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Abstract

The monitoring of PV parks is important to optimize their operation in terms
of yield and levelized cost of electricity. Defective modules and inverters must be
detected and replaced promptly. The influence of environmental factors such as
soiling must be kept in mind, as these can accelerate the degradation of the system.
Every maintenance measure is associated with costs. For cleaning, these are working
time, water consumption, and money. Measuring the electrical loss caused by soiling
is an important parameter for the development of optimized cleaning strategies.

Even before this dissertation, there are several ways to measure the electrical
power loss caused by soiling. The power of the park can be compared with the
modeled power, considering operational conditions such as irradiance, temperature,
and other sources of efficiency reduction. However, these other sources of efficiency
reductions, i.e. aging are typically not known.

To obtain the most accurate and spatially resolved image of the soiling, it makes
sense to develop a camera-based measurement method. This work aims to develop
this camera-based method that can estimate the electrical losses of a PV park from
drone images. The first method refers to the soiling type of mineral dust. The method
is calibrated by taking several images of a clean PV module and a soiled module. It is
then possible to evaluate third images. In the validations of the method, an RMSE of
0.93% (absolute) was achieved.

A second method was developed to evaluate coarse soiling such as leaves and
bird droppings. Deep learning is used to first detect soiling and then segment it. By
estimating the transmittances of the different types of soiling, it is then possible to
estimate the electrical power loss caused. In the tests carried out on the method, a
deviation of less than 1% absolute was always achieved, with an absolute soiling loss
of approx. 15%.

Furthermore, an electrothermal model was developed that can determine the
temperature of a PV module with cell resolution. In particular, it is possible to estimate
which soiling pattern can lead to a hotspot and how high the corresponding hotspot
temperature is. In addition, the model can determine the electrical mismatch losses
of an inhomogeneously soiled module. The model can also be used to differentiate
between soiling-based and defect-based hotspots. In the cases considered, this was
always successful. The electrical power could be determined relatively accurately
with an RMSE of 2.1 W. In the case of a clean module, the temperature could be
determined with an RMSE of 2.6 K.

All'in all, this thesis presents new methods for the measurement of soiling in PV
parks. Advantages compared to the literature are in particular the high accuracy,
the capability of analyzing various kinds of soiling, the spatial resolution, and the
practicability that comes with the usage of drones.






Kurzfassung

Um den Betrieb von PV Parks beztiglich beziiglich des Ertrags und der Stromgeste-
hungskosten zu optimieren ist ein gezieltes Monitoring wichtig. Defekte Module und
Wechselrichter miissen zeitnah erkannt und ersetzt werden. Der Einfluss von Umwelt-
faktoren wie z.B. Verschmutzung muss im Auge behalten werden, da diese die De-
gradierung der Anlage beschleunigen konnen. Jede Instandhaltungsmafinahme ist
mit Kosten verbunden. Fiir eine Reinigung sind dies Arbeitszeit, Wasserverbrauch
und Geld. Fiir die Entwicklung optimierter Reinigungsstrategien ist die Messung des
durch Verschmutzung hervorgerufenen, elektrischen Verlustes ist dabei ein wichtiger
Parameter.

Bereits vor dieser Dissertation gibt es einige Moglichkeit den durch Verschmutzung
hervorgerufenen elektrischen Leistungsverlust zu messen. Die Leistung des Parks
kann mit der modellierten Leistung verglichen werden, wobei Betriebsbedingungen
wie Bestrahlungsstirke, Temperatur und andere Quellen fiir Effizienzminderun-
gen berticksichtigt werden. Diese anderen Quellen fiir Effizienzminderungen, z.B.
Alterung, sind jedoch in der Regel nicht bekannt.

Um ein moglichst genaues und rdumlich aufgeldstes Bild von der Verschmutzung
zu bekommen ist es sinnvoll eine kamerabasierte Messmethode zu entwickeln.

Das Ziel dieser Arbeit ist die Entwicklung einer solchen kamerabasierten Methode,
welche die elektrischen Verluste eines PV Parks aus Drohnenbildern abschétzen kann.
Dabei bezieht sich die erste Methode auf den Verschmutzungstyp Mineralstaub.
Kalibriert wird die Methode durch Aufnahme einiger Bilder eines sauberen PV
Moduls und eines verschmutzten Moduls. Im Anschluss ist die Auswertung dritter
Bilder moglich. In den durchgefiihrten Validierungen der Methode wurde ein RMSE
von 0.93% (absolut) erzielt.

Eine zweite Methode wurde entwickelt, um grobe Verschmutzungen wie Blatter
und Vogelkot zu auszuwerten. Dabei wird Deep Learning benutzt, um zunéchst
Verschmutzungen zu detektieren und im Anschluss zu segmentieren. Durch Ab-
schitzung der Transmittanzen der verschiedenen Verschmutzungstypen ist es dann
moglich den hervorgerufenen elektrischen Leistungsverlust abzuschitzen. In den
durchgefiihrten Tests der Methode konnte stets eine Abweichung von weniger als 1%
absolut erzielt werden, bei einem absoluten Verschmutzungsverlust von ca. 15%.

Des Weiteren wurde ein elektrothermisches Model entwickelt, welches die Tem-
peratur eines PV Moduls mit Zellauflosung bestimmen kann. Insbesondere kann
abgeschatzt werden, welches Verschmutzungsmuster zu einem Hotspot fithren kann
und wie hoch die entsprechende Hotspottemperatur ist. Zudem kann das Model die
elektrischen Mismatch Verluste eines inhomogen verschmutzten Moduls bestimmen.
Das Model kann auch fiir die Unterscheidung von verschmutzungsbasierten und
defektbasierten Hotspots genutzt werden. In den betrachteten Féllen ist dies immer
gelungen. Die elektrische Leistung konnte bestimmt werden mit einem RMSE von
2.1 W und die Temperatur eines sauberen Moduls mit einem RMSE von 2.6 K.

Insgesamt werden in dieser Arbeit neue Methoden zur Messung von Verschmutzun-
gen in PV-Parks vorgestellt. Die Vorteile gegeniiber der Literatur liegen insbesondere
in der hohen Genauigkeit, der Fahigkeit, verschiedene Arten von Verschmutzungen
zu analysieren, der raumlichen Auflosung und der Praktikabilitdt, die durch den
Einsatz von Drohnen entsteht.
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Chapter 1

Introduction

Climate change is a major challenge for mankind. A decisive factor driving climate
change is the increasing concentration of carbon dioxide in the atmosphere (Matthews
and Caldeira, 2008; Matthews et al., 2009; Gillett et al., 2011; Knutti and Rogelj, 2015;
MacDougall et al., 2015; Cook et al., 2016). Hence, there is a need for decarbonization
in all sectors. The electricity sector is one of the first to be decarbonized (IEA, 2024).
Therefore, energy production has shifted from using fossil fuels like hard coal, lignite,
natural gas, and oil towards using renewable energies like hydro power, wind power,
and solar (IEA, 2024). Among all renewable energies solar is the most abundant with
3.9 x 10° PJ reaching the Earth every year (Quaschning, 2008). Although, there are
also other technologies that convert solar energy into electricity, photovoltaics (PV) is
one of the most important ones. It has established itself as the fastest-growing energy
source. At the end of 2023, around 1624 GW were installed worldwide (IEA-PVPS,
2024). In 2023 alone 446 GW were installed (IEA-PVPS, 2024). Compared to other
electricity generation technologies PV offers several advantages. PV can be installed
in large PV parks and on rooftops. PV is suitable for remote solutions. PV is easy to
install and the maintenance costs are low. Importantly, PV is often the cheapest way
of generating electricity.

With PV installations growing rapidly, there are also new challenges arising,
i.e. the monitoring of large PV plants. The efficiency of many parks is reduced by
soiling. There are various types of soiling. Common examples are mineral dust
deposition, bird droppings, biofilms of bacteria, algae, lichen, mosses, fungi, pollen,
and emissions from exhaust engines and agriculture (Martin-Sanchez et al., 2018;
Einhorn et al., 2018; Shirakawa et al., 2015). The regions that offer a large solar yield
are often arid regions like North Africa or the Middle East that are prone to mineral
dust (Ilse et al., 2018; Ilse et al., 2019). Therefore, mineral dust is an important type of
soiling and deserves to be investigated further. It is estimated that soiling reduces
global solar energy generation by 4% to 7% (Ilse et al., 2019). The impact of soiling
depends on various factors. Most importantly, soiling is site-specific. Furthermore,
soiling losses depend on the season. For example, rain periods lead to a natural
cleaning of PV modules. Some studies have analyzed the impact of meteorological
parameters like wind speed, humidity, and aerosol concentration on soiling losses
(Figgis et al., 2016).

Soiling not only causes decreases in electricity generation, additionally, soiling
can lead to an accelerated degradation of the PV installation (Chen et al., 2021; Garcia
et al., 2003). Soiling can also cause hotspots (Wendlandt et al., 2010; Yang et al., 2010;
Oliveira et al., 2018). These are local areas within a PV device that significantly heat
up compared to their surrounding due to power dissipation. Hotspots do not only
accelerate the degradation, but are often also a safety risk. Hotspots are often detected
by infrared (IR) flyovers. It might be challenging sometimes to determine the origin
of a hotspot, as hotspots can be caused by defects or by soiling.
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Although there are many approaches to mitigate soiling losses, e.g. described by
(Ilse et al., 2019), the obvious idea of cleaning the modules remains. The cleaning
process itself comes at the cost of labor, water, and initial investment. Optimal
strategies include a good timing of the cleaning process, i.e. to reduce the total
number of cleaning cycles. To optimize the cleaning routine, soiling measurements
are beneficial.

There are already some ways of measuring soiling losses. In this context, the
soiling loss is defined as the relative reduction in power experienced by a soiled
module compared to the power that the same module would have if it was clean. The
power of a soiled device is measured and compared to the power of a clean reference
device (Gostein et al., 2013; Gostein, Caron, and Littmann, 2014; Gostein, Diister,
and Thuman, 2015). There are two main disadvantages to this method. The clean
reference module has to be cleaned every day and the method is not spatially scalable
because in a PV park, the power is not measured on a module level.

Many scholars have performed measurements of the mass of the dust deposited
on PV modules (Al-Hasan and Ghoneim, 2005; El-Shobokshy and Hussein, 1993;
Elminir et al., 2006). The dust mass is correlated with the electrical loss that occurs.
Collecting dust enables further analyses. For example, optical transmission, light
scattering, and particle size can be studied in detail. However, for determining the
electrical losses these have some limitations. The calibration has to be performed that
links the dust mass to the soiling loss. Furthermore, this method is also not scalable.
Only selected locations within a PV park can be measured.

Another type of indirect soiling measurement is optical soiling sensors. The
sensor DUSST has been investigated by (Fernandez-Solas et al., 2020). This is a
device that uses a monochromatic LED and a PV cell as a light sensor. Soiling losses
are quantified by comparing the light transmitted through a soiled glass with the
light transmitted through the same glass in clean conditions (Fernandez et al., 2019).
MARS is another device that uses a camera to capture images of soiled glass. The
glass contains small white and black reference areas. The measurement area changes
its brightness depending on the soiling deposited on the glass. The brightnesses of
the reference areas and the measurement area are compared. Imaging techniques
are then used to estimate the transmittance losses (Gostein et al., 2018; Gostein et al.,
2019; Aissa et al., 2022). The DustIQ is an optical sensor that uses a photodiode to
quantify the amount of light that is emitted from an LED and then scattered back into
the device. The scattered light correlates to the amount of dust particles accumulated
on the glass surface of the device (Korevaar et al., 2017; Karki, 2019). These sensors
might be capable of giving an estimate of the soiling loss. Their main drawback is
that their estimate might be far off and they measure only at one point in the solar
field.

To obtain soiling measurements with spatial resolution attempts have been made
to measure soiling with cameras. This offers the advantage that surveillance cameras
or drones could monitor the soiling. The first approaches used classical computer
vision to detect and quantify soiling. (Yap, Galet, and Yeo, 2015) and (Yfantis and
Fayed, 2014) have used histogram methods to distinguish between clean and soiled
modules on images captured by static cameras. However, these methods didn’t
calculate the electrical loss caused by the soiling. Furthermore, the practicality of
these is questionable.

(Mehta et al., 2018) have created a data set that contains more than 48,000 images of
a soiled PV panel. For each image, the electrical power loss has been measured. With
this data set the authors have developed an AI model that is capable of predicting
the power loss of a module just from seeing an image of this module. The approach
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is very promising and is mainly limited by the training dataset. All images were
captured from the same perspective from the same camera of the same module. The
module was artificially soiled. The developed model could not just be applied to any
image of a soiled PV module of a given PV park. (Yang et al., 2024) have developed a
similar AI model that is also capable of predicting the soiling loss just from an image
of the soiled module. Compared to (Mehta et al., 2018) the main advantage is that
the training data contained images of a PV module that experienced real outdoor
conditions in Doha. This increases the applicability. However, otherwise, the study
suffers from the same limitations as the work by Mehta et. al.

This thesis aims to develop a new optical method that enables an accurate, spa-
tially resolved soiling measurement method for PV parks. The method uses images
captured by drones and calculates the soiling loss on a cell level. The method should
be generally applicable. The focus is the soiling type dust but also various other
soiling types like bird droppings, leaves, etc. should be considered. Within this
work, they are summarized under the term inhomogeneous soiling. Inhomogeneous
soiling can cause hotspots and lead to security issues. A new electrothermal model is
introduced that is capable of estimating a module’s temperature with cell resolution
for the clean or a soiled state. In particular, hotspot temperatures can be estimated.
Furthermore, electrical mismatch losses are considered. The combination of the
methods allows the categorization of hotspots into two groups soiling-based and
defect-based. This is valuable as IR imaging techniques can identify hotspots but
cannot directly determine the hotspot’s origin.

This thesis is structured as follows. Chapter 2 summarizes the state of the art
in terms of PV soiling measurements. Chapter 3 describes the setup used for the
experiments performed. Chapter 4 describes the sub-task of measuring the soiling
type dust. Chapter 5 describes the measurement of inhomogeneous soiling types
like bird droppings. Chapter 6 describes an electrothermal model that is capable of
calculating electrical mismatch losses and of estimating the module’s temperature.
Chapter 7 gives a summary and provides an outlook for future work.






Chapter 2

State of the Art

This Chapter gives a summary about how soiling affects the operation of PV plants
and how its magnitude can be determined. Effects of soiling are discussed for some
studies performed at given sites. Soiling measurements with optical sensors, device
pairs, and microscopy techniques are discussed. Afterwards, the image based soiling
measurements techniques are discussed. These include RGB imaging, as well as IR,
and EL imaging techniques. Furthermore, electrical modeling and thermal modeling
of PV devices is discussed.

2.1 Soiling of PV Plants

The accumulation of dust, dirt, pollen and other contaminants on the surface of
PV modules is commonly referred to as soiling (Ilse et al., 2019). Soiling is an
important environmental factor to consider when evaluating the operation of a given
PV installation and the potential of a certain location. Soiling reduces the generated
power of an affected PV installation by stopping incident light from reaching the
absorbing semiconductor layer of the PV module (Garg, 1974; El-Shobokshy and
Hussein, 1993; Hassan et al., 2005). Annual soiling losses are typically in the range
of 1% to 6% (Caron and Littmann, 2012; Kimber et al., 2006). On a global average
they were estimated to be 3% to 4% in 2019 despite of cleaning at many sites (Ilse
etal., 2019). At the same time soiling losses vary spatially for different regions and
different sites and seasonally (Townsend and Hutchinson, 2000).

(Al Siyabi et al., 2021) have studied soiling losses at a site in Oman. The site is
near the desert and is therefore severely affected by sand and dust. In their case
study, the authors found that soiling losses reached 4.8% one week after the cleaning
process. After three weeks, soiling losses reached 18.1%, and after five weeks 38.1%.

(Caron and Littmann, 2012) have studied soiling losses in southern California.
The authors found that soiling losses could be as high as 11.5%. Furthermore, the
authors found that the soiling rate, the increase in soiling loss over time, was on
average 3.8% per month. Additionally, it was observed that 0.5 mm of rain is in most
cases sufficient to naturally clean the affected modules.

(Conceigdo et al., 2018) have studied the soiling losses in various seasons in Evora,
Portugal. In their case study, the authors found that in April soiling losses reached
4.1%, in July 1.9%, and 1.6% in September. The reason for the decrease in soiling was
found to be the rain.

(Zorrilla-Casanova et al., 2011) performed a case study in Malaga. The authors
obtained an average soiling loss of 4.4%. In the dry season, however, the soiling
losses exceeded 20%. Additionally, the authors studied the dependence of the soiling
loss on the angle of incidence. It has been confirmed that soiling losses are the lowest
for perpendicular incidence. Up to an angle of incidence of 80°, the soiling loss
continuously increases.
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(Pavan, Mellit, and De Pieri, 2011) have analyzed two sites in Italy. For a site
located on compact soil, the authors found an average soiling loss of 1.1%. For the
second site which is located on sandy soil, the authors found an average soiling loss
of 6.9%.

(Cordero et al., 2018) have investigated different sites in Chile. In the most severe
case, in the northern part of the Atacama Desert, the authors found annual losses
of 39%. The least affected site showed a soiling loss of 3%. In the capital Santiago,
the measured soiling loss was on average 7%. Furthermore, the soiling rate has been
studied in dependence on the humidity, the wind speed, the tilt angle of the setup,
and the aerosol optical depth. An increased humidity leads to an increased particle
deposition and therefore to an increased soiling rate. Increased wind speed on the
other hand leads on average to a lower soiling rate. An increased aerosol optical
depth leads to an increased soiling rate.

In addition to a lower generated electrical power soiling can also lead to an
accelerated degradation of the impacted modules (Chen et al., 2021; Garcia et al.,
2003; Wendlandt et al., 2010; Yang et al., 2010; Oliveira et al., 2018). This can be either
directly by contact of the soiling layer and the module’s surface or indirectly when
the soiling leads to a locally increased temperature. The latter case is discussion in
more detail in Section 2.5.

For the above-mentioned reasons the monitoring of soiling is an important aspect
to consider for operators of PV parks. There are different strategies of dealing with
soiling. There is always a trade-off between improving the performance of a given
installation and the costs associated with cleaning the modules. One has to take the
initial investment for the cleaning infrastructure, the labor, the water cost, and other
operating costs in account. Additionally, one should consider that the monitoring of
soiling itself comes at a price. The simplest might be to ignore soiling and monitoring
and never clean the PV modules. Another idea is to clean the modules once a year.
These strategies are over-simplified, especially for sites that are sensitive to soiling.
For improved strategies it is essential to have an estimate of the losses caused by
soiling. One possible strategy would be to clean the modules whenever a threshold
of e.g. 5% losses is reached. Cleaning strategies have e.g. been discussed in (Mondal
et al., 2018; Jamil et al., 2017; Sayyah, Horenstein, and Mazumder, 2014; Ferretti, 2018;
Mesbahi, 2018).

2.2 Soiling Measurements

The soiling loss SL is the reduction in electrical power that a PV device experiences
due to the presence of soiling. For calculating the soiling loss, first, the difference
between the expected power Pyeqp exp for the imaginary case that the device would be
clean, and the actual power Psyjjed meqs in the soiled state is calculated. This difference
is then divided by the expected power to obtain the soiling loss. This is shown in
Equation 2.1. The soiling ratio SR, defined in Equation 2.1, is another metric that is
often used.

Pcleun,exp - Psoiled,meas

—1_ Psoiled,meas —1-SR (2.1)

SL =
Pclean,exp Pclean,exp
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221 Soiling Measurements With Device Pairs

Calculating the soiling loss with device pairs offers several advantages. Typically,
these methods are more accurate as the modules are used directly instead of estimat-
ing the soiling by a different device type. Furthermore, the impact of the spectral
irradiance, the spectral response, the angle of incidence, and other factors are consid-
ered.

One question that arises when looking at Equation 2.1 is how to determine Pejeq exp
as the same module cannot be cleaned and soiled at the same time. Accordingly, there
are several similar methods to determine the soiling loss. Commonly, the performance
of the soiled PV device is measured and compared with the performance of a clean
device of the same type. The two devices should be located close to each other so that
they experience the same environmental conditions. In particular, the modules will
experience the same ambient temperature T,, the same wind speed v, wind direction
wy, and the same global tilted irradiance GTI. Normalization of the performance
should always be performed. This is shown in Equation 2.2. The two devices may
perform differently when clean. This may be production-related or due to aging.

