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Abstract

Urban Digital Twins (UDTs) have become essential for managing cities
and integrating complex, heterogeneous data from diverse sources. Creat-
ing UDTs involves challenges at multiple process stages, including acquiring
accurate 3D source data, reconstructing high-fidelity 3D models, maintain-
ing models’ updates, and ensuring seamless interoperability to downstream
tasks. Current datasets are usually limited to one part of the processing
chain, hampering comprehensive Urban Digital Twin (UDT)s validation. To
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address these challenges, we introduce the first comprehensive multimodal
Urban Digital Twin benchmark dataset: TUM2TWIN. This dataset includes
georeferenced, semantically aligned 3D models and networks along with var-
ious terrestrial, mobile, aerial, and satellite observations boasting 32 data
subsets over roughly 100,000 m2 and currently 767 GB of data. By ensur-
ing georeferenced indoor-outdoor acquisition, high accuracy, and multimodal
data integration, the benchmark supports robust analysis of sensors and the
development of advanced reconstruction methods. Additionally, we explore
downstream tasks demonstrating the potential of TUM2TWIN, including
novel view synthesis of NeRF and Gaussian Splatting, solar potential anal-
ysis, point cloud semantic segmentation, and LoD3 building reconstruction.
We are convinced this contribution lays a foundation for overcoming current
limitations in UDT creation, fostering new research directions and practi-
cal solutions for smarter, data-driven urban environments. The project is
available under: https://tum2t.win

Keywords: Multimodal datasets, Point clouds, Semantic 3D city models,
CityGML, Vegetation data, LoD3

1. Introduction

The idea of a Digital Twin (DT) has been commonly attributed to the
NASA team in the 1960s, when they created a digital representation of the
Apollo mission [1]. The next decades have witnessed proliferation of DTs in
the product life cycle management and industrial machines with the main
objective to record object’s state, history, and performance data [2, 3].

Unlike the standard DT, UDT centers around city objects which are large-
scale and posses heterogeneous information of various stakeholders, rendering
them hardly tractable. As such, the common strategy is to follow the reverse
engineering approach and twin 3D objects by i) acquiring 3D data with var-
ious sensors, such as cameras or laser scanners; ii) followed by 3D automatic
or manual surface modeling; and iii) frequent updates on the object state
[4, 3, 5].

Although a great body of research has been devoted to researching meth-
ods for robust 3D data acquisition and 3D reconstruction there still remain
unresolved challenges. These pertain to shortcomings of particular sensor
types, e.g., inability to acquire laser-based point clouds owing to laser pen-
etration of translucent objects [6]; and also to 3D reconstruction methods
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Figure 1: TUM2TWIN: Georeferenced, semantic-rich, multimodal, multitemporal, and
high-fidelity benchmark dataset for the development of urban digital twins (UDT).

Figure 2: TUM2TWIN covers approximately 100 000m2 of the center of Munich, Germany
(highlighted), boasting 32 data subsets and currently totaling 767 GB.
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limitations, e.g., hierarchical reasoning about 3D object semantics insuffi-
ciently satisfying international modeling standards such as Industry Founda-
tion Classes (IFC)- and CityGML requirements.

Above all, we identify the lack of high-accuracy and multimodal data as
the crucial impediment in both understanding sensor limitations and devel-
oping robust methods, especially in the era of data-driven machine learning
methods.

To address the identified research gap, in TUM2TWIN, we propose:

• Introducing to date the first Urban Digital Twin benchmark dataset
comprising multitemporal, multimodal, and high-fidelity currently boast-
ing 32 data instances of a real city.

• Presenting to date the first georeferenced semantic 3D building models
at level of detail (LoD)1, 2, and 3, as well as terrestrial and aerial
images and laser scanning point clouds with up to the cm-level global
accuracy.

• Identifying potential and already realized use cases for multimodal data
setup enabling opening new research directions.

2. Related Benchmark Datasets

The research community has been introducing various benchmark datasets
for decades [7]. Their primary purpose is to enable i) evaluating one’s novel
method on the comprehensive set of examples, ii) allowing for homogeneous
comparison to other methods, and iii) presenting tangible blueprints for the-
oretical data concepts. Therefore, in any benchmark dataset, the so-called
ground-truth 1 goal is essential, which usually translates to the ideal, desired
outcome when applying a method on a specific set. For example, the ground
truth data can represent referenced 3D geometrical representation, given raw
2D sensor data.

Including some notion of semantics in benchmark datasets is nowadays
common (Tab. 1). An excellent example of this trend is image-based bench-
marks, which now provide billions of training and validation samples, render-
ing image semantic segmentation an already production-ready solution [8].

1also known as reference data
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This trend has also been translated to other domains, as we observe in the
point cloud segmentation or object reconstruction domain. Still, such chal-
lenging topics as facade semantic segmentation on point clouds or large-scale
semantic 3D reconstruction have not been seen in multiple datasets, mainly
owing to the much more cumbersome and tedious annotation process than
image annotation.

Owing to the recent trend of immediate accessibility of various data types,
benchmark datasets have also witnessed their increasing availability. Yet,
most of the datasets concentrate on a selected issue with a limited number of
modalities. One of the well-known examples is the semantic3D.net [9], where
the manually annotated semantic point cloud classes serve as an evaluation
for point cloud semantic segmentation approaches. This semantic point cloud
dataset, along with several notable ones [10, 11, 12, 13, 14] significantly con-
tribute the research on the large-scale semantic segmentation of point clouds,
enabling testing of multiple methods. Yet, these datasets do not comprise
any other data representations enabling further validation of multimodal ap-
proaches. For example, semantic point clouds are frequently used for 3D
semantic object reconstruction, which necessitates 3D ground-truth models
ideally derived from the same input point cloud.

Another limitation of the typical benchmark dataset is its lack of a mul-
titemporal ground truth. Usually, they comprise single-timestamp data ac-
quired and implicitly assume scene time-wise coherence. The rationale be-
hind this correlates with the objective of concentrating on the single sensor
or single modality. Worth noting are exceptions for the change-detection-
oriented dataset, which are, however, usually also limited to the single modal-
ity of aerial or satellite observations [15].

Coherence can also be fostered by leveraging global coordinate reference
systems, enabling georeferencing and tractability of changes in relation to
any object in any modality located on the globe. As such, it is crucial to
maintain the georeferencing aspect when dealing with multitemporal and
multimodal data, especially in the context of UDT. However, this aspect
is often neglected, and most benchmarks concentrate on the locally defined
coordinate systems, which limits their re-utilization in other approaches [13,
16]. Also, it limits their validation set, as there are limited reference datasets
co-aligned, even though there might be many of other resourceful datasets in
place. For example, drone-based point cloud acquisition, when georeferenced,
can be integrated with national georeferenced point clouds stemming from
airplane-based acquisition [17].
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Table 1: Related Digital Twin Benchmark Datasets (PCD - point clouds, IMG - Im-
ages, NET - Networks, 3DM - 3D Models, Data Instance - Number of data types, ✗- not
provided, ✓- provided).

Name Year Data Type World # Data Instances Multitemporal Multimodal Georeferenced Semantics

Sydney Urban Objects Dataset [10] 2013 PCD real 1 ✗ ✗ ✗ ✓
Paris-rue-Madame database [14] 2014 PCD real 1 ✗ ✗ ✗ ✓
semantic3D.net [9] 2017 PCD real 2 ✗ ✗ ✗ ✓
ArCH [11] 2020 PCD real 1 ✗ ✓ ✗ ✓
Toronto-3D [13] 2020 PCD real 1 ✗ ✗ ✗ ✓
Whu-TLS [18] 2020 PCD real 1 ✗ ✗ ✗ ✗

Paris-CARLA-3D [12] 2021 PCD real/synthetic 2 ✗ ✗ ✗ ✓
LOD3 Road Space Models [19] 2021 NET/3DM real 4 ✗ ✓ ✓ ✓
Hessigheim 3D [20] 2021 PCD/3DM real 2 ✓ ✓ ✗ ✓
SUM [21] 2021 PCD/3DM real 2 ✗ ✓ ✗ ✓
KITTI-360 [22] 2021 PCD real 3 ✗ ✗ ✗ ✓
UrbanScene3D [23] 2022 PCD/IMG/3DM synthetic 3 ✗ ✓ ✗ ✓
Building3D [24] 2023 PCD/3DM real 4 ✗ ✓ ✗ ✓
SUD [25] 2023 PCD real 1 ✗ ✗ ✗ ✓
Building-PCC [26] 2024 PCD/3DM real 4 ✗ ✓ ✗ ✓
TUM2TWIN (ours) 2025 PCD/IMG/NET/3DM real/synthetic 32 ✓ ✓ ✓ ✓

3. The TUM2TWIN Benchmark Dataset

In this contribution, we present TUM2TWIN, the benchmark dataset for
Urban Digital Twins (UDTs) development (Figure 1). We define four major
pillars of such benchmark dataset: point clouds (Sec. 3.1), images (Sec. 3.2),
networks (Sec. 3.3), and 3D models (Sec. 3.4), as visualized in Figure 4.
These are further divided into subsets, e.g., point cloud is a parent of Ter-
restrial Laser Scanning (TLS), which in turn is a parent of TUM-TLS-24
(Figure 4). The crucial feature of each of the dataset is their georeferenc-
ing and assessed accuracy aspects, enabling their joint geometrical analysis
(Table 1 and Table 2). In essence, the georeferencing serve as unique and
earth-global positional identifier enabling association of any object in the
dataset via globally defined xyz coordinates in relation to the global coor-
dinate reference system center. While timestamp supports multitemporal
analysis (Figure 3). Additional geometric, radiometric, and semantic fea-
tures are listed in Table 2. Also, we provide an overview of the source data
acquisition campaigns in Figure 5 that comprises terrestrial, aerial, and space
acquisition.

