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Abstract 1

With the advancement of digitization in the era of Industry 4.0 (I4.0), highly automated, 2

semi-autonomous, and fully autonomous systems are emerging. Within this context, multi- 3

agent systems (MAS) offer a promising approach for automating tasks and processes based 4

on autonomous agents that work together in an overall system to increase the degree of 5

system autonomy stepwise in a modular and flexible way. A critical research challenge 6

is determining how these agents can collaboratively engage with both other agents and 7

human operators to facilitate the gradual transition from automated to fully autonomous 8

industrial systems. To close transparency and connectivity gaps, this study contributes 9

with a framework for the collaboration of agents and humans in increasingly autonomous 10

MAS based on a Digital Twin (DT). The framework specifies a standard-based data model 11

for MAS representation and proposes to introduce a DT infrastructure as a service layer 12

for system coordination, supervision, and interaction. To demonstrate the feasibility and 13

assess the quality of the framework, it is implemented and evaluated in a case study in a 14

real-world industrial scenario. As a result of the study, we infer that the DT framework 15

offers significant benefits in facilitating transparent and seamless cooperation between 16

agents and humans within increasingly autonomous industrial MAS. 17

Keywords: Autonomous System, Multi-Agent System, DT, Industry 4.0, Collaboration, 18

Self-X 19

1. Introduction 20

In today’s rapidly evolving industrial landscape, there is an increasing demand for 21

more efficient, flexible, robust, and cost-effective production systems. Technological ad- 22

vances from Industry 4.0 (I4.0) are enabling a transformative shift that evolves industrial 23

system infrastructures to highly adaptable and autonomous systems [1]. These advanced 24

systems are expected to execute complex tasks and processes in a data-driven and intel- 25

ligent manner, with minimal human intervention, while meeting the high demands of 26

modern industrial production [2]. 27

As industry strives to meet these high expectations, agent-based approaches have 28

emerged as a promising solution. Thus, industrial processes are stepwise automated in a 29

modular way, based on the introduction of intelligent agents that take over responsibility 30

for individual tasks [3,4]. However, despite the progress made in automating single process 31

tasks, significant challenges remain when it comes to the collaboration of autonomous 32
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agents in multi-agent systems (MASs) for a flexible, efficient, and safe end-to-end automa- 33

tion of entire industrial processes [5]. 34

In particular, the gradual transition from classical automation systems to autonomous 35

systems, in which agents gradually automate tasks and work alongside human operators, 36

raises complex questions about system coordination, supervision, and interaction [6]. Tra- 37

ditional industrial automation systems typically allow operators to monitor and control 38

industrial processes from a centralized control room through the use of Human-Machine 39

Interfaces (HMIs) [7]. Thus, these systems differ substantially from MASs, which execute 40

industrial processes through a decentralized network of agents. While agents cooperate 41

internally using, for example, custom software interfaces or a specialized agent communi- 42

cation language [8,9], they typically function as black boxes, lacking unified interfaces for 43

monitoring their internal state, invoking their services, and understanding their role in the 44

overall structure of the MAS [6,7]. The lack of transparency and unified interfaces for coop- 45

eration with other agents and human operators introduces critical gaps in the evolutionary 46

development and supervision of increasingly autonomous MAS. To bridge these gaps, 47

agents must be able to communicate their roles, capabilities, and operational states within 48

the system. In addition, they should offer interfaces that enable collaboration with both 49

other agents and human actors for seamless automation of processes. This transparency 50

and connectivity are essential for the trusted, flexible, and successful gradual transition 51

toward agent-based adaptive and autonomous systems in industrial environments. 52

This article aims to address these challenges by exploring the potential of a Digital 53

Twin (DT) to improve transparency and support inter-agent and human-agent collaboration 54

in industrial MASs. Thereby, this study proposes a framework using DTs not only as a 55

representation of the physical space but also to virtually represent agents in the MAS itself. 56

On one hand, the DT serves as a shared medium for agents to represent themselves, monitor, 57

and discover other agents in the system, and request task execution for the collaboration 58

of agents to enable the seamless automation of processes within the MAS. On the other 59

hand, the data-driven DT approach is used to implement interfaces to humans, enabling 60

human operators to transparently supervise agent-based process execution. Through this 61

approach, we strive to enable smoother transitions toward fully autonomous systems while 62

ensuring robust monitoring, control, and error handling during the gradual automation 63

process. 64

The research question driving this study is: How can the integration of DTs as a service 65

infrastructure for increasingly autonomous MASs overcome challenges related to transparency and 66

inter-agent and human-agent collaboration in the industrial domain? To answer the research 67

question, this study first gives an overview of the theoretical background of autonomous 68

systems, MAS, and DTs. Second, the current state-of-the-art with respect to DTs as a baseline 69

for industrial MAS is summarized, and the novelty of the work is emphasized. Third, the 70

research method is presented to demonstrate how the study systematically generates new 71

knowledge through a design-centered approach. Subsequently, the framework for agent 72

collaboration based on a DT is introduced, and the proposed concepts are demonstrated and 73

evaluated in a case study to emphasize how the framework can be applied in a real-world 74

industrial scenario and how suitable it is for its intended purpose. Finally, the discussion 75

and conclusion sections reflect the results of the study and explicitly answer the underlying 76

research question. 77

2. Background 78

First, an overview of the fundamental theoretical background of this work is given, 79

which encompasses autonomous systems, MASs, and DTs. 80
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2.1. Autonomous Systems 81

An autonomous system is commonly understood in state-of-the-art research as a 82

system capable of achieving its objectives within uncertain environments with minimal 83

or no external intervention [2,10–12]. Because there is currently no universally accepted 84

standard for what exactly constitutes an autonomous system [13], the precise definition of 85

autonomous systems remains uncertain. The result is that system autonomy is characterized 86

differently in various application domains [14,15]. 87

The term ’autonomous’ originally translates into self-governance, which in a technical 88

context implies independent decision-making, adaptation, and action with little or no 89

human involvement [2,16]. Autonomous industrial systems typically possess the ability 90

to sense, analyze and interact with their environment, enabling them to pursue objectives 91

despite unpredictability or change. This self-sufficiency distinguishes them from automated 92

systems, which follow predefined rules in stable contexts and lack robust adaptation to 93

new or uncertain situations [17]. 94

System autonomy is widely acknowledged as a spectrum, not a binary state, with 95

systems evolving through incremental advancements toward greater degrees of auton- 96

omy [1,12]. The trend is to develop systems with increasingly advanced self-x capabilities 97

such as self-learning, self-management, or self-adaptation. This ongoing process can be 98

seen as a ’quest for autonomy’ that has preoccupied humanity for decades [18]. The devel- 99

opment of industrial autonomous systems is still in an early stage compared with research 100

efforts in other domains such as space or military. Although there are already some authors 101

who discuss first concepts of system autonomy in the industrial field [1,2,13,17,18], the 102

level of automation in the industrial domain generally remains low compared to other 103

sectors [1]. 104

In summary, the concept of system autonomy lacks standardization, reflecting diverse 105

interpretations in the current state of research concerning the criteria that characterize 106

autonomous systems. Generally, autonomous systems are defined by their independent 107

pursuit of goals in uncertain environments with limited human intervention. Thereby, 108

systems usually evolve towards higher degrees of autonomy on the basis of ongoing 109

technological progress. 110

2.2. Multi-Agent Systems 111

A MAS consists of multiple interacting agents that collectively work to solve complex 112

tasks that are difficult or impossible for a single agent to handle. Each agent is responsible 113

for accomplishing one or more tasks and collaborates with other agents to achieve global 114

system goals in a distributed and decentralized manner [9]. 115

Accordingly, an agent is the fundamental unit of a MAS. It is defined as an entity 116

situated in an environment that senses various parameters and, based on these perceptions 117

in conjunction with its goals, makes decisions and performs actions to achieve those goals. 118