SL—1— <Psoiled(tsoiled) . PClé’ﬂn(trL’f) > 2.2)
Petean (tsoiled) Psoiled(tref)

Here, the indices soiled and clean refer to the two modules, the soiled module, and
the clean reference module. t;;.4 is the point in time when the module of which the
soiling loss should be determined is actually soiled. ¢, is the point in time when
the reference measurement is performed and both modules are clean. Equation 2.2
can be separated into two steps (see Equations 2.3 and 2.4). Here, c.ff is the ratio
of efficiencies of both devices (modules) when they are clean. Note that, Psgjjeq(t.f)
describes the module that is soiled at a different point in time. At ¢,.f, also the soiled
module is cleaned.

Pclean(tref)
Ceff = Pt ) 2.3
Eff Psoiled(tref) ( )
Pysited (tsoited) >
S, =1 — [ =Souea)"soled/ . "4
( Potean (tsoited) ~* (2.4)

One should note that it is not problematic if ¢, and t,. feature different environ-
mental conditions. It is only important that the conditions for both modules are
the same at both points in time. Also, it should be realized that the soiled and the
clean reference module have to be surrounded by the same ambient temperature
but both modules do not need to show the same surface temperature. It is possible
that the soiling leads to a decrease of the module’s efficiency and therefore to an
increased operating temperature. This temperature increase would be caused by the
soiling. Therefore, it would be part of the soiling loss. Therefore, in this thesis no
temperature correction is performed. Other authors (Gostein et al., 2013; Gostein,
Diister, and Thuman, 2015) have however performed temperature corrections. If the
PV devices are reference cells, a tilt correction is sometimes applied, as reference cells
that are slightly tilted relative to each other do not experience the same environmental
conditions (Esquelli, 2020).

Some authors have compared the short-circuit currents of the devices instead of
the power of the devices (Gostein et al., 2013; Gostein, Diister, and Thuman, 2015). If
the soiling loss is defined in this way; it is a better metric to describe how much light
still enters the cell. However, to estimate the power losses, it is better to compare
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the power of the devices with each other as in this case electrical mismatch is also
considered (see Section 2.4).

In the case that no second, cleaned device is available, the soiling loss can also be
estimated by comparing the power output of the soiled module with the GTIL. The GTI
should be measured by an adequate PV reference cell with similar properties as the
other PV device. If the ratio between the power and the GT1is known for the case that
the device is clean, the soiling loss can in turn be inferred. The clean module’s power
in Equation 2.2 is replaced by the GTI. This is shown in Equation 2.5. If the soiling
loss is calculated in this way, normalization to the ambient conditions, in particular
to the temperature, is necessary. If the comparison is made between two PV devices,
both devices experience the same conditions at a given time. This applies both to the
time of the soiling measurement and to the time of the normalization. However, the
measurement of the GTI is generally corrected for effects of the ambient conditions, i.e.
the corresponding measuring devices perform given corrections internally. Therefore,
a temperature difference between the device temperature during normalization and
the measurement must be considered. Consequently, a temperature correction is
applied when the soiling loss is determined by comparing the module power to the
GTI. The module’s temperature is assumed to be homogeneous over its entire surface.
The backplate temperature T,p4,1. is measured with a temperature sensor, either a
thermo-couple or a resistance-based thermometer like a Pt-1000 (described in Chapter
3). The coefficient -y that describes the relative decrease in power with increasing
temperature is stated by the manufacturer in the data sheet. Finally, to get a better
estimate of the soiling loss Equation 2.5 is applied with Psyjjeq 100r defined in Equation
2.6. Tyey is an arbitrarily chosen reference temperature.

SL—1— (Psoiled,Tcor(tsoiled) GTI(tref) > (25)

GTI<tsoiled> Psoiled,Tcor (tref)

Psoited
Psozled,Tcor T+1- (Tmodule — wa) (2.6)

One important aspect to keep in mind is that none of the concepts so far consider
the wavelength dependence of soiling. The soiling loss was always considered to
be an effective average over the wavelength spectrum. In general, this might be a
reasonable assumption that e.g. bird dropping have a pretty similar transmittance
for red and blue light. On the other hand, it is very likely that some kinds of dust
not significantly but noticeably change their transmittance from red to blue light.
Also, different PV technologies have different spectral sensitivities. This means that
in theory the same soiling layer would lead to different soiling losses dependent on
the module technology that is used. (Qasem et al., 2014) found that technologies
with a larger bandgap, in particular amorphous silicon-based technologies, suffer
from higher electrical losses, when dust is present. However, the above-mentioned
measuring techniques remain valid. Limitation would arise for example when the
power of a module is compared to the GTI of a PV reference cell and both devices use
a different semiconductor.

The angle of incidence (AOI) on a PV module inevitably changes over a day. This
can also play a role in the soiling loss. For example, if a soiling layer has a certain
thickness or if a leaf only partially sticks onto the module’s surface the soiling can
also shade an area that would not be considered to be impacted by the soiling from a
perpendicular view onto the module. A particularly important soiling type is dust. If
a dust layer covers a PV module, its transmittance depends on the angle of incidence.
Effectively, the dust layer appears thicker if viewed under an angle. (Heimsath and
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Nitz, 2019) have investigated the angular dependence of dust deposited on solar
reflectors. This study provides a way to model the angular dependence. It is designed
to estimate losses for concentrating solar power (CSP) plants. This is not directly
applicable to PV. Soiling losses due to dust are generally higher for CSP than for PV.
For CSP only direct irradiance can be used and diffuse irradiance has to be neglected.
For PV technologies both contribute to power generation. For both technologies
dust reduces the power output by absorbing and scattering the incident light with
scattering generally being the dominant factor. If the light is scattered at a dust
particle it directly cannot contribute to power generation anymore in the case of CSP.
In the case of PV however, a significant amount of scattered light still contributes to
power generation. For example, if a PV module is illuminated perpendicularly and
scattering takes place at dust particles on the module’s surface, photons scattered in
forward direction still fall into the module and can be absorbed there.

(Wolfertstetter et al., 2021) have studied the impact of the AOI and the Linke
turbidity on the soiling losses. In this study, the soiling of a reference cell was
analyzed. The soiling losses of a singular reference cell can be an estimate for the
soiling losses of neighboring modules. As expected, it was found that soiling losses
increase with increasing AOI. Also, it was found that soiling losses are less impacted
by the AOI if the Linke turbidity is higher. This is intuitively understood when
considering that a higher Linke turbidity means that the direct irradiance contributes
less to the global irradiance.

2.2.2 Optical Soiling Sensors

One way to determine soiling losses are optical soiling measurement (OSM) sensors.
These are capable of continuously measuring the soiling losses, are easy to install and
to operate, and typically require a calibration step. These devices work as follows.
A glass layer experiences the same environmental conditions as the surrounding
modules. Therefore, dust is deposited. A light source illuminates the glass layer. This
can be either the environment (the sun) or an additional device. An imaging device,
such as a camera or a photodiode records information about the soiled glass surface.
This information is then evaluated. For example, the covered area can be calculated
or the light that is scattered by the dust particles is quantified. These metrics enable
the estimation of the soiling loss.

The MARS soiling sensor by Atonometrics is a device that uses a camera to
capture images of soiled glass (Atonometrics, 2024). The glass contains small white
and black reference areas. The measurement area changes its brightness depending
on the soiling deposited on the glass. The brightnesses of the reference areas and the
measurement area are compared. Imaging techniques are then used to estimate the
transmittance losses (Gostein et al., 2018; Gostein et al., 2019; Aissa et al., 2022).

The DustIQ by Kipp & Zonen is also an optical sensor that uses a photodiode to
quantify the amount of light that is emitted from an LED and then scattered back into
the device (Kipp & Zonen, 2024). The scattered light correlates to the amount of dust
particles accumulated on the glass surface of the device (Korevaar et al., 2017; Karki,
2019). These sensors might be capable of giving an estimate of the soiling loss. The
main limitation is that the above-mentioned devices can be far off and they measure
only at one point in the solar field.

(Wolfertstetter et al., 2021) have highlighted some shortcomings of OSM sensors.
These devices are installed larger PV plants. These devices measure the soiling that
they experience themselves. The soiling of the modules is not directly measured.
Instead, it is assumed that the soiling is similar for the OSM and the modules. They
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measure the soiling only at one point and cannot sufficiently consider spatially
inhomogeneous soiling.

Furthermore, the impact of the spectral irradiance, the spectral response, and
other factors are not considered.

2.2.3 Optical Soiling Sensors With Internal Light Source

The DUSST sensor (Detector Unit for Soiling Spectral Transmittance) is an optical
sensor that has been developed by (Fernandez et al., 2019) and studied by (Fernandez-
Solas et al., 2020). This is a device that uses a monochromatic LED and a PV cell as a
light sensor. Soiling losses are quantified by comparing the light transmitted through
a soiled glass with the light transmitted through the same glass in clean conditions
(Fernandez et al., 2019).

(Campos et al., 2023) have developed the soiling measurement system Radguard.
The main idea of this system is to avoid the main operational drawback of device
pairs, which is the frequent cleaning of the reference device. A lamp that is protected
from soiling by e.g. a collimator illuminates a device, a reference cell or a pyranometer,
at night. The output signal of the device is then compared to the signal that was
obtained from the same setup in the night after the last cleaning procedure. The
authors found that their method achieves an accuracy similar to the one of device
pairs.

2.2.4 Microscopy Soiling Measurements

(Figgis et al., 2016) first introduced a method to measure soiling deposition and
re-suspension rates. The authors used a portable microscope that is capable of
measuring the area coverage and the light transmission losses of the soiling. The
authors managed to successfully estimate the soiling mass per area. A comparable
setup was introduced by (Valerino et al., 2020). The images taken by the microscope
are evaluated in regard to the surface coverage. After the analysis of a calibration
sample and the assumption of a linear dependence between transmittance loss and
area coverage the evaluation of other samples was possible. It should be highlighted
that many methods calculate the transmittance in a intermediate step and then derive
the soiling loss. The linear calibration factor can vary significantly for different
methods and different soiling types (Smestad et al., 2020).
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2.3 Image-based PV Monitoring Techniques

The methods of measuring the soiling losses described in the previous section have
some limitations when applied to larger scale PV plants. The power of each module
is not measured individually. Such power measurements are typically only available
on string level. Here a string refers to a connection of various modules mainly in
series but potentially also in parallel. Additionally, it is not feasible to permanently
operate one clean module. Reference cell systems and OSM measure the soiling loss
indirectly and only cover small areas. Therefore, there is wide interest in measuring
soiling losses with camera systems. Deriving the soiling losses from images would
have the advantage to cover large areas in short times. Cleaning strategies could be
optimized further. Soiling might be distributed inhomogeneously within a PV plant.
A cleaning routine might start where the soiling has the biggest impact. Some areas
within a plant might be cleaned more frequently than others. While infrared (IR)
and electroluminescence (EL) imaging techniques are already commonly used for the
monitoring of PV plants, visible / RGB imaging techniques are less established yet.
While IR and EL imaging are mainly used to detect defective cells and modules, RGB
images are mainly suggested to be used for the detection of soiling. All three cases
will be discussed below.

2.3.1 RGB Imaging Techniques for Soiling Monitoring

(Qasem, Mnatsakanyan, and Banda, 2016) have developed two computer vision
based algorithms to evaluate drone images of PV modules and to quantify soiling
losses. One key aspect of the methods is the uniformity of the PV modules on the
images. Clean module look very similar at all positions while soiled modules might
look very different at different positions. The accuracy of their method is quite low
with 5% absolute deviation in the best cases. Another computer vision method has
been developed by (Li et al., 2017).

(Mehta et al., 2018) have developed a convolutional network that is capable of
detecting soiling on images of PV modules. Additionally, their method is localizing
the soiling and estimating the soiling loss. Correspondingly, the method is capable of
suggesting a cleaning priority and cleaning strategy. The soiling losses are divided
into eight ranges from 0% to 100%, each with a range size of 12.5%. For developing
the method, the authors have created and published a dataset consisting of more
than 45.000 images. The images are captured by a static camera and show the same
perspective of one module from one perspective. The authors have also published
their dataset. For every image, the irradiance and the timestamp are stated. The actual
soiling loss determined by comparison to a clean reference module is stated. The
method was tested on images from the internet of various sources. The classification
of the soiling loss into the different categories worked in 97% of the cases. The soiling
type classification works in 96% of the cases. The study is a milestone in the camera-
based soiling measurements as it is the first of its kind that uses images as an input
and can state the soiling loss as an output. The method has the potential to cover
larger-scale PV parks. Some limitations are present. As the model considers only
one module of one given module type from one perspective the application to other
modules from various perspectives is questionable. The soiling patterns used in the
study are mainly placed artificially onto the module. Only a few images show real
conditions. Deviations are expected when real outdoor conditions are investigated.
For the electrical soiling loss a discrete value could be stated instead of a range. The
above-mentioned limitations could be removed by enhancing the underlying training
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dataset though. Another limitation would be the interconnection of various modules
in series or parallel. As the presented method considers each module individually,
electrical mismatch cannot be considered. As only the output power and not the IV
curve is estimated by the method electrical mismatch could also not be corrected for
afterwards.

(Cavieres et al., 2022) have developed a method to diagnose whether a given
module is healthy or defective. Furthermore, the soiling type is determined and the
soiling loss is estimated in an octile range similar to the above-mentioned method by
Mehta. The images used were captured using a static camera and a fixed perspective.
The scene shows eight different modules with different amounts of soiling. This
dataset was published. Additionally, the dataset of Mehta was used. The method
achieved an accuracy of 73% in terms of predicting the range of the soiling loss.
Furthermore, the authors report that in 72% of the cases in which the octile range was
not predicted correctly, the actual soiling loss was in the neighboring range compared
to the prediction.

(Zhang et al., 2021) have developed another model for soiling detection and
quantification. Their method is partially based on the above-mentioned study by
Mehta. Zhang et al. are stating a concrete value for the soiling loss instead of a
range. This is done by using a quantile regression neural network (QRNN). The main
difference between the methods by Mehta and Zhang is the mathematical formulation
(Zhang et al., 2021). Mehta et al. describe the problem as a classification problem,
where solar power losses are categorized as independent classes. A power loss of
19.9% falls into the class 10%-20% while 20.1% falls into the 20%-30% class. The
classes are considered to be independent. According to the method of Zhang et al.
the classes are overlapping and continuous (Zhang et al., 2021).

Yang et al. have developed a featured-based regression model to estimate the
soiling loss. The authors created their dataset consisting of 479 raw images captured
by a static camera from a fixed perspective. Some of the features considered by the
method are the black-to-white ratio, different image intensity metrics, and different
contrast metrics. The connection between the image features and the soiling losses
has been studied by the authors in previous studies (Yang, Ji, and Guo, 2020a; Yang,
Ji, and Guo, 2020b; Yang, Ji, and Guo, 2021) A linear regression model is trained
using a subset of the above-mentioned dataset. The authors claim an uncertainty
of less than 10% relative deviation if the soiling loss is higher than 8% for the tests
on a test dataset (a part of the 479 images). Mainly, the limitations are similar to the
above-mentioned studies. There is only a module type and only one perspective.
Additionally, the study considers only the soiling type of dust. It is questionable if a
linear regression remains sufficient once the circumstances are generalized.

(Di Tommaso et al., 2022) have used the open-source software YOLO to detect PV
panels on RGB and IR images. Furthermore, they were able to detect various kinds
of soiling on both RGB and IR images such as dust, bird droppings, delamination,
and also hotspots. YOLO is a pre-trained neural network that specializes in detecting
objects on images. The default YOLO model has 1000 different categories that it can
detect. Via transfer learning the method can be adapted to any kind of object desired
by the user. Required for the transfer learning process are images that show the object
of interest and ground truth bounding boxes. Generally, the amount of ground truth
data required is expected to be lower when applying transfer learning instead of
developing a new method from scratch. It should be noted that (Di Tommaso et al.,
2022) use the term soiling to describe what is called dust in this thesis. The author of
the thesis uses soiling as a general term, including leaves, bird droppings and other
soiling types. (Di Tommaso et al., 2022) use anomaly as the general term. 98% of
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the PV modules were detected on both RGB and IR images, 88.3% of hotspots were
detected on IR images, and 70% of anomalies were detected on RGB images. One
advantage of their method is that they didn’t rely on artificial soiling. Instead, all data
was collected in 2 PV plants in Italy which are both on MW scale. Drone cameras
were used to capture the images. As the proposed method uses drones, it is very
scalable. Detection can probably be improved by increasing the training dataset of
the method. One drawback however is that the method cannot estimate the resulting
electrical power loss.

2.3.2 Electroluminescence Imaging Techniques for PV Monitoring

Now some studies are discussed that investigate electroluminescence imaging tech-
niques. In an EL measurement, current is fed into the PV device. Charge carriers will
radiatively recombine. Light is emitted according to the bandgap of the device. In
the case of crystalline silicon near-infrared light with a wavelength of approximately
1150 nm will be emitted. Defective cells will emit less light or none at all.

EL measurements are mainly performed to check whether a given PV device
has defects or not. A device can show none, one, or multiple defects. Also, there
are different defect types. (Breitenstein et al., 2011) report that there are mainly
micro-cracks, finger interruption, and cell breaks. However, there is no quantitative
value that is typically estimated in contrast to the power loss caused by soiling
which is a continuous metric. Theoretically, one could also estimate the power loss
caused by a defect. This will however be a comparably harder task. In most cases,
a defective module should be detected and replaced as soon as possible. Many
defects cause a significant decrease in electrical power output and are not reversible.
Pre-trained CNNSs like AlexNet (Krizhevsky, 2012), VGG (Simonyan and Zisserman,
2014), ResNet (He et al., 2016), and particularly YOLO (Redmon et al., 2016; Redmon
and Farhadi, 2017; Redmon and Farhadi, 2018) have been adapted in various studies
to detect defective PV devices using EL images (Karimi et al., 2020; Deitsch et al.,
2019; Chen, Karin, and Jain, 2022; Tang et al., 2020; Akram et al., 2019). Recently, (Cao
et al., 2024) have developed a YOLO instance that is capable of detecting hotspots
on electroluminescence images. For developing, validating, and testing the method,
the authors have created a dataset containing images of 4530 images of defective
PV devices. The authors report a mean average precision of 92.8% defect detection
accuracy.

The pre-trained networks can not only be used for detecting defects on EL images.
These networks can also be adapted to be used for detecting and distinguishing
various soiling types on RGB images. This will be discussed later in Chapter 5.
Furthermore, EL images will be used in Chapter 6 to validate the distinction between
soiling-based and defect-based hotspots.

2.3.3 Infrared Imaging Techniques for PV Monitoring

Infrared thermography measurement methods work very similarly to EL measure-
ment techniques. Strictly speaking, EL. measurements are IR measurements. Some-
times EL measurements are referred to as dark IR imaging. In this work, however,
IR measurements refer to measurements that are performed while the PV device
is under normal operation when they are illuminated. There is no current fed into
the device. Defective devices will in many cases heat up, e.g. due to shunts. The
increased temperature is detected as it leads to increased thermal radiation and a
shifted spectrum of thermal radiation. The emitted spectrum is broader than in the



14 Chapter 2. State of the Art

case of EL measurements. The spectrum depends on the temperature instead of the
PV device’s bandgap. IR monitoring methods are e.g. discussed in (Akram et al.,
2020; Gallardo-Saavedra et al., 2020; Kandeal et al., 2021). Also, here CNNs find wide
application.

Chapter 6 will discuss the electrothermal modeling of soiled PV modules. It will
be discussed which soiling patterns can cause hotspots. IR imaging will be used for
validation purposes.
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2.4 Electrical Modeling of PV Modules

The electrical modeling of PV modules is of great interest as it enables a prediction of
the electrical power in dependence on meteorological parameters like the GTI and the
ambient temperature. Also, the calculation of electrical mismatch is important for the
cases, in which a module is partially soiled or shaded. Electrical mismatch describes
the situation in which the weakest cell (e.g. the one with the heaviest soiling) limits
the performance of the entire module. The total loss might be significantly bigger
than the average loss over all cells. (Bishop, 1988) has presented a study that allows
this electrical modeling of arrays of PV devices. His model is capable of analyzing
serial and parallel interconnections of cells and modules. It has been implemented in
the python package pvlib (Holmgren et al., 2015; Holmgren, Hansen, and Mikofski,
2018). The Bishop model is based on the single-diode model.
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FIGURE 2.1: Equivalent circuit diagram of the single-diode model.