3.1. Point Clouds

We define a point cloud as a collection of data points in 3D space, where
each point represents a location on the surface of an object or environment
and can be extended by additional scalar values representing, e.g., color or
intensity. They serve as the raw data for creating detailed digital representa-
tions of real-world objects, which can be processed into 3D models or meshes
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Figure 3: Timeline of the TUM2TWIN benchmark dataset.
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Figure 5: TUM2TWIN data acquisition campaigns for images (green) and point clouds
(yellow) (w/o derived high-level representations of Road Networks and 3D Models).

Table 2: TUM2TWIN Data Quality (PCD - Point clouds, IMG - Images, NET - Networks,
3DM - 3D Models, * - source data).

Data Data Type Sensor Platform Acquisition Release Abs. Acc. [m] Rel. Acc. [m] Quantity [GB]
TUM-TLS-24 PCD Leica P50/RTC360 Tripod 2024 2025 0.007 0.001 95
TreeML-Data PCD Riegl VZ-400i Car 2023 2024 0.02 0.02 8
TUM-MLS-16 PCD Velodyne HDL-64E Car 2016 2016 0.5 0.2 60
TUM-MLS-18 PCD Velodyne HDL-64E Car 2018 2018 0.5 0.2 90
TUM-MLS-24 PCD FlexScan 22/BLK ARC Backpack 2024 2025 0.2 0.1 100
TUM-FAÇADE PCD Velodyne HDL-64E Car 2016 2021 0.5 0.2 15
ZAHA PCD Velodyne HDL-64E Car 2016 2025 0.5 0.2 22
UAS Laser Scan PCD Zenmuse L2 UAS 2024 2025 0.08 0.05 3
UAS Image-based Scan PCD Zenmuse L2 UAS 2024 2025 0.04 0.02 4
Simulated ALS PCD Leica HYPERION2+ (sim.) Aeroplane (sim.) 2022 2023 0.05 - 329
Real ALS PCD - Aeroplane 2022 2022 0.21 0.21 0.5
Street-Level Thermal Infrared 16 IMG Jenoptik IR-TCM 640 Car 2016 2017 0.5 - 8
Street-Level Thermal Infrared 18 IMG Jenoptik IR-TCM 640 Car 2018 2019 0.5 - 15
Street-Level Video IMG GoPro Hero 11 Handheld/Car 2024 2024 1.0 - 1
Street-Level Facade Images IMG Sony α7 Handheld 2024 2024 1.0 - 0.5
Airplane Orthophoto IMG - Aeroplane 2021 2021 0.2 0.2 0.4
UAS Orthophoto IMG Zenmuse L2 UAS 2024 2025 0.04 0.02 1.7
UAS Imagery IMG Zenmuse L2 UAS 2024 2025 0.02 - 6
Sentinel-1 IMG C-band synthetic-aperture radar Satellite 2022 & 2023 2025 5-40 5-40 1.6
Sentinel-2 IMG Multispectral (13 band) imager Satellite 2022 & 2023 2025 10-60 10-60 2.4
CuBy Simulated Satellite Image IMG Artificial 580 mm Linescanner Satellite (sim.) - 2025 4.0 - -
Road Network NET -/- Aeroplane* 2021 2023 0.2 0.2 0.03
LoD1 Building Models 3DM -/- Footprint/Aeroplane* 2024 2024 0.02 0.83 0.03
LoD2 Building Models 3DM -/- Footprint/Aeroplane* - 2022 0.02 0.2 0.3
LoD2 Textured Building Models 3DM -/Sony α7* LoD2BM/Handheld* - 2024 0.02 0.2 0.1
LoD3 Building Models 3DM -/Velodyne HDL-64E & MoSES* LoD2BM/Car* - 2024 0.02 0.05 0.2
Semantic Streetspace Model 3DM -/- Road Network* 2023 2024 0.2 0.2 0.5
Vegetation Models 3DM -/- Aeroplane* - 2022 0.21 0.09 0.6
Tree Models 3DM Velodyne HDL-64E* Car* 2018 2023 0.5 0.2 0.03
CAD Building Models 3DM -/Velodyne HDL-64E & MoSES* Footprint/Aeroplane* - 2024 0.02 0.05 0.1
Textured CAD Building Models 3DM -/Sony α7* LoD2BM/Handheld* - 2024 0.02 0.2 0.1
UAS 3D Mesh 3DM Zenmuse L2* UAS* 2024 2025 0.04 0.02 0.1

for further use. We differentiate between terrestrial laser scanning (TLS),
mobile laser scanning (MLS), uncrewed aerial system (UAS), and airborne
laser scanning (ALS) point clouds. TLS pertains to static terrestrial laser
scanning offering the highest accuracy in our dataset; MLS refers to scanners
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Table 3: Data Features (I - Intensity, RGB - Optical spectrum, SAR - Synthetic Aperture
Radar, MULT - Multispectral, ”✓” - present, ”-” - absent)

Data Geometry Radiometry Semantics
TUM-TLS-24 3D I, RGB -
TreeML-Data 3D I, RGB ✓
TUM-MLS-16 3D I ✓
TUM-MLS-18 3D I ✓
TUM-MLS-24 3D I, RGB -
TUM-FAÇADE 3D - ✓
ZAHA 3D - ✓
UAS Laser Scan 3D I, RGB -
UAS Image-based Scan 3D I, RGB -
Simulated ALS 3D - -
Real ALS 3D I, RGB ✓
Street-Level Thermal Infrared 16 2D INF -
Street-Level Thermal Infrared 18 2D INF -
Street-Level Video 2D RGB -
Street-Level Facade Images 2D RGB -
Airplane Orthophoto 2D RGB -
UAS Orthophoto 2D RGB -
UAS Imagery 2D RGB -
Sentinel-1 2D SAR -
Sentinel-2 2D MULT -
Simulated CuBy 2D RGB -
Road Network 3D - ✓
LoD1 Building Models 3D - ✓
LoD2 Building Models 3D - ✓
LoD2 Textured Building Models 3D RGB ✓
LoD3 Building Models 3D - ✓
Semantic Streetspace Model 3D - ✓
Vegetation Models 3D - -
Tree Models 3D - -
CAD Building Models 3D - -
Textured CAD Building Models 3D RGB -
UAS 3D Mesh 3D RGB -

mounted on a backpack or a vehicle; UAS to laser scanners mounted on a
flying UAS platfrom; while ALS describes airborne acquisition. Point cloud
is defined:

P =
{
pi = (xi, yi, zi, a1, a2, . . . , am) ∈ R3

∣∣ i ∈ {1, 2, . . . , N}
}

(1)

where:

• P is the point cloud, a set of N 3D points.

• pi represents an individual point.

• (xi, yi, zi) are the coordinates of the point in 3D space.
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• a1, a2, . . . , am represent additional attributes such as RGB color values,
reflectance, or surface normals.

3.1.1. TLS

TUM-TLS-24 Maintaining a consistent frame of reference for all data is es-
sential for fully exploiting the potential of the TUM2TWIN dataset. Within
the TUM2TWIN dataset, TUM-TLS-24 represents the most accurate and
highest-density georeferenced point cloud data available, thereby providing
a strong foundation for integrating and fusing diverse data types (Fig. 6).

TUM-TLS-24 is a high-precision terrestrial laser scanning (TLS) point
cloud dataset encompassing indoor and outdoor environments. Data are ac-
quired in April 2024 using a Leica ScanStation P50 and a Leica RTC360.
The data collection is conducted on a station-by-station basis and comprises
a total of 99 acquisition points (stations). The dataset comprehensively cov-
ers most of the main building’s indoor and outdoor public spaces at TUM
main campus. Moreover, over 100 black and white (B&W) targets are de-
ployed during acquisition to facilitate precise registration and georeferencing.
Ultimately, the mean absolute error (MAE) of all scans after registration is
1.2 mm (relative accuracy), while the MAE following georeferencing based
on ground control points is 7.1 mm (absolute accuracy). TreeML-Data

(a) (b) (c)

Figure 6: Simultaneous outdoor and indoor acquisition included in TUM-TLS-24. (a)
Outdoor scene colored with RGB, (b) indoor scene colored with intensity, and (c) transition
of outdoor-to-indoor scenario.

Recent advancements in remote sensing techniques expand opportunities for
studying urban trees, which play a crucial role in promoting human health
and well-being in cities. To support these research efforts, the TreeML-Data
dataset [27] is compiled. This dataset is collected using TLS in a stop-and-go
manner in January 2023. It comprises labeled point clouds from 40 scanning
projects conducted along streets in Munich, including Arcisstrasse, in front of

11



the TUM main campus. The point clouds are classified into three categories:
“Tree,” “Building,” and “Other.”

Additionally, the trees in the dataset are manually isolated. The dataset
primarily focuses on urban trees, featuring 3,755 leaf-off point clouds (cap-
tured during winter), quantitative structure models (QSM) [28], tree struc-
ture measurements, and tree graph structure models (Figure 7).

