MANY-BODY POST-PROCESSING OF DFT CALCULATIONS USING VQE

Erik Schultheis, Alexander Rehn, Gabriel Breuil

German Aerospace Center (DLR), Institute of Materials Research, Cologne

From Quantum Mechanics to Material Science and Engineering

Applications

Aeronautics

Energy

surface cracks voids phases 2D defects defects

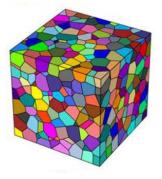
Macro

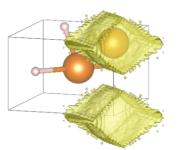
Meso

Micro

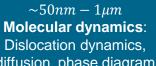
Atom

Electro



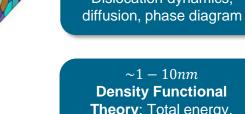


 $\sim 0.1 - 1m$ Continuum model: Fatigue life, ductility



Density Functional Theory: Total energy, band gap, alloy freeenergy

 $\sim 0.01 - 1nm$ **Quantum Chemistry:** Wave-function, orbital occupancy



Simulation

Erik Schultheis. Institute of Materials Research. 01.10.2025

Simulation of periodic systems: DFT

- Density functional theory:
 - Formally exact reformulation of the Schrödinger equation
 - Everything is a functional of the electronic density: $H\psi=E\psi
 ightarrow E[
 ho]$
 - $E[\rho]$ unknown, has to be approximated

$$E[
ho] = E_{
m kin}[
ho] + E_{
m pp}[
ho] + E_{n-n} + E_{
m Hartree}[
ho] + E_{
m XC}[
ho]$$

Kohn-Sham DFT: Calculate density by solving artificial one-body Hamiltonian:

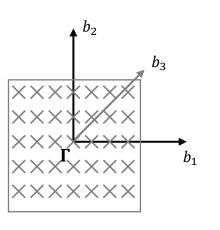
$$iggl[-rac{
abla^2}{2} + V_{
m pp}(r) + E_{n-n} + V_{
m Hartree}[
ho](r) + V_{
m XC}[
ho](r) iggr] \phi_i(r) = \epsilon_i \phi_i(r)$$

- lacksquare Periodic orbitals as sum over plane waves $\phi_i^{(k)}(r) = \sum_{G, G \leq G_{\mathrm{cut}}} c_{G,i}^{(k)} \, e^{i(k+G) \cdot r}$
- lacktriangle Electronic density $ho(r) = \sum_{i,k} f_i^{(k)} ig| \phi_i^{(k)}(r) ig|^2$

Simulation of periodic systems: k-point sampling

- Simulating computational cell with periodic boundary conditions
 - Introduces finite size errors
 - Supercell approach:
 Include periodic images explicitly in the computational cell
 - k-point sampling:
 Equivalent to supercell approach but in reciprocal space. Average over calculations on different k-points

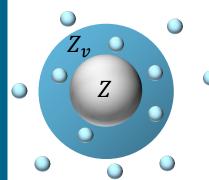




Simulation of periodic systems: Many-body approach

$$H = \left[-\frac{1}{2} \sum_{T,i} \nabla_{r_i+T}^2 + \sum_{T,I,i} V_{pp}(r_i - R_I - T, r_i' - R_I - T) + \sum_{T,I,J} \frac{Z_I Z_J}{|R_I + T - R_J|} + \sum_{T,i,j} \frac{1}{|r_i + T - r_j|} \right]$$

$$\hat{H} = \text{kin. energy} + \text{pseudopot.} + \text{nuclear int.} + \text{electron int.}$$



Kinetic energy

of electrons (Born-Oppenheimer Approximation)