Figure 2.1 shows the equivalent circuit diagram of the single-diode model. Ac-
cording to the single-diode model, a PV cell consists of a current source, a diode, a
shunt resistance Ry, and a series resistance Rs. Iyt i the photo-current generated
by the current source depending on the illumination. I, is the dark current passing
through the diode. Ly is the current through the shunt resistance. V; is the voltage
across the diode junction. I, is the output current of the entire PV cell and V,; is
the output voltage of the entire PV cell.

(V+ IR
Lout = Iphoto — Isar - [exp (q ( nk%ut S)> - 1] — Lshunt (2.7)
T = 2 14 1Y " (2.8)
shunt — Rsh Aohmic Vbr .

Equation 2.7 implicitly defines the IV curve (Bishop, 1988). Is; is the saturation
current of the diode, g is the elementary charge, n is the diode ideality factor, and k
is the Boltzmann constant. The current over the shunt resistance can be calculated
by Equation 2.8 according to Bishop (Bishop, 1988). V,, is the breakdown voltage,
Aopmic 1S the fraction of ohmic current involved in avalanche breakdown, and m is
the breakdown exponent. The Bishop model is capable of calculating the IV curve
for an individual cell and is capable of calculating the IV curve of any connection of
various cells either in parallel or in series or both. In particular, electrical mismatch is
considered for the case that one cell is shaded, soiled, or defective.
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2.5 Thermal Modeling of PV Modules

The module temperature is an important parameter for monitoring a PV installation.
The temperature directly impacts the power output and additionally plays a role in
the aging process. Furthermore, local defects and spatially inhomogeneous soiling can
both cause hotspots (Vumbugwa et al., 2020). Hotspots, also small in size, drastically
reduce the power output and increase aging.

In this section, an overview is given of existing methods for modeling the PV
module temperature. The module temperature depends on the environmental meteo-
rological conditions. The module temperature is an important quantity as it influences
the performance of a given PV installation. An increase in temperature typically
reduces the efficiency of the modules. For crystalline silicon technologies, the relative
reduction in power is about —0.4% /K (Module data sheet 2024). Furthermore, an
increased temperature accelerates the aging-based degradation of a PV module.

2,51 Modeling of Clean, Intact Modules

One of the simplest thermal models is the Ross model (Ross, 1981). The Ross model is
defined in Equation 2.9 and determines the cell temperature T,. The model requires
the following input parameters: the ambient temperature T;, the global tilted irradi-
ance GTI, and the module’s NOCT (normal operating cell temperature) temperature
Tnoct- The NOCT temperature is module specific and is typically stated by the man-
ufacturer in the data sheet. It considers the following conditions: GTI = 800 W/m?,
wind speed = 1m/s, ambient temperature = 20°C, and air mass 1.5.

Tnocr — 20°C
800W /m?2

The Sandia Photovoltaic Array Performance Model (King, Kratochvil, and Boyson,
2004) in addition considers wind effects. In the first step, the model determines the
PV module’s backside temperature, and the surface temperature on the module’s
rear side, Tj,. In the second step, it calculates the cell temperature T.. The Sandia
model requires the GTI, two empirically determined coefficients a9 and a; based on
the module structure and the type of mounting, the wind speed v, and the ambient
temperature T,. Equation 2.10 shows how to determine the backplate temperature
T, and the cell temperature T, respectively. Note that AT describes the temperature
difference between T, and T. for a GTI of 1000 W/m?. a¢ has the unit K - m2/W and
a1 has the unit s/m.

T, =T, +GTI- (2.9)

T = GTIL-ag - exp(ay - vy) + T,

GTI (2.10)
1000W/m?

The Faiman model is a thermal model which uses empirical heat loss factors
(Faiman, 2008). Equation 2.11 describes how the cell temperature T; is determined
based on the ambient temperature T,, the GTI, the two heat loss factors 1y and u;,
and the wind speed vy,.

TC:Tm+

GTI
Te=Tg+ —— 2.11
‘ ot Ug + U1 - Uy ( )
The U.S. National Renewable Energy Laboratory developed the NOCT Cell Tem-
perature Model as part of the System Advisor Model (SAM) (Gilman, 2015). It is one

of the most sophisticated thermal models. Equation 2.12 illustrates how the thermal
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model predicts the cell temperature T.. Input variables are the ambient temperature
T,, the GTI, and the module efficiency 7,.s at reference conditions. In addition, the
effective transmittance-absorbance product a7 is required, which combines the trans-
mittance and absorptance effects of the photovoltaic cell with the incoming solar
radiation G. Both Txoct and v, are adjusted by the type of mounting and the height
above the ground leading to TnocT,uj and vy q45. To obtain these parameters, an
offset is added to TnocT and v, is multiplied by an attenuation factor (Gilman, 2015).

GTI Mref 9.5

800W /m2 ) (TNOCT,adj —20°C) - (1— )

T, =T, .
e=dat at’ 574350y s/m

(2.12)

These thermal models consider the ambient temperature and solar radiation
to determine cell temperatures. Three of them also include wind speed, which is
expected to have a major impact on the results (Lamaamar et al., 2021; Skoplaki and
Palyvos, 2009). Yet, the thermal models lack in replicating the whole PV module
under partial shading or partial soiling conditions. Even though single cells can be
simulated and their temperatures determined on the cell level, the effects of shaded
cells on their neighboring cells and the entire surrounding string are not considered.
However, this would be necessary for the intended purposes.

2.5.2 Modeling of Hotspots

Hotspots are locations within a PV module that show a temperature increase com-
pared to the remaining PV module’s surface. However, hotspots are typically not
defined by the temperature increase exceeding a certain threshold. Instead, a hot-spot
is typically defined as a cell being operated with a current higher than its short-circuit
current. This causes the affected cell to be operated in the reverse bias region and
thus leads to power dissipation and local heating (IEC, 2005; Winkel et al., 2024b).
Qian et al. have developed a model that is capable of simulating the hotspot
temperature of a partially shaded cell (Qian et al., 2018). They have investigated
different degrees of shading, changing the covered area of a given cell. A key finding
was that half-cell modules are less prone to create hotspots. If a hotspot occurs, the
temperature increase will be significantly lower compared with an analogous full-cell
module. The developed model was not validated against a measurement. The model
was not designed to be applied in outdoor conditions. Instead, the estimation of the
above-mentioned difference between half-cell and full-cell modules was the objective.
Solheim et al. have simulated a PV hotspot accurately using a finite elements method
(Solheim et al., 2013). They considered 800,000 nodes per module. This makes the
approach too intense in terms of calculation to be applied to a larger scale. A study by
Rossi et al. presented a thermal model that is not only capable of estimating the final
hotspot temperature but is also capable of modeling the process of the affected cell
heating up over time (Rossi et al., 2014). It is a dynamic model instead of a steady-
state model. Furthermore, the paper proposed a method to detect hotspots. The
hotspot detection relies on current sensors connected to the output of each module. It
is desirable to use images for hotspot detection as this would remove the need for the
above-mentioned current sensors. The current sensors would offer the advantage of
permanently providing data. A drone camera system would not have this advantage.
Surveillance cameras can continuously record data. The thermal model has not been
validated under outdoor operating conditions. Geisemeyer et al. developed a thermal
model that is capable of calculating the hotspot temperature of a partially shaded
cell (Geisemeyer et al., 2014). Their model not only gives a value of the temperature
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but also gives the temperature distribution within the affected cell. On the other
hand, their model is very complex and unsuitable to be applied to a larger number of
modules.

To the best of the author’s knowledge, there is no thermal model with low cal-
culation effort for hotspot temperature simulation of soiled or shaded cells that is
validated over a larger time interval under real operating conditions.

One of the goals of this work is to develop a simple enough electrothermal
model that is usable for real operating conditions and the specific application case
with cell-resolved soiling input data that provides the temperature output with cell
resolution. In particular, the electrothermal model is connected to the cell-resolved
soiling measurements performed in this work.
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2.6 Statistics

The following statistical metrics are used in the evaluation parts of this thesis. These
values occur during the validation of a model. x; is the measured value of a quantity
and £; is the model’s prediction of this value. %; is the average of all measured
values. N is the total number of all data points. The root mean square error RMSE,
see Equation 2.13, is a metric that describes deviation between the actual measured
values and the prediction. Similarly, the mean absolute error MAE also describes the
deviation between the prediction and the measurement (see Equation 2.14). Here,
however, all data points are weighted the same. In contrast, the RMSE weighs outliers
more. The mean bias error MBE is a metric that describes how the weather the model
on average overestimates or underestimates the actual value (see Equation 2.15).
The coefficient of determination R2, defined in Equation 2.16, describes the ratio of
how much of the variation of the actual data points can be explained by the model.
Generally, a R? close to one indicates a good model. A R? close to zero suggests that
the model cannot explain the variation in the measured data.

(2.13)
(2.14)

MBE — Ziz1 (% = %) (2.15)
R*?=1- W (2.16)
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Chapter 3

Setup and Methods

In this Chapter the setup is explained that is used for the experiments in the following
Chapters 4, 5, and 6. Additionally, some important methods are introduced.

3.1 PV Testbench

The experiments for the scientific research presented in this work have been per-
formed at a PV testbench located on CIEMAT’S Plataforma Solar de Almeria (PSA).

FIGURE 3.1: PV Testbench used for most experiments with this work.

There are twelve modules in total, six different types, two of each type.

There are six photogrammetry targets mounted on the setup. Multiple

additional targets are placed around the setup. The numbers refer to

an internal numbering. This numbering will be used in the following
Chapters to clearly identify each module.

Figure 3.1 shows the testbench. It consists of twelve modules. The modules are
listed in Table 3.2. There are six different module types and two modules of each type.
The numbers are assigned here to clearly identify the modules. These numbers will be
used in the following Chapters. As soiling experiments are one of the main purposes
of the setup it is designed symmetrically. One possible use case is the following.
One module of each type is located in the west and one in the east. The west side is
considered the soiled side and the east side is considered the clean side. As discussed
in section 2.2 one of the more accurate ways of measuring soiling of a given module
is the comparison to a clean module of the same type. The designs of the experiments
performed in this work is discussed later individually. The modules are oriented
in south direction with an inclination of 30°. The power of all twelve modules is
permanently recorded with a time resolution of one measurement every 10 seconds.
For two of the twelve modules the IV curves are also recorded. This is additional
information as the regular power measurement gives only the power at the maximum
power point (MPP) while the IV curve contains also the open-circuit voltage (Voc), the
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TABLE 3.1: Table listing the characteristic data of the modules installed
at the testbench. In the following, mainly the Axitec modules are used.
They are highlighted in Figure 3.1.

Manufacturer Nominal Power Specifications

JA Solar 410W bi-facial, half-cell, mono-Si, PERC
JA Solar 390W full-cell, mono-Si

Risen 375W bi-facial, half-cell, mono-Si

Jinko 395W bi-facial, half-cell, mono-Si
Axitec 335 W 72 full-cells, poly-Si

Axitec 280W 60 full-cells, poly-Si

short-circuit current (Isc) and the voltage and the current at the MPP (Vapp and Ippp).
There are also twelve Pt-1000 temperature sensors (uncertainty class B, DIN EN 60751)
available. For a measured temperature of 100°C this refers to an uncertainty of 0.8 K.
Typically, one temperature sensor would be mounted at each module. Furthermore,
the testbench has two reference cells in plane with the modules that measure the GTI.
All parameters which are measured at the testbench and used in this work are listed
in Table 3.2. The sampling rate of each sensor is one measurement every 10s. The
IV-curve is the only exception with one measurement per minute.

100 m in the north of the setup there is a meteorology station that measures all
important meteorological parameters. Measured is for instance the direct normal
irradiance (DNI) by a pyrheliometer. The near-infrared irradiance emitted by the
sky is measured with a pyrgeometer. Both the wind direction and the wind speed is
measured. The ambient temperature and the atmospheric pressure is measured. The
parameters are also listed in table 3.2.
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TABLE 3.2: Table listing the different quantities measured at the test-
bench and the meteorology station close to the testbench.

Quantity Symbol Unit Measurement Instrument

Electrical power p 4 SOL.Connect Center III meter
by Papendorf Software Engi-
neering GmbH, 10 channels

IV curve - - SOL.Connect meter mpp by
Papendorf Software Engineer-
ing GmbH, 2 channels

Short-circuit current Isc A SOL.Connect meter mpp

Open-circuit voltage Voc \% SOL.Connect meter mpp

MPP current Iypp A SOL.Connect meter mpp

MPP voltage Vmpp A% SOL.Connect meter mpp

Direct normal irradiance DNI W/m? Kipp & Zonen first class
pyrheliometer

Global tilted irradiance GTI W/m2  SOZ-03 reference cell by NES
Sensors GmbH

Module temperature T Kor°C Pt-1000 thermometer

Ambient temperature T, Kor°C (CS215-L thermometer

Wind speed Vw m/s NRG 200m wind wane by
NRG Systems

Wind direction wy °north NRG 200m wind wane by
NRG Systems

Atmospheric pressure Py Pa Barometer

Thermal sky radiation Dy W/m? CGR4 Pyrgeometer by Kipp

& Zonen, serial number
IRCGR4-120446
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3.2 Camera Systems

A DJI Mavic 2 Pro drone is used for the flights and to capture the images (DJI, 2024).
The images have 5472 by 3648 pixels. The pixel sensors are based on the CMOS
technology. The camera has an opening viewing angle of 77 degrees.

3.2.1 Gamma Correction

For the measurement method developed in Chapter 4, there must be a linear relation
between the radiance falling into a camera’s pixel sensor and the corresponding RGB
value of this pixel. For RGB images in the formats jpg or png, this is typically not the
case. Instead, for a typical camera, the relation between the radiance reaching the
sensor and the RGB value is non-linear. For small radiances, even a small increase
in brightness (radiance) can cause a larger increase in the RGB values. While for
higher radiances it takes a large increase in brightness (radiance) to cause even a
small increase in the RGB values.

To obtain images that show the desired linear behavior raw images in the dng
format can be captured. For reasons of practicality, the raw images can afterwards be
converted into linearized RGB images.

3.2.2 Flat Field Correction

The lens attached to the front of the camera results in darkening the edges of the
image, known as vignetting. Vignetting refers to a position-dependent loss of light in
the performance of an optical system, which is mainly due to the blockage of part of
the incident beam by the effective size of the aperture stop. This reduction of light
results in a gradual fading of an image at points near its periphery (Szeliski, 2022).

In order to calculate the vignetting effect images of an integrating sphere are
captured. This is a device that is white in its interior. The inside is illuminated
for these experiments. The expected image therefore shows the same brightness
at all positions. In reality, however, the image loses brightness at the edges and
particularly in the corners. The center of the image is the brightest. A correction
matrix is calculated that states for every pixel the relative decrease in brightness
compared to the brightest pixel in the center of the image. In the following, this
matrix is used to compensate for the brightness reduction of at the edges.

3.2.3 Photogrammetry

One important intermediate step in the analyses in this work is the calculation of
orthoimages. This refers to the following: The PV modules investigated here are all
rectangular. In the images, they are distorted due to the perspective. The idea is to
account for the perspective and segment a rectangular image of the PV module out of
the entire scene. This photogrammetry method has been described in detail in (Prahl,
2019). For the calculation of orthoimages the camera position, the module position,
and the lens properties are considered. When the lens properties are known optical
distortion can be considered.

The testbench is measured with a tachymeter to create an accurate reference
coordinate system with accurate locations of each module. The measurements include
the corners of the modules as well as the position of six reference photogrammetry
targets. The targets can for example be seen in Figure 3.1. The targets consist of a
white circle and an identification code around the white circle. The circles are used to
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later calculate the position of the camera relative to the target. The photogrammetry
software will fit an ellipse to the circle. This accounts for perspective distortion and
the viewing angle can be estimated. The code around the circle distinguishes the
targets.

During a measurement, additionally, photogrammetry targets are placed on
the ground around the setup (see Figure 3.1). These targets support an accurate
calculation of the camera position relative to the testbench.






27

Chapter 4

Drone-Based Optical Measurement
of Dust-Like Soiling

This Chapter aims to develop a new camera-based method for quantifying the electri-
cal losses caused by the deposition of mineral dust on the PV modules. In comparison
to the methods described in Chapter 2 the here presented method aims to concretely
state the soiling loss instead of giving a range. Furthermore, the method should use
images captured by drones. This enables the method to be scaled to the level of an
entire PV plant.

Note that parts of this Chapter have already been published by the author in
(Winkel et al., 2024a).

4.1 Optical Measurement Principle

PV modules are typically quite dark because they should absorb as much light as
possible in order to convert it into electricity. The deposition of particles on their
surface leads to light scattering which makes the modules appear brighter. The
method is based on measuring this brightness increase and converting it to the soiling
loss. The reflectance of a PV module as well as the scattering by the particles both
show a strong angular dependence and have to be considered.

The first step of the method requires the isolation of the scattering signal from
the signal that would be found for a clean module (clean background calibration).
Images of a clean module are taken from various perspectives for this purpose. The
second step of the method is the conversion of the brightness increase into the soiling
loss (scattering calibration). This is carried out using images of a soiled module with
known soiling loss from various perspectives. The soiling loss of this module is
obtained by comparing its power output to that of the cleaned module as described
in Chapter 2, and e.g. in (Gostein, Diister, and Thuman, 2015; Gostein et al., 2016).

Practically, the measurement is performed in two steps. First, a spiral flight is
performed over the two above-mentioned reference modules. Afterwards, other
modules can be evaluated. The soiling loss will be calculated for every image of every
cell individually. For each cell, a filtered average is calculated over all images.
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4.2 Optical Measurements Theory

Figure 4.1 illustrates the geometry of the measurement. For diffuse radiation, only
one beam is sketched exemplary, while diffuse radiation is coming from the entire
hemisphere. The reflected and scattered light is indicated with an ellipse because
light scattering takes place in various directions. It has to be noted that the sun vector,
the module normal vector, and the camera vector (drone vector) do not have to be in
plane in the three-dimensional case. This is a simplification for the illustration. All

vectors are pointing away from the module.

ya
/g\ Sky
~, e

drone
)
a
g
[~
3
&
o]
£
S
o L
= —
i /) Scattered direct light
sun | | scattered diffuse light

PV panel

ground

FIGURE 4.1: Sketch to describe the geometry of the measurement
method. Shown are the sun position, a direct sun ray towards the PV
module, the drone position, and the module position including its
i o
normal vector #,,,4,1.- Also, one exemplary ray contributing to the
diffuse radiation received that is received by the module is shown.
Additionally, the direct sun reflex is shown together with the reflex of
the diffuse radiation of one exemplary point in the sky.

421 Relation of the RGB Values to the Incoming Radiation

The camera mounted on the drone is used as a sensor. The captured images are
interpreted as irradiance maps. Each pixel corresponds to a certain irradiance caused
by radiation coming from a certain direction. The relation between the irradiance
and the pixel’s RGB values is described by the camera equation (Equation 4.1) (Kuhn

et al., 2017; Wilbert, 2009).

—— f— Amax
RGByy = I'rcB (Mcum : /A //\ texp : 6%: -Ex (@/ 3@/ tucqui) dA dA) (4-1)

Teams is the vector from the object seen in pixel (1, 1) to the entrance pupil of the
camera. m is the position of the object seen in pixel (m,n) in a global coordinate

system. RGB,;; is a vector containing the three-color channel values of a certain pixel
(m,n). I'rep is the camera-specific gamma correction that considers the potentially

non-linear response in terms of irradiance. M, is the camera-specific color-mixing




4.2. Optical Measurements Theory 29

matrix, A, is the pixel area of the pixel, Epn i its color-dependent spectral responsiv-
ity, and A, and A4y are the minimum and maximum wavelength of the spectrum
that are detected by the camera. The exposure time of an image is denoted t.y,. E, is
the wavelength-dependent irradiance that is caused by radiation reaching the camera
at the time of the image acquisition t,,; from the specific perspective and object.
Assuming that & and E, are constant over the pixel’s area, the integral over the
pixel area is solved. Additionally, it is assumed that the pixel area is independent
of the sensor coordinates (1, n) so that it is simplified to A. In the following, only
the red color channel is considered, and it is assumed that the matrix elements of
Meam on the main diagonal are dominant. Accordingly, Emp, Mam, and the vector

RGByy, simplify to €y, Meam, and Ry, Additionally, the gamma correction can be
neglected when considering only linearized images (see Section 3.2.1). Furthermore,
the variation in the camera’s sensitivity €,,, with the sensor coordinates (m, n) can
be removed from using a flat field correction. This will be considered before using
the images for any evaluations. Hence, €, simplifies to €. Accordingly, R, is not
explicitly dependent on (m, n) anymore, which is why the index will be neglected
from now on. The variation in R can be expressed using the arguments (rcﬂ, Jﬁ,
tacquis texp), if all camera settings except the exposure time are fixed.