Such an entity may be a software component, hardware component, or a hybrid of both. 119

The environment refers to the context or location in which the agent operates, such as a 120

network or a software platform [8]. 121

MAS have emerged as a transformative technology in the industrial sector, effectively 122

addressing challenges such as rapidly evolving market conditions, globally distributed 123

production networks, and the increasing complexity of industrial systems [3,4]. By de- 124

composing complex industrial systems into smaller subsystems - each implemented as 125

decentralized, cooperative, and intelligent agent [3,4] - MAS improve flexibility, autonomy, 126

and operational efficiency [5]. Consequently, MAS technology has been applied to auto- 127

mate a wide range of industrial use cases, including process control, production planning, 128

scheduling, monitoring, quality control, or fault diagnosis [5]. 129
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Agent-based strategies are recognized for their potential benefits, but practical de- 130

ployment in industrial environments is still relatively rare [4,5,19]. Key difficulties in MAS 131

involve the coordination of collaboration between autonomous agents to ensure that local 132

actions culminate in the fulfillment of global objectives in a reliable way [8,9]. Furthermore, 133

there are research gaps related to the cooperation of agents with humans lacking user inter- 134

faces for monitoring and control [6,7] and missing real-world applications that demonstrate 135

and evaluate the application of agent-based approaches in industrial environments [20]. 136

In summary, a MAS is a network of agents that collaborate to achieve the overall 137

goals of the system. Challenges in the industrial domain include, but are not limited 138

to, inter-agent collaboration, human-agent cooperation, and studies in real-world system 139

environments. Closing research gaps related to transparency and connectivity is essen- 140

tial to pave the way for a successful and trusted agent-based gradual transition toward 141

autonomous systems and their widespread adoption in the industrial domain. 142

2.3. DTs 143

A DT is essentially a digital representation or virtual replica of a physical asset, such 144

as a product, machine, or entire system. This virtual model reflects the real-world object 145

and allows for simulation, analysis, and monitoring throughout its lifecycle [21]. Due to its 146

high potential in different application domains such as industry, health or smart cities, the 147

interest in DTs has grown considerably in recent years [22]. 148

The terms Digital Model (DM), Digital Shadow (DS), and DT, although related, de- 149

scribe different levels of digital representation and interaction between the physical and 150

digital worlds. An authoritative classification by Kritzinger et al. [23] differentiates them 151

according to the degree and direction of the data flow as illustrated in Figure 1. Thereby, a 152

DM is a static representation with no automatic synchronization of data between the virtual 153

representation with its physical counterpart. A DS automatically receives data from the 154

physical environment and mirrors the latest up-to-date information of physical systems or 155

components. Finally, the DT is a bi-directional representation where changes in the physical 156

asset update the virtual twin and vice versa. 157

Digital Model

Physical
Object Digital

Object

Digital Shadow

Physical
Object Digital

Object

Digital Twin

Physical
Object Digital

Object

manual data flow automatic data flow

Figure 1. Differences between a DM, DS, and DT according to the classification of [23].

DTs are increasingly recognized as a foundational technology in the industrial domain, 158

enabling real-time virtual replication of physical assets and processes to enhance operational 159

insight and control. They support continuous monitoring, predictive maintenance, and 160

process optimization by linking data flows bidirectionally between the physical and digital 161

realms, thus facilitating proactive decision-making and reducing downtime [24]. Current 162

research emphasizes their role in advancing I4.0 by integrating DTs with cyber-physical 163

systems to create smart, adaptive production environments [25]. However, challenges 164

persist, including managing complex data integration, ensuring model accuracy, addressing 165

cybersecurity concerns, and developing standardized frameworks for implementation [26]. 166
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In summary, a DT is a dynamic virtual representation of a physical asset or system 167

that enables use cases such as real-time monitoring, simulation, and optimization. It serves 168

as a foundational technology in I4.0, facilitating improved operational efficiency. 169

3. Related Work 170

Existing research relevant to this study predominantly employs DTs as a foundational 171

element for industrial MASs. Basically, the integration of MASs and DTs in industrial 172

settings has attracted significant research interest, with current studies generally differenti- 173

ating between two main categories: MAS with DT, where DTs serve as agent services for 174

sensing and acting upon physical assets, and MAS for DT, where agent-based approaches 175

are used to develop or enhance DTs [22,27]. 176

In the first category, MAS with DT, DTs function as a service-oriented layer that enables 177

agents to observe and influence physical processes. For example, Ricci et al. [28] propose 178

the concept of a Web of DTs (WoDT), an open and distributed ecosystem that connects 179

multiple DTs to support applications such as healthcare and smart mobility. Similarly, 180

Mariani et al. [29] present an integration architecture that clearly separates the MAS layer 181

from the DT layer, using DTs as services to access and control physical assets. 182

Conversely, the MAS for DT category focuses on leveraging MAS architectures to 183

build or enrich DT frameworks, often incorporating cognitive features. Cruz-Salazar et 184

al. [30] present an agent-based Cyber-Physical Production System (CPPS) architecture that 185

supports self-x capabilities in industry, utilizing the Asset Administration Shell (AAS) for 186

representation. Lorente et al. [31] discuss agent-based DT modeling for maintenance coor- 187

dination, while Zheng et al. [24] integrate MAS components with semantic models within a 188

five-dimension DT framework, where agents facilitate interaction among manufacturing 189

elements. 190

Our approach aligns with the first MAS with DT category; however, it distinguishes 191

itself by not using DTs solely as a medium to access physical resources but also to virtually 192

represent the MAS itself. Thus, we focus on modeling run-time and design-time information 193

of the agents within the DT to represent the structure and distributed state of the MAS. This 194

agent-centric representation forms a foundation for enhanced transparency and inter-agent 195

and human-agent collaboration, a perspective that remains underexplored in the existing 196

literature. 197

Only a few studies have adopted a similar agent-centric DT approach. Sidorenko et 198

al. [6] propose a capability- and skill-based framework leveraging the AAS (Asset Adminis- 199

tration Shell) for collaboration between humans and agents in modular and reconfigurable 200

production systems. Their DT enables agents and humans to be represented based on capa- 201

bilities, with specific agents managing dynamic task assignment in mixed human-agent 202

processes. While this study also uses skill-based modeling and AAS, the focus and technical 203

implementation differ from our research. Sidorenko et al. focus on adaptivity in plug-and- 204

produce production systems, whereas our work targets a DT as a shared medium to enable 205

transparency and connectivity of agents and humans in increasingly autonomous MAS. 206

From a conceptual point of view, the plug-and-produce production systems is realized 207

based on a hierarchical MAS structure with managing agents for the flexible execution of 208

processes, while we propose loosely coupled task-oriented collaborations between agents 209

and humans based on a DT. Technically, we virtually represent agents and no humans in 210

the MAS, specify a distinct AAS model structure, and adopt a microservice-based approach 211

to provide control interfaces for flexible cooperation. 212

Furthermore, Ferreira et al. [7] introduce a supervision tool for MASs that retrieves and 213

visualizes agent information such as hardware resources, skills, and performance metrics. 214