Potential of nuclei + core-electrons

Fully non-local norm-conserving pseudopotential

Energy

between all nuclei and their (infinitely many) periodic images

Calculated via Ewald summation

Exact coulomb interaction

between electrons

Calculated via pair densities

All calculated with KS- orbitals in plane-wave basis

$$|\psi_i\rangle = \sum_{p} c_{p,i} |p\rangle$$

plane-wave

DFT Hamiltonian is discarded

Periodicity through sum over lattice translation vectors *T*

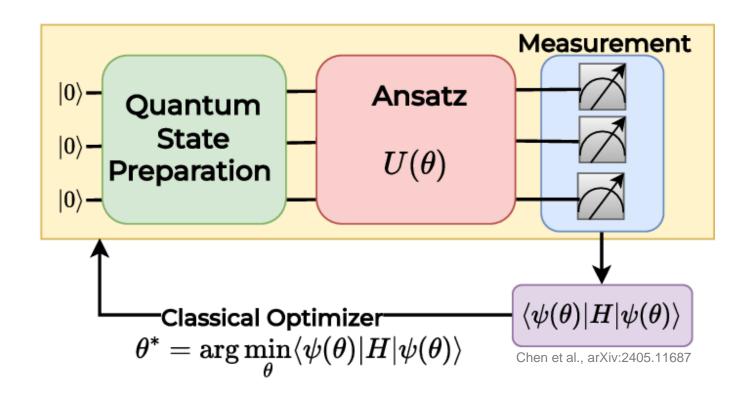
Second Quantization

Rewrite Hamiltonian in 2nd quant. to use on a quantum computer

$$\hat{H}_{ ext{elec}}^{(k)} = \sum_{tu} h_{tu}^{(k)} \hat{a}_t^\dagger \hat{a}_u + rac{1}{2} \sum_{tuvw} h_{tuvw}^{(k)} \hat{a}_t^\dagger \hat{a}_u^\dagger \hat{a}_v \hat{a}_w + E_{ ext{n-n}} + E_{ ext{e-self}}$$

- ullet One-electron terms $\ h_{tu} = \langle \psi_t | \, \hat{T} + \hat{V}_{
 m pp} \, | \psi_u
 angle$
- Two-electron terms $h_{tuvw} = \frac{4\pi}{V} \sum_{\mathbf{G},\mathbf{G} \neq \mathbf{0}} \frac{\tilde{\rho}_{tw}^*(\mathbf{G})\tilde{\rho}_{uv}(\mathbf{G})}{G^2}$
- Now: Compute the ground state!

VQE: Finding the ground state



$$\hat{H}_{ ext{elec}}^{(k)} = \sum_{tu} h_{tu}^{(k)} \hat{a}_t^\dagger \hat{a}_u + rac{1}{2} \sum_{tuvw} h_{tuvw}^{(k)} \hat{a}_t^\dagger \hat{a}_u^\dagger \hat{a}_v \hat{a}_w + E_{ ext{n-n}} + E_{ ext{e-self}}$$

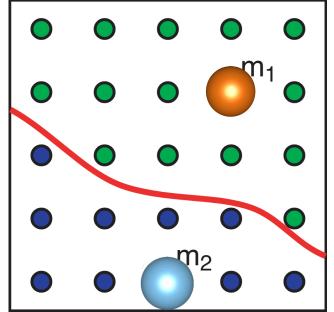
Calculating charges on atoms: Bader charges

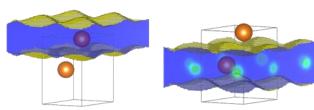
- Quantifying charges on atoms
 - Bonding
 - Oxidation states
 - Charge locality and charge transfer
- Bader regions
 - Real-space is divided into regions bound by zero-flux surfaces running through minima of the charge density
- Bader (excess) charge:

$$Q_I = \int_{B_I}
ho(r) \, \mathrm{d}^3 r \qquad \qquad Q_I o Q_I - Z_I$$

From density:

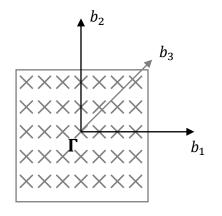
$$ho(r) = \sum_{i,k} f_i^{(k)} ig| \phi_i^{(k)}(r) ig|^2 \qquad f_{i, ext{MB}}^{(k)} = \left\langle \Psi_{ ext{MB}}^{(k)} ig| \hat{n}_i \left| \Psi_{ ext{MB}}^{(k)}
ight
angle$$

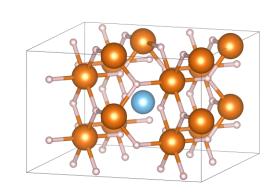


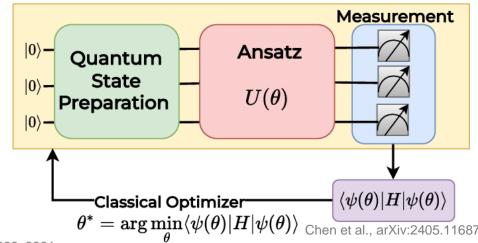


Computational details

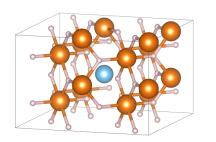
- Spin-unpolarized, Γ-only DFT calculations
- Active space with frozen core approximation
- UCCSD ansatz
 - Two Trotter steps for CrO₂, RhO₂, RuO₂
- L-BFGS optimizer
- Simulation using TenCirChem¹
- References are k-mesh calculations