/\)YIHX

— —
R<rcam1 Xobj tucqui/ texp) = Megm + A - texp / €-Ey (rcam/ Xobjr tacqui) dA (4'2)

This relation between the irradiance caused by the radiation received from a
certain object element and the red channel in the corresponding image element will
be used to connect the brightness increase to the incoming solar irradiance and the
soiling loss in the following.

4.2.2 Contributions to the Camera Signal According to the Interaction at
the Module’s Surface

First, an image of a soiled module is considered. The irradiance E5*’* which falls
from the soiled module into the camera can be split into different terms. The subscript
A indicates the wavelength dependence of the irradiance. The superscript “soiled”
indicates that the irradiance is coming from a soiled module. The first contribution
is Ef\”;lc’ﬁ 4ir Which denotes the direct irradiance scattered at the soiling layer of the
module that hits the camera. On the other hand, there is Ej\oiéefdl which describes the
reflected irradiance at the module’s surface that is hitting the pixel. It consists of both
direct and diffuse irradiance and it considers both specular and diffuse reflection.
There is also scattering of the diffuse irradiance towards the camera, but this term
is neglected because the scattered direct irradiance is much greater than the diffuse
irradiance for sunny conditions. It is ensured that this assumption is correct by
requiring that the modules are not shaded by clouds during the measurements and
by limiting the evaluation to small incidence angles of the direct irradiance (less than
40°).

soiled __ ysoiled soiled
EX™ = EX scatdir T Exrefi (4.3)

In the case of a clean module, indicated by the superscript “clean”, the Equation
simplifies as follows

ER*™" = Efrely (4.4)
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In the following it is shown how Eili‘;?l and Ej“ile’jfl are related to each other.

7

4.2.3 Comparing the Camera Equation for the Clean and Soiled Case

The measurement equation is derived by comparing the camera equation for the
clean and soiled cases of Equation 4.2.

/\mux .
clean /soiled ( 7—> ——
Rclean/soiled = Mcam - A- texp / €- E/\ (rcam/ xobj/ tucq,clean/soiled dA (45)

min

The point in time when the image of the soiled module is captured is denoted f 4.4 soited
and f4eq clean 18 the acquisition time of the image of the clean module. These equations
can be simplified further by dividing by the constants and the known exposure time
so that these parameters and the red pixel value are combined in one parameter,
respectively Roiled exp.norm OF Relean,exp.norm- This results in the following:

/\)Ylﬂ)(

_ clean/soiled [ — —
Rclean/soiled,exp.norm = //\ € EA (rcam/ Xobj» tacq,clean/soiled) dA (4.6)
min
With
Rclean/soiled
Rclean/soiled,exp.norm = (4-7)

Meam - A- texp

E§’™ can be written as shown in Equation 4.3 and simplified using a hereby defined
: — —
function e g1 (Feam, Tsun):

Amﬂx
— — Tean { —> —
Rclean,exp.norm (rcamr Tcam) = /A € EY <rcam/ Xobj, tucq,clean) ai

min
—
= Crefl (rcam/ rsun) ’ GTI(tacq,clean)

On the one hand, R, is proportional to the illumination of the module, described
by the global tilted irradiance GTI(tan,Clebm) in the plane of the module at the point
in time £ ¢4 cjean Of capturing the image of the clean module. On the other hand, it
is assumed that all dependencies of the geometry can be summarized in a function
Crefl (m, m ) It is assumed that all cells show the same optical behavior in the clean
state so that at the end, R/, does not depend on 3@; anymore. This assumption is
acceptable for many PV modules, but there are also PV modules for which it is not
applicable. If different cells, e.g., within a poly-crystalline PV module, look noticeably
different, the method will hence most likely lead to higher deviations. Furthermore,
it is assumed that the optical properties of the cells are described well by a rotational
symmetry for ¢,.; around the module normal vector W. Correspondingly, ¢, f;
can also be described by a set of three angles: the angle between the camera vector and
the normal vector a.,;, the angle between the sun vector @ and the normal vector
&sun, and the angle between the camera vector and the sun vector 0cq; sun. There are
also other combinations of angles that can describe the situation. For example, the
angle 0. reflexsun between the camera and the sun reflex vector W might be
suited better than the angle 6.4/, su» between the camera vector and the sun vector. For
the case of a soiled module, one can use Equation 4.3 and ¢,f (@, @ ) as explained
in the following to obtain Equation 4.9.

(4.8)
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—
Rsoiled Lexp.norm (rcamr Xobj tucq,soiled)

max
soiled g
= / € EA scat,dir (rcamr Xobjs tacq, sozled) dA

lYl”l

Amx soiled
+ / EA Jrefl (rc'ﬂmr Xobj» tqu,sozled) dA

= Rscat <7§n>r 3@/ tacq,soiled) + Crefl (m, @) “T(asun) - T(&eam) - GTI(tacq,soiled)

(4.9)
Ryoiteq consists of two parts. Ry, is defined as the contribution related to the first
integral and corresponds to the scattering at soiling particles. The second summand
in the equation is similar to Equation 4.5 for the clean module and can be interpreted
as the brightness without scattering by soiling particles — or in other words, basically,
roughly the brightness one would see if the module was clean. The factors T(asy;)
and T(acm) consider that the reflection signal is attenuated compared to the clean
case. T is the wavelength averaged transmittance of the soiling layer. It depends on
the angle under which the radiation falls on the soiling layer, so that two typically
different transmittances appear in the equation. The soiling layer is passed by the
reflected light first under the angle a5, and afterwards under the angle «,. Under
the above assumptions for the properties of the cells, c,, 1l (rcﬂ, m ) is the same for
the clean module and the soiled module, as long as the geometry defined by Team and
Fouy is the same. Equations 4.5 and 4.6 are then connected to each other — by rewriting
Equation 4.6 using R jean exp.norm from Equation 4.5. For this, we consider images of
a clean module element and a soiled module element taken from the same relative
position of the camera to the module element rcﬂ and 7@) . Then, Equation 4.5 is
solved for ¢y, (rcﬂ, Foun ) and substitute the result in Equation 4.6. In doing so, we
assume that the transmittances did not change between the two image acquisitions.
The resulting equation links the clean and the soiling images and is the basis for
deriving the soiling loss.

s
Rsoiled,exp.norm (rcam/ Xobjs tucq,soiled)

s s
= Rscat (rcamz Xobjr tacq,soiled) + Rclean,exp.norm (rcam/ Xobjs tacq,soiled) (4.10)

GTI ( tacq,soiled )
GTI ( tacq,clean )

The equation also considers that the clean and soiled images might have been
taken at different times with different illumination situations. This is included in
the equation by the ratio of the global tilted irradiances at the time of the respective
image acquisition (GTI(t,cg soited ), GTI(tacq,clean))- Equation 4.10 can be reformulated
to Equation 4.11 which more clearly describes the transmittance of the soiling layer.

: T(D‘sun) : T(acam) :

Rsoiled,exp.norm — Rscat GTI(tacq,clean)

T(D‘sun) : T(“cam) = (4.11)

Rclean,exp,norm GTI ( tacq,soiled )

In this equation, T has to be calculated. The transmission T(«) of the soiling layer
depends on the angle of incidence a. For normal incidence, the value of T reaches its
maximum 7. For an oblique incidence, the soiling layer effectively appears thicker
and the soiling losses will increase. In this work, it is assumed that the transmittance
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is described by the effective thickness of the soiling layer as in Equation 4.9. All
viewing angles and incident angles are limited to small values so this assumption is
expected to hold.

1—
1—1(a) = X0
cos (412)
1-— T0
T(a) =1—
cos &

There are more complex models in literature to describe the angular dependence
of the soiling on reflecting mirrors, e.g., (Heimsath and Nitz, 2019), but the described
approach is used for simplicity. With this assumption, the left side of Equation 4.11
only contains the cosines of the two known angles and the parameter that is to be
determined, the transmittance 7. The parameters on the right side of Equation
4.11 are partly known. Riled exp.norm 1S proportional to the red channel of the soiled
module’s image and Rejean,exp.norm t0 that of the clean reference module. Ryited exp.norm
and R jean exp.norm have to be compared for the same geometry described by the sun
position Toun and T the camera’s position relative to the PV cell. Of particular inter-
est is the orientation of m and m to each other. For instance, the most important
aspect is how close the camera viewing point is to the direct sun reflex as this might
cause over-exposure and direct reflexes. The GTIs are measured and known. R4 is
unknown for the moment and will be discussed below. It depends on the properties
of the soiling layer including its transmittance T and the illumination and viewing
geometry. It should be mentioned that Rsired,exp.norms Rscat, and Rejean exp.norm depend
on m, m, and GTI(taequi)- Rsoited,exp.norm @nd Rseat, additionally, depend on the
local soiling To(@). In the following, it is assumed that TQ(JE;) is an average over
the area of each cell. Equation 4.11 can be simplified further by normalizing to the
GTls.

Rsoiled,GTI,norm - Rscut/GTI(tucq,soiled)

T(‘Xsun) : T(D‘cam) = (413)

Rclean,GTI,norm
With

Rcleun/soiled,exp.norm

GTI ( taqc,cleun /soiled)

Rclean /soiled, GTI,norm — (4'14)

4.2.4 Analyze Different Scattering Pathways

To further understand Equation 4.13 and Rsc, the underlying scattering pathways
are analyzed. There are multiple scattering pathways possible even if only first-order
scattering is considered. The scattering pathways are sketched in Figure 4.2. It can be
shown by geometrical considerations that the scattering angles are the same for the
cases (I,I) and (II,1I) as well as for (I, II) and (11, I), respectively. The angles are
explained in Tables 4.1 and 4.2.

Considering the four pathways, we now formulate Equation 4.15 describing
Loiled . which is the wavelength-dependent radiance of the direct radiation that is

A,scat,dir’
scattered once by the soiling particles and reaches the sensor.



4.2. Optical Measurements Theory 33

TABLE 4.1: Explanation of the different scattering angles and path-

ways.

Nomenclature

Case Description

(1)

The incident irradiance is scattered in the direction of the camera
without interacting with the glass cover.

(1,11)

The incident irradiance is scattered in the direction of the mod-
ule. Then, it is refracted at the air-glass surface. Afterward, the
light is reflected at the cell’s surface. Then, it is refracted at the
glass—air surface. When leaving in the direction of the camera,
the irradiance is transmitted through the soiling layer.

(11,1)

The incident irradiance is transmitted through the soiling layer.
Then, it is refracted at the air-glass surface. At the cell’s surface,
the irradiance is reflected. Then, it is refracted at the glass—air
surface. When leaving the module, the irradiance is scattered in
the direction of the camera.

(11,11)

The incident irradiance is transmitted through the soiling layer.
Then, it is refracted at the air-glass surface. When reaching the
cell’s surface, the irradiance is reflected. Then, it is refracted at
the glass—air surface. When reaching the soiling layer for the
second time, the light is scattered in the direction of the cell.
Then, it is again refracted at the air-glass surface. Afterwards, the
light is reflected by the cell surface for a second time. Then, it is
refracted at the glass—air surface Finally, it is transmitted through
the soiling layer in the direction of the camera.

TABLE 4.2: Comparison of the different scattering angles.

Nomenclature

Case Description

— — — —
01,1 (Team, Tsun) = 011,11 (Feam, Tsun) ~ Angle between camera vector and sun vector;

the camera vector is pointing in the direction of
the module and the sun vector is pointing away
from the module.

0111 (@,rsﬁ) =0r 11 (m,@) Angle between the sun reflex vector and the

camera vector; both vectors are pointing away
from the module.




34 Chapter 4. Drone-Based Optical Measurement of Dust-Like Soiling

FIGURE 4.2: Sketch to describe the scattering pathways relevant to
the measurement method. The cover glass is shown as a gray surface
with the soiling layer on top (dotted brown line) and the PV cell below
(straight blue line). Shown is the direct radiation coming from the
sun as a straight yellow arrow. The black arrow with a straight line
shows in which direction the light leaves if it is scattered (camera
direction). The dashed yellow or black arrows show the direction
relative to which the scattering angle is defined. In the lower two
sub-figures, the yellow dashed arrow corresponds to the direct sun
reflex.

iled — —
Li\%ceat,dir (rcam, rsun)
= Lf\o,gg‘d (rsun> W

: [(1 — T(&sun)) * Pocat (01,1, A) + (1 — T(&cam)) - T(&sun) (4.15)
Pspec * Pocar (01,11, A) + (1 — T(&sun))  T(cam) - Pspec

“Pscat (011,1, A) + (1 — T(@cam)) - T(&sun) - (“caM)(PSPeC)Z

* Pocat (011,11, )\)}

Lj“;llz‘;d is the wavelength-dependent direct radiance falling on the soiled module. w

is the single scattering albedo, i.e., the ratio of the particles’ scattering coefficient
to their extinction coefficient. w describes that only a fraction of the radiation that
is not transmitted is scattered. The fraction of the radiation that is not transmitted
is described by the terms (1 — 7) which appear for all four summands. Py is the
scattering phase function, describing the probability of a given scattering angle. pspec
is the reflectance of the cell surface. w, 7, and psp.c are considered to be spectrally
weighted averages over the wavelength.

When the drone is flying above the modules, the angle 6;; is typically corre-
sponding to backward or sideward scattering while 6; 11 is corresponding to forward
scattering. Scattering is strongly direction-dependent and after averaging over wave-
lengths and particle sizes, forward scattering is dominant over other scatter directions.
This condition is ensured by selecting images with a specific geometrical configura-
tion. For this reason, all terms containing Pscq (611, A) or Pscar (617,11, A) are neglected
and the equality of 6; ;; and 6;; 1 is considered to lead to Equation 4.16.
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iled — —
Lf\(?;ceat,dir (chm, rsun)
iled [ —
= LsAo,szr (rsuﬂ) W Pspec : Pscat(QI,H; /\) (4.16)

(1= T(@eam)) - Ttsun) + (1= T(0tsun)) - T (tcan)|

Equation 4.16 is also valid for irradiances instead of radiances when introducing an
additional proportionality factor c. Equation 4.17 is obtained.

iled — —
Lgxo,;ceat,dir (rCﬂml rS””)

=c¢-DNI, -w - Pspec * Pscat(el,llr )\) (4.17)
[(1 — T(&cam)) - T(&sun) + (1 — T(&sun)) - T("‘cam)}

The wavelength-dependent irradiance of the scattered direct radiation that hits the

pixel sensor is denoted Ej";lcfldt 4ir and the wavelength-dependent direct normal irradi-

ance that hits the module is denoted DNI,. Coming back to the calculation of R,
one can write the following;:

)\max .
led —
Rscat = / €- Ei?sl;cszt,dir (rcam/ 7’sun) dA

min

AW’HX
= /)\ €-C- W Pspec * DNI) (asun) - Pscat (01,11, 1) (4.18)

[ (1= T(@cam)) - Tsun) + (1= T(atsun)) - T(atcans) | dA

¢, w, and pspec can be combined to a new constant c.

Rscat =

/\WlﬂX
= //\ e DNIA(“SW!) : Pscat<91,lb /\)

min

[(1 - T(lxcam)) : T(D‘sun) + (1 — T(lxsun)) . T(D‘cam)} ar (4.19)
= ¢+ [(1 = Tteam)) - (@) + (1= Ttoun)) - T(atcan)]

/\max
. /A € - DNI) (&sun) - Pscat (01,11, 1)

In the following step, it is assumed that the remaining integral is proportional to

the DNI multiplied by an integral just over € and Pss¢. The proportionality factor ¢/
therefore changes to ¢” .

Rscat =" - [(1 — T(&cam)) * T(@sun) + (1 — T(&sun)) - T(“cam)} - DNI
(4.20)

')\max
: / € - Pscat(el,H/ )\)
)\min

In a final step, ¢’ and the integral are combined to define the function csc, (m, @))
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Rscat = [(1 - T(D‘cam)) 'T(“sun) + (1 - T(D‘sun)) 'T(D‘cum)} - DNI
(4.21)

* Cscat (rsun/ rcam)

The empirical scattering function csc,¢ (@, m> describes the probability of different
scattering directions. Equations 4.13 and 4.21 can be combined to isolate the empirical

. . — —
scattering function cseut <r5un, rcam) .

— —
Cscat (rsun/ rcum)

Rsoiled,GTI,norm - Rclean,GTI,norm : T("Ccam) : T(“sun) (4.22)

DNI tac soile
[(1 - T(“cam)) : T(‘Xsun) + (1 - T(“sun)) : T(“cam)] : Ww

Equation 4.22 can also be solved for 19, the value of the soiling transmission for
« = 0° when using Equation 4.12. All results for the soiling loss later on refer to
normal incidence (« = 0°).

—b1—|—1/b%—4-b0-b2

2By

T():l—

DNI(tac suiled)
R — 2 Cocat (Temms Team) + oy 2ctsolled)
b clean,GTI,norm scat( suns cam) GTL(Facq soited)
0—

cos(&cam) - €OS(Xsun)

_ Cos(fxcum) +COS(UCsun) ) <r—> 1’_>> . DNI(tacq,soiled) _R
1 COS((XC,Zm) ] COS(szun) scat \ T'sun,'cam GTI(tacq,soiled) clean,GTLnorm
b2 = Rcleun,GTI,norm - Rsoiled,GTI,norm
(4.23)

With this set of equations, it is possible to determine the soiling ratio for a given
image as described in the next section. First, images of the clean reference module
will be used to calculate the expected background signal corresponding to a clean PV
module for any geometry (see section 4.3.1). Rijeqn GTInorm can then be determined
for any camera position. Afterwards, the images of the soiled reference module
are analyzed, and using the measured 1y for this reference module, csqr can be
determined in dependence of the geometry (see section 4.3.2). Finally, the soiling loss
can be measured for a third module (see section 4.3.3).
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4.3 Calibration Measurements

Before the method is applied to analyze the soiling losses of a PV module with
unknown soiling loss, two calibration measurements are performed with a clean and
a soiled module with known soiling loss.

4.3.1 Determination of Expected Background Signal Corresponding to a
Clean PV Module

The goal is to determine the expected background signal corresponding to a clean
PV module R an GTInorm in dependence on the geometry defined by m and @ .
Consequently, before the measurement flight, one module is cleaned. Images of this
module are captured from various perspectives, which can be achieved, e.g., using a
spiral flight route. Every cell of the clean module is examined individually. For each
image and each cell, the geometry and the brightness are determined. Teamn Toun are
reduced to the angle between the camera vector and the sun reflex vector 0. sunrefi
(the scattering angle) and the angle between the camera vector and the module normal
vector tcqy, to describe the geometry. The idea is to model the expected brightness for
a clean module as a function of these two angles. Afterwards, the clean brightness
can be calculated and subtracted as a background signal for the images of other PV
modules that are to be evaluated. The method requires many images from different
perspectives. For example, assuming 100 reference images and one clean reference
module with 60 cells results in 6000 data points consisting of the brightness and the
two angles mentioned above.

After filtering the data points as described in the previous section, a polynomial fit
of second order is performed to describe Rjeqn,GT11n0rm @s @ function of 8cap sunre s and
&cqm- Using this fit, the expected brightness of an imaginary clean module under any
geometry can be calculated. The influence of this fit on the calibration is discussed
later in section 4.6 and visualized in 4.6. Note that the same 6.4, sunref1 can be obtained
from various combinations of rcﬂ and @ This means in particular that even when
the sun position has changed over time, one can still compare images of the clean
modules with an early timestamp with images of the soiled module with a later
timestamp.

4.3.2 Determination of the Scattering Behavior

The next intermediate goal is to determine c,¢; in dependence on the geometry de-
fined by Tea and 7o. Therefore, the scattering calibration is performed after the clean
calibration. It is required for the evaluation of other modules. One soiled module with
known soiling loss is considered. It should be homogeneously soiled, and the soiling
losses have to be determined using electrical measurements as described above. As in
the case of the background signal, many images are captured from various perspec-
tives. In the case that the clean and soiled reference modules are located directly next
to each other, one flight is sufficient to perform both calibrations. The geometry is
used to evaluate the previously determined background calibration function to obtain
the clean background signal for each cell and each image. By comparing the actual
RGB value of the soiled cells and the clean background values, the brightness increase
is determined. Considering the geometry, the electrical soiling loss, the irradiances
at the image acquisition times, and the brightness increases enables the calculation
of the scattering function cs.,+ according to Equation 4.22 from the previous section.
First, discrete values are calculated for each cell and image. Afterwards, the scattering



38 Chapter 4. Drone-Based Optical Measurement of Dust-Like Soiling

function is described in dependence on 0.4 sunref1 and Ocam sun, the angle between the
camera vector and the sun vector using a polynomial fit of the second order. The
scattering calibration and its approximations are discussed in more detail in Chapter
4.6.