The data are collected using the Riegl VZ-400i TLS laser scanner. To
ensure precise georeferencing, a Leica Zeno FLX100 high-precision GPS an-
tenna is mounted on the laser scanner, capturing the global location of each
scan. The scanner is initially configured to the “Panorama40” resolution (40
mdeg). GNSS records indicate that the positional accuracy is approximately
2 cm in most cases [29].

(a) (b)

Figure 7: A tree example from the TReeML-Data, presented in two different representa-
tions. (a) The quantitative structure model (QSM), and (b) the graph structure model.

3.1.2. MLS

TUM-MLS-16 TUM-MLS 2016 [30] is a large-scale annotated dataset based
on mobile laser scanning point clouds acquired at the city campus of the Tech-
nical University of Munich. The MLS data are acquired in April 2016 by
Fraunhofer IOSB with the MODISSA (Mobile Distributed Situation Aware-
ness) mobile sensor platform, which is used for hardware evaluation and
software development in the contexts of automotive safety and security ap-
plications. The system is equipped with two Velodyne HDL-64E LiDAR
sensors above the windshield. Both laser scanners are positioned on wedges
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at a 25◦ angle to the horizontal, rotated outwards at a 45◦ angle, which pre-
vents measurements of the vehicle’s roof and still guarantees good coverage
of the roadway in front and to the sides of the vehicle. Therefore, the facades
of buildings are captured in their entire height. The scanned point clouds
are directly georeferenced while driving along the roads around the TUM
city campus and the inner yard. This covers an urban scenario consisting of
building facades, trees, bushes, parked vehicles, wedges, roads, grass, and so
on. Each point has 3D x-, y-, and z-coordinates and intensities of the laser
reflectance. All the measured points in the scene are manually labeled with
eight semantic classes following the ETH standard [9].
TUM-MLS-18 TUM-MLS 2018 is acquired on December 19th 2018 by
Fraunhofer ISOB with MODISSA with similar sensor compositions. Com-
pared to TUM-MLS 2016, the offset for each scans are optimized globaly
and provided as the reference. The annotations are the same as the TUM-
MLS2016 dataset, while the primary purpose is the epoch-wise change de-
tection owing to two-years acquisition difference [30].
TUM-MLS-24 TUM-MLS-2024 is an indoor MLS dataset acquired at TUM
main campus in December 2024 (Fig. 8). We use both the Leica BLK ARC
and Z+F FlexScan 22 to capture point clouds in parallel to the TUM-TLS-
24 campaign. The objective is to assess the quality of each mobile system
using static TUM-TLS-24 as the ground truth. The Leica BLK ARC pro-
vides a 360° horizontal and 270° vertical field of view, with a range from
0.5 m to 25 m and a measurement rate of 420k pts/sec, achieving ±10 mm
accuracy indoors. It features a four-camera system: a 13 MP high-resolution
camera and three panoramic cameras. The Z+F FlexScan 22 incorporates a
two-camera system with 20 MP sensors and utilizes the Z+F Imager 5016A
laser scanner. This sensor operates in profile scanning mode, capturing 550k
pts/sec with a resolution of 10k pixels per profile and a minimum range of
0.6 m. Both systems are used in backpack mode. The dataset from the Le-
ica BLK ARC is processed using Leica Cyclone Registration 360 Plus, while
Z+F Laser Control is used for the FlexScan 22.
ZAHA In ZAHA [31], we introduce the Level of Facade Generalization
(LoFG): A novel hierarchical classification system based on international
urban modeling standards. This approach ensures compatibility with real-
world architectural challenges while enabling a standardized comparison of
segmentation methods.

As part of this effort, we present the largest 3D facade semantic seg-
mentation dataset to date, comprising 601 million annotated points across
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Figure 8: Colored point cloud of an indoor scene from TUM-MLS-24.

five classes in LoFG2 and 15 classes in LoFG3 (Figure 9). These have been
developed inline with the international urban modeling standards such as
CityGML, IFC, and Art and Architecture Thesaurus (AAT), and related
works [32, 33]. The manual labeling process was supported with manual
cross-evaluation for all the classes, namely: The Level of Facade General-
ization (LoFG)3 describes the most detailed facade representation compris-
ing 15 facade classes of ground surface, terrain, molding, deco, wall, stairs,
balcony, column, arch, blinds, door, window, roof, interior, and other. The
LoFG2 aggregates the 15 classes of LoFG3 into five less detailed classes based
on syntactic, semantic, and geometrical analysis, as we illustrate in Fig. 9.
Additionally, we evaluate baseline semantic segmentation methods on these
LoFG classes and datasets, offering insights into the remaining challenges
in facade segmentation. The point cloud coordinates stem from the TUM-
MLS-2016, showing re-purposing capabilities of the collected data. We are
convinced ZAHA will contribute to the advancement of 3D facade segmen-
tation methods, playing a crucial role in the development of robust urban
digital twins.
TUM-FAÇADE The predecessor of ZAHA is the TUM-FAÇADE dataset,
which is an extension of the TUM-MLS-2016 point clouds, enhancing the
original data with 17 facade-level semantic classes. It consists of 17 anno-
tated and 12 non-annotated facades, totaling 118 million georeferenced and
labeled facade-level points. The classes definitions has been updated and
hierarchically represented in the ZAHA dataset [31, 32].
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Figure 9: To date, the largest facade semantic segmentation dataset: ZAHA.

3.1.3. UAS

UAS Laser Point Cloud UAS acquisition in December 2024 is used to
capture the TUM city campus with laser scanning. A DJI Matrice 350 Real
Time Kinematic (RTK) is used with a Zenmuse L2 laser scanner and inte-
grated RGB camera for point cloud coloring. Laser scanning performs direct
high-accuracy measurements (with a mean cloud-to-cloud distance of 0.08 m
compared to manually measured GNSS points from the scene) at high spatial
resolution (with an average point density of 1,338 pts/m2) (Fig. 10) [34].
UAS Image-based Point Cloud During the same acquisition campaign
as UAS Laser Point Cloud, the images have been captured. The UAS acqui-
sition allows capturing the building topography and its surroundings from
an aerial perspective with close-range high-resolution observations compared
to airplane or satellite platforms. Structure from Motion (SfM) is applied to
reconstruct sparse 3D scenes and estimate camera poses from 2D images by
detecting and matching features across overlapped images [35]. This is fol-
lowed by Multi-View Stereo (MVS), which considers multiple images of the
same scene and searches for a complete and dense 3D structure as a point
cloud [36]. The UAS Image-based Scan provides high 3D reconstruction accu-
racy (with a 0.04 m georeferencing accuracy) when images are well-textured
[34].

3.1.4. ALS

We distinguish two types of aerial laser scanning (ALS). Real ALS per-
tains to actual surveying campaign in the real-world scenarios, while Simu-
lated to synthetically generated point clouds in a virtual testbed representing
the actual TUM2TWIN location.
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Figure 10: Overview of UAS data products of TUM main campus, including UAS Or-
thophoto, UAS Laser Point Cloud, UAS Image-based Point Cloud, and UAS Mesh. Ad-
ditionally, we provide RTK-based trajectories and raw UAS Imagery.

Real ALS The aerial laser scanning data stems from the State Office for
Digitalization, Broadband and Surveying (ger. LDBV) and covers not only
the TUM2TWIN area, but also the whole state of Bavaria, Germany. For
the TUM2TWIN area, its absolute accuracy is approximately 0.3 m (hori-
zontal) and 0.12 m (vertical) with density of minimum 4 pts / m2. The data
comprises also eight semantic clasess: Unclassified, Ground, Building, Water
body, Object (e.g., vegetation), Bridge and basement exit, Derived ground
points (e.g., from terrestrial image), and Derived ground points (from from
a digital terrain model). The data is regularly updated with the last update
in 2022 for the TUM2TWIN area [37].
Simulated ALS This synthetic ALS dataset is created by using the He-
lios++ [38] simulation toolkit to emulate aerial laser scanning, with the goal
of bridging the gap between idealized models and the inherent imperfections
of real-world measurements. The simulation environment is created from vir-
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tual models representing LoD2 building models of Bavaria, Germany (Section
3.4.1), are chosen for their detailed roof representation and high global ac-
curacy (Table 2). In the simulation process, realistic artifacts such as sensor
noise and inter-building occlusions are intentionally introduced to mirror the
challenges found in actual data. The virtual sensor is designed to closely
mimic the Leica HYPERION2+, featuring an oscillating optics system op-
erating at a pulse frequency of 1.5 MHz and a scan frequency of 150 Hz.
The simulated survey replicates an aerial mission executed by a Cirrus SR22
aircraft flying at an altitude of 400 meters with a 160-meter strip interval,
ensuring a realistic scanning pattern. The training dataset comprises 281,571
buildings from Munich, totaling over 6.5 billion points, and averaging about
22,406 points per building, with an additional 10,000 buildings reserved for
evaluation. This meticulously designed dataset serves as a robust platform
for training and testing the model under conditions that closely approximate
real-world laser scanning scenarios.

