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1. Introduction

Concentrating Solar Technologies (CST) arise as a significant option
in the energy transition towards European Union net-zero
greenhouse gas emissions target by year 2050. They are able to
participate in electric power generation, in green fuels synthesis,
and in industrial heat generation. Among the different CST layouts,
the future research trends aim to Solar Power Tower (SPT)
systems, due to their ability to reach high operational fluxes and
temperatures. However, these systems still require to increase
their optical and thermal efficiences, to improve dispatchability
and flexibility, to reduce operation and maintenance costs, and to
ensure reliability.

In this concern, flux density prediction is one of the most
important on-duty procedures, in order to quantify receiver
efficiency, as well as other important operating conditions, like
incident flux distribution smoothness. Most of the state-of-the-art
methods are based on ray-tracing simulations and camera-based
procedures. The authors acknowledge each of these
methodologies‘ strengths and propose a hybrid and universal data-
driven flux prediction methodology, combining and leveraging
cameras and simulations, while trying to avoid their
inconveniences. The main design requirements are reduced costs,
near-real-time result obtention, continuous and non-disruptive
operation, accuracy, and universality.

This methodology consists on the usage of 4 different neural
networks (CNNs) to provide the models with realistic features. As
seen in Fig. 1, a neural network is used to provide superposed
ideal simulated flux maps (without tracking error models) with
direction and power features from realistic simulations in first
instance (Sim2Sim), and experimental measurements later
(Sim2Real). Those realistic features are provided through
systematic comparison between simulations and camera-based
flux density measurements at the receiver aperture plane, as
shown in Fig. 2. The images can be obtained out of working hours
(during construction, for example) and optical cameras and targets
can be dismantled for normal operation, what allows a consistent
O&M cost reduction.

Fig. 3. Power correction procedure.

2. Ray-level power correction

The ray-level power correction leverages an attention-gated and
tuned U-Net approach, specifically tailored for continuous
distribution replications. Its input is a 1-channel 256x256 px
picture that gets downsampled 5 times through succesive
convolutional filters in order to extract the most relevant features
and then reconstructed through the 5 upsampling layers to
recover the original size. This neural network has been trained on
a dataset composed of 15927 simulated pairs of flux maps, based
on realistic experimental conditions collected between 2014 and
2016 at Solartrum Jülich (STJ) [1]. The 15928 inputs are simulated
without tracking errors and the groundtruths are simulated with
them.

Then, the input (ideal) and the prediction (realistic) are
downsampled to a 13x13 elements grid. Each of this grid‘s values
are the averages of each element pixels. These values are then
divided in order to get the average power gain factor and the
simulated ray power is multiplied times the gain factor that
correspond to the element where they intercept the aperture
plane. The process is summarised in fig. 4.

According to Fig. 4, the fittings reveal maximum deviations of
10.39% for X-axis and down to 1-2% for Y and Z-axes in central grid
elements. For peripheral elements, these values reach 15% in X-
axis and 2-3% in Y and Z-axes.

The 4 parameters of each distribution are then corrected in a CNN
trained on realistic simulations (with tracking errors). The result is
a set of 169 realistic direction distributions. From there, the
algorithm generates pseudo-random rays, governed by the
corrected distributions element-wise.
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Fig. 1. Complete operation flow diagram. Several thousands of flux maps (X) and simulated ray files (𝒅𝒙, 𝒅𝒚, 𝒅𝒛) are obtained at the receiver 

aperture plane from the simulation environment at Sim2Sim step.  The neural networks then predict realistic fluxes at the aperure plane from
ideal cases and the rays are projected towards 3D surfaces.

Fig. 2. Complete training routine, divided in Sim2Sim and Sim2Real steps with the aim
to address the parametric complexity. 

The image corrections (for flat surfaces) have been tested at 9
DNIs between 100 W/m² and 900 W/m², and at 7 different sun
positions. The average accuracy has been 88% (95% CI [87, 89]%)
with robust performances around 90% for DNIs ranging from 500
to 900 W/m² (usual operation conditions) and higher sun
positions. The highest flux prediction errors are below 8%.
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Fig. 3. Power correction per element at 900 W/m² the 01-08-2022 at 15:00:00

Fig. 4. Summary of results at 900 W/m², showing the model robustness against different sun positions.

3. Ray-level direction correction

In this case, the dimensional complexity needs to be reduced a second time: after the 
image is downsampled and the rays are classified along the 169 elements, their
directions are fitted to 3 probability density functions (PDF) element-wise. In X-axis, the 
distribution is a double-step function (eq. (1)), and in Y and Z-axis, it is a Beta 
distribution function (eq. (2)).

(1)

(2)

Where α, β > 0 are the shape parameters and B(α, β) is the
standard beta distribution function.

Fig. 4. Element 85 axis-wise distribution fitting (above) and Kolmogorov-Smirnov sanity
check for 13-05-2022 at 11:30.

Fig. 5. Parametric axis-wise direction prediction for element 85 the 13-05-22 at 11:30
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