4.3.3 Calculation of Soiling Loss

After the calibration flight and its evaluation R jean,Gt1norm (Ocam,sunrefl, ®cam) and
Cscat (Ocam,sunre 1y Ocam,sun) are known. Now, a flight over the modules for which the
soiling loss should be measured can be performed. Equation 4.23 is then used to-
gether with the background signal R eqn GTLnorm and cseat to determine the soiling
loss of each cell of the PV modules as seen in each image. One soiling loss value is
obtained for every cell and each image. Values for a cell that are deviating by more
than two standard deviations from the median for this cell are excluded to reduce the
impact of noise and outliers. Afterwards, the arithmetic average is again calculated.
Finally, one obtains the soiling loss for each cell as an average of the soiling losses
from each image for this cell that remain after the filtering. The soiling loss on a mod-
ule level is then determined as the average of the cell soiling losses. This approach
neglects electrical mismatch. However, it has been confirmed by the electrical model
developed in Chapter 6 that the soiling losses discussed here are sufficiently small
and sufficiently homogeneous so that electrical mismatch can indeed be neglected.
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4.4 Measurement Procedure and Data Processing

44.1 Measurement Procedure

First, the reference measurement is performed. A spiral flight over the clean and the
soiled reference module is carried out. Both modules are located directly next to each
other so that one flight is sufficient to cover both modules. A spiral flight has the
advantage that multiple different perspectives are included.

Afterwards, the measurement flight is performed. For the first and the second
measurement campaign, this is also a spiral flight. For the third campaign, the flight
pattern was a straight flight in the east-west direction. Each campaign is discussed
individually below.

According to the spiral route, the drone continues to go further to the outside
step by step. Simultaneously, the drone starts at its maximum height and decreases
the height the further it goes to the outside of the spiral. The electrical power of
the four modules, the GTI, and the DNI are recorded permanently. Additionally,
for modules 2 and 3, the IV curve is traced. These data are recorded every 10s (see
Chapter 3). These values are recorded on the measurement day itself and also on
a sunny reference day on which all devices are clean. The comparison to this day
allows the determination of the reference soiling losses. The drone captures both raw
images and RGB images. Only the raw images are used for the evaluation. Images
are captured every 3 to 5s. The images contain metadata such as exposure time,
aperture, and ISO. For the flight routes used, one pixel in an image corresponds to
approximately 6 mm in the module plane in reality.

4.4.2 Data Processing

The camera described in Chapter 3 is used. Also, the vignetting correction, the gamma
correction, and the used photogrammetry methods are described there.

The orthoimages of each module are cut into individual cells. This is performed
by applying a mask that aligns with the modules” edges. The position of each module
is given in a reference coordinate system which allows the distinction of all modules.
For each orthoimage, the sun position is calculated from the timestamp. The camera
position relative to the cell is calculated. This information is sufficient to describe the
geometry. The brightness of each cell of each orthoimage is extracted and normalized
to the GTI at a certain timestamp.

Afterwards, the calibrations and the evaluation are performed in the following
order. First, the clean reference module is analyzed (see section 4.3.1) followed by the
soiled reference module (see section 4.3.2). Afterwards, it is possible to analyze all
other modules. For every image of a given cell, a soiling loss is calculated. The final
soiling value of a cell is the filtered average over all images to exclude outliers (see
section 4.3.3).

To calculate the electrical reference loss SL,.f, two methods from Section 2.2.1 are
used. The calculation is discussed in detail in Appendix A.1, A.2, and A.3.

Note that the electrically measured reference soiling loss is an input for the
presented optical method. Therefore, the accuracy of the optical method is limited
by the accuracy of the electrical reference measurement. This is also true for other
method from the literature, e.g. for the study presented by (Mehta et al., 2018) and
by (Yang, Ji, and Guo, 2021) and will be true for any optical method that requires a
calibration with electrical reference measurements.
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4.5 Results and Discussion

All flights performed on the three days are evaluated. Below, each flight is discussed
individually.

4.5.1 First Campaign

Figure 4.3 shows the setup during the first measurement campaign. Module 1 (lower
right of the four central modules) is used as the clean reference module. Module 2
(upper right of the four central modules) is used as the soiled reference module.

FIGURE 4.3: This figure show the setup during the first campaign.

Figure 4.4 shows the results of the cell-resolved soiling loss calculation. The
optically measured and the electrical reference value of the soiling loss is stated right
next to each module in Figure 4.4. The optical method overestimates the soiling loss
of the clean reference module by 0.3% (absolute) and overestimates the soiling loss
of the soiled reference module by 0.6%. This is explained by the fact that different
images are used for the calibration and the evaluation. For modules 3 and 4 the
optical method once overestimates the soiling loss by 0.4% and once underestimates
the soiling loss by 1.0%. The optical model manages to distinguish the soiled modules
from the clean module and also manages to identify more heavily soiled cells with a
given module. For example the lower row of cells in the upper two module (module
2 and module 4) are identified. The deviations obtained on module level are 1%
absolute or lower. This is roughly the uncertainty with which the electrical reference
measurement can determine the soiling loss.

Figure 4.5 shows the optically measured soiling loss against the electrically mea-
sured reference soiling loss for every image. In contrast to Figure 4.4, the optically
measured soiling loss SLcam in Figure 4.5 is module resolved and not cell resolved
and is not yet averaged over all images. As can be seen, the calculated module soiling
loss is similar for every image and there are no major outliers.

According to the results, the soiling distribution of each module seems to be
roughly homogeneous. However, there are a few cells that have a different soiling
loss than their neighboring cells. In particular, the lower right cell of module 2 and
the upper right cell of module 3 have a higher soiling loss. This observation in the
results corresponds to the expectation from the photo shown in Figure 4.3. One can
clearly see that the upper right cell of the upper left module is brighter and more
soiled than its neighbors. The same applies for the lower right cell of the upper right
module.
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FIGURE 4.4: Results of the first flight performed on the 8 April 2022.

The color marks the calculated soiling loss. The lower right module

(1) was used as the clean calibration module while the upper right

(2) was used as soiled reference module. The upper numbers label

the modules. The number in the middle states the optically measured

soiling loss using the drone images while the lower number is the
electrical reference loss.

0

The calculated soiling loss of the clean module is 0.3% and the soiling loss of
the soiled reference module is 4.8%. These values differ slightly from the electrical
reference values that were used to calibrate the method (0% and 4.2%, respectively).
These differences are explained by the fact that the results shown here were created by
evaluating different images from different perspectives compared to the calibration.
The calculated soiling loss for the upper left module is 4.1% which is close to the
electrically measured reference value of 3.7%. The measured value of the lower left
module is 3.1% and differs more from the electrical reference value of 4.1%. This
might be explained by the fact that the upper modules were soiled with a different
soiling type compared to the lower left module.
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FIGURE 4.5: Optically calculated soiling loss for every image of every

module against the electrically measured reference soiling loss. The

standard deviations for the soiling loss on module level for modules

1 to 4 are 0.14%, 0.22%, 0.20%, and 0.18%, respectively. The results
belong to the first flight performed on 8 April 2022.
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4.5.2 Second Campaign

During the second campaign the lower right as well as the upper right module were
both clean. Figure 4.6 shows the setup during the second campaign. Figure 4.7
summarizes the results of the first measurement flight of the second campaign. The
soiling of the first validation module is determined with a deviation of 0.5% absolute.
The soiling of the second validation module is determined with a deviation of 0.9%
absolute.

FIGURE 4.6: This figure show the setup during the second campaign.
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FIGURE 4.7: Result plot of the first measurement flight of the second

campaign. The lower right module was chosen to be the clean refer-

ence module while the lower left module was chosen to be the soiled

reference module. The upper numbers label the modules. The number

in the middle states the optically measured soiling loss while the lower
number is the electrical reference loss.
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4.5.3 Third Campaign

For the third campaign, the modules were artificially soiled with gypsum. The
gypsum was mixed with water and the mixture was then deposited on the module
with a towel. The operating temperature of the module led to a quick drying of the
mixture. The artificial soiling was as homogeneously distributed as possible and
was considered to be sufficiently homogeneous by simple visual inspection. After
obtaining the results of this measurement, the above-mentioned electrical model
confirmed that the soiling was homogeneous enough to neglect additional mismatch
losses. Figure 4.8 shows the artificially soiled setup during the measurement.

FIGURE 4.8: This figure show shows the setup during the third cam-
paign.

Figure 4.9 summarizes the results of the measurement flight of the third campaign.
The soiling loss of the first validation module is determined with a deviation of 2.3%
absolute. The soiling of the second validation module is determined with a deviation
of 1.7% absolute.

The larger deviations in this case might be explained by the fact that in this
experiment, artificial soiling was used as explained in the discussion of Figure 4.10.
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FIGURE 4.9: Result plot of the first measurement flight of the third
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46 Chapter 4. Drone-Based Optical Measurement of Dust-Like Soiling

4.54 Summary

Figure 4.10 summarizes the results of all measurements performed. It shows the
optically measure soiling losses against the electrically measured reference soiling
losses. The values are presented on a module level. The RMSE of the measured
soiling loss over all measurements is 0.93% absolute and the MBE is 0.33% absolute.

The red dot refers to the above-discussed measurement for which the test and
soiled reference modules had a different soiling type. This different soiling type
explains the higher deviations. The blue triangle and the dark red rhombus refer to
the third measurement campaign where the modules were soiled artificially with
gypsum. The artificial soiling is not as homogeneous as the natural soiling. Hence,
the approximation for the calibration that all cells of the soiled reference module have
the same soiling level is less adequate and higher deviations can be explained.

One can see that in some cases the method overestimates and in other cases it
underestimates the soiling losses. According to (Dunn et al., 2013; Peterson, Chard,
and Robinson, 2022), the uncertainty of the electrical measurements of the soiling
loss is about 1% absolute. This is the same magnitude as the calculated RMSE. There
are not yet enough data to state whether the bias error of the method is systematic or
not. The method is qualitatively able to distinguish between stronger and less soiled
modules and also stronger and less soiled cells. Additionally, it can give a reasonable
estimation of the absolute soiling value.
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several modules and the three measurement campaigns performed.
For some campaigns and modules, several identical markers are seen
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There is no obvious benchmark model that could be compared with the proposed
model because of its novelties. The most similar model is probably the Al model by
Yang (Yang et al., 2024) that calculates the soiling losses from just seeing an image.
The authors state that the relative prediction error is below 10% if the actual soiling
loss exceeds 8% absolute. According to Figure 4 of their paper, this is the case in a
minority of the cases. Unfortunately, the average soiling loss, the RMSE, the MBE,
and the MAE are not stated. Figure 4 of the Yang paper is similar to Figure 4.10 here.
Yang has analyzed a wider range of soiling losses. In the range up to 8% absolute
soiling loss, the deviation between the measurement and the prediction seem to be
comparable to the proposed method. When making this comparison, one has to be
extremely careful and has to keep in mind that both models were tested on different
datasets. Yang et al. used the same camera and the same perspectives for all images.
Additionally, the same modules were used for training and evaluation. All in all,
both methods should be tested under various conditions to allow a fair comparison.
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4.6 Visualization of the Calibration Functions

In this section, the calibration of the clean background signal and the calibration of
the scattering signal are described. As an example, the first flight of the first campaign
is chosen.

4.6.1 Clean Background Calibration

After performing the calibration flight, one obtains the brightness of the cells of the
clean module. The brightnesses are averaged over the cells” areas and are then nor-
malized to the exposure time and the GTI present at the time of capturing the image.
These normalized brightnesses are then available for different cells, camera positions,
and different sun positions. Figure 4.11 visualizes the second-order polynomial fit
that is performed to describe the normalized brightness in dependence on 6.4, sunrefi
and ®&cg.
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FIGURE 4.11: Clean background calibration for the first measurement
flight of the first campaign. The x-axis shows the angle between camera
and sun reflex vector 6.4 sunreri While the y-axis shows the angle
between camera vector and panel normal vector «¢4y,. The calibration
function is a polynomial of second order of the above-mentioned
angles. The calibration function gives basically the expected brightness
normalized to GTI and exposure time, which explains the unit.

Figure 4.12 shows the relative deviations between the normalized brightnesses
that are used to create the clean background calibration and the brightnesses that
would be expected according to the polynomial function (the fit values are subtracted
from the measured values and divided by the fit values). For every image, one obtains
72 data points since the clean module has 72 cells. These 72 cells have very similar
angles as they are spatially very close to each other. The deviations between different
cells from the same image are roughly on the same level as deviations for the same
cell but from the next image. The fact that some cells within a given image show
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FIGURE 4.12: Relative difference between the normalized brightnesses
that are used to create the clean background calibration and the ex-
pected values according to the fit.

different brightnesses than others can be attributed to the fact that some cells are
slightly brighter or darker than others in reality. Also, the masking of cell in-between
spaces cannot be performed perfectly so that this space might influence some cells
more than others. There is no sharp edge between the cell and the in-between space
in the images. Rather, there is a continuous drop in brightness when one moves from
the in-between space towards the cell.

The relative deviation of 30% observed for some points in Figure 4.12 might seem
alarming at first. By analyzing Equation 4.23, one can see that it is less dramatic
than it seems at first glance. The coefficient b, depends on the clean calibration value
Retean,GTLnorm and on Rpited GT1norm- HOWever, as an example for a soiling loss of 5%,
Retean GTLnorm is typically three times bigger than R jeqn GT1n0rm SO that the relative

deviation for b, will be less than 30%. In the equations for by and by, the factor
DNI(tucq,soiled)
GTI(tacq,soiled)
typically 10 times bigger than R eq GT1norm @s one can extract from Figures 4.11 and
4.13, so that the relative deviation for by and b; will be significantly below 30%. Finally,

one obtains also that the deviation for 1 will be less than 30%.

is relatively close to 1. Both equations are dominated by csq,+ which is

4.6.2 Scattering Calibration

After performing the calibration flight, one obtains images of the cells of the soiled
reference module from various perspectives. As these perspectives, the soiling loss of
this module, and the clean background calibration are already known, one can use
Equation 4.22 to calculate the discrete values of the scattering calibration function
cscat for each cell and image. It is assumed as an approximation that the module is
homogeneously soiled and that the reference soiling loss on the module level can be
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used for every cell. Hence, one obtains a data point for each cell and image. Then, a
polynomial fit of the second order is created to describe the scattering behavior as a
function of 0cap sunrefi and Ocam,sun- Figure 4.13 visualizes this polynomial.
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FIGURE 4.13: Scattering calibration of the first flight of the first cam-

paign. The x-axis shows the angle between camera vector and sun

reflex vector 04 sunref1 While the y-axis shows the angle between cam-
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Figure 4.14 shows the relative differences between the discrete scattering values
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that were used to create the fit and the values that would be expected according to
the fit itself. One can see that the fit in general describes the data quite well. On the
other hand, it is observed that on the edge of each of the line shapes’ point groups in
the figure, there are some points with a higher positive deviation. This indicates that
for some of the outer cells in the module, the deviations are higher than for the others.
This is explained by the module not being exactly homogeneously soiled as assumed
when using the same 19 for all cells for the calculation of cs,. Figures 4.3 and 4.4
confirm that the lower row of cells in module 2 is slightly more soiled than the other
cells in the module. One must be aware of this limitation of the method which helps
to understand the found deviations. However, the relatively low deviations shown
in Figure 4.10 indicate that the homogeneity of the soiling of the soiled reference
modules was low enough for the reported measurement campaigns to obtain useful
results. Also, the electrical data are only available on the module level and using this
soiling loss for each cell is only an estimate of the reference soiling loss on the cell
level. In case that the soiling of the soiled reference module is too inhomogeneous, an
iterative determination of c¢,;; could be used.
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4.7 Conclusions

This Chapter has presented a new method to optically measure the soiling loss of
PV modules soiled with dust with high spatial resolution. The method is capable of
properly estimating the soiling loss, with an RMSE of 0.93% absolute in the validations.
Individual cells with a higher soiling can be identified. Also, on the module level, a
qualitative distinction between more and less soiled modules is possible.

The method’s calibration requires two reference measurements of a clean and a
soiled module. The calibration is performed before every individual measurement.
The brightnesses of the clean module are extracted from various perspectives and
this is also performed for the soiled reference module for which the soiling losses are
also determined electrically. The soiled module is typically brighter as there is more
light scattering at the module’s surface. Conclusions about the scattering behavior of
the dust on top of the module are drawn from the images. After understanding this
behavior, it is possible to evaluate other modules.

As the method is based on analyzing drone images, it could be applied to a
larger scale and could potentially cover entire PV plants. Currently, the method
calculates the soiling loss on a cell level, which allows the consideration of mismatch
effects within the modules. When modules are connected in a series in bigger parks,
there are additional mismatch losses from module to module. These losses can
also be considered when knowing the soiling loss with a spatially high resolution. A
combination of this method with thermography measurements enables the distinction
between soiling-based and defect-based hotspots.

Near-future plans consist of testing the method on a larger scale. Chapter 5
presents another method that was developed to also detect other kinds of soiling
beyond dust. These are inhomogeneous soiling types like bird droppings and leaves,
and potentially also snow. The two methods are foreseen to be combined in the near
future. Simplifying the method’s calibration is also a goal. Additionally, it is planned
to further investigate the properties of the calibration function. For example, it might
be possible to create a calibration that can be performed once and does not have to be
repeated for every measurement campaign. This could enhance the practicability of
the method as there would no longer be the need to measure the individual power of
one homogeneously soiled module.
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Chapter 5

Optical Measurement of Spatially
Inhomogeneous Soiling

The previously described and developed measurement method for the soiling type
dust follows an analytical approach. The scattered light that falls into the camera is
quantified and the soiling-based electrical loss is derived. This approach is possible
because dust usually consists of small particles which lead to Mie scattering. This
measurement method is not generally applicable for measuring other types of soiling.
This Chapter deals with the development of a measurement method for inhomo-
geneous soiling. This refers to all types of soiling that can be interpreted as larger
objects on the module surface. For example, there may be leaves or bird droppings
on the module. A plausible approach to solving this general task is to first detect the
soiling and segment it afterward.

In Chapter 2 some studies have already been presented that investigated the
soiling loss estimation from images (Mehta et al., 2018), (Cavieres et al., 2022), (Zhang
et al., 2021), and (Yang et al., 2024). The authors of these studies also used classical
computer vision methods as an intermediate step in their analyses. These studies
additionally presented ways of distinguishing different soiling types.

Two possible enhancements of the literature methods should be addressed here.
When the soiling distribution is known, it is possible to determine the electrical
mismatch analytically. This is done by considering the module as a serial connec-
tion of the individual cells with individual parameters (see Chapter 6). The studies
mentioned above thus solve a problem with Al, which can also be solved analyti-
cally. This analytical approach will be introduced here to potentially achieve greater
accuracy and reduce computational efforts. A second limitation of (Mehta et al.,
2018), (Cavieres et al., 2022), (Zhang et al., 2021), and (Yang et al., 2024) is that the
training data set is limited. It lacks generality, e.g. in terms of different module types,
viewing perspectives, and soiling types. By applying transfer learning to already
existing detection and segmentation methods it is intended to achieve better general
applicability with a relatively small transfer training data set.
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5.1 Methodology

Figure 5.1 illustrates the workflow of the method. The images of the soiled PV
modules are transferred into orthoimages as described in Chapters 3 and 4. In the
second step, the soiling is detected on the orthoimages. In the next step the soiling is
detected with a method based on the open-source software YOLO (You Only Look
Once) (Redmon et al., 2016; Redmon and Farhadi, 2017; Redmon and Farhadi, 2018;
Li et al., 2022; Wang, Bochkovskiy, and Liao, 2023; Bochkovskiy, Wang, and Liao,
2020). In the following step, the detected soiling is then segmented by a method
based on the open source software SAM (Segment Anything Model) (Kirillov et al.,
2023). Both methods use transfer learning and are described in more detail in the
next section 5.1.1. YOLO and SAM have already been extensively trained on large
data sets. By applying transfer learning, these models should also be applied for the
detection of soiling on PV modules.

