SKY-IMAGING: AN OPEN-SOURCE PYTHON PACKAGE FOR ASI PROCESSING

Yann Fabel, Niklas Blum, Bijan Nouri, Paul Matteschk, David Magiera, Thomas Schmidt, Stefan Wilbert International All-Sky Imager Workshop 2025

25-26 February 2025, Rosenheim

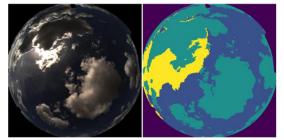
Agenda

- Introduction Sky-Imaging
- Autonomous Geometric Calibration
- ASI Anomaly Detection
- Dataset publication: SolarVision Almería
- Conclusion & Outlook

Introduction

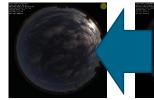
DLR

- Increased interest in all-sky imagers due to potential of enhancing the integration of solar energy:
 - Short-term solar forecasting
 - Image-based measurements of the solar resource (PyranoCam)
 - Detection of clouds and aerosols
- Automated processing/analysis essential to deal with large data quantities
- Many image (pre-)processing techniques are independent of application
- → Development of an open-source python package as toolbox for ASI processing



Nowcasting Model for DNI, GHI or GTI

Sky-Imaging A Toolbox for ASI Processing



300°

240° 0.2°

Imagemerging (multiple exposure times)

Combination of sensor and image data

Irradiance [W/m²] at 2023-05-06 07:06:30+01:00: 93.10

Cloud_Cam_Metas 13.01.2024

Data analysis and visualization

Automated

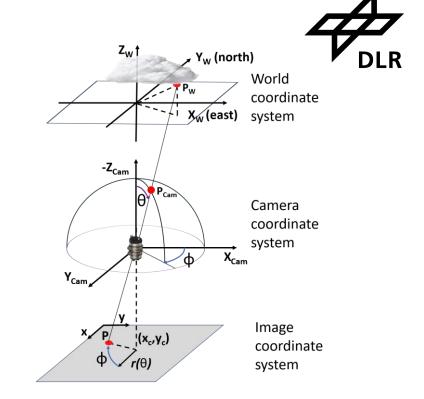
geometric

calibration

of ASIs

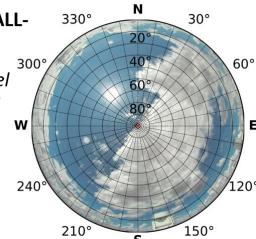
Anomaly detection in sky images

Geometric Calibration: Introduction

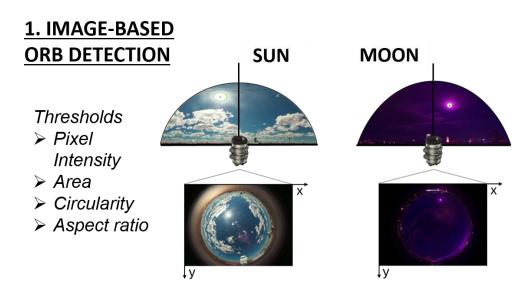

In sky imaging positions of clouds in the sky, radiance information etc. need to be reconstructed from images

Geometric Camera Models enable this:

- Intrinisic part maps of image pixel coordinates (x,y) to 3D-cartesian coordinates $(X_{cam},Y_{cam},Z_{cam})$
 - Lens distortion described by coordinates of lens center and polynomial coefficients
 - e.g. Scaramuzza model
- External orientation (3 rotation angles) maps $(X_{cam}, Y_{cam}, Z_{cam})$ to world coordinates $(X_w: east, Y_w: north, Z_w: zenith)$


Our novel tool <u>SuMo</u>:

- Automatically determines calibration parameters (intrinsic/ external) based on sun and/or moon positions detected in all-sky images
- No need for manual interference on-site
- Allows for retrospective calibration
- Continuous monitoring of ASI's geometric calibration possible, e.g., to detect (unintended) changes of external orientation
- Independent of camera hardware


GEOREFERENCED ALL-SKY IMAGE

Each all-sky pixel (x,y) is assigned an azimuth and elevation angle.

