errors. Each column denoted by Meas (=Measured) shows the
quantities for the comparison between measured point cloud and the simulated data.
Each column denoted by Ref (=Reference) shows the quantities for the comparison
between synthetically generated reference point cloud and the simulated data.
 Elimination
step

RMSE [mm] MAE [mm] 𝜎̄𝑒X [mm] 𝜎̄𝑒Y [mm] 𝜎̄𝑒Z [mm]

 Meas Ref Meas Ref Meas Ref Meas Ref Meas Ref
 U 23.7 9.7 22.4 9.0 12.3 5.4 11.9 6.8 16.5 4.5
 ET 19.9 4.9 18.8 4.0 8.6 0.8 9.7 3.6 15.2 3.2
 ETR 9.2 1.6 8.8 1.5 3.9 1.3 6.1 0.6 5.7 0.9
 ETRS 4.6 0.8 4.3 0.8 2.9 0.6 1.9 0.5 3.0 0.4

B.3. Supplementary material for Section 5

B.3.1. Concentrator corner point validation
See Figs. B.3 and B.4 and Table B.1.

B.3.2. Point light reflection validation
See Figs. B.5–B.7 and Tables B.2–B.4.

B.3.3. UAV Flight Dynamics Validation
See Fig. B.8.

A. Schnerring et al. Solar Energy 300 (2025) 113803
Fig. B.3. Scatter plots of the reference point cloud and simulated point cloud. A total
number of 𝑁 = 36 concentrators are evaluated, amounting to 144 concentrator corner
points.

Table B.2
Component-wise RMSE, MAE, mean and standard deviation in millimeter units for the
ROIS case.
 Image RMSE [mm] MAE [mm] 𝜇̄ [mm] 𝜎̄ [mm]

 X Y X Y 𝑒X 𝑒Y 𝑒X 𝑒Y
 Image 1 307 338 253 193 221 67 215 332
 Image 2 254 317 196 234 −184 −130 175 290
 Image 3 416 232 350 198 −347 −125 231 196
 Overall 337 299 271 206 −88 −54 326 294

Table B.3
Component-wise RMSE, MAE, mean and standard deviation in millimeter units for the
FOMS case.
 Image RMSE [mm] MAE [mm] 𝜇̄ [mm] 𝜎̄ [mm]

 X Y X Y 𝑒X 𝑒Y 𝑒X 𝑒Y
 Image 1 57 28 41 23 15 −1 55 28
 Image 3 43 39 31 27 9 −17 43 36
 Overall 53 31 38 24 13 −5 52 31
15
Fig. B.4. Histograms for the error magnitude (top) and the error components 𝑒X
(bottom left), 𝑒Y (bottom center) and 𝑒Z (bottom right) after each error elimination
step described in Section 4.3.3.

A. Schnerring et al. Solar Energy 300 (2025) 113803
Fig. B.5. Scatter plots of 𝑒Y over 𝑒X in millimeter units for the ROIS case.

Fig. B.6. Scatter plots of 𝑒Y over 𝑒X in millimeter units for the FOMS case.

Fig. B.7. Scatter plots of 𝑒Y over 𝑒X in millimeter units for the ROIS case, evaluated
on the FOMS dataset.
16
Table B.4
Component-wise RMSE, MAE, mean and standard deviation in millimeter units for the
ROIS case, evaluated on the FOMS dataset.
 Image RMSE [mm] MAE [mm] 𝜇̄ [mm] 𝜎̄ [mm]

 X Y X Y 𝑒X 𝑒Y 𝑒X 𝑒Y
 Image 1 301 492 231 258 184 125 241 481
 Image 3 347 239 299 198 −299 −117 181 214
 Overall 314 439 250 242 54 60 312 438

Fig. B.8. Vertical step responses for both the simulated UAV (left side) and the real
UAV (right side), alongside the derived metrics. The thin light blue lines show the
responses for each repetition, the black thick lines show the averaged responses. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

References

[1] R.A. Mitchell, G. Zhu, A non-intrusive optical (NIO) approach to characterize
heliostats in utility-scale power tower plants: Methodology and in-situ validation,
Sol. Energy 209 (2020) 431–445, http://dx.doi.org/10.1016/j.solener.2020.09.
004.