Afterwards, the soiling is classified into different categories. The next step is
to assign a transmittance to every soiling type and soiling spot. This allows the
calculation of a cell-resolved averaged soiling transmittance. Finally, the electrical
mismatch can be considered and the total soiling loss is calculated.

q N

FIGURE 5.1: Flow chart illustrating the work flow of the proposed
method. The two steps in the box are performed by the method
developed by (Beuter, 2023).
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5.1.1 Soiling Detection and Soiling Segmentation with YOLO and SAM

The method using SAM and YOLO to detect and segment soiling on PV modules
was developed with a Master thesis (Beuter, 2023) supervised by Peter Winkel within
this work. The method’s inputs are orthoimages. First, a YOLO instance is used
to detect the soiling on the orthoimage of a PV module. This YOLO instance has
been specialized (application of transfer learning) for PV modules. In particular, this
instance has been trained to recognize cell in-between spaces and conductor tracks as
part of the module and not as soiling. The YOLO instance first calculates a bounding
box in which the soiling is located for each soiling spot detected on the module.
This bounding box is then transferred to a SAM instance. The SAM instance is then
responsible for segmentation. It distinguishes pixel-wise between a clean module
and soiling.

Beuter has trained the model for both soiling detection and segmentation. The here
presented work applies Beuter’s model to new datasets. The following processing
steps are developed here solely by the author of this work.

As discussed in (Beuter, 2023), the method works well for most cases. However,
the method also has limitations. On the one hand, the method is limited by the
training data set. Only a few different module types and soiling types were used.
Here, the same modules that Beuter used for his training will be evaluated. Therefore,
this limitation is not expected to be too problematic. Further limitations are caused
by the resolution of the input orthoimages. In both the orthoimages used in (Beuter,
2023) and the orthoimages used here, one pixel corresponds to 6 mm. The transition
between clean and soiled module surfaces can therefore only be determined with this
resolution. Furthermore, the transition between homogeneous and inhomogeneous
soiling is fluid. Homogeneous soiling here refers to the dust soiling type analyzed in
the previous Chapter. Beuter’s soiling detection should only detect inhomogeneous
soiling. Dust should therefore not be detected here. The transition from homogeneous
to inhomogeneous soiling is sometimes continuous and is problematic, for example,
when dust is deposited on the edge or in the corner of a module. The output of
Beuter’s method is, on the one hand, a mask that binary classifies all pixels into clean
and soiled. On the other hand, all detected soiling is labeled and numbered.

5.1.2 Classification of Different Soiling Types

A new way of distinguishing different kinds of soiling is developed. Two different
kinds of soiling are used in the first tests of the developed method. Leaves and poster
stickers are attached to the modules of interest. The poster stickers are simulating bird
dropping and will hence be referred to as artificial bird droppings in the following.
As can be seen in Figures 5.2 and 5.3 the leaves and the artificial bird dropping vary
significantly in color. Therefore, it is sufficient to analyze the color of a given soiling
spot to categorize it. A dynamic threshold method is introduced. In simple terms:
if a detected soiling spot is bright enough it is classified as a bird dropping and if
it is darker it is classified as a leave. This way of categorizing the different kinds
of soiling is only used for the specific case of two categories as discussed here. In
order to achieve general applicability an advanced method should be used, that also
considers properties like the size, the shape, and the color distribution of the soiling
spots. The average color itself might not be sufficient to distinguish multiple types of
soiling.

Figures 5.2 and 5.3 show the results of detecting, segmenting, and categorizing
different soiling spot. For both cases the left sub-figure shows the input orthoimage
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while the right sub-figure shows the masked orthoimage. Detected leaves are shown
in blue while detected bird dropping are shown in red. As one can see every soiling
spot is detected. Additionally, when comparing the input orthoimage with the
masked orthoimage one can see that the categorization worked for every soiling spot
for the two cases shown here.

|

FIGURE 5.2: Left: Exemplary chosen orthoimage of module 4; Right:
Masked orthoimage of the orthoimage on the left. Detected leaves are
colored blue and detected stickers are colored red.

This approach was only possible because there are only two categories. If there
were multiple categories, also other characteristics of the soiling spot could be used
for classification purposes. In particular the size and the shape of soiling can help
to distinguish different soiling types. Depending on the complexity of the images of
interest one can either stick to classical computer vision methods for the categorization
or one can use deep learning approaches to distinguish the different soiling types.

5.1.3 Determination of Cell-Resolved Transmittances

After classifying each detected soiling spot, a transmittance has to be assigned to each
category. In general, the transmittance could be estimated from literature. However,
for the experiments performed here, the transmittance of each soiling type is optically
measured. For this purpose two reference cells are used. Both reference cells are
cleaned. Afterwards, one reference cell remains clean while the other one is entirely
covered with one of the soiling types. The ratio of GTIs of both reference cells
determines the transmittance of the given soiling type.

First, the reference cells are normalized to each other. While both cells are clean the
ratio of their GTIs determines their calibration factor. Figure 5.4 shows the calibration
factor over the calibration time interval. Averaging over the reference interval leads to
a calibration factor of 0.9989. Figure 5.5 shows the calculated transmittance of the bird
droppings over time. Averaging over the chosen time interval leads to an effective
transmittance of 3%. Figure 5.6 shows the calculated transmittance of the leaves over
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FIGURE 5.3: Left: Orthoimage of module 1; Right: Masked orthoimage
of the orthoimage on the left. Detected leaves are colored blue and
detected stickers are colored red.
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FIGURE 5.4: Calibration of the reference cells. Ratio of the GTIs of the

reference cells over time. Averaging leads to a calibration factor of

0.9989. The increase of the calibration factor over time is caused by a
small tilt of the reference cells towards each other.

time. Averaging over the chosen time interval leads to an effective transmittance of
15%. The slope is the graph is caused by a slight tilt of the reference cells against each
other.

After determining the transmittances of each soiling type, it is now possible to
determine the transmittances of each cell. Equation 5.1 shows how the transmittance
Te11 of each cell is calculated.
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FIGURE 5.5: Transmittance of the bird droppings over time. Averag-

ing leads to a transmittance of 3%. The calibration factor is already

considered. The change over time is caused by a tilt of the reference
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FIGURE 5.6: Transmittance of the leaves over time. Averaging leads to

a transmittance of 15%. The calibration factor is already considered.

The measured transmittance slightly changes over time as the reference
cells are slightly tilted towards each other.

1

A Ai : Tareai
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Tcel I =
i

(5.1)

The cell is divided into its individual areas A;. These are the different soiling spots
and the remaining clean area. T, is the transmittance of each area. Ty, is either
one of the previously determined transmittances or 1 in case of a clean area. A is
the area of the entire cell.
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Tee1 is calculated for every cell for a given image. These cell-resolved transmit-
tances are averaged over all images of interest. There are always various images
of a given module. In order to be considered an image has to fulfill one criterion.
The viewing angle (the angle between the module normal vector and the camera
vector) has to be smaller then 30°. This criterion ensures that perspective distortion is
neglectable. Otherwise leaves that are not in laying in plan on the module might be
considered to cover a larger area then they actually are.

5.1.4 Soiling Loss Calculation on Module Level

An electrical model (see Chapter 6) is used to calculate the soiling loss on the module
level. The model considers electrical mismatch. therefore the soiling loss is generally
speaking not equal to the arithmetic average of the cell-resolved transmittance losses
(1 — Teenp). Instead, electrical mismatch, if present, causes additional losses on module
level.

The electrical model calculates the power of the module for the imaginary clean
case and for the case of the calculated soiling pattern. The ratio of the calculated
powers is then considered to be the soiling loss. For these calculations, the electrical
model considers the module’s data sheet parameters. In particular the electrical
model considers the nominal power from the data sheet. At this point aging or other
deviations from the manufacturer’s specifications are not considered. Hence, the
model does not accurately calculate the power output of the module. However, the
mismatch losses are considered to be independent of the degree of aging. After a
calibration measurement, the degree of aging and other deviations from the man-
ufacturer’s specifications are considered and the power output can be determined.
Details of the electrical models are described in Chapter 6.
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5.2 Exemplary Test of the Developed Method

The measurement was carried out on April 30th, 2024. As described above two
different soiling types are used: leaves and artificial bird dropping. These soiling
types are placed in two different modules. These are shown above in Figures 5.2 and
5.3. Both modules are soiled with both soiling types. For module 1 (Figure 5.3) the
soiling is distributed over the entire area of the module. For module 4 (Figure 5.2) the
soiling is only placed in the right sub-string to provoke electrical mismatch.

The evaluation is performed as described in section 5.1. Figure 5.7 shows the
cell-resolved transmittance losses (soiling losses). One can see that the cells which are
covered the most in Figure 5.2 and 5.3 show also the highest soiling losses.

Soiling losses (%)
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FIGURE 5.7: Cell resolved transmittances for module 1 (right) and

module 4 (left). Averaged result from seven orthoimages, including the

ones shown in Figures 5.2 and 5.3. In the following used to determine
the electrical losses.

Figure 5.8 illustrates how much the cell-resolved transmittance varies from one
image to another. As an example this Figure refers only to the right sub-string of
module 4 (left in Figure 5.7). The Figure confirms that the evaluation is similar for
every image. The highest standard deviation (considering the data of the seven
images) of the transmittance for a cell is 2.1%. The average standard deviation is 0.4%
absolute. Table 5.1 then compares the soiling loss on a module level calculated by the
developed optical method with the electrical reference measurement. The electrical
reference is calculated by comparing the power of modules 1 and 4 to the power of
module 2 that has been cleaned beforehand. The method is described in Chapter 2
and is already used in Chapter 4. A detailed evaluation of the electrical reference
measurement can be found in the Appendix A 4.

Table 5.1 shows the results of measuring the soiling loss optically. For module
1 the electrically measured soiling loss is 13.9% and the optically measured soiling
loss is 14.4%. For module 4 the electrically measured soiling loss is 14.1% and the
optically measured soiling loss is 14.8%. The absolute deviations are therefore 0.5%
and 0.7%. These results show that the method principally works. The method should
be tested under a variety of conditions.
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module 4 (left in Figure 5.7). Only the cells of the right sub-string are

shown. Cell number starts at the upper left corner and is then counted

downward. After finishing the first column, counting is continued in
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TABLE 5.1: Comparing the electrically and optically measured soiling
loss. The calculation of the electrical reference soiling loss is shown in
Appendix A 4.

Module number Electrical measured Optically measured
soiling loss soiling loss

—_

13.9% 14.4%
4 14.1% 14.8%

72
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5.3 Summary and Outlook

This Chapter has presented a new method for measuring inhomogeneous soiling.
The method was tested for two different soiling types. Both soiling types, leaves and
stickers have been detected and segmented. The stickers were chosen to simulate
bird droppings. The method was tested in one campaign with two modules. For
each module, seven images have been considered. For the first module, the observed
absolute deviation is 0.5% and for the second module, the deviation is 0.7%. For both
modules, the measured reference loss is around 14%. This shows that the method
principally works.

Further tests of the method have to be performed in the future. The method
should be tested for a greater variety of soiling types and modules. Not all soiling
types might be detected with the same accuracy. Also, it should be noted that the
transmittance might vary for different soiling spots of the same soiling type, e.g. not
every leave looks the same and has the same transmittance. Furthermore, it is not
yet clear how the method performs when literature values for the transmittance are
considered.

A test of the method on a large scale in a PV plant with operating conditions would
be beneficial to address the above-mentioned considerations and to get statistical
evidence. One should also keep in mind that so far only artificial soiling has been
considered.
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Chapter 6

Electrothermal Modeling of Soiled
PV Modules

IR measurements are already common practice to identify malfunctioning modules
within a PV plant. The affected modules heat up and can in most cases be identified.
However, the origin of such a hotspot (see definition in Section 2.5.2) is not immedi-
ately clear. A hotspot might either be caused by a cell being defective or being heavily
soiled. This Chapter presents a new electrothermal model that helps to distinguish
both cases. Additionally, is capable of predicting a module’s temperature for the case
that the module is clean and for the case that a hotspot is present. The electrical power
can be estimated while considering electrical mismatch. Consequently, it can be stated
which soiling pattern leads to a hotspot and which doesn’t. The method is designed
to be an extension of the methods developed in Chapters 4 and 5. The output (the
soiling pattern) that is calculated by these methods can be used as an input for the
method developed here. Parts of this Chapter have already been published by the
author in (Winkel et al., 2024b).

Figure 6.1, left shows a module that visually is not soiled. No malfunction would
be expected at first glance. The right side of the Figure shows the corresponding IR
image of the same module. Four cells are identified which are heating up. Since there
is no soiling present, the heating is caused by the cells being defective. Figure 6.2
shows an electroluminescence (EL) image of the same module. The image confirms
that the module is indeed defective. Figure 6.3, left shows a module that is artificially
soiled (shaded). The right side of the Figure shows the corresponding IR image. The
affected cell is heating up. The artificial soiling hence therefore sufficient to cause a
hotspot.

FIGURE 6.1: Left: RGB image of a defective module. On the RGB
image it appears clean and a potential hotspot is not observed. Right:
IR image of the defective module. The IR image clearly shows 4
hot cells. By having access to both the RGB and the IR image one
can conclude that the module is defective. One string, the third and
fourth column from the right, is bypassed. The temperature is slightly
increased compared to the other cells (except of the hotspots).
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FIGURE 6.2: Electroluminescence (EL) image of the above-mentioned
module (see Figure 6.1). There are multiple cracks visible. This module
is likely to show one or more hot cells when operated. One string is
bypassed and therefore shows no electroluminescence signal. This
EL image has been provided by CIEMAT (Centro de Investigaciones
Energéticas, Medioambientales y Tecnoldgicas).

FIGURE 6.3: Left: RGB image of the artificially shaded/soiled cell.

Right: IR image of the rear side of the PV module seen in the RGB

image on the left. The artificially shaded cell shows a significant
temperature increase (hotspot).
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6.1 Electrical Model

Section 2.4 has already presented the Bishop model (Bishop, 1988) that is used to
model the electrical properties of the PV modules.

The Bishop model parameters, which are mainly the single-diode parameters, are
not immediately known. The methods by (Restrepo-Cuestas et al., 2022; Restrepo-
Cuestas and Montano, 2024) are used to determine these parameters. As an input,
these methods only require the PV module data sheet parameters. Due to aging and
other e.g. production effects, the actual module parameters might differ from the data
sheet parameters. To achieve greater accuracy, IV-curves of the module are recorded.
The data sheet parameters are adjusted according to the confirmation measurement
and are stated in Table 6.1.

TABLE 6.1: Summary of the simulation parameters. Breakdown pa-
rameters taken from (Restrepo-Cuestas and Montano, 2024; Jessen
et al., 2018). The parameters are corrected for e.g. aging.

Parameter Value

Breakdown factor 0.002

Breakdown voltage —-14V
Trigger voltage of the bypass diode —-05V

Breakdown exponential factor 3

Efficiency 17.622%

Short circuit current under STC 9.61A
Open circuit voltage under STC 4713V

Power under STC 349W

MPP current under STC 926 A
MPP voltage under STC 37.80V

Temperature coefficient of the power —0.37%/K
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6.2 Thermal Model

The thermal model developed in this work is illustrated in Figure 6.5. It has a structure
of four layers and six temperature nodes. The four layers are the soiling layer, the
front glass cover, the silicon layer, and the back-plate. The temperature nodes are T,
the temperature of the upper side of the soiling layer T, the temperature of the upper
side of the glass layer Ty, the silicon temperature T; (subscript c referring to cell), the
temperature of the lower side of the back-plate Ty, and the ground temperature T
(subscript f for floor). Note that the silicon layer is considered to be much thinner than
the other layers. Roughly, the silicon layer should be around 300 um (Tool et al., 2002).
By making this assumption one can assume that there is only one cell temperature
and the cell has no thermal resistance. Note also that the description of a PV cell as a
stack of three layers (glass, silicon, and backplate) is generally a big simplification.
The goal is to develop an easily usable thermal model. The goal is not to predict
the temperature with a sub-digit precision. E.g. the anti-reflection coating of the
cell is considered to be part of the glass layer and is not mentioned individually.
Furthermore, the back reflector is neglected because of its thickness of around 20 pm
(Lorenz et al., 2017). Thin passivation layers are also not considered here.

Note furthermore that out of the six above-mentioned temperatures, the ambient
temperature and the ground temperature are inputs while the other four are outputs
of the model. T, is measured with a CS215-L thermometer. Ty has been estimated
to be 10K colder than the ambient temperature. This assumption is connected with
uncertainties. However, it has been confirmed that the resulting variations in @y, ¢, if
Tr had a 10K uncertainty, are one order of magnitude smaller than the convective
heat transfer on the rear side for the case of non-hotspot and two orders of magnitude
smaller for the case of a hotspot. In the future, the simplest would be to measure
the floor temperature. There are also various approaches to modeling the ground
temperature (Zheng, Hunt Jr, and Running, 1993; Xu et al., 2020; Araghi et al., 2017).
However, for the intended purposes, they are less suitable as they are quite complex
by themselves and generally require many inputs. Furthermore, the floor temperature
is not going to be spatially homogeneous as the ground experiences a shading pattern
that changes over time. Additionally, the ground and the module’s rear side are
not parallel to each other. Therefore, the rear side in reality does not receive the
entire thermal radiation emitted by the ground. Instead, it should receive a weighted
average of the @y, r and Dy, g,

Energy fluxes in between the four layers and the surrounding can be divided into
five categories: GTI G, thermal radiation @y, thermal conduction 4§, convection
Geonv, and generated surface power density p.. The surface power density p, is defined
as the electrical power P. generated by the PV cell, divided by the cell area A. The
GTI is measured by a reference cell, in the wavelength range from 400 nm to 1150 nm.
According to the manufacturer, the relative deviations against class pyranometers
are up to 5%. The thermal radiation @y, s, of the sky is measured by a pyrgeometer
(see Table 6.2). The pyrgeometer roughly starts to measure at 4 um until 100 pm. The
thermal radiation of the sky could also be estimated with a weather model in case
there is no pyrgeometer available. The other fluxes are not measured and they are
only intermediate results for the model.

The thermal radiation emitted by the soiling layer is denoted as @y, 5. Py, ¢ is the
thermal radiation emitted by the floor and ®y, ;, is the thermal radiation emitted by
the back sheet. G; ¢ is the part of G that is transmitted through the soiling layer. G;
is the part of G that is reflected at the soiling layer or, in other words, scattered back to
the air above the soiling layer. As for the soiling layer reflection and transmission can
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TABLE 6.2: Overview of the origin of the known parameters for the

thermal model. [1]: (Zhou et al., 2015), [2]: (Pfreundt et al., 2019), [3]:

(Hoang et al., 2014), [4]: (Priyadarshini and Sharma, 2016), [5]: (Notton

et al., 2005), [6]: (Lee et al., 2008), [7]: (Wolf, Pohl, and Brendel, 2005),

[8]: (Module data sheet 2024), [9]: (National Oceanic and Atmospheric
Administration, 1976).

Quantity Symbol Unit Source
Ground temperature Tr °C Estimated from ambient
temperature
Surface power density Pe W/m? Electrical model
Absorptance o - [1,2,3,4]
Reflectance 0 - [1,2,3,4]
Transmittance T - [1,2,3,4]
Emissivity €body - [1,2,3,4]
Thermal conductivity At Wm K1 [1,2,56,7]
Layer thickness d mm PV data sheet [8]
Cell area Aol m? PV data sheet [8]
Elevation H m Google Maps
Atmospheric density Qair kgm~3 [9]
Kinematic viscosity of air v m?s~! [9]
Thermal conductivity of air A, Wm 1K1 [9]
Specific heat capacity of air ¢, Jkg 1K=t [9]
Characteristic length, mod- L m PV data sheet [8]
ule height

take place at each interface between the layers. G, - is the part of G that is transmitted
through the glass layer. G, , is the part of G that is reflected at the interface between
the soiling layer and the glass layer. Reflections of second order are neglected here.
For example, G, can be reflected again at the interface between glass and soiling,
but for simplicity, this term is neglected. Gy, is the part of the GTI that reaches the
back sheet of the module. Attenuations occur because the module itself is shading
the ground. A part of the light that reaches the ground is reflected, both directly and
diffusely. Finally, only a fraction of the reflected light reaches the module’s rear side.
The ground albedo and the view factor have to be considered for Gy ,. The view
factor describes the fraction of the light reflected by the unshaded that reaches the
module’s back sheet. Gy ; is the part of Gy, that is transmitted through the back sheet
and Gy, is the part that is reflected there.