Geometric Calibration: Method

2. ASTRONOMIC CALCULATION ORB POSITIONS

→ GPS COORDINATES CAMERA
→ TIMESTAMPS ALL-SKY IMAGES

→ ASTRONOMICAL ANGLES:
(Azimuth, Elevation)

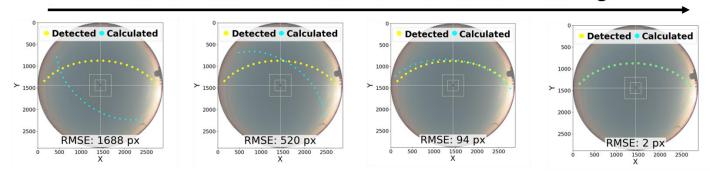
HORIZON

HORIZON

HORIZON

HORIZON

HORIZON


HORIZON

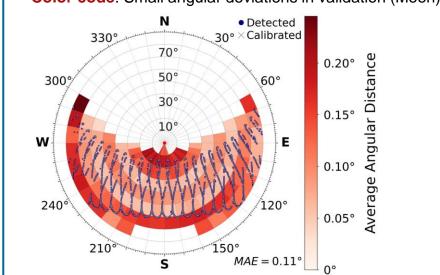
HORIZON

3. GEOMETRIC CALIBRATION

(Detected vs. Calculated)

Solver: Loss Minimization for Pixel Position Matching

Calibration of: ✓ Internal Camera Parameters ✓ External Orientation ✓ Center Coordinates

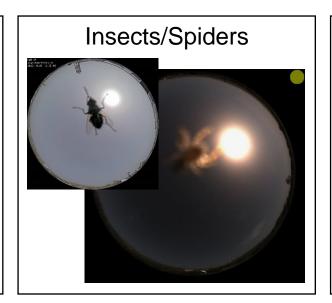

Geometric Calibration: Validation

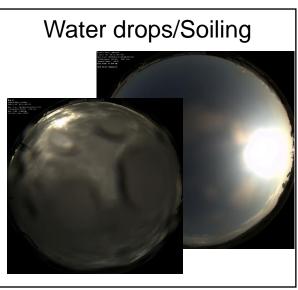
- Validation with 5 camera types at three locations:
 - RMSE ≤ 0.38° achieved for each camera
- Influence of orb type (Sun/ Moon), period duration, season, latitude, atmospheric conditions and image quality evaluated:
 - Best case: *RMSE* 0.14° moon images of regular quality
 - Worst case: RMSE 0.98° sun images of low quality (for one camera)
- Cross-validation with semi-automatic calibration method (ORION) demonstrates improved usability & accuracy
- Journal paper currently in review:
 - N. Blum et al., "Geometric Calibration of All-Sky Cameras Using Sun and Moon Positions: A Comprehensive Analysis", Solar Energy (in review).

Orb positions detected in image vs. astronomically expected:

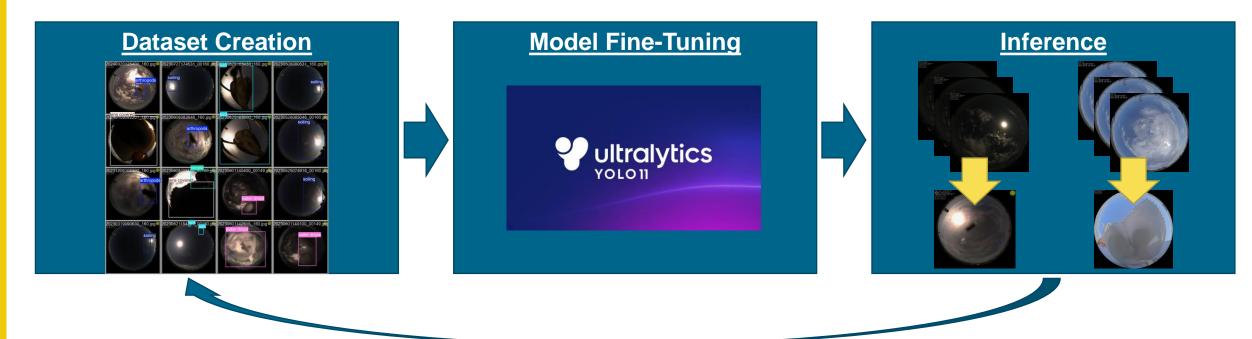
- Grey/ blue dots: strong coincidence in calibration (Sun)
- Color code: Small angular deviations in validation (Moon)

ASI Anomaly Detection Introduction


Motivation:


- In autonomous ASI operation corrupted images may impact the performance if not detected
- Warnings can be issued when anomalous images were detected
- Required actions may be identified (e.g., cleaning, scarecrows)
- Retrospective data cleaning for benchmark purposes