This work differs from ours primarily in its limited focus on agent monitoring rather than 215
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collaboration between agents and between humans and agents, as well as in its technical 216

implementation. Unlike our approach, Ferreira et al. use sniffer services instead of a DT 217

infrastructure, the JADE framework instead of a collection of microservices, and individual 218

data models instead of the standardized AAS data model specification. 219

Overall, the novelty of our study lies in three key aspects: first, the use of DTs to 220

represent and provide access not only to physical resources but to agents in the MAS 221

itself; second, the adoption of a skill-based modeling approach for this purpose grounded 222

in the AAS standard; and third, the conceptualization of a DT infrastructure that forms 223

the backbone for improved transparency and seamless agent and human collaboration in 224

increasingly autonomous industrial MASs. 225

4. Method 226

This study employs a Design Science Research (DSR) approach to develop and validate 227

a novel technical framework that fosters transparency and collaboration between agents 228

and humans within industrial MASs with an increasing degree of autonomy. DSR is well- 229

suited for creating innovative artifacts that address complex real-world problems through 230

iterative design, implementation, and evaluation [32]. 231

1) Problem
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2) Suggestion

3) Development

C
irc
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ct
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n

5) Conclusion

Lack of transparency and interfaces
for agent and human collaboration in
increasingly autonomous MAS 

Digital twin as a service layer to im-
prove transparency and collaboration
between agents and humans

Design and implemention of the digital
twin service layer as a collaborative
interface for supervision and collabo-
ration between agents and humans 

Evaluation of the digital twin service
layer with respect to the study goals 

Reflect on the effectivesness of the
design and generalize knowledge

Figure 2. Research process following the multi-step framework outline by Kuechler and Vaish-
navi [33].

As illustrated in Figure 2 the DSR research process of the study follows the multi-step 232

approach from Kuechler and Vaishnavi [33]: 233

1. Awareness of the problem: As outlined in Section 1 and Section 2, the black-box 234

nature of agents and lack of collaboration interfaces impair transparency and inter- 235

agent and human-agent collaboration in increasingly autonomous industrial MASs. 236

2. Suggestion: In response, a novel DT framework is proposed that introduces a DT- 237

based service layer for MASs to alleviate transparency gaps and improve inter-agent 238

and human-agent collaboration. 239

3. Development: Accordingly, the DT service layer is developed as a collaborative 240

interface to allow monitoring, supervision, and seamless inter-agent and human-agent 241

collaboration in the MAS. First, in Section 5 a technology-independent general design 242
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is proposed based on a comprehensive review of the existing literature, standards, 243

and architectural principles. Thereby, a standard-based data model, a microservice 244

architecture for managing DT data, and operational workflows are specified as core 245

components of the novel DT framework. Second, the design is applied to the real- 246

world industrial domain in a case study where the design is implemented as described 247

in Section 6. 248

4. Evaluation: Next, the DT framework is evaluated in the research context of the case 249

study. Thus in Section 7, it is examined whether the DT meets predefined design goals 250

by deploying the service infrastructure, conducting tests, and assessing quantitative 251

and qualitative metrics related to the functional and non-functional requirements. 252

These have been derived from the research context of the case study and general 253

industrial quality attributes discussed in Section 2. 254

5. Conclusion: Section 8 addresses the potential threats to both the internal and external 255

validity of the DSR study. Finally, in Section 9 results are summarized and insights 256

from evaluation and discussion are synthesized to generalize knowledge about the 257

effectiveness of the design with respect to the study problem for broader industrial 258

adoption. 259

In summary, this study employs the DSR methodology, adhering to the multi-phase 260

research process described in [33]. In the course of the study, a general framework for trans- 261

parency and human-agent collaboration in increasingly autonomous MAS is developed in 262

the abstract design phase and then implemented and evaluated in a case study to assess 263

its feasibility in a real-world industrial scenario. As a result, this study communicates the 264

effectiveness of the proposed DT framework as a possible solution for limited transparency 265

and inter-agent and human-agent collaboration challenges in increasingly autonomous 266

industrial MAS. 267

5. Design 268

Structured into three subsections, this section presents the technology-independent 269

development phase in which a general design of the DT service layer is conceived. In 270

Section 5.1 a standard-based data model for the virtual representation of agents is specified. 271

Subsequently, in Section 5.2, a microservice architecture is established to delineate the 272

service components and their interactions that collectively comprise the DT service layer. 273

Finally, operational workflows are outlined in Section 5.3 to describe how the DT service 274

layer can be leveraged as a foundation for transparency and inter-agent and human-agent 275

collaboration. 276

5.1. Data Model 277

This section specifies a standardized data model for the DT service layer to virtually 278

represent agents in the MAS. For this purpose, the AAS of the Reference Architecture Model 279

Industrie 4.0 (RAMI 4.0) is being used as a popular foundation for DTs in I4.0 [34]. The 280

AAS provides a meta-model for representing assets in a modular and interoperable manner. 281

By adopting the AAS as the foundational structure, this approach allows for consistent 282

representation and interaction across heterogeneous system components while maintaining 283

alignment with established industrial standards [35]. 284

In the proposed model, each agent in the MAS is represented by an individual digital 285

counterpart, which is embodied by its own AAS instance. This AAS instance encapsulates 286

both its static design-time and its dynamic run-time information comprised into AAS 287

submodels. Following the principles of capability-based engineering and making use of 288

the proposed AAS ontology by Bayha et al. [36], two submodels form the core elements of 289

the DT data model: the Capabilities submodel and the Skills submodel. 290
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The Capabilities submodel describes the abstract goals and tasks an agent can ac- 291

complish in the context of an industrial process. Each capability represents a potential 292

contribution to MAS-level objectives, such as production scheduling, task coordination, 293

or quality control. Explicit modeling of capabilities within the AAS supports automated 294

discovery of suitable agents to handle certain tasks, thereby facilitating inter-agent as well 295

as human-agent collaboration during process execution. 296

The skills submodel complements this by specifying the concrete executable functions 297

employed to realize agent capabilities. Each skill defines an operation that the agent can 298

either execute internally or expose for invocation by other agents in the MAS. The definition 299

of a skill includes both design-time and run-time aspects. Design-time aspects provide 300

support for well-defined and interoperable service interfaces. They include, but are not 301

limited to, required input variables, expected outputs, and technical meta-data to invoke 302

agent services such as endpoint addresses or operation timeouts. The run-time aspects 303

represent execution data, for example, the current execution state or the operation results, 304

to support process monitoring and ensure transparency. This dual view enables the DT 305

not only to describe what an agent can do, but also provide information on how to invoke 306

other agents services and monitor agent-based process execution. 307

Together, the Capabilities and Skills submodels establish a hierarchical description 308

linking the strategic goals of an agent to the concrete operations required to achieve them. 309

A central characteristic of the model is the explicit linkage between capabilities and the 310

corresponding skills that implement them. This relationship is formalized through dedi- 311

cated Relationship elements, which associate one or more skills with a specific capability. 312

In this way, abstract agent goals are systematically anchored to their concrete operational 313

methods. On the one hand, capabilities simplify agent service invocation and mapping 314

of agent skills to process steps. On the other hand, skills allow to track the execution of 315

subtasks as a baseline for transparent monitoring of agent-based task execution. 316

Agent:
Asset Administration Shell

second
RelationshipA:
Relationship

Element

Capabilities:
Submodel

CapabilityA:
Capability

Skills:
Submodel

SkillA:
Operation

first

1 1

11

1
n

1
n

Figure 3. Structure of the AAS instance to represent agents in the MAS based on the skill-based
approach discussed in [36].