Geond,gs 18 the conductive heat transfer through the soiling layer. geouacq is the
conductive heat transfer through the glass layer. 4,4 cp is the conductive heat transfer
through the back sheet. All conductive heat transfers point away from the cell. This
is defined this way because the cell is the layer that absorbs the most radiation and is
therefore the hottest. jqono,s is the convection that takes place on the soiled surface.
Geonwp is the convection that takes place on the rear side of the module.

pc is the power density generated by the cell, which describes the electric power
exiting the cell (positive sign) or the received electric power converted to heat (nega-
tive sign). All quantities are defined in such a way that they are positive for common
operating conditions without a hotspot.

Assuming steady-state temperatures and considering each layer by itself, input
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and output fluxes can be equated in the form of balance equations. The balance
equations for each layer are shown in Equations 6.7, 6.8, and 6.9. The order of the
equations is the same as the one of the layers shown in Figure 6.5.

Dy, pody = €body * T * Tffody (6.1)

. Thor — T,
Hcond hot,cold = Ath : w (6.2)
qcanv,body = h(vw) : (Tbody - Ta) (63)

Equations 6.1, 6.2, and 6.3 describe how the thermal radiation, the thermal con-
duction, and the convection depend on the temperature, respectively. For thermal
radiation, the key parameters are the body’s emissivity €4, the Stefan-Boltzmann
constant ¢, and the body’s surface temperature Tj,qy. The thermal conduction de-
pends on the thermal conductivity Ay, the temperatures of hot and cold sides Tj,,; and
T,014, and the corresponding thickness d. Convection depends on the temperature
difference between the surface and the ambient temperature (Tbody — T,) and the
convective heat transfer coefficient i which depends on the wind speed v, itself.

Both free and forced convection are considered. The heat transfer coefficients are
combined as the square root of the quadratic sum (Siebers, 1983). In some cases, also
larger exponents instead of two might be used. Notton et al. discuss a few different
forced and free convection models for PV modules (Notton et al., 2005). The free
convection model by (Kreith and Kreider, 1978) and the forced convection by (Cole
and Sturrock, 1977) are used. See therefore Equation 6.4 and Equation 6.5. Equation
6.6 shows how free and forced convection are combined. Roughly speaking, for wind
speeds above 3m/s the forced convection dominates. Vice versa for wind speeds
below 1 m/s the free convection can be interpreted as a lower limit.

Y W
Bforced = 114—5 +57 mj' o (6.4)
Ty — (Ty) - sin 025
Bfree = 142 (( m—( z) (ﬁ)) (6.5)
h = hjzforced + hzree (66)

L is the characteristic length of the module, which in this case is the module height.
B is the inclination of the module. T,, and T, are the module temperature and the
ambient temperature like in the literature models discussed above.

The air parameters are derived from the US Standard Atmosphere (National
Oceanic and Atmospheric Administration, 1976). Some parameters are estimated in-
volving certain assumptions. E.g. it is assumed that there is no transmission through
the cell, meaning UV and IR radiation passing through the semiconductor layer is
neglected. The error due to this assumption should be of the same order of magnitude
that the neglect of multiple reflections has. For the convection, some parameters are
also determined using the python library fluids (Bell, 2023), which contains functions
of the US Standard Atmosphere (National Oceanic and Atmospheric Administration,
1976). Other parameters are derived from the data sheet of the PV module (Module
data sheet 2024). The physical properties of each layer will be discussed in the next
section 6.2.1.
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6.2.1 Material Properties of Layers

A set of material properties is selected based on the literature and the module data
sheet. This set includes optical properties such as reflectance, transmittance, and
emissivity. The parameter set also includes the thermal conductivity. In addition,
the layer thickness is stated. All parameters are illustrated in Table 6.3. If there are
multiple values for one parameter, the one emphasized in bold was finally imple-
mented in the thermal model. The * symbol indicates that the value is an assumption
with justification in the caption of the table. The emissivity of silicon is not stated
here because thermal radiation only takes place at surfaces, i.e. at the interfaces with
air. In the model, the silicon layer is therefore not emitting thermal radiation. The
thermal conductivity of silicon is not stated because the silicon layer is assumed to
be thin against the glass and back-plate layers. The absorptance of each layer is not
stated here as it can be calculated simply, as the sum of reflectance, transmittance, and
absorptance has to be one. The transmittance through the semiconductor layer itself
is neglected. Literature states that the fraction of the light that is transmitted through
the silicon layer is in the low single-digit percent range. Additionally, most parts of
this light are then reflected at the back reflector which has not been included in the
model. Note also, that the thickness of a dust layer will be different in each situation.
10 um is a reasonable dust particle diameter (Ilse et al., 2019; Ilse et al., 2018). Since
there is no significant thermal resistance in such a thin layer, this thickness can be
neglected. The dust surface temperatures and the module surface are basically the
same.

TABLE 6.3: This table summarizes the most important properties of
the four module layers. [1]: (Devi and Satheesh, 2021), [2]: (Devi
and Satheesh, 2022), [3]: (Rubio, Caselles, and Badenas, 1997), [4]:
(Hamdhan and Clarke, 2010), [5]: (Toolbox, 2003), [6]: (Toolbox, 2011),
[7]: (Zhou et al., 2015), [8]: (Priyadarshini and Sharma, 2016), [9]:

(Pfreundt et al., 2019)
ol-] 7[-] €body[~]  Am[WmT'K™'] d[mm]
Dustlayer (1 — ) - Optically  0.903 [3] 0.27 [4] 0.01 =
095[1,2] measured
Foil stack  Optically = Optically  0.92 [5] 0.2 [6] Measured
measured  measured
Glass 0.08[7,8] 092[7,8] 0.837[9] 1.0 [9] 3.0 [9]
Silicon 0.08 [7] 0% - - -
Back sheet 0.86 [7] 0.2 7] 0.769 [9] 0.155 [9] 0.35[9]

For the ground, n emissivity of 0.947 is assumed (Rubio, Caselles, and Badenas,
1997). The albedo of the ground is 0.189 (Sutha et al., 2017). It is assumed that 5% of
the incident light will be reflected and reaches the rear side of the module. This can
only be estimated as parts of the ground are shaded by the module itself. Also, not
the entire part that is reflected at the ground goes in the direction of the module. The
larger part goes towards the rest of the hemisphere.

The soiling layer’s parameters have been estimated as follows. The most im-
portant property is the transmittance as it determines whether the cell generates or
dissipates energy. For dust-like soiling, one can assume that reflection and scattering
dominate over absorption (Ilse et al., 2019). For other soiling types, considerations
have to be made individually. In the experiments, a stack of foils is used which should
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also have a very low absorptance. For the experiments presented in section 6.3.2, the
transmittance of the foils has been measured optically with a Perkin Elmer Lambda
1050 spectrophotometer (discussed below). In the future, the transmittance model
developed by (Winkel et al., 2024a) can determine the transmittance of dust using
RGB images of the affected modules. In terms of the emissivity, there is literature for
both, the plastic foils used here and for mineral dust which is a future application.
Ground reflectance, i.e. the albedo, is also a prerequisite for the precise determination
of the energy balance (Enriquez et al., 2012). The ground emissivity varies depending
on the ground type. For instance, the bare soil calcaric regosol shows an emissivity
of 0.947, whereas green-colored short grass has a higher emissivity of 0.976, and
dry grassland reaches a value as high as 0.99 (Rubio, Caselles, and Badenas, 1997).
Finding an accurate value that suits the test bench is less important because only a
fraction of the radiation reflected on the ground will be reflected toward the module’s
rear side. A large portion of the reflected radiation leaves in the direction of the sky.
It is only possible to roughly estimate this fraction. The equations above assume that
the ground experiences the entire GTI. While in reality parts of the ground are shaded
by the module itself. The uncertainty of this factor how much ground reflected irradi-
ance hits the module’s rear side is much larger than the uncertainty of the reflectance
property itself or different ground types. Also, this factor is going to change over
time.

6.2.2 Combination of Electrical and Thermal Model

The electrical model initially guesses the module temperature to be equal to the NOCT
temperature (according to the data sheet) and calculates the cell power P.. This power
estimate is then divided by the cell area, giving the surface power density p. for the
cell. The thermal model receives the surface power density as one of the parameters
to predict the cell temperature T.. These better estimates of the cell temperatures are
then fed back into the electrical model, as it might differ from the originally estimated
temperature. In the tested datasets used in this work, both power and temperature
predictions converge after three iterations. The power changes afterwards by less
than 0.01 W per iteration and the temperature by less than 0.01 K. Figure 6.4 illustrates
the interconnection of the electrical and the thermal model.

The electrical model is based on the single-diode model. The single-diode param-
eters are estimated according to the data sheet. (Bishop, 1988) provides a tool that
enables the extraction of the single-diode parameters from the data sheet parame-
ters. Additionally, a potential efficiency reduction due to aging and module-specific
production-related deviations from the design efficiency are considered. The data
sheet’s power and efficiency are adjusted such that the model results match the
measurements for the power, voltage, and current for a calibration interval. The
temperature effect on the model parameters was considered as given in the data sheet
to obtain the expected power under STC. The module is considered to be a serial
connection of three sub-strings of 24 cells each. There is a bypass diode in parallel to
each sub-string. The model allows assigning every cell its individual properties. In
particular, every cell has its soiling transmittance. IV curves are calculated on cell,
string, and module levels. Correspondingly, electrical mismatch losses are considered.
The same current must flow through all cells unless the bypass diodes are active. The
most affected cell limits the total current. If the total current is greater than the Isc of
the most affected cell, this cell dissipates energy. Also, the temperature of each cell is
considered as input data. This cell-resolved temperature is used as an iterative input
of the electrical and thermal model. The electrical model’s implementation is based
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on the Python package pvlib (Holmgren, Hansen, and Mikofski, 2018; Holmgren et al.,
2015). It uses a model developed by Bishop et al. (Bishop, 1988).

Electrical
Model

FIGURE 6.4: Sketch describing the linkage between the electrical and

the thermal model combining it to the electrothermal model. The cell

temperature is iteratively fed into both models. Both, the electrical

and the thermal model require an initial estimate of the temperature

and then refine the temperature in an iterative way. The model stops

after three iterations each as the temperature and the power do not
change noticeably afterwards.

G + Punsky = Goe + Gop+ Diis + Geomos 6.7)

Gs,t + Geond,gs + Geond,cg = Ggr + Ggp (6.8)

G + Ggr = Gep + Pe + Geond,cg + Geond,cb (6.9)
Grp+ Punf + Geond,co = Gor + Gop + Ponp + Geono,p (6.10)

6.2.3 Non-Linear Set of Equations

Equation 6.7, Equation 6.8, Equation 6.9, and Equation 6.10 build a set of four equa-
tions with four unknown quantities. There are four unknown temperatures T;, T, T,
and Tj. All other parameters are known (or estimated) as described in Table 6.2 and
Table 6.3 above. Some of the temperatures occur in the fourth power. This makes the
system non-linear and not analytically solvable. However, this system can be solved
numerically. The fsolve function of the scipy package (The SciPy community, 2024) is
used.

6.2.4 Thermal Inertia

As described above, the model solves a set of non-linear Equations for the steady-
state. In reality, the cell temperature does not instantly respond to a change of input
parameters, e.g. a change in incoming radiation. The thermal inertia of the module
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is not considered when applying the steady-state assumption. To roughly consider
the thermal inertia a rolling average is applied. Averaging is performed over ten
temperature values modeled with the above described model and the average is
assigned to the last of the corresponding timestamps of the final time series. The
time interval is chosen as a simple best-by-test approach. In the following, the rolling
average is applied to the developed model as well as to the models from the literature.

G GC.p Gg,,ﬂ G Gs,p thh,s qcnm),s
(Dth,sky
Gs,r
-
t':h'tmd,f:g - glass
Gz

c.h:tmd,c.b backplate

q)th,b fi'conv,b

FIGURE 6.5: Sketch of the model structure. Shown are the four differ-
ent layers of the model and the temperature nodes. Additionally, all
energy fluxes are illustrated.
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6.3 Results

In this section the experiments performed to validate the developed model are dis-
cussed. These are on the one hand experiments with a clean module (see Section
6.3.1) and experiments with a partially soiled module (see Section 6.3.2).

6.3.1 Experiments with Clean Modules

The performance of the electrothermal model under clean conditions was analyzed
within six consecutive days, from April 26" until May 1%, 2023. In particular, the
performance for module temperature determination was compared to measurements
and the state-of-the-art models described in Chapter 2. The temperature was mea-
sured with a Pt-1000 sensor (uncertainty class B) which was mounted on the module’s
rear side with an adhesive thermo-film (see Chapter 3). The module of interest is
manufactured by JA Solar and has a nominal power of 390 W (Module data sheet 2024).
Details can be found in the data sheet (Module data sheet 2024).

Figure 6.6 compares the modeled temperature to the measured one over the
above-mentioned periods. In general, the model works well and is capable of giving
a good estimation of the module temperature. For some intervals, a negative bias is
found (e.g. Apr. 26, 15:00-16:00) while the model overestimates the temperature for
other time intervals (e.g. May 1%, 14:30-16:00). Reasons for this and possible solutions
are assumed to be mostly related to the convection model. For example, currently,
only the wind speed is considered, but not the wind direction. Also, the convection
should in theory depend on the position of a given cell within the given module. The
effects of the convection modeling will be discussed further related to the experiment
with soiled modules (section 6.3.2). Further potential enhancements could be a better
consideration of thermal inertia which plays a particular role when the GTI or the
wind speed suddenly changes.

The obtained error metrics over the six days, 10:00 to 16:00 each, are an RMSE of
2.6 K, an MAE of 2.2K, and an MBE of —1.3K.

Figure 6.6 (right) shows the results of the developed model and the four above-
mentioned thermal models from the literature for two exemplary days. On the left,
the Figure shows the two most important meteorological parameters impacting the
module temperature, namely the GTI and the wind speed. The other four days are
visualized and discussed in Appendix C.

TABLE 6.4: Summary of the error metrics for the different thermal mod-
els, both from literature and the developed model. This table refers to
the clean state. The data refers to the entire test period consisting of

six days.
Model RMSE (K) MAE (K) MBE (K)
Ross 94 8.7 8.6
Sandia 4.0 3.6 3.4
Faiman 2.7 1.9 0.5
NOCT 2.9 2.1 0.2
Developed model 2.6 2.2 -1.3

Table 6.4 summarizes the error metrics of all thermal models. The developed
model performs similarly to the two best models from literature, the Faiman model
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and the NOCT model. The developed model has the lowest RMSE, with a value of
2.6 K, which is marginally better than the next best Faiman model while the MAE
is insignificantly higher, with a value of 2.2K. The absolute value of the MBE of
the developed model is 1.3 K and hence higher than the one of the NOCT model
with a value of only 0.2 K. The temperature deviation has an impact on the module’s
efficiency. Typically, the efficiency drops by 0.4% for a temperature increase of 1 K. The
impact of temperature deviation on the yield is not the decisive factor for the objective
as the model is designed for hotspot analysis. Quick hotspot identification and
hotspot temperature estimation are possible with the new model and are discussed
in the next Section.
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FIGURE 6.6: Comparison of the developed model with the measured
temperature and the thermal models from literature discussed in Chap-
ter 2 for the 26™ and the 27t of April 2023.
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6.3.2 Experiments with Soiled Modules

For this experiment, one cell of the module is entirely covered with an artificial shad-
ing material as shown also in Figure 6.3. The material used is a stack of foils and its
transmissivity is roughly constant over the visible spectrum. The effective transmit-
tance is 44.6% as determined by optical measurements. The spectral transmittance is
shown in Figure 6.7 (discussed below). The goal of the artificial soiling is to provoke a
hotspot and make the soiled cell dissipate power. Therefore, the qualitative regime of
the transmittance is more important than its absolute value. Additionally, the hotspot
temperature and humidity can change the foils” optical properties over time. The
experiment was performed from March 9t to March 14, 2024. Figure 6.7 shows the
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FIGURE 6.7: In blue, spectral transmittance against wavelength of the

used artificial soiling. In red, solar spectrum used for averaging the

spectral transmittance. In dark gray, spectral response of a mono-5i

solar cell. Weighted averaging results in an effective transmittance of
44.6%.

optically measured spectral transmittance of the foils used as artificial soiling in blue.
Averaging the spectral transmittance weighted by the solar spectrum shown in red
(ISO9845-1 Main Spectra GTI) and the spectral response of the module shown in dark
gray (Winter, Friedrich, and Sperling, 2009; Jessen et al., 2018) results in a wavelength
averaged transmittance of 44.6%.

Figure 6.8 compares the measured and simulated IV curves. For example, only
4 1V curves of one day, March 12t are shown with a time difference of 2 hours
each. One can see that the shapes of the IV curves are qualitatively correct. There
is a slight tendency to predict too high open circuit voltages and too low short-
circuit currents. The IV-curve with the timestamp 14:00 is impacted the most. The
reason is probably related to simplifications of the underlying electrical Bishop model
(Bishop, 1988; Bishop, 2006). The position of the maximum power point is calculated
relatively accurately. The height of the plateau of the current differs slightly between
measurement and simulation. The reason might be that the transmittance of the
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FIGURE 6.8: Measured and simulated IV curves. Exemplary, one day

and 4 timestamps are chosen. 12 of March 2024. Upper left: 10:00,

upper right 12:00, lower left 14:00, and lower right 16:00. The small
circles indicate the maximum point points.

artificial soiling layer has slightly changed over time. As the foils used as artificial
soiling heat up, they might change their transmittance. Figure 6.9 compares the
measured and simulated electrical powers in a plot as a function of time. In general,
the electrical power is calculated well (RMSE =2.1W, MBE = —0.2W, MAE = 1.6 W).
One sub-figure corresponds to each day, starting in the upper left with the 9™ of
March and continuing to the 14" of March in the lower right.

The right side of Figures 6.10, 6.11, and 6.12 compares the measured and simulated
hotspot temperatures and the measured temperature of a clean cell. Each day is
discussed individually. To explain and understand the features that occur one must
have a look at the GTI, the wind speed, and the wind direction which are shown
also in Figures 6.10, 6.11, and 6.12 but on the left side each. On the 9th of March,
the temperature is simulated well with an RMSE of 4.8 K. This is a day with a low
GTI and strong wind from the southwest direction. For the 10t of March, the model
predicts a hotspot with temperatures about 40 K above those of the clean cells but
underestimates the temperature significantly by more than 30 K resulting in an RMSE
of 32.7 K and an MBE of —30.9 K. On this day the GTI is generally pretty high and
there is strong wind from the west direction. In this context a high GTI refers to the
GTI reaching about 1000 W /m? at solar noon and overall only a few clouds over
the day. On the 11* of March, the temperature estimation is good for the first two
hours of the analyzed time interval. Afterwards, the temperature is underestimated
similarly to the 10t of March resulting in an RMSE of 21 K and an MBE of —16.7 K.
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FIGURE 6.9: Measured and simulated electrical powers for the entire
time considered for the soiled experiment. Each sub-figure shows the
data for one day.

On the 11" of March, the GTI is high and the wind from the west direction is getting
continuously stronger over the day. On the 12" the temperature is estimated well.
In the morning the temperature is overestimated slightly while it is underestimated
slightly in the afternoon, resulting in an RMSE of 12.5K and an MBE of 1.5K. In
the morning there is basically no wind and, in the afternoon, there is a slight wind
coming from the west direction. The GTI is high. On the 13" the temperature is
calculated overall accurately with an RMSE of 7.7 K and an MBE of 0.9K. The GTI
is high and there is a wind of about 5m/s from the east direction. On the 14 of
March, the temperature is generally speaking slightly underestimated with an RMSE
of 11.2K and an MBE of —6.6 K. The GT1is high and there is a small but continuously
increasing wind from the west direction. Over six days, the model performs with an
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RMSE of 17.7 K, an MAE of 13.1 K, and an MBE of —9K.