3.2. Images

An image is a 2D representation of visual information, composed of pixels
on a grid, where each pixel has color or intensity values. Images are usually
captured using cameras of various kinds, e.g., monochrome, RGB, multispec-
tral, or hyperspectral cameras. We differentiate between street-level images
and videos of different spectrum, and above-ground acquisition from UAS,
airplanes, and satellites. Mathematically, an image is a function that maps
pixel coordinates to intensity or color values:

I : Z2 → Rc (2)

where:

• I(x, y) represents the intensity or color value at pixel coordinates (x, y).

• Z2 denotes the discrete 2D grid of pixel positions.

• Rc represents the color (or spectral) space, where:

– c = 1 for monochromatic grayscale images, I(x, y) ∈ R.
– c = 3 for RGB images, I(x, y) = (R,G,B) ∈ R3.

– 3 < c ≤ 12 for multispectral images, I(x, y) ∈ Rc.

– 12 < c ≤ 300 for hyperspectral images, I(x, y) ∈ Rc.
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3.2.1. Street-Level Images

Street-Level Videos This dataset is collected using a GoPro Hero11 monoc-
ular camera and is intended for street-view reconstruction. The recordings
take place in two distinct locations, comprising five video sequences captur-
ing street-view traffic conditions from roads around TUMDowntown Campus
(Gabelsbergerstr., Arcisstr., Luisenstr., and Theresienstr.). Four of these se-
quences are recorded with the cameras mounted on a vehicle, while one is
handheld, featuring dense traffic, diverse buildings, and pedestrian activity.

Unlike other officially released autonomous driving datasets, all record-
ings in this work are captured exclusively with GoPro Hero11 cameras, known
for their simplicity and accessibility. Notably, this dataset does not provide
precisely calibrated internal camera parameters. The inclusion of various
capture modes and different scene conditions enhances our understanding of
the challenges encountered by onboard cameras in moving vehicles. Addi-
tionally, one sequence is captured on highway roads at Latitude: 35.08539,
Longitude: -106.73099 (WGS84), chosen for its complex traffic dynamics,
minimal building features, and high speeds to simulate real-world driving
conditions.
Street-Level Facade Images The perspective terrestrial RGB images,
manually projected and captured using the Sony α7 camera, are specifically
acquired to validate automatic texturing processes. The image acquisition
campaign is planned to cover the facades of the building models with the
fewest possible photos per triangle, ensuring consistent texture quality with-
out the need for additional image stitching. Additionally, panoramic images
from Google Street View [39] are collected for testing automatic image pro-
jections on the building models [40].

3.2.2. Thermal Infrared

Street-Level Thermal Infrared 16 Thermal infrared image sequences are
recorded as part of the TUM-MLS 2016 acquisition campaign. The uncooled
thermal camera used is a Jenoptik IR-TCM 640 microbolometer, with a field
of view of 65.2◦ × 51.3◦, mounted perpendicularly to the driving direction.
This setup captures the facades of buildings (Figure 11). TIR images are
provided as 16-bit TIFF files with lossless LZW compression, at a resolution
of 640×480 pixels. The image positions are estimated using GPS-based vehi-
cle positions, interpolated to match image timestamps, and are geometrically
calibrated as described in [41].
Street-Level Thermal Infrared 18 The same approach as for Street-Level
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Figure 11: Example of TIR image of Street-Level Thermal Infrared 16.

Thermal Infrared 16 is applied for the next epoch of thermal image acquisi-
tion. This time the images are acquired simulatenously with the TUM-MLS
2018 campaign.

3.2.3. UAS Imagery

UAS Imagery The UAS images are simultaneously acquired with the UAS
laser scanning (Sec. 3.1.3). During the survey, 1104 images with a resolution
of 5,280 × 3,956 pixels are taken by a Zenmuse L2 integrated RGM mapping
camera (4/3 CMOS) mounted on a DJI Matrice 350 RTK drone. The data
is collected in nadir mode using automatic flight missions at an altitude of
75 m agl. Additional acquisitions are collected in manually operated flights
in oblique view to capture the facades of the inner and outer campus area.
The average ground sampling distance (GSD) of images is 1.6 cm, and these
images are georeferenced through the RTK GNSS measurements and IMU of
the UAS system. Images including nadir and oblique acquisition geometry
are filtered by removing recognizable persons and license plates, finally total-
ing a repository of 962 images. These images can be used for coloring laser
scans, orthophoto generation, and photogrammetric reconstruction [34].

3.2.4. Aerial Orthophoto

UAS Orthophoto A UAS Orthophoto (Figure 10) covering the entire cam-
pus is generated based on the UAS images (Sec. 3.2.3) and the digital surface
model (DSM) derived from the photogrammetric reconstruction using the au-
tomatic workflow in Pix4Dmatic v1.68 [35]. The ground pixel resolution of
the orthophoto is 1.6 cm according to the average GSD of UAS images, and
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the full dimensions are 26,507 × 35,407 × 4 bands (RGB and alpha). The
coordinate reference system (CRS) is WGS 84 / UTM Zone 32N.
Airplane Orthophoto High-resolution nadir images are captured from al-
titudes exceeding 5,000 meters and are ortho-rectified achieving the ground
sampling distance of 20 cm. Since 2017, aerial surveys have been conducted
annually over the Bavarian state, which serve as the foundation for all aerial
imagery products provided by the State Office for Digitalization, Broadband,
and Surveying (LDBV). The designated areas are covered in overlapping
flight strips, which reduce the presence of shadowed or hidden zones. Survey
flights alternate biennially between Northern and Southern Bavaria, based
on predefined planning regions [42].

3.2.5. Satellite Observations

Access to open data greatly expands the pool of remote sensing data
users. Adding this aspect to TUM2TWIN, Sentinel-1 and Sentinel-2 data
are included into the selection. The main advantage of the missions is re-
lated to continuous imaging and the opportunity to generate data stacks over
time. At this point, the question arises what information Sentinel data can
provide for the TUM campus, as the area is only covered by a small number
of image pixels. However, reasoning gets interesting when thinking the other
way around. The content in TUM2TWIN provides a comprehensive geomet-
ric and semantic understanding of scene compositions covered by individual
pixels of the satellite image. Following this idea of data fusion, the combi-
nation of remote sensing data and highly detailed scene information opens
interesting directions to follow.
Sentinel-1 The Sentinel-1 mission [43] comprises three satellites, Sentinel-
1A, Sentinel-1B (not active any more), and Sentinel-1C, launched in 2014,
2016, and 2024, respectively. Their primary objective is to acquire informa-
tion about the physical properties of ground objects, e.g. salient signatures
related to man-made structures of signatures, moderate diffuse signal re-
sponses at surfaces with noticable roughness, or dark areas in the image
related to flat, smooth surfaces, e.g. lakes. The SAR principle also allows
for interferometry in order to geometrically describe the shape of the earth
surface and identify ground movement. Signals are emitted and detected
in C-band with dual polarization. The revisit time for each satellite is 12
days. Imaging is conducted continuously on the global scale. The Sentinel-1
satellites offer four image modes, each with different spatial resolutions and
coverage capacities. Depending on the selected mode, the spatial resolutions
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can reach up to 5x5 meters, the swatch width can be up to 410 kilometers.
The TUM2TWIN collection contains quarterly georeferenced Sentinel-1

data sets in standard interferometric wide swath mode over the years 2022
and 2023 with a spatial resolution of 5 x 20 m and a swath width of 250 km.
The selection can be expanded with available data from the archive. The
approximate size of data acquisitions is 1.6 GB.

(a) (b)

(c) (d)

Figure 12: Georeferenced Sentinel-1 images, quick looks for four quarters: a) Feb 09 2022,
b) Apr 22 2022, c) Jul 27 2022, d) Oct 10 2022 (also 2023 is covered in TUM2TWIN).
Munich represented by extended composition of salient scatterers on the center right.

Sentinel-2 The Sentinel-2 mission [44] [45] comprises three satellites with
multi-spectral sensors, aimed at providing continuous imaging with medium
spatial resolution on a global coverage. Launched in 2015, 2017, and 2024,
the Sentinel-2 mission provides significant advantages over its multispectral
predecessors. These include a revisit time of 5 days and a wider swath of 290
kilometers while maintaining remarkable spatial resolution. The multispec-
tral instrument utilizes a push broom sensor, detecting reflected sun light
with 13 spectral bands spanning from the visible spectrum to the short-wave
infrared (SWIR). The spectral bands offer different spatial resolutions con-
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nected to their specific purposes and technical limits, ranging from 10 to 60
meters.

The TUM2TWIN collection contains quarterly Sentinel-2 data sets over
the years 2022 and 2023, preselected for a low amount of cloud cover. The
data is atmospherically corrected (bottom of atmosphere level 2A product)
with the multitemporal processor MAJA [46], developed in a cooperation
between CNES, France, and DLR, Germany. The basic strategy for cloud
detection, estimation of aerosol parameters, and correction of reflectance
follows two main assumptions. Cloud cover is expected to change between
subsequent image aquisitions, whereas ground cover is expected to remain
stable. The calculation of bottom of atmosphere pixel amplitudes is based on
radiative transfer models. The typical size of a resulting level 2A Sentinel-2
data set is about 2.4 GB.
Simulated CuBy The CuBy Satellite Network Bavaria ([47]) consists of
five 8U-CubeSats with 8-channel multispectral pushbroom cameras in its
first mission stage that are due to launch in 2026. The satellites capture
Bavaria on a three day repeat orbit with a swath width of 18 km and a
ground sampling distance (GSD) of 4 m. Within the framework of CuBy, a
satellite image simulator ([48]) is used to ease the development of the mission
data processing chain before launch.