[2] W. Jessen, M. Röger, C. Prahl, R. Pitz-Paal, A two-stage method for measuring
the heliostat offset, AIP Conf. Proc. 2445 (1) (2022) 070005, http://dx.doi.org/
10.1063/5.0087036.

[3] J. Yellowhair, P.A. Apostolopoulos, D.E. Small, D. Novick, M. Mann, Develop-
ment of an aerial imaging system for heliostat canting assessments, AIP Conf.
Proc. 2445 (1) (2022) 120024, http://dx.doi.org/10.1063/5.0087057.

[4] J.J. Krauth, C. Happich, N. Algner, R. Broda, A. Kämpgen, A. Schnerring, S.
Ulmer, M. Röger, HelioPoint – A fast airborne calibration method for heliostat
fields, J. Sol. Energy Eng. 146 (6) (2024) 061005, http://dx.doi.org/10.1115/1.
4065868.

[5] C. Dimmig, G. Silano, K. Mcguire, C. Gabellieri, W. Hoenig, J. Moore, M.
Kobilarov, Survey of simulators for aerial robots, IEEE Robot. Autom. Mag. PP
(2023) http://dx.doi.org/10.1109/MRA.2024.3433171.

[6] M. Pargmann, D. Maldonado Quinto, P. Schwarzbözl, R. Pitz-Paal, High accuracy
data-driven heliostat calibration and state prediction with pretrained deep neural
networks, Sol. Energy 218 (2021) 48–56, http://dx.doi.org/10.1016/j.solener.
2021.01.046.

[7] OpenCSP Team, OpenCSP: An Environment for Collaborative CSP Optical
Technology Development. URL https://opencsp.sandia.gov.

[8] S. Shah, D. Dey, C. Lovett, A. Kapoor, AirSim: High-Fidelity Visual and Physical
Simulation for Autonomous Vehicles, 2018, pp. 621–635, http://dx.doi.org/10.
1007/978-3-319-67361-5_40.

[9] Epic Games, Unreal Engine, 2019, URL https://www.unrealengine.com.
[10] M. Röger, T. Schlichting, K. Blume, Guidelines for Heliostat Testing, 2023, p. 6,

http://dx.doi.org/10.1117/12.2682675.
[11] K.W. Stone, Automatic heliostat track alignment method, U.S. Patent 4,564,275,

1986, URL https://patents.google.com/patent/US4564275A.
[12] S. Ulmer, T. März, C. Prahl, W. Reinalter, B. Belhomme, Automated high

resolution measurement of heliostat slope errors, Sol. Energy 85 (4) (2011)
681–687, http://dx.doi.org/10.1016/j.solener.2010.01.010, SolarPACES 2009.

[13] C.R. Harris, K.J. Millman, S.J. van der Walt, R. Gommers, P. Virtanen, D.
Cournapeau, E. Wieser, J. Taylor, S. Berg, N.J. Smith, R. Kern, M. Picus, S.
Hoyer, M.H. van Kerkwijk, M. Brett, A. Haldane, J.F. del Río, M. Wiebe, P.
Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi,

http://dx.doi.org/10.1016/j.solener.2020.09.004
http://dx.doi.org/10.1016/j.solener.2020.09.004
http://dx.doi.org/10.1016/j.solener.2020.09.004
http://dx.doi.org/10.1063/5.0087036
http://dx.doi.org/10.1063/5.0087036
http://dx.doi.org/10.1063/5.0087036
http://dx.doi.org/10.1063/5.0087057
http://dx.doi.org/10.1115/1.4065868
http://dx.doi.org/10.1115/1.4065868
http://dx.doi.org/10.1115/1.4065868
http://dx.doi.org/10.1109/MRA.2024.3433171
http://dx.doi.org/10.1016/j.solener.2021.01.046
http://dx.doi.org/10.1016/j.solener.2021.01.046
http://dx.doi.org/10.1016/j.solener.2021.01.046
https://opencsp.sandia.gov
http://dx.doi.org/10.1007/978-3-319-67361-5_40
http://dx.doi.org/10.1007/978-3-319-67361-5_40
http://dx.doi.org/10.1007/978-3-319-67361-5_40
https://www.unrealengine.com
http://dx.doi.org/10.1117/12.2682675
https://patents.google.com/patent/US4564275A
http://dx.doi.org/10.1016/j.solener.2010.01.010