The AAS structure is inherently extensible, allowing additional submodels to be 317

incorporated depending on individual application requirements. For instance, a process 318

submodel extension can allow dynamic mapping of agent capabilities to process entities 319

to support flexible task-assignments in plug-and-produce system settings, as discussed 320

in Section 3. Other examples include but are not limited to dedicated documentation 321

submodels to provide human operators with explanatory resources or an enhancement 322

with reasoning and decision-making aspects inspired by the Belief-Desire-Intention (BDI) 323

model. Such extensions might promote more effective human-agent interaction and enrich 324

the basis for collaborative problem-solving. However, the focus of this study is on the 325
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development of a standard-based MAS representation concerned with transparency and 326

connectivity goals. An extension of the baseline data model with additional submodels 327

might be useful to invest in subsequent studies to support a broad range of industrial use 328

cases but is out of the scope of this study. 329

Figure 3 illustrates the overall AAS representation graphically. The data model fol- 330

lows a layered structure in which each agent’s AAS instance encapsulates both high-level 331

objectives in the Capabilities and executable functions in the Skills submodel, together with 332

the relational constructs to interconnect them. By providing a standardized and extensible 333

means for describing agents within a DT, this model lays the foundation for automated 334

discovery and orchestration of MAS participants, invocation of interoperable skill interfaces 335

for agents and humans, and transparency of process execution for subsequent supervisory 336

mechanisms. 337

5.2. Architecture 338

The integration of DTs with industrial MAS requires an architecture that is capable of 339

managing agent design-time and run-time information and providing interfaces to access 340

agent data reliably and in real-time. To meet this requirements, we propose a generic 341

microservice-based architecture in which the DT infrastructure acts as an intermediary 342

information system for the collaboration of agents and humans. The architecture basically 343

comprises two subsystems, as illustrated in Figure 4: the MAS and the DT service layer. 344

These subsystems are closely interlinked through standardized data management and 345

interaction mechanisms to close the loop between descriptive agent data within the twin 346

and actionable process execution in the MAS. 347

Multi-Agent SystemAgent

Digital Twin Service Infrastructure

Database

Broker

API APIAgent 2 Agent 3

Visualization Service

Alerting Service

HMI

Operator

Agent Directory Service

Agent
Discovery

Agent
Description

Invoke Agent
Service

Personalized Moni-
toring Dashboards

Create Alert
Rules

Monitor Alert
Rules

Send
Notifications

Interactive Visuali-
zation of Agent Data

Persist
Agent

Design-
Time Data

Persist
Agent

Run-Time
Data

Agent
Data
API

Subscription
API 

Runtime
Updates

Model
Regist-
ration

Get DT
Data

Invoke
Agent

Service

Agent 1

Subsystem

Service

Functionality

API

Figure 4. Architecture of industrial MASs enhanced with a DT infrastructure for increased trans-
parency and inter-connectivity.

The first subsystem is the MAS that automates the operational tasks of the industrial 348

plant based on agents. Agents register themselves in the DT infrastructure during initial 349

deployment or re-deployment, so that the current AAS instance of the agent is created or 350

updated within the twin. Whenever an agent executes or invokes an operation, real-time 351

run-time updates are communicated back to the DT infrastructure, ensuring that execution 352

data remain synchronized with the system state. In this way, agents do not only provide 353

their own data to the DT but can also retrieve information about other agents from it. 354

To retrieve information from the DT, agents can actively request data using an API or 355
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automatically receive notifications by subscribing to events such as value updates, for 356

example, to invoke capabilities of agents utilizing the DT. This enables agents to discover 357

other agents in the MAS, explore which operations they expose, establish task-oriented 358

collaborations, monitor the state of other agents, and receive notifications on the occurrence 359

of events. 360

The second subsystem is the DT infrastructure, which provides the central services 361

required to manage the agent data and APIs and HMIs as a baseline for access and control 362

by other agents and human operators. Its architecture, following microservice principles, 363

is composed of five core components. The first is a database, which ensures persistent 364

storage of AAS-based agent models and run-time execution records. The second is a 365

broker service, which operates as the access layer and manages interfaces through which 366

both agents and humans can actively read and write DT data or create subscriptions to 367

receive agent data updates automatically. The broker also regulates real-time data exchange 368

and enforces structural consistency of AAS representations. The third component is a 369

visualization service, responsible for rendering both agent design and run-time information 370

graphically. This component supports supervisory operators in understanding current 371

MAS interactions, monitoring performance, and diagnosing potential issues. The fourth 372

component is an alerting service, which allows to flexibly create alerting rules and issues 373

notifications on channels such as e-mail or messaging apps to warn in case of abnormal 374

runtime conditions such as execution failures, timeouts, or contradictory agent states. The 375

final component is an agent directory service that allows operators to graphically discover 376

agents in the MAS, explore their AAS representations, and possibly invoke agent operations 377

for automated task execution. 378

Although the proposed DT architecture focuses on improving transparency and con- 379

nectivity in industrial MAS only, it is extensible by design. For instance, supplementary 380

security and interoperability mechanisms can be incorporated through the integration of 381

additional services such as identity providers or API gateways to enable restricted access 382

and secure interaction across organizational boundaries based on authentication and au- 383

thorization services. Recent research from Miadowicz et al. [37] highlights the value of 384

integrating such mechanisms and proposes how to flexibly integrate different types of 385

functional modules into a comparable architecture of an I4.0 middleware platform. 386

In summary, the architecture of the DT service layer provides an information-centric, 387

microservice-based bridge between industrial agents and human supervisors. On the one 388

hand, agents provide design-time and run-time information by registering themselves at 389

the system and continuously update dynamic runtime information. On the other hand, 390

agents and human operators benefit from the DT service layer. Agents can use an API 391

for agent discovery, inter-agent collaboration, and monitoring of the MAS. Operators are 392

supported based on three services that provide graphical interfaces to supervise and control 393

agent-based process execution. 394

5.3. Workflows 395

The DT service layer introduces several features for inter-agent and human-agent 396

collaboration including agent discovery, description, monitoring, alerting, and service 397

invocation. These features basically enable three operational workflows that define the key 398

interaction mechanisms with the DT service layer: agent registration, agent collaboration, 399

and agent supervision. 400
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Figure 5. Agent registration process on initial deployment or update of the agent to virtually represent
agents in the MAS.

The agent registration process, as depicted in Figure 5, occurs during the initial 401

deployment of an agent or its update to a new version. In this step, the agent publishes 402

or updates its AAS-based model in the DT infrastructure, including meta-information, 403

declared capabilities, and available skills. In this way, the registration phase establishes 404

transparent, up-to-date agent descriptions, enabling both human operators and other 405

agents to find the agent, assess the functional role and current state within the MAS, and 406

possibly invoke its services. Not illustrated, but similarly to the registration process, there 407

is an agent unregistration process where agent models or certain services are unregistered 408

from the DT as they are currently not available or should not be used anymore for future 409

plant operation. 410

The second workflow defines interaction patterns for agent collaboration on the basis 411

of agent discovery and service invocation mechanisms, as illustrated in Figure 6. After 412

registration, agents and humans can query the DT to identify agents available across the 413

system using an API or HMI. Discovery queries may target all registered agents or filter 414

according to specific capabilities, for instance, identifying which agents can supply a given 415

material, schedule a production task, or conduct quality testing. Since the agent data model 416

also specifies technical details on how to use and access agents endpoints, agents and 417

humans can invoke agent services directly through an API or HMI or use subscription and 418

alerting mechanisms to automatically execute agent capabilities on the occurrence of events. 419

By embedding such endpoint information within the twin, the architecture establishes a 420

seamless bridge between descriptive AAS data and actionable process execution. This 421

streamlines distributed process orchestration, as an agent may autonomously discover and 422

invoke operations of other agents. 423
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Figure 6. Agent collaboration workflow based on discovery and active or event-based interaction
mechanisms for the automation of processes.