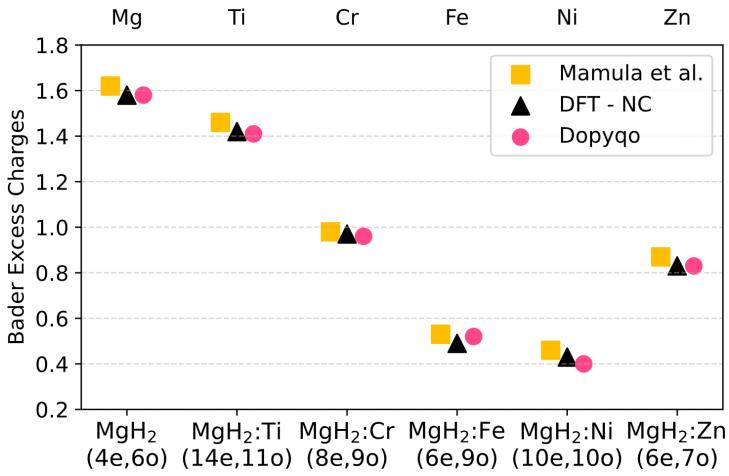






Bader charges: MgH₂-TM





 Weakly correlated systems: Bader charges match DFT and DFT literature values

Bader charges: Transition metal oxides

Mο

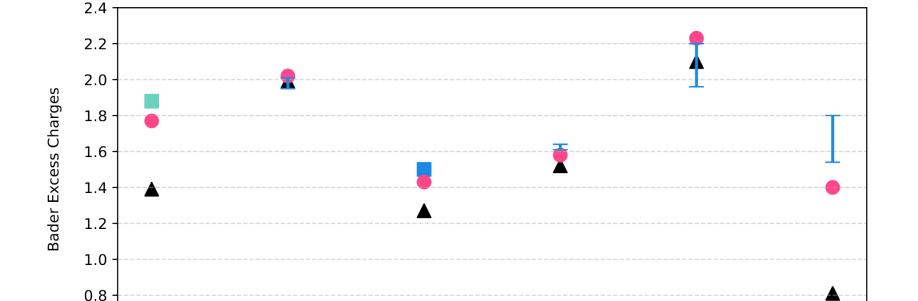
 MoO_2

(8e, 9o)

Lu et al.

Choudhuri et al.

Cr



Ru

 RuO_2

(12e, 10o)

DFT - NC

Τi

TiO₂

(4e, 6o)

Dopygo

Τi

TiS₂

(6e, 5o)

Rh

Two Trotter steps for CrO₂, RhO₂, RuO₂

 Strongly correlated systems: Bader charges different and improves towards k-mesh spin-polarized DFT+U values

 RhO_2

(6e, 8o)

0.6

 CrO_2

(8e, 9o)

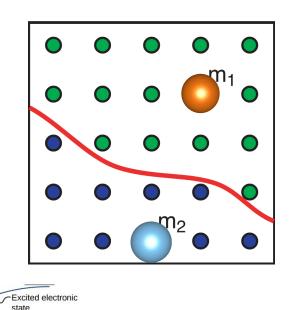
Summary and future work

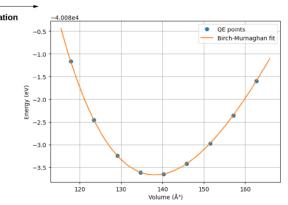
 Improvement of Bader charges towards k-mesh DFT+U for strongly correlated materials

Generates and solves Hamiltonians of periodic materials

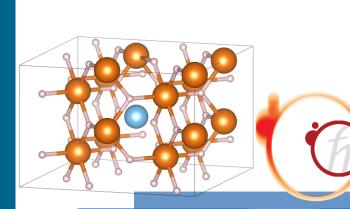
Bader charge dependence on active space

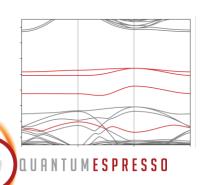
• Investigating other properties: bulk modulus, excited states

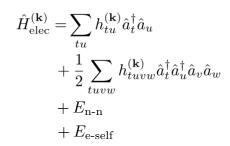


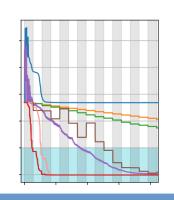


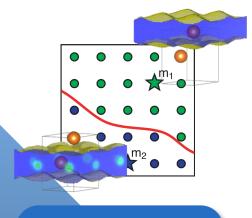
Questions?











Material

DFT Simulation

Many-body Hamiltonian Ground state

Properties

Dopygo

pip install dopyqo

DLR-WF/Dopyqo