A. Schnerring et al. Solar Energy 300 (2025) 113803
C. Gohlke, T.E. Oliphant, Array programming with NumPy, Nature 585 (7825)
(2020) 357–362, http://dx.doi.org/10.1038/s41586-020-2649-2.

[14] P. Virtanen, R. Gommers, T.E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau,
E. Burovski, P. Peterson, W. Weckesser, J. Bright, S.J. van der Walt, M. Brett,
J. Wilson, K.J. Millman, N. Mayorov, A.R.J. Nelson, E. Jones, R. Kern, E.
Larson, C.J. Carey, İ. Polat, Y. Feng, E.W. Moore, J. VanderPlas, D. Laxalde, J.
Perktold, R. Cimrman, I. Henriksen, E.A. Quintero, C.R. Harris, A.M. Archibald,
A.H. Ribeiro, F. Pedregosa, P. van Mulbregt, SciPy 1.0 Contributors, SciPy 1.0:
Fundamental algorithms for scientific computing in Python, Nature Methods 17
(2020) 261–272, http://dx.doi.org/10.1038/s41592-019-0686-2.

[15] G. Bradski, The OpenCV library, Dr. Dobb’s J. Softw. Tools (2000).
[16] C.-W. Huang, T.-Y. Shih, On the complexity of point-in-polygon algorithms, Com-

put. Geosci. 23 (1) (1997) 109–118, http://dx.doi.org/10.1016/S0098-3004(96)
00071-4.

[17] ArduPilot Team, ArduPilot, 2025, URL https://ardupilot.org/.
[18] Colosseum Team, Colosseum. URL https://github.com/xcloudplatform/

Colosseum.
[19] A. Koubâa, A. Allouch, M. Alajlan, Y. Javed, A. Belghith, M. Khalgui, Micro

Air Vehicle Link (MAVLink) in a nutshell: A survey, IEEE Access 7 (2019)
87658–87680, http://dx.doi.org/10.1109/ACCESS.2019.2924410.

[20] T.O. Hodson, Root-mean-square error (RMSE) or mean absolute error (MAE):
when to use them or not, Geosci. Model. Dev. 15 (14) (2022) 5481–5487,
http://dx.doi.org/10.5194/gmd-15-5481-2022.
17
[21] R. Broda, A. Schnerring, D. Schnaus, M. Nieslony, J.J. Krauth, M. Röger, S.
Kallio, R. Pitz-Paal, Bridging the sim2real gap: Training deep neural networks for
heliostat detection with purely synthetic data, Sol. Energy 300 (2025) 113728,
http://dx.doi.org/10.1016/j.solener.2025.113728.

[22] W. Kabsch, A discussion of the solution for the best rotation to relate two sets
of vectors, Acta Crystallogr. Sect. A 34 (5) (1978) 827–828, http://dx.doi.org/
10.1107/S0567739478001680.

[23] R. Mitchell, K. Sperber, M. Grabel, G. Zhu, A nonintrusive optical approach
to characterize heliostats in utility-scale power tower plants: Camera position
sensitivity analysis, J. Sol. Energy Eng. 146 (6) (2024) 061009, http://dx.doi.
org/10.1115/1.4066496.

[24] E. Marchand, H. Uchiyama, F. Spindler, Pose estimation for augmented reality: A
hands-on survey, IEEE Trans. Vis. Comput. Graphics 22 (12) (2016) 2633–2651,
http://dx.doi.org/10.1109/TVCG.2015.2513408.