The deviations found are assumed to be mainly related to the convection modeling.
In the west of the PV testbench, there is a big hall that reduces the wind coming
from this direction. The meteorological station measuring the wind is not affected
by this hall for west winds. This means that in the case of the wind coming from the
west direction, the wind speed is systematically overestimated for the convection
modeling. This leads to an overestimation of the convection and an underestimation
of the temperature. In particular, this explains the deviations for the 10t and 11t
of March. For the 9 of March, there is a low GTI and therefore an overall low
temperature. This means that also the effect of the convection is less pronounced. For
the 12t and the 14" of March, there are overall only small wind speeds present. This
causes the deviations to be lower. A more representative wind measurement would
most likely improve the results significantly. At the same time, there won’t be wind
measurements in PV parks close to each PV module in the field either. It is unlikely
there will be accurate wind measurements for every location within a large PV park.
Hence, the validation mimics a realistic situation and input data accuracy. Even with
the observed deviations the model is capable of distinguishing accurately between
hotspots and cells with a normal operation temperature.
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FIGURE 6.10: The left sub-figure of each column shows the most
important meteorological data determining the temperature. The
wind direction is given in degrees. 0° corresponds to wind coming
from the North direction. Then, it is counted clockwise. Meaning
e.g. 90° corresponds to wind coming from the East direction. The
right sub-figure of each column compares the measured and hotspot
temperature simulated by the developed model. Additionally, the
temperature of a clean cell, a non-hotspot cell, is shown in dark gray.
Data shown for the 9" and 10t of May 2024, between 10:00 and 16:00.
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FIGURE 6.11: The left sub-figure of each column shows the most
important meteorological data determining the temperature. The
right sub-figure of each column compares the measured and hotspot
temperature simulated by the developed model. Additionally, the
temperature of a clean cell, a non-hotspot cell, is shown in dark gray.
Data shown for the 11t and 12t of May 2024, between 10:00 and

16:00.
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FIGURE 6.12: The left sub-figure of each column shows the most
important meteorological data determining the temperature. The
right sub-figure of each column compares the measured and hotspot
temperature simulated by the developed model. Additionally, the
temperature of a clean cell, a non-hotspot cell, is shown in dark gray.
Data shown for the 13" and 14™ of May 2024, between 10:00 and

16:00.
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6.4 Conclusions and Outlook

This Chapter has presented a new way of electrothermally modeling soiled PV
modules. The model is capable of calculating the IV curves of a module, the electrical
power output, and the module temperature with cell-resolution. The calculated IV
curves match well with the measured ones and the power under regular operating
conditions can be determined accurately (RMSE of the electrical power is 2.1 W and
MBE is —0.2K over 6 days and the nominal module power of 390 W).

The meteorological parameters considered by the thermal model are the GTI
measured by a reference cell, the wind speed, the infrared radiation measured by
a pyrgeometer, the ambient temperature, and the air pressure. All meteorological
data are measured at a weather station 100 meters 100 m north of the testbench that
contains the modules of interest. When calculating the temperature of a clean module,
the model showed a similar performance to the two most accurate models, the Faiman
model and the NOCT model with only minor differences in the error metrics RMSE,
MAE, and MBE, out of four well-established models.

The developed model is capable of calculating the hotspot temperature of soiled or
partially shaded modules. Over a test period of six days, the temperature estimation
showed an RMSE of 17.7 K. At times the temperature prediction was accurate while
it deviated for certain conditions. For the best individual day, the RMSE was as
low as 4.8 K. The deviations have been explained and differences between the wind
conditions directly next to the PV modules compared to the wind at the wind mast
are assumed to be the main cause of the deviations. Such a spatial separation of
the anemometer and the PV module is also to be expected in real PV plants so the
experimental setup is considered to be adequate.

The model manages to correctly predict whether the soiling or shading pattern
is sufficient to cause a hotspot. In case an IR image shows a hotspot, the model is
capable of stating if the hotspot can be caused by soiling or shading or if it must be
caused by a defect.

The developed model can be used to enhance the monitoring of PV plants. The
new method is applicable for example in combination with IR monitoring flights. It
can potentially be applied on large scales. Further developments of the method can
go in different directions. On the one hand, the method can be applied to different
kinds of modules. In particular, it could be used for half-cell modules which are
nowadays often used. On the other hand, improved convection models that consider
also the wind direction could be implemented to enhance the model’s accuracy. Also,
the developed model could be tested with image-based soiling information.
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Chapter 7

Summary and Outlook

A drone camera-based measurement method for soiling on PV modules has been
developed. The method is capable of detecting various soiling types and quantifying
the losses caused. Electrical mismatch is also considered. In comparison to other
methods from the literature, the proposed method achieves great accuracy. Addition-
ally, the method convinces with its wide applicability. The method is not limited to a
single soiling type. Also, the camera-based method allows the coverage of big areas
in a short time and achieves good spatial resolution.

Chapter 4 presented a new drone-based optical method for measuring the soiling
type dust. Dust is typically relatively homogeneously distributed over a given cell.
Especially, in arid regions such as North Africa and the Arabian Peninsula, dust
is one of the most common soiling phenomena. The method is based on detecting
and quantifying the light scattering that takes place on the dust layer of the module
surface. The light scattering usually results in dusty modules appearing significantly
brighter than clean modules. To calibrate the method, a clean module and a homoge-
neously soiled module with known electrical losses are required. Both modules are
photographed from different perspectives. The images of the clean module are used
to calculate a calibration function, which can then specify the brightness of a clean
module for different geometries. The value of this calibration function, evaluated
for a given geometry, is considered a clean background signal. The images of the
soiled module are used to calculate a function that indicates the scattering behavior
of the dust layer for different geometries. The increase in brightness caused by the
light scattering depends on the angle at which the module is viewed and the angle
of incidence of the sunlight. Over various campaigns, the method predicted the
soiling loss with an RMSE of 0.93 %. The average soiling loss was about 5 % for the
cases analyzed. The method can distinguish between more and less soiled cells and
gives a good estimate of the soiling loss. Currently, the calibration of the method is
still relatively complex. The cleaning of a module does not represent a great effort.
However, the electrical determination of the soiling loss of a homogeneously soiled
module can be complex if this loss has to be determined with high accuracy. Further
analyses of the two calibration functions can be carried out, which could make it
possible to make generalized statements about the dependence on the geometry.
It may be possible to perform this calibration once and then apply it to all future
measurements.

Chapter 5 presented a new method for measuring inhomogeneous soiling. For
example, bird droppings and leaves can be detected. The resulting power losses
are quantified. The method is based on the latest work in the field of deep learning
applied to object detection and segmentation. The two models SAM and YOLO are
used. With reinforcement learning, these models are then optimized for the detection
of objects located on top of PV modules. This ensures, for example, that gaps between
cells are not labeled as soiling. Soiling on the modules is detected and the covered area
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is measured. A transmission value is then assigned to each soiling spot. The spaces
between the cells are excluded and the soiling is allocated to the individual cells.
The optical losses are converted into electrical losses using the electrical model that
was derived in this work. Various types of soiling were detected in a measurement
campaign. For the first analyzed module, the deviation between the image-based
method and the electrical reference is 0.5% and for the second module, the deviation
is 0.7%. The soiling loss was about 15 % for both cases. Future work may consist
of training the model with various other types of soiling so that this can also be
recognized afterwards. For example, silicon and cadmium telluride (CdTe) modules
with different dark soiling can be considered. Modules of both technologies tend to
look dark blue and black. Comprehensive training could lead to better recognition of
dark (black) soiling on silicon modules.

Chapter 6 introduced a new electro-thermal model. This model is optimized to use
the outputs of the previously developed models as input. It is capable of converting
optical losses into electrical losses, i.e. to determine electrical mismatch. It can also
calculate the module temperature for a clean module. Also, the temperature of a
soiling-based hotspot can be calculated. In a validation campaign, the electrical power,
the IV curves, and the hotspot temperature, among other things, were validated. With
the help of the developed model, it is possible to determine the cause of an occurring
hotspot. If a hotspot is observed on an IR image, the developed model can be used
together with a cell-resolved soiling measurement to determine whether this hotspot
is caused by soiling or a defect. Future work could focus on extending the electro-
thermal model to a series connection of modules. Half-cell modules can also be
considered in the future. Another possible point is an extended consideration of
the meteorological parameters. Wind speed is currently taken into account. Wind
direction, on the other hand, is currently neglected. In reality, the convection that leads
to the cooling of the PV module will also depend on the wind direction. Convection
models can become infinitely complex.

This work has presented a promising method of measuring the impact of soiling in
PV parks. Potential enhancements can go in different directions. The methods can be
adapted to static camera systems as well. This would allow the continuous monitoring
of PV parks with surveillance cameras. Drone flight would not be necessary anymore.
On the other hand, the methods should be tested at different sites. Different sites
have different modules and show different soiling types. In particular, the method
can be tested with more real operating conditions to avoid the partially used artificial
soiling. One aspect that is currently limiting the practicality of the method is the
calibration of the dust quantification method. The operation of a soiled calibration
module with individual power tracking is not desirable. Detailed studies of the
scattering properties of dust might allow a simplification of the calibration.
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Appendix A

Electrical Reference Measurements

Two ways are used to electrically determine the soiling losses SL,. of the modules
for the calibration and validation in this work. Firstly and more accurately, the power
of the soiled module is compared to the power of the clean module. Additionally,
a normalization factor has to be applied which considers that the modules have
different nominal powers and have aged differently. Therefore, the ratio of powers is
normalized by its value when both modules are clean (see Section 2.2.1 and (Gostein
etal., 2013)).

Alternatively, the power of the soiled module can also be compared to its expected
power in the clean state calculated using reference cell data (see Section 2.2.1 and
(Gostein et al., 2016)). On a day when both the reference cell and the module are
clean, the ratio between module power and the reference cell temperature-corrected
GTlI is calculated in a symmetrical time window of one hour around solar noon.
The same ratio is determined for the measurement day where the module is soiled
and the reference cell continues to be clean. By dividing both ratios and applying
a temperature correction for the module power, the soiling ratio is obtained. The
PV module temperature has to be considered as the module temperature increases
as its efficiency decreases. For normal operating temperatures, a linear dependence
between the module temperature and efficiency is valid. The manufacturer states
the temperature coefficient in the data sheet, —0.4% per Kelvin temperature increase.
The module temperature is measured with a Pt-1000 (see Chapter 3) and the module
power will be temperature-corrected to an arbitrarily chosen reference temperature
of 40 °C for every timestamp. The corrected power is calculated by considering the
measured deviation from the reference temperature and multiplying the tempera-
ture difference with the temperature coefficient from the data sheet. In the case of
determining the soiling loss by comparing the soiled modules” powers to the clean
module’s power, a temperature correction is not necessary because it is assumed that
the clean and the soiled module have a very similar temperature and their efficiencies
are assumed to have the same temperature dependence. This way it is indifferent if
the modules have a different temperature on the measurement day and the reference
day. As mentioned above, the reference cell data are also temperature corrected. The
short circuit current increases with the temperature. In the case of the used module,
the coefficient of the short circuit current increase is 0.04% per Kelvin.

For the first campaign, the soiling losses are determined by comparing to the
reference cell as the power of the clean module was then not recorded continuously.
For the following campaigns, the soiling is determined via the module-to-module
comparison method.

For all electrical measurements, data of up to one hour around solar noon are
considered. This is a tradeoff between achieving better statistics because of a large
number of data points and at the same time ensuring that only low incidence angles
are used. In the morning and in the evening, the sunlight falls on the module at a
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high incidence angle. This changes the soiling loss as the soiling layer appears thicker
for higher incidence angles (see Chapter 2). Additionally, small misalignments of the
module planes, which are negligible for nearly normal incidence, typically show a
higher impact in the morning and evening hours. It has been found that the module
and the reference cell are sufficiently in plane so that a correction for the incidence
angle is not necessary when analyzing only data close to solar noon.

A1 First Campaign, Dust-Like Soiling

For the first campaign, the electrical reference of the soiling loss was determined by
comparing the modules” power output with the GTI measured by a reference cell (see
Chapter 2). Figure A.1 shows the ratio of module power to GTI for a reference day
on which both devices were clean. This day is used to calibrate the modules relative
to the reference cell. The GTI, the module temperature, and the wind speed at 10 m
height are shown in Figure A.2 for the reference day and the day of the drone-based
soiling measurement. The determined calibration factor is then used to calculate
the soiling loss on the measurement day as shown in Figure A.3. Module 1 is not
shown in either figure because the module was cleaned before the measurement
and is therefore defined to have a soiling loss of zero. Note that for the optical
calculation of the soiling loss, an angle correction was applied (see Equation 4.12).
The same angle correction should be applied for the electrical measurements for
the sake of consistency. This was carried out in a test run and it was found that
for the electrical measurements, the angle dependence played a neglectable role as
the angle of incidence was very close to zero for the time interval of interest. This
is due to the modules’ inclination of 30° and because the electrical measurements
took place around solar noon. Furthermore, the experiments took place in April
and September, which are months in which the sun reaches around 60° elevation
at solar noon in Almeria. Together with the 30° inclination, this leads to a nearly
perpendicular incidence.

Figure A.2 also shows in the center the measured module temperature for the
measurement day and the reference day. The temperature is measured at module 3
in both cases. It is assumed that the temperature is very similar for all four modules
since they are of the same technology, from the same manufacturer, have the same
orientation, and experience very similar operating conditions. Especially, it should
be noted that the soiling is not significant enough to cause a hotspot. The lower two
sub-figures of Figure A.2 show the wind speed on both days as the wind speed is a
key parameter influencing the module temperature.
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tively.



88

Appendix A. Electrical Reference Measurements

10 50 1200
9 49 1180
8 48 1160
70 a7 1140
g p
E 63546 1120
- B £
® 5245 1100 =
o e ~
s 8 =
E 404 1080 ©
= 3
3243 1060
2 42 1040
1 Mt 41020
0 40 ‘ ‘ : ‘ ‘ 1000
12:30 12:45 13:00 13:15 13:30 13:45 14:00
daytime UTC+1 Apr 08, 2022
10 50 | : 1200
9 49+ 11180
8 481 41160
7047t 11140
7 g
E 63548 1120 &~
° o £
) @ =
® 5245 11100 =
o 1= -~
7] o =
T 4pad 1080 O
2 3
[=]
3843 1060
2 42 1040
141 1020
0 40 ‘ ‘ : ‘ ‘ 1000
12:30 12:45 13:00 13:15 13:30 13:45 14:00

daytime UTC+1 May 09, 2022

FIGURE A.2: Module temperature, GTI and wind speed of the for the

first campaign. The upper sub-figure corresponds to the measurement

day itself and the lower sub-figure corresponds to the clean reference

day. The module temperature is used to account for the temperature

correction, as the module efficiency decreases with increasing temper-

ature. Note that, for the measurement day data between 13:23 and
13:27 is neglected.



A.1. First Campaign, Dust-Like Soiling 89

Soiling loss

10 T T T T T
module 4
9r e i0dUlE 3 b
module 2

8 ]

I'as 1
X 6f ]
%)
%)
S 5L .
=]
£
S 4 |
w

3 [

2+ ]

1r ]

0 1 1 1 1 1

12:30 12:45 13:00 13:15 13:30 13:45 14:00

Daytime UTC+1 Apr 08, 2022

FIGURE A.3: Soiling loss for modules 2, 3, and 4 during the first cam-

paign. The module powers are divided by the GTI and then divided

by the previously determined calibration factor. The averaged soiling

losses of modules 2, 3, and 4 are 4.2%, 3.7%, and 4.1%, respectively.

Data between 13:22 and 13:27 were excluded as the reference cell was
shaded by the scientists.



90 Appendix A. Electrical Reference Measurements

A.2 Second Campaign, Dust-Like Soiling

For the second campaign, the soiling loss was determined by comparing the powers
of the soiled modules with the power of the clean module. Figure A.4 shows the
ratio of powers for the case in which all modules are clean. The powers of modules
2,3, and 4 are divided by the power of the clean module 1. Thus, the determined
calibration factor is applied to obtain the soiling loss. Figure A.5 shows the calculated
soiling loss for the measurement day itself.
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A.3 Third Campaign, Dust-Like Soiling

The soiling loss is determined analogous to the second campaign. The corresponding
Figures are A.6 and A.7.
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FIGURE A.6: Calibration factors for the electrical calculation of the

reference soiling loss for the third campaign. The powers of modules
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A.4 Experiment with Inhomogeneous Soiling

The electrical loss is determined by comparing the power of the soiled modules to a
ule, as described in Chapter 2. Figure A.8 shows the ratio of the powers to
as a calibration factor. Modules 1 and 4 are soiled and module 2 is the clean
Figure A.9 shows the electrical soiling loss over time. After averaging,

clean mod
each other
reference.

there is a loss of 13.9% for module 1 and a loss of 14.1% for module 4.
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FIGURE A.8: Calibration of the power ratios for modules. The calcu-

lated calibration factor is 1.006 for module 1 and 1.021 for module 4.

Module power clean refers to the power of module 2 which has been
cleaned.
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FIGURE A.9: Soiling loss of both modules of interest. The calculated
soiling loss is 13.9% for module 1 and 14.1% for module 4.






97

Appendix B

Measurement Flights for the
Measurement of Dust

In Chapter 4 three measurement campaigns have been discussed. For each campaign
one flight has been shown. The first campaign consisted of four flights, the second
campaign consisted of three flights, and the third campaign consisted of one flight
only. The evaluations of the remaining flights, the evaluations that have not yet been
shown in Chapter 4 are now shown in this Chapter.

B.1 First Campaign

B.1.1 Second Flight

Figure B.1 summarizes the results of the second flight of the first campaign. The
soiling of the first validation module is determined with a deviation of 0.1% absolute.
The soiling of the second validation module is determined with a deviation of 1.0%
absolute. It should be noted that the second validation module was soiled with a
different soiling type than the other modules which explains an increased deviation.
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FIGURE B.1: Result plot of the second measurement flight of the

first campaign. The lower right module was chosen to be the clean

reference module while the upper right module was chosen to be the

soiled reference module. The upper numbers label the modules. The

number in the middle states the optically measured soiling loss while
the lower number is the electrical reference loss.
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B.12 Third Flight

Figure B.2 summarizes the results of the third measurement flight of the first cam-
paign. The soiling of the first validation module is determined with a deviation of
0.1% absolute. The soiling of the second validation module is determined with a
deviation of 1.0% absolute. It should be noted that the second validation module
was soiled with a different soiling type than the other modules which explains an
increased deviation.
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FIGURE B.2: Result plot of the third measurement flight of the first

campaign. The lower right module was chosen to be the clean ref-

erence module while the upper right module was chosen to be the

soiled reference module. The upper numbers label the modules. The

number in the middle states the optically measured soiling loss while
the lower number is the electrical reference loss.
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B.1.3 Fourth Flight

Figure B.3 summarizes the results of the fourth measurement flight of the first cam-
paign. The soiling of the first validation module is determined with a deviation of
0.4% absolute. The lower left module was used as second validation module and it
was cleaned before the flight. This explains the different soiling loss compared to the
other three flights of the same campaign. The soiling of the second validation module
is determined with a deviation of 0.3% absolute.
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FIGURE B.3: Result plot of the fourth measurement flight of the first
campaign. The lower right module was chosen to be the clean refer-
ence module while the upper right module was chosen to be the soiled
reference module. The lower left module was cleaned before the flight
which explains the different soiling loss compared to the other three
flights of the same campaign. The upper numbers label the modules.
The number in the middle states the optically measured soiling loss
while the lower number is the electrical reference loss.
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B.2 Second Campaign

B.2.1 Second Flight

Figure B.4 summarizes the results of the second measurement flight of the second
campaign. The soiling of the first validation module is determined with a deviation
of 1.0% absolute. The soiling of the second validation module is determined with a
deviation of 0.4% absolute.
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FIGURE B.4: Result plot of the second measurement flight of the

second campaign. The lower right module was chosen to be the clean

reference module while the lower left module was chosen to be the

soiled reference module. The upper numbers label the modules. The

number in the middle states the optically measured soiling loss while
the lower number is the electrical reference loss.
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B.22 Third Flight

Figure B.5 summarizes the results of the third measurement flight of the second
campaign. The left sub-string of the upper left module was cleaned before the
flight (two columns of cells cleaned). The soiling of the first validation module
is determined with a deviation of 0.1% absolute. In case of the second validation
module, the electrically and optically measured soiling losses are identical.
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FIGURE B.5: Result plot of the third measurement flight of the second
campaign. The lower right module was chosen to be the clean refer-
ence module while the lower left module was chosen to be the soiled
reference module. The left sub-string of the upper left module was
cleaned before the flight (two columns of cells cleaned). The upper
numbers label the modules. The number in the middle states the op-
tically measured soiling loss while the lower number is the electrical
reference loss.
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Appendix C

Further Validations of the
Electrothermal Model

The electrothermal model has been validated in two campaigns. In the first campaign
the module of interest was clean while in the second one the module was partially
soiled. The first campaign consisted of six days. Two of these six days have already
been discussed in the Chapter 6. For readability, the other days are discussed here.

Figures C.1 and C.2 (right) show the temperature modeled by the developed
model and the models form literature and compare them to the measured temperature.
The relevant meteorological parameters (measured as described in Chapter 6), namely
the GTI and the wind speed, are shown on the left hand side.
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FIGURE C.1: Comparison of the developed model with the measured
temperature and the thermal models from literature discussed in Chap-
ter 2 for the 28" and the 29" of April 2023.
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