The modular approach and strict separation of components into the MAS and DT layer 424

in the proposed framework, enables a flexible synchronization of agents and their digital 425

representation as a DS or DT according to the classification of [23] discussed in Section 2.3. 426

Following the DS approach, agents or humans can invoke agent services directly using 427

the agents’ API or an HMI. In this scenario, the information flow is one-directional from 428

the physical object to the digital one, as the capabilities are directly called from agents 429

or humans without changing the data model in the DT. Following the full DT approach, 430

agents or humans can update the data in the DT instead of calling agents directly. In this 431

case, subscription mechanisms can be used to invoke agent capabilities automatically on 432

value update for a bi-directional synchronized representation of the physical and virtual 433

object. The implementation of a DS or DT has both advantages and disadvantages. The DS 434

supports loose coupling, reduced dependency on the DT broker and less communication 435

overhead. The full DT approach fosters a more reliable synchronization of software agents 436

with their virtual representation as the digital counterpart is changed before the agent 437

service is invoked by event-based mechanisms. Thereby, the DT ensures a consistent digital 438

representation and synchronization of task-oriented collaborations between agents and 439

humans. 440
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The third workflow describes supervision mechanisms including agent monitoring 441

and alerting features, as visualized in Figure 7. A task can either be executed by an agent 442

or automatically invoked by event-based mechanisms of the DT service infrastructure as 443

discussed in the previous text. During task execution, each agent continuously updates 444

its runtime information within the DT infrastructure, including intermediate task states 445

and final operation results. This ensures that the overall process state is transparently 446

captured and accessible at all times. Other agents and human operators can observe these 447

execution data either through an API or via a supervisory dashboard that visualizes the 448

real-time operation status. Beyond monitoring, the architecture also provides subscrip- 449

tion and alerting features to complement active monitoring strategies with event-based 450

mechanisms for improved resilience and responsiveness within the MAS. Notifications can 451

be automatically triggered whenever events or critical issues occur, such as an exceeded 452

threshold or failed termination of an agent operation. Subsequently, the notification can, 453

for example, trigger automatic adaptation of the agent or send notifications to operators to 454

request human intervention. 455
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Figure 7. Agent supervision workflow that illustrates continuous synchronization of agent run-time
information with the DT as a baseline for monitoring process execution and pro-active alerts in case
of operational events.



Version November 14, 2025 submitted to Systems 14 of 29

Taken together, these three workflows define a continuous loop of agent integration, 456

collaboration, and supervision within the DT environment. The registration workflow 457

provides accurate up-to-date digital representations, the collaboration workflow enables 458

dynamic agent discovery and flexible service invocation, and the supervision workflow 459

ensures that agent-based process execution can be monitored transparently while issues 460

are automatically reported to subscribers. 461

6. Case Study 462

This section presents the second development phase of the study which applies the 463

abstract design to a real-world industrial scenario in a case study. The first subsection de- 464

scribes the research context of the industrial scenario in a Concentrated Solar Thermal (CST) 465

plant and the technical system infrastructure before the DT framework is implemented, 466

thereby emphasizing already existing operation agents as building blocks of the MAS. 467

The second subsection explains the implementation steps of the proposed framework by 468

specifying the data model for agents in the MAS and realizing the proposed architecture 469

on the basis of open-source and self-developed microservices. 470

6.1. Industrial Scenario 471

The case study is conducted in the context of a semi-autonomous CST plant in the 472

German city of Jülich, designed to generate thermal energy either for electricity production 473

or for direct industrial process use [38]. The plant comprises about 2.000 mirrors that 474

concentrate sunlight onto a central receiver on the solar tower. At the receiver the concen- 475

trated irradiation is absorbed and thermal heat is subsequently converted into electricity 476

or directly used in processes of interconnected industrial facilities. To ensure a reliable 477

energy supply even in periods of low or no solar irradiation, a heat storage is integrated for 478

effective thermal energy storage and continuous energy supply [39]. 479
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Figure 8. Illustration of the case study scenario in the context of a semi-autonomous CST plant.
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Within this setup, two agents automate tasks of the CST plant operation process as 480

illustrated in Figure 8: 481

1. Operation Control Agent: The operation control agent analyzes data from an infrared 482

and a flux density camera, a solar irradiation sensor, and control systems for the 483

heliostat and CST plant. Based on the input data, the operation agent determines 484

optimal operation points and uses interfaces to control systems to regulate the mirrors 485

in the solar field and plant components in the solar tower. The goal of the operation 486

control agent is to produce heat according to given target parameters such as the 487

target temperature and mass flow despite dynamic environmental conditions. 488

2. Operation Management Agent: The operation management agent leverages weather 489

forecasts, actual weather measurements, process requirements for electricity produc- 490

tion or industrial heat generation, and the operational states of the plant components 491

to parameterize a simplified CST plant model. Its goal is to compute an optimized 492

operating schedule, including start/stop times, strategic decisions for power gener- 493

ation or storage, and target parameters for operation within actual environmental 494

conditions. The finalized operation plan is then shared with a human operator as a 495

recommendation for optimized operation. 496

Currently, both agents automate single tasks but do not collaborate to carry out 497

the CST plant operation process autonomously. Instead, one agent creates an optimized 498

operation plan as a recommendation for human operators, and the other agent is able to 499

automate plant operation according to given target parameters that have to be provided 500

by a human operator. In between is the human operator who receives an operation 501

plan recommendation from operation management agent and decides how to execute 502

the operation plan by configuring the operation control agent accordingly using their 503

native custom-built and distributed agent interfaces. With respect to agent and human 504

collaboration, the baseline scenario lacks a consistent self-description of agents, unified 505

discovery and collaboration mechanisms, and simplified interfaces for inter-agent and 506

human-agent interaction. This limits the flexible interconnection of intelligent agents and 507

humans to form dynamic task-oriented collaborations for the end-to-end automation of the 508

CST plant heat generation process. 509

Furthermore, the agents in the MAS function as black boxes with no explicit interface 510

to other agents and human operators besides distributed system logs of the agent software 511

and single user interaction points, for example, to share operation plans in case of the 512

operation management agent. Additionally, human operators and agents can monitor the 513

result of agent-based process execution from the central control room indirectly through 514

the use of HMIs of measurement and control systems to assess if sensor measurements 515

are within the permitted range and set points for industrial components are configured 516

appropriate in relation to the environmental conditions. At the moment, there are no 517

possibilities to receive live-insights of the MAS including the availability of agents and their 518

execution states. Therefore, it is not transparent which tasks are currently performed by 519

agents and how they perform the task with respect to functional correctness and operational 520

efficiency. Due to the lack of transparent agent run-time information and availability of 521

appropriate monitoring and control interfaces to observe and possibly intervene agent- 522

based task execution, supervising MAS remains a challenging task for both agents and 523

human operators. 524

In summary, the case study is conducted in a semi-autonomous CST plant. The process 525

for heat generation is partly automated based on an operation management agent and an 526

operation control agent which create an optimized operation schedule and execute plant 527

operation according to given target parameters. In between is a human operator who 528

makes the final decision on the proposed operation plan and controls and monitors agent- 529
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based plant operation accordingly. Currently, both agents operate as black-boxes without 530

interfaces to humans to supervise agent-based task execution and effectively collaborate 531

with agents in mixed human-in-the-loop processes. 532

6.2. Implementation 533

Next, the implementation of the DT service infrastructure in the industrial scenario 534

is discussed encompassing the specification of the AAS data model and realization of the 535

service infrastructure. 536

In alignment with the data model specification, each agent within the MAS is assigned 537

its own AAS representation. Thus, the data model for the case study encompasses two 538