[25] F. Gross, M. Balz, Potentially confusing coordinate systems for solar tower plants,
AIP Conf. Proc. 2303 (1) (2020) 030017, http://dx.doi.org/10.1063/5.0028942.

[26] Review of heliostat calibration and tracking control methods, Sol. Energy 207
(2020) 110–132, http://dx.doi.org/10.1016/j.solener.2020.06.030.

[27] D. Brown, Decentering distortion of lenses, 1966, URL https://api.
semanticscholar.org/CorpusID:117271607.

[28] A.E. Conrady, Decentred lens-systems, Mon. Not. R. Astron. Soc. 79 (5) (1919)
384–390, http://dx.doi.org/10.1093/mnras/79.5.384.

http://dx.doi.org/10.1038/s41586-020-2649-2
http://dx.doi.org/10.1038/s41592-019-0686-2
http://refhub.elsevier.com/S0038-092X(25)00566-3/sb15
http://dx.doi.org/10.1016/S0098-3004(96)00071-4
http://dx.doi.org/10.1016/S0098-3004(96)00071-4
http://dx.doi.org/10.1016/S0098-3004(96)00071-4
https://ardupilot.org/
https://github.com/xcloudplatform/Colosseum
https://github.com/xcloudplatform/Colosseum
https://github.com/xcloudplatform/Colosseum
http://dx.doi.org/10.1109/ACCESS.2019.2924410
http://dx.doi.org/10.5194/gmd-15-5481-2022
http://dx.doi.org/10.1016/j.solener.2025.113728
http://dx.doi.org/10.1107/S0567739478001680
http://dx.doi.org/10.1107/S0567739478001680
http://dx.doi.org/10.1107/S0567739478001680
http://dx.doi.org/10.1115/1.4066496
http://dx.doi.org/10.1115/1.4066496
http://dx.doi.org/10.1115/1.4066496
http://dx.doi.org/10.1109/TVCG.2015.2513408
http://dx.doi.org/10.1063/5.0028942
http://dx.doi.org/10.1016/j.solener.2020.06.030
https://api.semanticscholar.org/CorpusID:117271607
https://api.semanticscholar.org/CorpusID:117271607
https://api.semanticscholar.org/CorpusID:117271607
http://dx.doi.org/10.1093/mnras/79.5.384

	A simulation environment for UAV-based real-time condition monitoring of solar tower power plants
	Introduction
	Preliminaries
	Conventions and Notation
	Coordinate Transformations
	Transforming Points and Point Clouds

	Simulation Methodology
	Simulation System Overview
	Solar Field State
	Kinematic Model
	Surface Model

	Camera State
	Ground Truth Image Feature Computation
	Facet Corners
	Point Light Reflections

	UAV & Graphic Simulation
	AirSim
	ArduPilot SITL
	Unreal Engine

	System Under Development

	Validation Methodology
	Measurement Camera
	Error Metrics
	Concentrator Corner Point Validation Methodology
	Point Cloud Measurement via Photogrammetry
	Reference Measurement
	Error Model and Stepwise Error Elimination

	Point Light Reflection Validation Methodology
	Image Data Consistency
	UAV flight dynamics validation methodology

	Validation Results and Discussion
	Concentrator Corners
	Results
	Discussion and Impact on System Development

	Point Light Reflections
	Results
	Discussion and Impact on System Development

	Image Data Consistency
	UAV flight dynamic

	Conclusion and Outlook
	CRediT authorship contribution statement
	Declaration of Generative AI and AI-assisted technologies in the writing process
	Declaration of competing interest
	Acknowledgments
	Appendix A. Camera Model
	Appendix B. Supplementary Material
	Supplementary Material for Section 3
	Supplementary Material for Section 4
	Supplementary Material for Section 5
	Concentrator Corner Point Validation
	Point Light Reflection Validation
	UAV Flight Dynamics Validation

	References