Possible Anomalies

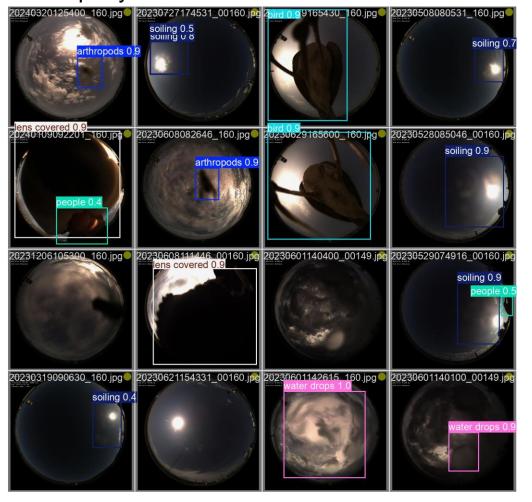


Yann Fabel, DLR Institute of Solar Research, 25/02/2025

ASI Anomaly Detection YOLO Fine-Tuning

- Anomaly detection via object detection model (<u>YOLOv11</u>):
 - Create dataset by searching camera logbooks and labeling images via label-studio
 → 390 labeled images
 - Fine-tune pretrained YOLO model to detect anomalies using ultralytics software
 - Apply inference on large datasets to extend anomaly dataset and repeat procedure

ASI Anomaly Detection Validation



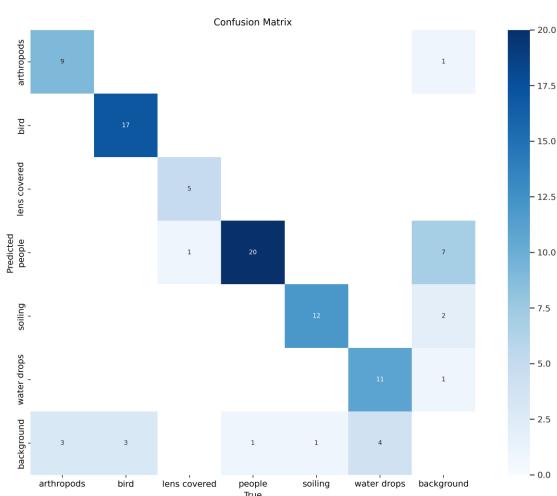
- Evaluation after
 1st iteration
- Train/validation split (80/20)

■ Train: 302 images

Valid: 78 images

Examplary results on validation set

ASI Anomaly Detection Validation

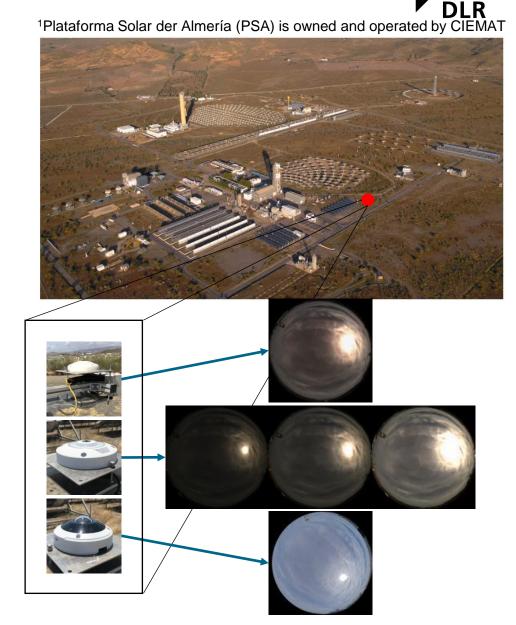

Object detection metrics of predicted boxes on validation set

Precision: TP/(TP+FP)
 → how many detected objects are actually correct

Recall: TP/(TP+FN)
 → how many real objects were detected

mAP50: average precision for Intersection over Union
 → how well do predicted and ground truth boxes match

Class	Instances	Precision	Recall	mAP50
All	87	0.96	0.78	0.91
Arthropods	12	0.97	0.75	0.96
Birds	20	0.99	0.85	0.87
Lens cov.	6	1	0.72	1
People	21	0.9	0.84	0.96
Soiling	13	0.98	0.77	0.86
Water drops	15	0.9	0.73	0.84



Dataset Publication

- Solar Vision Almería Dataset
 - 2 years-dataset (August 2022 July 2024) from PSA¹
 - 3 All-sky imagers
 - Mobotix Q26: Single-exposure times (160µs)
 - Mobotix Q71: Multiple-exposure times (80-320µs), HDR
 - AXIS M3058-PLVE: HDR
 - Additional measurements from meteorological station
 - Irradiance (GHI, DNI, DHI)
 - Temperature, relative humidity, pressure, wind speed/direction

Motivation

- Reproducibility of published works
- Perform benchmarks for model comparison
- Application of sky-imaging toolbox

Conclusion

Sky-Imaging Python Package:

- Toolbox for ASI Processing:
 - Autonomous geometric calibration
 - Anomaly Detection
 - Data analysis and visualization
 - **.** . . .