AAS instances, corresponding to the operation control agent and the operation manage- 539

ment agent as illustrated in Appendix A1 and Appendix A2. The Capabilities submodel 540

enumerates the tasks attributable to each agent within CST operation. The Skills submodel 541

identifies the functionalities required to fulfill these capabilities. For instance, the opera- 542

tion agent possesses skills for autonomously initiating, controlling, and safely shutting 543

down plant operations, including necessary sub-skills for system startup, heating, and 544

cooling. The planning agent, in turn, is endowed with capabilities for daily operations 545

planning, encompassing schedule and strategy recommendation, parameter computation, 546

and operation plan recommendations. 547

To implement the artifact, additional components are integrated into the MAS layer, 548

and the DT service infrastructure is incorporated as a supportive layer for the collaboration 549

of agents and human operators in the MAS as illustrated in Figure 9. In the MAS layer of 550

the system, both agents are enhanced with a generic agent-proxy module1. This module 551

facilitates the integration of agents with the DT service layer by providing features for 552

the registration of the agent model, the provision of real-time updates, and seamless data 553

exchange with the DT service infrastructure. Furthermore, the module exposes an REST 554

API, enabling the unified invocation of the agent operation by other MAS entities or human 555

operators over the network. By extending single agents with an isolated agent-proxy 556

module, the design ensures modularity and extensibility for the easy integration of both 557

existing and new possibly heterogeneous software agents without modification of the 558

original agent logic. 559

1 Open-source software implementation published by the authors at: https://github.com/DLR-SF/Agent-
Proxy

https://github.com/DLR-SF/Agent-Proxy
https://github.com/DLR-SF/Agent-Proxy
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Figure 9. Implementation of the generic architecture in the context of a semi-autonomous CST Plant.

The implementation of the DT infrastructure builds upon a composition of open-source 560

software. The broker is implemented using FIWARE technology, leveraging Orion-LD for 561

agent data management2. Requests to Orion-LD are validated against the AAS data schema 562

stored in the context server3. Data is managed using a document-based MongoDB for live 563

data4 as well as TimescaleDB for historical data5. Visualization and operational monitoring 564

are provided through Grafana, which enables the creation of interactive dashboards, system 565

health checks, and flexible alerts and notifications for plant operators6. Additionally, an 566

agent directory service has been developed and published as open-source software by the 567

authors, so that operators can explore agents in the MAS and invoke their services7. 568

Opting for Orion-LD as a DT broker natively supports desired functionalities; however, 569

it prescribes the use of Next Generation Service Interface-Linked Data (NGSI-LD) as both 570

the information model and API for publishing, querying, and subscribing to DT data. 571

NGSI-LD and AAS are distinct standards for DTs, with differences in semantics and syntax, 572

but AAS structures are compatible with NGSI-LD, and community models already exist to 573

represent AAS structures with NGSI-LD8. The data model — whether in NGSI-LD or AAS — 574

can be interchanged using translation services or serialized intermediary formats like JSON, 575

OPC UA, or RDF, guaranteeing technical interoperability between both standards [40,41]. 576

Based on the infrastructure introduced, the level of automation of the operation 577

process in the CST plant can be easily increased in the heat generation process based on the 578

continuous task-collaboration of both agents. Thereby, the operation management agent 579

invokes the operation control agent directly to start or stop operation of the plant according 580

to its operation schedule with optimized start and stop times. Furthermore, the optimized 581

operation parameters of the operation management agent are stored in the DT as a result of 582

2 Open-source software implementation available at: https://github.com/FIWARE/context.Orion-LD
3 Open-source software implementation available at: https://nginx.org
4 Open-source software implementation available at: https://www.mongodb.com/
5 Open-source software implementation available at: https://github.com/timescale/timescaledb
6 Open-source software implementation available at:https://grafana.com
7 Open-source software implementation published by the authors at: https://github.com/DLR-SF/Agent-

Directory
8 Community data model to represent the AAS meta-model with NGSI-LD: https://github.com/smart-data-

models/dataModel.AAS

https://github.com/FIWARE/context.Orion-LD
https://nginx.org
https://www.mongodb.com/
https://github.com/timescale/timescaledb
https://grafana.com
https://github.com/DLR-SF/Agent-Directory
https://github.com/DLR-SF/Agent-Directory
https://github.com/smart-data-models/dataModel.AAS
https://github.com/smart-data-models/dataModel.AAS
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the plan operation capability. Every time operation parameters are changed according to a 583

changed strategy or environmental dynamics, a notification is triggered by a subscription 584

that invokes the capability of the operation control agent to adopt its target parameters 585

during operation. By storing the output of the operation management agent in the DT 586

and automatically invoking the operation control agent, the whole heat generation process 587

of the CST plant is autonomously conducted by the MAS based on the collaboration of 588

two agents. The human operator takes over a supervisory role in this scenario, where the 589

operator monitors agent-based process execution, receives alerts in case an intervention is 590

necessary, and generally supervises the operation process. Compared to the initial baseline 591

situation where a human received an operation plan as a recommendation from operation 592

management agent and needed to configure and re-configure the operation control agent 593

for conducting the operation appropriately within the defined thresholds according to 594

environmental conditions, the DT frameworks enables a seamless integration of agent and 595

human actors for the flexible end-to-end automation of processes. 596

In summary, the DT framework for the inter-agent and human-agent collaboration 597

is implemented by creating an AAS model for each agent in the system, realizing the 598

DT service layer based on a composition of open-source tools, and integrating agents 599

with the DT service layer based on enhancement of agents with an agent-proxy module. 600

The heat generation process can now be fully automated using agents, with a human 601

operator remaining as the supervisor of the system with monitoring and higher-level 602

control functions. 603

7. Evaluation 604

The evaluation aims to determine how well the DT infrastructure provides trans- 605

parency and seamless collaboration between humans and agents in an increasingly au- 606

tonomous MAS. To assess whether the DT meets the predefined design goals, the fulfillment 607

of functional and non-functional requirements is examined in the context of the case study. 608

As a basis for evaluation, a list of functional and non-functional requirements has 609

been derived based on the study goals discussed in Section 1, an examination of the 610

case study scenario discussed in Section 6.1, and the consideration of general relevant 611

quality attributes and acceptance criteria for industrial systems from the recent literature as 612

discussed in Section 2. For each requirement, quantitative or qualitative metrics have been 613

defined to measure the effectiveness and efficiency of the design. Tests are then conducted 614

in a 30 hours test period in CST plant heat generation processes that are monitored and 615

controlled based on the collaboration of agents and humans and actively supported by 616

the DT infrastructure as described in Section 6.2. During the experiments metrics are 617

measured and results are compared to the defined acceptance criteria. In this context, the 618

following text describes the results of the evaluation from a functional and non-functional 619

requirements perspective. 620

The evaluation from a functional requirements perspective investigates whether the 621

DT infrastructure provides all the desired capabilities for improved transparency and agent 622

and human interaction within the MAS as summarized in Appendix A1. With respect 623

to transparency goals, the infrastructure is able to represent agent design and runtime 624

information including capabilities, skills (A1), and runtime states and (A2) provides an API 625

for agents (A3) and an HMI for humans (A4) to access agent data. The infrastructure also 626

supports inter-agent collaboration, examining the ability to discover agents in the MAS 627

(A5), understand and invoke their services (A6), monitor their states actively (A7), and 628

receive timely notifications about relevant events (A8). Regarding inter-agent interactions, 629

these features enable flexible task-oriented collaborations and different self-x properties of 630

the system including self-description, self-discovery, self-monitoring, self-assessment, and 631
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self-organization of task-oriented collaborations. Moreover, human operators get additional 632

services to discover agents in the MAS (A9), execute or interrupt agent operations (A10), 633

visualize agent run-time data for monitoring of agent-driven processes (A11), and receive 634

important alerts when intervention is required (A12). Based on these features, human 635

operators gain transparency over MAS structures and state as well as interfaces to supervise 636

agent-based process execution. Hence, from a functional perspective, the capability-based 637