The camera simulator can generate artificial multispectral linescanner
image strips from a high resolution basemap that is captured by a virtual
sensor following a given orbit. The virtual sensor mimics a camera, with
tunable specifications and camera parameters. Optical effects are applied
through a modulation transfer function and filtering.

Unlike the real data, the simulator encompass the ability to generate
clouds, lens degradation and to simulate faulty pixels due to atomic oxygen
and radiation. It also allows for testing various other scenarios under different
simulated parameters.

3.3. Road Networks

In this context, road networks refer to the structured representation of
the entire road system in a digital vectorized map (Fig.13). A network is
defined as a tuple:

N = (R,J ) (3)

where:
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Figure 13: Simplified explanation of the relational definition of the road network system
[49].

• R is the set of roads. Each road r ∈ R is represented as

r = {IDr, s
start
r , sendr , γr(s), Lr}, (4)

where:

– IDr — unique road identifier,

– sstartr and sendr — start and end of the road’s parametric domain,

– γr : [s
start
r , sendr ] → R2 — road reference line (centerline),

– Lr — set of lane sections along the road.

• J is the set of junctions, defining connectivity between roads. Junc-
tions can be modeled as graphs, where:

– nodes represent connection points,

– edges represent incoming or outgoing road segments.

Within each road r, lane sections are defined over sub-intervals of the
parameter s. For a lane in a given section, its boundary can be described as
an offset from the reference roads:

l(s) = γr(s) + d(s)n(s) (5)

where:

• d(s) is the lateral offset function,

• n(s) is the unit normal vector to the reference road γr(s).
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3.3.1. HD Map

Road Network To support the VR/AR simulator studies described in Sec-
tion 4.9, we develop a high definition (HD) map using MathWorks Road-
Runner in conjunction with orthophotos (Fig. 14). This HD Map precisely
represents the road network, capturing critical infrastructure details such as
bike lanes, lane markings, standard road surfaces, curbs, sidewalks, and traf-
fic lights. The workflow begins with integrating high-resolution orthophotos,
which serve as a geospatial reference for accurately drawing road geometries.
Using RoadRunner’s advanced editing tools, we model the road network,
emphasizing the fidelity of bike lanes and lane markings to reflect real-world
traffic conditions. Additionally, curbs and sidewalks are incorporated to en-
hance environmental realism, while strategically placed traffic lights replicate
real intersections to support dynamic traffic simulations. After creating the
detailed 2D layout, the HD map is merged with LoD 3 models, enriching
the spatial environment with volumetric building structures. This fusion of
detailed road elements, traffic control devices, and 3D models provides a com-
prehensive simulation environment that supports robust behavioral studies
in VR/AR contexts. In addition, we can derive OpenDRIVE maps and FBX
object files for seamless integration with simulation environments.

(a) (b)

Figure 14: Side-by-Side illustration of (a) an aerial view image and (b) the digital repre-
sentation developed for VR/AR studies.

3.4. 3D Models

A 3D model is a digital representation of an object or scene in three
dimensions. It is typically constructed using geometric primitives, such as
vertices (points), edges (lines), and faces (surfaces), that define the shape
and structure of the object.

In our case, the triangle mesh stands as the base for modeling, whereby
3D point (vertex vi) is the minimum discrete unit. The embedding of a
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triangle mesh into R3 is described as a relation of 3D position pi to each
vertex vi ∈ V :

P = {p1, . . . ,pV }, pi := p(vi) =

x(vi)
y(vi)
z(vi)

 ∈ R3 (6)

Each point p in the interior of a triangle [a,b, c] can be expressed in
terms of barycentric coordinates as:

p = αa+ βb+ γc (7)

where:
α + β + γ = 1, α, β, γ ≥ 0 (8)

A triangle mesh M consists of a geometric and a topological component.
The topology can be represented by a graph structure with a set of vertices

V = {v1, . . . , vV } (9)

and a set of triangular faces connecting them:

F = {f1, . . . , fF}, fi ∈ V × V × V (10)

Each face f ∈ F corresponds to a triangle in 3D space, specified by its
three vertex positions.

We distinguish three geometric model representations in the following
subsections [3]. i) Semantic 3D models extend the definition by semantics
attached to each geometric object at different hierarchical abstraction levels
(e.g., city, building, facade), which are represented by B-Rep and volume
obtained by accumulation of bounding faces. The faces can be extended by
additional texture information. ii) Computer-aided design (CAD) models,
where we opt for the B-Rep representation as well with shallow semantics
only concerning leaf objects. The faces can be extended by additional texture
information. iii) Mesh models represent data model where no semantics is
included and no low-poly representation is provided, in contrast to i) and ii).
The faces can be extended by additional texture information.
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3.4.1. Semantic Building Models

To exchange semantic, geometric, topological and appearance information
of cities and landscapes interoperably, the CityGML standard has become
internationally established [50]. It is issued by the Open Geospatial Con-
sortium (OGC) and defines a conceptual data model as well as an encoding
for the Geography Markup Language (GML) [51, 52]. CityGML is based
on the geographic information system standards from the ISO 191XX se-
ries, which include a comprehensive geometry model. The entities of a city
and landscape are decomposed into a hierarchical data structure that cap-
tures inter-object relationships [3]. As shown in Figure 15, one object can
be represented by multiple LoDs. In order to ensure the direct application
of semantic models across use cases, existing software solutions, and deriving
to other encodings, such as CityJSON [53], we provide them in accordance
with the standard and the GML encoding [54, 55].

(a) (b) (c)

Figure 15: The primary difference between different LoDs: (a) While LoD1 is an ap-
proximated polyhedral shape of a building, (b) LoD2 displays additional roof types, and
(c) LoD3 complements it with facade details.

LoD1 The key elements in the established reconstruction approach for LoD1
building models are footprints and height. To maintain the cross-consistency
of each LoD buildings, we extracted footprints from LoD2 ground surface
(gml:GroundSurface), while the height information stemmed from the Real
ALS (Sec. 3.1.4) data. We deployed the well-established 3dfier [56] software
for the reconstruction [57].
LoD2 A large number of public authorities worldwide provide and main-
tain LoD2 building models as open data, which includes the complete build-
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ing stock of Germany, Switzerland, Poland, and large parts of Japan [50].
The building models of the Bavarian State Mapping Agency cover the TUM
main campus and are based on the official cadastre guaranteeing georefer-
encing accuracy in the centimeter range [58]. The stable management of
object identifiers by public authorities forms the basis for integrating other
representations.
LoD2 - Textured Here, the textures serve as an extension of the base LoD2
with the geometry remaining intact. The addition to the above-mentioned
LoD2 buildings, are optical textures projected onto the facades of buildings.
The data stems from a manual terrestrial acquisition of images described
in Section 3.2.1, which are also co-aligned using LoD3 facade elements. Yet,
still minor projection distortion exist owing to the deployed perspective cam-
era; The primary application of the data is for testing automatic texturing
approaches [40]. For further modeling details see our published manual 2.
LoD3Analogously to LoD1 models, we used footprints and geometry of LoD2
as a base for LoD3 modeling. The main difference pertains to correct-
ing the geometry in presence of overhangs (roof geometry) and enriching
facades in openings (i.e., windows, doors) and building installation (e.g.,
stairs) if exceeding the threshold of intrusion or extrusion by 10 cm. The 3D
measurements of combined proprietary point clouds [59] and TUM-MLS-16
(Sec. 3.1.2) are used for modeling. Additional 3D library of computer-aided
design (CAD) models of facade elements is created to allow 3D elements
modeling. For further modeling details see our published manual 3.

3.4.2. Semantic Streetspace Models

Semantic Streetspace Model The Transportation Module has been sig-
nificantly revised in CityGML version 3.0 enabling the representation of the
street space in three granularity levels: area, way, and lane. At granularity
level lane each individual lane is modeled separately with predecessor and
successor relations enabling routing applications. As shown in Figure 16,
traffic spaces describe where the actual traffic takes place and can be rep-
resented by volumetric geometries, whereas traffic areas refer to the ground
surfaces of these traffic spaces.

All objects in the HD map, discussed in Section 3.3, are defined with

2https://tum2t.win/tutorials/Facade-texturing-using-SketchUp
3https://creating-citygml-datasets.readthedocs.io/en/latest/

creation-guidelines/lod3-models-based-on-point-clouds.html
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Figure 16: Volumetric geometry representations of traffic spaces with different heights
according to respective functions [60].

parametric geometries relative to the road reference line. To supplement this
with a representation utilizing explicit absolute coordinates, we converted
the OpenDRIVE dataset to CityGML 3.0 using the tool r:tr̊an [61].

3.4.3. Semantic Vegetation Models

Vegetation Models The trees for the entire city of Munich, inlcuding the
TUM campus, have been reconstructed using ALS point clouds, multispectral
imagery, and LoD2 building models [62]. The tree crown is reconstructed
using geometric primitives based on a set of derived parameters, including
an ellipse fitted to the convex hull and the highest laser scanning return
within the crown. The dataset encompasses 2.7 million tree objects with
tree species attributes.
Tree Models Trees in the vicinity of the TUM main campus are in-situ
surveyed for diameter at breast height [63] and reconstructed based on car-
based mobile laser scanning. The 3D tree shape is derived from the TUM-
MLS-18 scans. The dataset comprises around 50 tree objects with height,
trunk and crown diameter.