SolarVision Almería Preview:

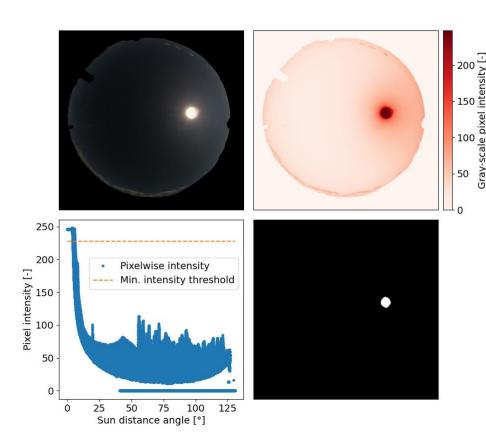
- 2-Years dataset of 3 ASI + irradiance measurements from PSA
- Current publication process on <u>Pangaea</u> (until then dataset can be shared on request)

Outlook

- Planned data article on SolarVision Almería dataset
- Planned publishing of anomaly dataset and cloud segmentation masks
- Further community development of open-source software for all-sky imagers and open-data plattforms (e.g., SkylmageNet)

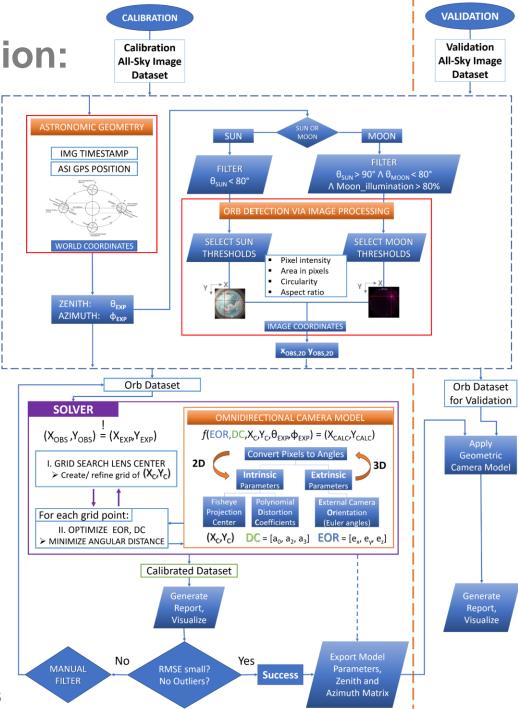
Thank you for your attention! Questions? yann.fabel@dlr.de

https://github.com/DLR-SF/sky_imaging


https://gigamove.rwthaachen.de/en/download/880e69f789d 0445b434be6d292973b74

Geometric Calibration: SuMo Method

- Image-based Orb Detection:
 - 1. A Camera mask is applied to neglect all pixels not representing the sky
 - 2. Image is transformed into gray-scale
 - Image is transformed into binary image by applying Otsu algorithm:
 - Split pixels into two classes by an intensity threshold
 - Minimize weighted within-class variance
 - (Threshold adjusted to comply with specific minimum)
 - 4. Consider contour of largest white region in binary image (should be small and circular) that must fulfill these criteria:
 - Area limited by contour must be within certain range
 - Aspect ratio of fitted ellipse should be close to one
 - Circularity of contour should be close to 1



Geometric Calibration: SuMo Method

- Astronomic Calculation of Orb Positions
 - <u>pyEphem</u> python package used for astronomical calculations
 - Spherical coordinates of Sun and moon calculated from timestamp and the camera's geolocation (considering atmospheric refraction)
 - Only periods where respective orb can be observed theoretically
 - Sun: solar elevation at least 10°
 - Moon:
 - Moon elevation at least 10°
 - Solar elevation not exceeding -6°
 - Moon phase at least 80%

Geometric Calibration: SuMo Flow Chart

Impressum

Topic: **Skylmaging**:

An Open-source Python Package for ASI Processing

Date: 25.02.2025

Author: Yann Fabel

Institute: Solar Research

Bildcredits: All images "DLR (CC BY-NC-ND 3.0)"