AAS representation of agents in the MAS and the microservice-based DT service layer 638

provide a powerful foundation for advancing collaborative and transparent agent-based 639

process execution in the scenario. 640

Next, the evaluation from a non-functional requirements perspective focuses on main 641

quality attributes to assess the suitability and utility of the DT artifact for the industrial use 642

case. Thereby, the standardized data model and the implementation of the DT infrastructure 643

is assessed based on quantitative and qualitative metrics. For each of the quality attributes 644

either quantitative metrics are measured or discussed from a qualitative perspective in 645

comparison to the initial baseline scenario to evaluate if the artifact meets the demands of 646

modern production systems. Appendix A2 summarizes the results in tabular form. 647

First, the evaluation of the standardized data model is discussed with respect to its 648

interoperability, completeness, and extensibility: 649

A12. Interoperability (A13): There has been no explicit data model in the baseline sce- 650

nario described in Section 6.1 but distributed, unstructured, and partly indirect data 651

on MAS structure and operation state in external documentation of the agents and 652

native agent interfaces. The data model of the contribution is enriched with meta- 653

data for an accurate and interoperable representation of the MAS, aligned with the 654

widely adopted AAS standard for industrial DTs. The AAS standard accommodates 655

a variety of industrial communication protocols and supports multiple serialization 656

formats, including JSON, XML, and RDF. Its use of standardized semantic vocabu- 657

laries and vendor-neutral structures ensures that asset information can be reliably 658

exchanged, integrated, and understood across diverse platforms and organizations. 659

Although the implementation of the DT infrastructure in the case study based on 660

open-source software services from FIWARE may require the use of translators for 661

seamless technical interoperability of NGSI-LD and AAS, the underlying structural 662

and semantic compatibility remains strong, as detailed in Section 6.2. Next to the 663

interoperability across organizational boarders, the AAS standard also provides 664

flexibility to generally choose other services for the implementation of the DT service 665

or exchange services in the DT infrastructure layer with other technical solutions 666

than proposed in the case study. The broad acceptance of the AAS standard in 667

the industrial domain results in the availability of different software solutions that 668

support to manage AAS-based DTs and provide access to their data [35]. 669

A13. Completeness (A14): In contrast to the baseline scenario, where design-time infor- 670

mation is only available via external documentation and run-time insights were 671

gleaned indirectly from various monitoring and control systems or custom-build, 672

distributed, and native agent interfaces, the AAS-based model consolidates both 673

design-time and run-time data into a unified, structured format. Facilitating the 674

skill-based ontology as suggested in [36] the format provides transparent insights to 675

agent capabilities and runtime data for monitoring and automation of industrial pro- 676

cesses. In terms of completeness, the model is capable of representing all required 677

aspects of agent self-description, employing a combination of AAS, Submodel, Ca- 678

pability, Relationship, and Operation entities. Each entity comprises between 10 and 679

30 properties that cover both design-time and operational attributes. 680
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A14. Extensibility (A15): Compared to unstructured data in the initial baseline scenario 681

which has no build-in extension mechanisms, the contributed data model demon- 682

strates significant extensibility. It readily supports the addition of new data entities 683

or properties through the introduction of new submodels or by leveraging the ex- 684

tension mechanisms embedded within the AAS metamodel as described in Section 685

5.1. This allows enhancing implemented data models with additional information 686

in a flexible way accommodating evolving system requirements and emerging use 687

cases. 688

Second, the evaluation of the implemented DT infrastructure is examined from a 689

non-functional perspective with respect to performance, robustness, and adaptability: 690

A15. Performance (A16): On average, read and write requests to DT Service infrastructure 691

take about 40ms, which is significantly below the accepted 100 ms threshold for 692

real-time performance in the industrial domain [42]. 693

A16. Robustness (A17): In the baseline scenario, each agent has been deployed on a server 694

as an isolated software agent without redundancy or load balancing mechanisms. 695

Even though there exist no numbers on the robustness of the MAS without DT 696

service layer, robustness might be affected by hardware and software faults as 697

well as limited monitoring capabilities. During the evolution with the DT service 698

layer, there were no errors during the 30-hour evaluation period, indicating the 699

functional correctness of the first version of the infrastructure. Although a longer test 700

period may uncover functional issues, the usage of a microservice-based architecture 701

allows to deploy the implementation on a cluster out of five servers and configure 702

replication for each microservice based on load individually. This enables reliability 703

of the DT infrastructure even in the event of failure of the underlying hardware or 704

dynamic workloads. Moreover, monitoring capabilities and proactive alerts provide 705

functional features to ensure the robustness of heat generation processes. 706

A17. Adaptability (A18): Finally, adaptability is validated by the capability of the solution 707

to seamlessly add or remove agents from the MAS or flexibly integrate them for the 708

gradual transition towards higher degrees of autonomy. While the initial baseline 709

situation provides no specialized adaption mechanisms, the contribution introduces 710

a loosely coupled network of agents, where new agents can easily register on the 711

system so that other agents and human operators can find the agents and create task- 712

oriented collaborations utilizing DS or DT interaction patterns. Thereby, agents and 713

humans can simply search for needed capabilities and dynamically discover and 714

invoke agents that are able to provide these services without the need for software 715

modification. In the same way, an agent can unregister itself at the DT infrastructure 716

so that other agents and human operators know that the agent services are no 717

longer available. In this case, they might need to use the services of other agents if 718

available or inform human operators to do manual tasks using notification services. 719

In the context of the case study, adaptability has especially been shown by flexibly 720

integrating both agents for full automation of the heat generation process while the 721

human operator takes over a supervisory instead of an active role in the overall 722

process. Furthermore, the DT twin framework lays the foundation for a flexible 723

integration of additional agents for the automation of further industrial process 724

tasks. 725

In summary, the DT infrastructure provides transparency and supports collaboration 726

between agents and humans in increasingly autonomous MAS. From a functional per- 727

spective, the service layer enables self-x capabilities of the MAS including self-description, 728

self-discovery, self-monitoring, self-assessment, and self-organization of task-oriented 729

collaborations. Furthermore, the infrastructure enables human supervisory features en- 730
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compassing an agent directory, monitoring, and alerting service. A first evaluation of the 731

DT infrastructure quality illustrates the benefits of the proposed solution with respect to 732

its interoperable and extensible data model as well as its real-time, robust, and adaptable 733

service implementation as a foundation for agent-based automation of industrial processes. 734

8. Discussion 735

This Section discusses the threats to internal and external validity of the study to 736

transparently communicate possible limitations of the generalization of the results. 737

Starting with threats to internal validity, the study was conducted within the bound- 738

aries of a single case study in a semi-autonomous CST plant with a specific set of agents and 739

operational contexts. Although implementation measures and evaluations were rigorously 740

performed over a 30 hour test period, the evaluation primarily assessed the availability of a 741

set of functional requirements and several core quality attributes over a limited test period. 742