3.4.4. CAD Models

Geometrically, CAD models are typically described using parametric and
explicit representations of i) Boundary Representation (B-Rep): Defines ob-
jects through their surfaces composed of edges, vertices, and faces, which form
a closed (watertight) shell; ii) Constructive Solid Geometry (CSG): Builds
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complex shapes by combining primitive solids (e.g., cubes, cylinders) using
Boolean operations (union, difference, intersection); or iii) by Parametric
Models: Allow geometry to be defined by parameters and constraints, en-
abling easy modification and design automation. In our case, we focus solely
on the B-Rep representation, remaining consistent to our other models. The
data is available in the .SKP-format.
CAD Building Models The created CAD models are derivatives of the
semantic building models at LoD3 discussed in Section 3.4.1. The primary
difference pertains to the flatten hierarchy of the data representation, while
geometry remains intact. We acknowledge the large CAD-oriented commu-
nity leveraging CAD modalities, and foresee applications in outdoor object
reconstruction.
CAD Building Models - Textured Analogously, to the above-mentioned
CAD Building Models the created CADmodels are derivatives of the textured
semantic building models at LoD2 discussed in Section 3.4.1. Here, similarly
to the above-mentioned dataset, the main difference pertains to the flatten
hierarchy of the data representation, while geometry and texture remains
intact.

3.4.5. Mesh Models

UAS 3D Mesh A 3D mesh model of the TUM main campus (Fig. 10) is
reconstructed based on UAS images captured from a DJI Matrice 350 RTK
equipped with the RGB camera integrated into a Zenmuse L2 laser scan-
ner (Section 3.2.3). 3D mesh models are reconstructed using an automatic
pipeline in Pix4Dmatic (v1.68) representing the standard mesh reconstruc-
tion approach [35]. The whole model is available in OBJ format, including
more than 1 million triangles and about 494k vertices. The coordinate ref-
erence system (CRS) is WGS 84 / UTM Zone 32N.

4. TUM2TWIN Current Downstream Tasks

To showcase usability of the presented TUM2TWIN dataset, we present
selected research already leveraging the ubiquity and comprehensiveness of
the benchmark dataset for the specific use cases; exemplary shown in Fig-
ure 17.

4.1. Map-based Vehicle Positioning

Positioning in dense urban environments is challenging for GNSS-based
systems due to signal obstructions in urban canyons. To address this, vehicles
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Figure 17: The TUM2TWIN-unlocked downstream tasks: Multiple research areas already
unveiled with a potential to cater for many more. The research encompasses map-based
vehicle positioning (Sec. 4.1), LoD1 building reconstruction (Sec. 4.2), LoD2 building
reconstruction (Sec. 4.3), LoD3 reconstruction (Sec. 4.4), facade semantic segmentation
(Sec. 4.5), facade image inpainting (Sec. 4.6), 3D thermal point cloud projection ( Sec. 4.7),
novel view synthesis (Sec. 4.8), driving simulators development (Sec. 4.9), and solar po-
tential analysis (Sec. 4.10). Additionally, we elaborate on potential downstream tasks in
Section 5.
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often rely on alternative cues such as visual data to enhance localization
accuracy.

Cameras are particularly useful due to their prevalence in vehicles and
ability to capture environmental features. Traditional and novel feature
matching techniques are commonly used, but require georeferenced 3D maps
for global positioning. A method is introduced that utilizes high-fidelity
LoD3 models and imagery for vehicle localization, where images are fused
with semantic 3D geometry, and evaluation of LoD3’s advantages over LoD2
in camera-based localization is presented [64].
TUM2TWIN provides: LoD3 and LoD2 ground truth models (Sec. 3.4.1),
street-level images with vehicle trajectory (Sec. 3.2.1).

4.2. LoD1 Building Reconstruction

Within the broader field of city model reconstruction, semantic 3D build-
ing reconstruction has become a central focus owing to the significance of
buildings in urban environments and their diverse range of applications.
For LoD1, while many approaches rely on detailed 3D observations, an alter-
native observation-free strategy has also gained attention, since they do not
require detailed roof reconstruction [50].

To validate the performance of various methods one needs to evaluate
reconstruction results compared to ground truth. Usually, this are i) laser
scanning observations, ii) or manually modeled LoD1 building models. A
comprehensive analysis of various modalities limitations (ALS vs MLS) is
presented, where currently available open source methods for LoD1 recon-
struction and various building shapes are compared [57].
TUM2TWIN provides: ALS point clouds (Sec. 3.1.4), MLS point clouds
(Sec. 3.1.2), footprints and baseline LoD1, 2, and 3 building models (Sec. 3.4.1).

4.3. LoD2 Building Reconstruction

Unlike LoD1 building models, LoD2 building models require complex roof
type reconstruction, which is both challenging and opening new applications,
such as solar potential analysis for photovoltaic panels placement [54].

To bridge the abstraction gap between existing city-building models and
their underlying instances, PolyGNN [65] has been developed using a large-
scale synthetic ALS dataset with well-defined polyhedral ground truths. Fur-
thermore, a transferability analysis has been conducted, demonstrating that
PolyGNN, although trained solely on simulated ALS data for LoD2 build-
ing reconstruction, generalizes effectively to real-world ALS data. PolyGNN
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learns a piecewise planar occupancy function, underpinned by polyhedral
decomposition, enabling efficient and scalable 3D building reconstruction.
TUM2TWIN provides: Real ALS and synthetic ALS (Sec. 3.1.4), LoD1,
2, and 3 building models (Sec. 3.4.1).

4.4. LoD3 Building Reconstruction

Yet additional challenge imposes LoD3 reconstruction which requires geo-
metric representation of the facade elements. There are multiple applications
given this modality is available, such as autonomous driving car testing to
flood risk simulations [66].

The methods developed based on the TUM2TWIN include Scan2LoD3
[6] or Texture2LoD3 [40], and are not limited to them [67]. For example,
Scan2LoD3 introduces a method where uncertainty-aware analysis of MLS
laser rays with 3D models yields conflict maps that delineate openings. Then,
it is deployed as evidence for late-fusion of segmented point clouds and seg-
mented street-level images.
TUM2TWIN provides: LoD3 building models and ground truth textures
(Sec. 3.4.1), MLS facade-annotated point clouds (Sec. 3.1.2), and street-level
images (Sec. 3.2.1).

4.5. 3D Facade Semantic Segmentation

Facade semantic segmentation remains a persistent challenge in pho-
togrammetry and computer vision. Despite decades of research introducing
various segmentation methods, there is still a lack of comprehensive facade
classes and datasets that capture architectural diversity: Robust and stan-
dardized 3D facade semantic segmentation may unlock more comprehensive
urban space interpretation and robust facade-level semantic surface recon-
struction.

A method for 3D semantic facade segmentation is introduced that lever-
ages geometric features [68] as an early injection vector into the standard
deep learning networks [69]. Other publications further explore this direc-
tion using the TUM2TWIN data [70], or create evaluation baselines and
evaluation benchmark datasets, i.e., the largest facade segmentation dataset:
ZAHA [31].
TUM2TWIN provides: MLS facade-annotated point clouds (Sec. 3.1.2).
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Figure 18: Exemplary facade image inpainting: a) Ground-Truth CM derived from se-
mantic LoD3 building model b) Masked CM derived from semantic LoD2 building model
and corresponding MLS point cloud c) Inpainting result using a personalized DM. Figure
adapted from [72], where red stands for conflict, green for confirmation, black for unknown.

4.6. Facade Image Inpainting

2D Conflict Maps (CM) indicating potential conflicts between existing
semantic LoD2 building models and corresponding point clouds have diverse
applications for example in LoD3 building reconstruction ([6]) or change de-
tection ([71]). As Figure 18 b) illustrates, laser rays are frequently obstructed
by objects such as vegetation in MLS measurements, thus yielding incom-
plete CMs.

In their method on leveraging Diffusion Probabilistic Models (DM) for
completing CMs, [72] utilize the semantic LoD3 building models (Section
3.6.1), to obtain ground truth information for validating their approach. Fig-
ure 18 provides an example, illustrating a) a CM derived from a semantic
LoD3 building model, b) the corresponding, partially incomplete CM, de-
rived from MLS point clouds and the LoD2 building model, and c) the CM
that has been completed with a DM.

The rich semantic information provided within the LoD3 models makes it
possible to include prior knowledge about the behavior of facade components
into the process of deriving ground-truth CMs. For instance, windows and
doors are considered to be causing conflicts due to the voyeur effect ([73]),
while the largest identified wall surface is considered to be confirming.
TUM2TWIN provides: MLS point clouds (Sec. 3.1.2), TLS point clouds
(Sec. 3.1.1), LoD2 and 3 building models (Sec. 3.4.1).
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Figure 19: Building model overlayed with 3D thermal point clouds for projection.

4.7. 3D Thermal Point Clouds Projection

The digital representation of energy distribution in buildings can serve a
multitude of purposes in today’s world - such as energy consumption inspec-
tion, structural health monitoring, among others. In this work, the aim is
to develop a workflow for thermal mapping to generate the digital thermal
representations.