Despite the systematic approach, there remains a possibility that certain agent behaviors, 743

rare error conditions, or unusual edge cases were not encountered or fully exercised and 744

that metrics may have been impacted by subjective interpretation. The primary focus of 745

this research is to perform an evaluation of the MAS with DT approach in relation to core 746

study objectives based on the development of a novel DT framework and evaluation of 747

its effects. Enhancing the study with a long-term evaluation and additional quantitative 748

benchmarks would allow broader data collection and enable a more accurate assessment of 749

additional quality attributes beyond those addressed in the initial test. 750

A threat to external validity is the generalization of the study results, as the evaluation 751

took place in a specific CST plant context in a single case study environment. Applying the 752

framework to other industrial scenarios could reveal further functional or non-functional 753

requirements that might enrich and extend the DT framework. Although designed with 754

adaptability in mind, further tests beyond the process-based smart CST plant, might also 755

reveal different technological requirements for the integration of the proposed DT service 756

layer into real-life industrial environments. To overcome these limitations, future research 757

should consider application of the framework across diverse industrial domains, agent 758

configurations, and operational conditions to broaden the scope and strengthen the external 759

validity of the results. 760

In summary, while the study offers a thorough, multi-dimensional first evaluation of 761

the DT service layer in a real-world setting, threats to internal validity stem from contextual 762

constraints, limited testing period, and subjective measurement bias. The primary intent 763

here was to establish a technical foundation and assess the feasibility and requirement 764

satisfaction of the artifact in a real-world industrial environment. Long-term and multi- 765

context assessments, focused on additional quality attributes such as scalability, usability, 766

and security, are recommended for future investigations. 767

9. Conclusion 768

As a result of the DSR process, the effectiveness of the design with respect to the 769

study goals is reflected and general knowledge on DTs as a service infrastructure is com- 770

municated. Thereby, it is assessed whether the DT service infrastructure successfully 771

addresses challenges related to transparency and inter-agent and human-agent collabora- 772

tion in increasingly autonomous industrial MAS. Furthermore, lessons learned are reflected 773

to generalize the learnings of the approach for future investigations on transparency and 774

collaboration in agent-based systems. 775

In the course of the study, a DT framework has been proposed to address the lack of 776

transparency and collaboration interfaces in increasingly autonomous MAS facilitating the 777

MAS with DT approach as discussed in Section 3. The framework suggests to introduce a 778



Version November 14, 2025 submitted to Systems 22 of 29

DT service layer as an intermediate artifact to virtually represent the design and run-time 779

information of the agents and provide unified access to monitor and control agent-based 780

process execution for both agents and humans. The framework compromises a standardized 781

skill-based data model, a modular microservice-based architecture, and workflows to define 782

key interaction mechanisms for the inter-agent and human-agent collaboration. 783

While the generic design of the DT service infrastructure suggests a technology- 784

independent abstract solution concept, the case study in a CST plant allows to implement 785

and evaluate the solution concept in a complex real-world industrial scenario. Based on 786

the case study, the technical feasibility of the framework has been demonstrated and the 787

quality of the solution has been assessed with respect to the main quality attributes relevant 788

for (semi-)autonomous industrial MAS, including performance, adaptability, robustness, 789

extensibility, completeness, and interoperability. Although an in-depth evaluation of the 790

proposed solution in a multi-case study is necessary to evaluate the overall efficiency of 791

the approach for a broad adoption in other industrial application application fields, the 792

complex scenario of the case study in a CST plant has proven that the DT framework 793

successfully addresses the lack of transparency and collaboration interfaces paving the way 794

for increasingly autonomous MAS. 795

Overall, the proposed DT framework successfully provides a design-based solution 796

to overcome the black-box nature of agents and interconnect humans and agents in in- 797

creasingly autonomous industrial MAS. An introduction of a DT service layer can enable 798

self-x capabilities of the MAS for the seamless collaboration of agents and humans as a 799

baseline for the gradual transition towards adaptive and autonomous industrial systems. 800

Thereby, the framework incorporates self-description, self-discovery, self-monitoring, self- 801

assessment, and self-organization capabilities to ensure efficient, robust, and flexible system 802

coordination, supervision, and interaction mechanisms between agents and humans for 803

the stepwise automation of processes. 804
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Appendix A 827
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Figure A1. AAS-model instance of the operation control agent in the context of the CST plant
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Appendix C 829

Table A1. Assessment of the functional completeness of the DT infrastructure in the CST plant.

ID Requirement Study Goal Evaluation
Method Feature Result

A1 Agent representation of
static design-time informa-
tion

Transparency Feature
availability Data model captures

agents capabilities, skills
and further metadata

Available

A2 Agent representation of dy-
namic run-time informa-
tion

Transparency Feature
availability Data model has fields to

capture agent run-time
states and operation results

Available

A3 Interface to access agent
data usable by agents

Transparency Feature
availability REST API to access agent

data
Available

A4 Interface to access agent
data usable by humans

Transparency Feature
availability Agent directory service as

HMI to access agent data
Available

A5 Discovery mechanisms to
find agents in the MAS us-
able by agents

Inter-Agent Col-
laboration

Feature
availability REST API to search for

agents in the MAS and ex-
plore their capabilities

Available

A6 Interface to invoke agent
services usable by agents

Inter-Agent Col-
laboration

Feature
availability REST API to invoke ser-

vices over the network ac-
cording to AAS model spec-
ification using the agent-
proxy extension

Available

A7 Monitoring of agent-based
task execution usable by
agents

Inter-Agent Col-
laboration

Feature
availability REST API to actively query

agent run-time information
Available

A8 Automatically receive noti-
fications on events

Inter-Agent Col-
laboration

Feature
availability Subscription API to sub-

scribe to events and receive
notifications automatically

Available

A9 Discovery mechanisms to
find agents in the MAS for
humans

Human-Agent
Collaboration

Feature
availability Agent directory service to

visualize all agents in the
MAS

Available

A10 Mechanisms to Invoke ser-
vices of agents or stop
agent operation execution

Human-Agent
Collaboration

Feature
availability Agent directory service to

invoke or stop running
agent operations

Available

A11 Visually monitor agent run-
time information

Human-Agent
Collaboration

Feature
availability Visualization and dash-

boards to monitor agent-
based process execution
for humans

Available

A12 Possibility to automatically
receive notifications on
events for humans

Human-Agent
Collaboration

Feature
availability Alerting mechanism to con-

figure alerts and get noti-
fied automatically

Available
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Appendix D 830

Table A2. Evaluation of Non-Functional Requirements of the DT Infrastructure.

ID Requirement Artifact Evaluation
Method

Comparison and/or Measurements Result

A13 Interoperability Data
Model

Qualitative

Baseline: Unstructured data in external
documentation and possibly provided

by native agent; Contribution:
Structured AAS representation as a

vendor-neutral standard with metadata,
various communication protocols,

different serialization formats, semantic
vocabularies, broad acceptance, and
available software services from the

community;

High interoper-
able standard-
based data model

A14 Completeness Data
Model

Qualitative
and
Quanti-
tative

Baseline: Distributed information in
unstructured sources possibly

incomplete; Contribution: Data model
captures design-time and run-time data

as well as additional meta-data; X
entities and fields in total for two agents

in the use case study;

Comprehensive
agent model

A15 Extensibility Data
Model

Qualitative

Baseline: No in-build extension
mechanisms so that a modification of

software is necessary; Contribution: The
standardized data model is extensible by
design, providing build-in support for

adding additional submodels or
enhancing existing ones through AAS

extension mechanisms;

Extensibility by
design

A16 Performance DT
infras-
tructure

Quantitative

Baseline: Monitoring and control
systems in the industrial domain

generally receive a response time below
100 ms as real-time performance;

Contribution: The DT service layer has a
response time of about 40 ms for read

and write requests on average;

Real-Time Perfor-
mance

A17 Robustness DT
infras-
tructure

Qualitative
and
Quanti-
tative;

Baseline: A server for each agent
without redundancy or load balancing

mechanisms; Contribution: Scalable
microservice architecture with adaptable

load balancing and redundant service
deployment to improve robustness;

Failure Rate 0 Errors / 30 hours; Level of
Redundancy 5 Servers and 3 Service

Replicas;

Horizontal scal-
able robustness

A18 Adaptability DT
infras-
tructure

Qualitative

Baseline: Isolated software agents which
have to be actively introduced,

integrated and invoked by operators;
Contribution: Self-registration,

self-description, self-discovery, and
self-organization mechanisms to flexibly

add or remove agents from loosely
coupled network of agents in the MAS

or form task-oriented collaborations
with agents and other humans;

Highly adaptable
MAS cooperation
and collaboration
structures
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