For this purpose, the TUM2TWIN dataset serves as a benchmark dataset.
The dataset provides laser scanner point clouds (TUM-MLS-16), Street-
Level Thermal Infrared (TIR) image sequences, LoD2 and refined LoD3
CityGML building models. As a pre-processing step, the laser scanner point
clouds are fused with the TIR images to generate 3D thermal point clouds
[74]. Then the building models are overlayed with the thermal point clouds as
shown in Figure 19. A mapping algorithm projects these thermal point clouds
to building facades to generate the thermal textures [75]. The projection al-
gorithm uses Nearest-Neighbor and Bilinear Interpolation method. These
generated thermal textures can be seen as an enrichment of digital twins
of building, which is also part of a bigger multi-scale digital twin project –
AI4TWINNING [76]
TUM2TWIN provides: Various building model types (Sec. 3.4), street-
level thermal infrared imagery (Sec. 3.2.2).

4.8. Novel View Synthesis: NeRF and Gaussian Splatting

Neural Radiance Fields (NeRF) has been widely adopted for novel view
synthesis by implicitly representing a scene as a continuous volumetric func-
tion trained with a set of posed images [77]. By learning a mapping from 3D
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spatial coordinates and viewing directions to color and density values, NeRF
facilitates high-fidelity 3D scene reconstruction [78].

The TUM2TWIN dataset provides a robust foundation for NeRF-based
urban digital twin applications, as it offers georeferenced high-resolution
multi-view images, ensuring accurate spatial consistency and high-quality
reconstructions. In this study, the nerfacto is employed, an enhanced NeRF
variant implemented in Nerfstudio [79]. Nerfacto integrates components from
mip-NeRF 360 [80] and instant-NGP [81] to achieve a balance between re-
construction quality and computational efficiency.

Figure 20b illustrates the NeRF-based reconstruction results obtained
using the TUM2TWIN dataset. The model successfully captures fine-grained
urban details, including building facades, streets, and occlusions.

3D Gaussian Splatting (3DGS) has emerged as an efficient representation
for novel view synthesis and real-time 3D scene reconstruction [82]. Unlike
volumetric rendering methods such as NeRF, which rely on implicit neural
fields, 3DGS represents a scene as a collection of anisotropic 3D Gaussians,
enabling direct rasterization and significantly reducing rendering time [83].
This approach offers compact scene representations while maintaining high
reconstruction fidelity.

Similar to NeRF-based methods, 3DGS benefits from high-resolution multi-
view images and precise spatial information, making the TUM2TWIN dataset
well-suited for 3DGS applications.

Figure 20 provides a comparative visualization of the reconstruction re-
sults of NeRF and Gaussian Splatting approaches. It illustrates the structural
and visual variations between the NeRF-based and 3DGS-based reconstruc-
tions using the TUM2TWIN dataset, with the Ground Truth, obtained from
Section 3.1.3, included for reference.
TUM2TWIN provides: UAS images with UAS pose and trajectory (Sec.
3.2.3), UAS point clouds as ground truth (Sec. 3.1.3), 3D mesh baseline
(Sec. 3.4.5).

4.9. Driving and Biking Simulator

The bicycle and e-scooter simulator are designed to provide immersive
experiences using either CAVE-VR or head-mounted VR technology. The
simulator incorporates a 3-degree-of-freedom (3DOF) motion platform to
enhance realism and user engagement, replicating dynamic movements cor-
responding to the virtual environment. This immersive setup is supported
by the HD map created through the TUM2TWIN project, ensuring detailed
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(a) (b) (c)

Figure 20: Comparison of reconstruction results using the TUM2TWIN dataset. (a)
Ground Truth (described in Section 3.1.3), (b) NeRF-based reconstruction, and (c) Gaus-
sian Splatting-based reconstruction.

and realistic infrastructure representation. FBX files derived from the HD
map are directly imported into the Unity simulation environment, provid-
ing a consistent 3D world. Simultaneously, the OpenDRIVE files generated
from the same HD map are integrated with Simulation of Urban MObility
(SUMO), a microscopic traffic simulation software. This dual integration
ensures both the VR environment and traffic simulation are synchronized
within the same coordinate frame, enabling seamless interaction between
virtual environments and traffic dynamics. The entire system is connected
via Sumonity, facilitating real-time data exchange between the simulator and
microscopic traffic simulation agents. This synchronization allows for the co-
ordinated movement of study participants within the simulator and virtual
traffic, enhancing the ecological validity of behavioral studies.
TUM2TWIN provides: Road network as HD Map (Sec. 3.3.1), Semantic
3D building models (Sec. 3.4.1).

4.10. Solar Potential Analysis

Among renewable energy sources, solar power is often the preferred choice
for buildings aiming to enhance energy sustainability and reduce reliance on
fossil fuels. Integrating photovoltaic (PV) panels in urban planning can sig-
nificantly contribute to reducing greenhouse gas emissions, mitigating the
adverse effects of climate change, and promoting energy independence. The
TUM2TWIN dataset provides a robust basis for assessing solar potential on
both building facades and rooftops. The detailed LoD3 models, which include
architectural elements such as windows, balconies, and facade textures, en-
able precise estimations of available surface areas for PV panel installations.

To enable solar potential analysis, the SunPot tool [84] is used on the
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TUM2TWIN dataset to calculate solar irradiation, taking into account the
shadowing effects of surrounding buildings and vegetation. The resulting
textured LoD3 model is then used to determine optimal PV placements and
estimate the potential energy yield from facade-integrated solar panels, as
can be seen in Figure 21.

This approach is particularly valuable for dense urban environments,
where rooftop space is often limited, making facade-mounted PV systems a
crucial strategy for maximizing renewable energy generation. By integrating
LoD3-based solar potential analysis within Urban Digital Twins, city plan-
ners can support data-driven decision-making for sustainable energy planning
and facilitate more accurate simulations of urban energy dynamics.
TUM2TWIN provides: Semantic 3D building models at LoD3 (Sec. 3.4.1).

(a) (b)

Figure 21: Simulation of (a) solar potential analysis (red - high to green - low) leading to
(b) optimal photovoltaic panel placement (blue and gray).

5. TUM2TWIN Potential Downstream Tasks

In this Section, we analyze the potential of selected applications of our
comprehensive TUM2TWIN dataset. This research direction have not been
yet published, yet the TUM2TWIN components are essential for such down-
stream tasks, further exemplifying the contribution of the TUM2TWIN dataset.

5.1. 2D Facade Understanding
High-quality datasets are scarce in architectural research, posing chal-

lenges for facade understanding, especially in labor-intensive tasks like seg-
mentation, where annotation is costly and time-consuming. As a way of
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approaching the data scarcity challenge, deep generative models can be used
to automatically generate annotated images. This includes the generation of
semantic segmentation masks, a usual requirement for any subsequent facade
understanding efforts. As described in [85], adapting such pipelines to differ-
ent domains requires only a minimal manual annotated dataset, containing
typically five or fewer samples per desired class. These models not only gen-
erate annotated images but also provide valuable features containing useful
semantics enabling various downstream tasks.

The multiple domains covered by the TUM2TWIN dataset provide a valu-
able benchmark for validating such efforts. Although semantic segmentation
masks are not available in the image-based portion of the dataset, the an-
notated point clouds and LoD3 models offer a potential set of segmentation
classes. By using these classes alongside the available street-view imagery
inside the TUM2TWIN dataset, the adaptability of such methodologies can
be evaluated. Additionally, TUM2TWIN provides a valuable benchmark for
image-based efforts dedicated to the parsing of facades and the induction of
architectural grammars, potentially contributing to 2D facade understand-
ing.
TUM2TWIN provides: Semantic 3D building models at LoD3 (Sec. 3.4.1),
Textured building models at LoD2 (Sec. 3.4.1), Binary openings’ ground
truth masks (Sec. 3.4.1).

5.2. Georeferenced BIM Reconstruction

As part of the endeavor to digitalize the built environment, the TUM2TWIN
dataset facilitates the creation of multi-scale, multi-level digital city models
by integrating detailed Building Information Models (BIM) with broader city
models.

In addition to the as-designed BIM models, which are often created in
a local coordinate system, common Scan-to-BIM practices mostly face chal-
lenges in generating georeferenced digital building models and integrating
them with city models. Indoor laser scanning primarily captures a building’s
interior in a local coordinate system, often lacking information about facade
wall thicknesses and key architectural elements such as openings and facade
structures.

High-quality geometric-semantic information at various levels can support
the development of automated methods for creating complete and accurate
georeferenced BIM models within city-scale semantic models. By leveraging
different levels of semantic detail in city models and applying techniques

38



such as point cloud semantic segmentation and instance segmentation, it
is possible to identify common architectural elements – such as doors and
windows – which can serve as key reference points for georeferencing BIM
models.
TUM2TWIN provides: Georeferenced TLS point clouds (Sec. 3.1.1), Geo-
referenced semantic 3D models at LoD1, 2, and 3 (Sec. 3.4.1).

5.3. Consistency Measures Across Representations

The concept of the UDT is becoming increasingly important as greater
amounts of data are collected on a variety of aspects of the real world. UDTs
are not monolithic entities where a single model can satisfactorily describe
and fulfill the requirements of all urban applications. UDTs can be better
understood as a collection of data from different representations that describe
the different facets of the same real-world object in different structures and
levels of detail. For these diverse representations to be coherent, the models
must be coherent with each other in all modelling aspects. In order to verify
coherence, the correspondence between two concrete data sets (3D models)
of different forms of representation must be determined on the basis of an
objective measure. The models from the TUM2TWIN dataset have been
collected as a first step to an interconnected digital twin.

Further, RichVoxels (Semantically enriched voxels) are used as a common
representation to match the various 3D model types amongst each other to
objectively describe their spatio-semantic coherence [86] .
TUM2TWIN provides: Various coregistered and georeferenced represen-
tations of the same objects: Point clouds (Sec. 3.1), images (Sec. 3.2), net-
works (Sec. 3.3), and 3D models (Sec. 3.4).

5.4. Multimodal Coregistration

TUM2TWIN comprises various georeferenced data types from different
sources of the same scene. For instance, the point clouds from TUM-TLS-24
and TUM-MLS-24 cover the same area. This characteristic makes the dataset
highly suitable for investigating the registration and fusion of multimodal
point clouds, offering an excellent testbed and robust data foundation, as we
show in Figure 22. Furthermore, TUM-MLS-24 is acquired using two distinct
mobile laser scanning systems (Z+F FlexScan 22 and Leica BLK ARC),
resulting in point clouds that vary significantly in quality and density. This
variability provides valuable support for research on registration methods
that account for point cloud uncertainty.
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Figure 22: A potential downstream tasks of multimodal registration of LoD2 models and
point clouds.

Additionally, the TUM2TWIN dataset includes an extensive collection
of semantic 3D models that spatially overlap with TUM-TLS-24 and TUM-
MLS-24, thereby enabling registration studies between point clouds and 3D
models. Typically, 3D models as representations of as-designed conditions are
not as current or detailed as as-built point clouds. Consequently, achieving
precise registration between these data types is a prerequisite for subsequent
3D model enhancement. The inherent diversity of the TUM2TWIN dataset
thus provides a basis for conducting multi-source data registration research.
TUM2TWIN provides: Various coregistered and georeferenced represen-
tations of the same objects: Point clouds (Sec. 3.1), images (Sec. 3.2), net-
works (Sec. 3.3), and 3D models (Sec. 3.4).

5.5. Complementing Indoor Digital Twins

A concurrently collected dataset of indoor 3D scans is the ScanNet++
dataset [87], which has Faro Premium laser scans with 40M points per scan,
high-resolution 33MP DSLR images and HD iPhone RGBD videos for 1006
indoor scenes. The ScanNet++ dataset provides an enhanced benchmark
for 3D semantic and instance segmentation tasks through its high resolution
and complete geometry capture, as well as for newer novel view synthesis
methods that rely on dense and high quality RGB image captures registered
in 3D space.
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Several ScanNet++ scenes are captured at the same location as the
TUM2TWIN dataset and hence can be coregistered with the indoor and
outdoor point clouds to enable holistic indoor-outdoor semantic understand-
ing of urban scenes in the form of indoor digital twins to complement our
outdoor digital twins.
TUM2TWIN provides: Indoor and outdoor TLS (Sec. 3.1.1) and MLS
point clouds (Sec. 3.1.2).

5.6. Education and Teaching

While the project originates from research demands, the comprehensive
scope of digital representations is useful for valuable teaching use cases. The
datasets are utilized as practical exercise materials to enhance learning within
the study program [88]. In particular, the different representations demon-
strate the focus and interconnections between the various disciplines.

5.7. Industry and Public Authorities

The open datasets enable established and emerging companies to proto-
type, validate, and present novel products and services. Moreover, public
authorities can utilize the benchmark datasets to assess the quality of sur-
veying service suppliers.

6. Limitations and Outlook

To date, there has been no such comprehensive dataset representing a
multitude of modalities as TUM2TWIN. We firmly believe this will be a
milestone for the community. Yet, we acknowledge that there are still some
limitations in our dataset, such as a lack of online acquisition modality in
the form of constant observation cameras or Internet of Things (IoT) de-
vices. Also, although co-registered, as of now, the interiors are only partially
captured by our laser scanners. This step will also ensure essential data
for creating georeferenced building information modeling (BIM) models. We
plan to extend our data in the future in these valuable assets. Furthermore,
we acknowledge that frequently benchmarks are associated with the pre-
defined routines for input and output results, as we provided in ZAHA [31].
Yet, as we observe, our comprehensive dataset is already in use by multiple
researchers for various purposes, we encourage the community to brute-force
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test and submit the feedback via our continuously updated website 4. Worth
mentioning is also that we collated datasets acquired specifically to com-
plement the existing datasets, where georeferencing plays a critical role for
data-to-data association. Yet, we do not conduct data-to-data coregistra-
tion, as we acknowledge each data has different associated uncertainty and
object overlap (as listed in Tab.2); hence, provides various analysis criteria for
methods validation and novel co-registration methods development. Another
limitation and advantage at the same time of TUM2TWIN pertains to data
heterogeneity, which remains a major obstacle, as information is gathered
from diverse sources such as LiDAR, aerial imagery, and GIS databases, dif-
fering in format, resolution, and temporal frequency. This leads to difficulties
in data fusion, synchronization, and completeness, particularly when captur-
ing evolving urban environments. Also, scalability remains an issue owing
to data storage constraints arising from the vast size of high-resolution 3D
and temporal data, demanding efficient indexing, compression, and real-time
access mechanisms. Furthermore, semantic and geometric complexity poses
challenges for consistent modeling across different representations. Finally,
privacy, governance, and accessibility issues allowed us to publish such com-
prehensive dataset, we observe many open-data initiatives across the globe.
Yet, still many urban datasets remain proprietary or restricted due to ethical
and legal considerations.

7. Conclusion

In this paper, we propose a holistic Urban Digital Twin (UDT) bench-
mark dataset comprising multiple data representations of the same area of
roughly 100,000 m2, enabling various applications. Since its conception in
2021, starting with solely a few point clouds and limited semantic models,
the project evolved to its current state, boasting 32 different data subsets –
to date, the largest UDT benchmark dataset. Based on our experience, we
conclude that georeferencing is the key to i) enabling novel research directions
and ii) enhancing the validation of existing ones. One of the striking exam-
ples is the first-of-its-kind combination of LoD2, textured LoD2, and LoD3
models georeferenced with point clouds stemming from TLS, UAS, and MLS,
which enables ground-truth validation of LoD3 model reconstruction for the

4https://tum2t.win/
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first time from various sensors. The georeferencing aspect is also pivotal for
further integration of other datasets in the future, owing to its unique iden-
tifiers that allow for association between datasets across timestamps. An
example of enhancing current research is the NeRF and Gaussian Splatting,
which, despite gaining significant attention, lacked outdoor real-data vali-
dation datasets of high-accuracy TLS point cloud or low-poly semantic 3D
building models. We are convinced that the TUM2TWIN dataset will foster
further development around UDT and will benefit multiple research groups
worldwide.
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point cloud benchmarks for façade segmentation, The International Archives
of the Photogrammetry, Remote Sensing and Spatial Information Sciences
XLVI-2/W1-2022 (2022) 529–536.

46



[33] F. Matrone, E. Grilli, M. Martini, M. Paolanti, R. Pierdicca, F. Remondino,
Comparing machine and deep learning methods for large 3D heritage semantic
segmentation, ISPRS International Journal of Geo-Information 9 (2020) 535.

[34] K. Anders, J. Wang, M. Chang, M. Letard, F. Schulte, L. Winiwarter, Terres-
trial and UAV laser scanning point clouds of TUM Campus Ottobrunn, 2024.
URL: https://doi.org/10.5281/zenodo.14443336. doi:10.5281/zenodo.
14443336.

[35] Pix4D SA, Pix4Dmatic Software, Version 1.71.0, https://www.pix4d.com/
product/pix4dmatic (24 April 2025), 2024.

[36] J. L. Schönberger, E. Zheng, M. Pollefeys, J.-M. Frahm, Pixelwise View
Selection for Unstructured Multi-View Stereo, in: European Conference on
Computer Vision (ECCV), 2016.

[37] LDBV, Das Landesamt für Digitalisierung, Breitband und Ver-
messung (LDBV), https://www.ldbv.bayern.de/produkte/

landschaftsinformationen/laser.html, 2025. Accessed: 2025-03-22.

[38] L. Winiwarter, A. M. E. Pena, H. Weiser, K. Anders, J. M. Sánchez, M. Searle,
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tation datasets using diffusion models, in: Computer-Aided Architectural
Design Research in Asia (CAADRIA), 2025. Accepted for publication, forth-
coming.

[86] M. Heeramaglore, T. H. Kolbe, Semantically enriched voxels as a
common representation for comparison and evaluation of 3d building
models, in: Proceedings of the 17th International 3D GeoInfo Con-
ference 2022, ISPRS Annals of the Photogrammetry, Remote Sensing
and Spatial Information Sciences, UNSW Sydney, 2022. URL: https:

//www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/

X-4-W2-2022/89/2022/. doi:10.5194/isprs-annals-X-4-W2-2022-89-2022.

[87] C. Yeshwanth, Y.-C. Liu, M. Nießner, A. Dai, ScanNet++: A high-fidelity
dataset of 3d indoor scenes, in: Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2023, pp. 12–22.

[88] C. Dubois, B. Jutzi, M. Olijslagers, C. Pathe, C. Schmullius, M. A.
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