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From Quantum Mechanics to Material Science and Engineering 
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Simulation of periodic systems: DFT

▪ Density functional theory:

▪ Formally exact reformulation of the Schrödinger equation

▪ Everything is a functional of the electronic density:

▪          unknown, has to be approximated

▪ Kohn-Sham DFT: Calculate density by solving artificial one-body Hamiltonian:

▪ Periodic orbitals as sum over plane waves

▪ Electronic density
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Simulation of periodic systems: k-point sampling

▪ Simulating computational cell with periodic boundary conditions

▪ Introduces finite size errors

▪ Supercell approach:

Include periodic images explicitly in the computational cell

▪ k-point sampling:

Equivalent to supercell approach but in reciprocal space. Average over calculations on 

different k-points 
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Simulation of periodic systems: Many-body approach
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Periodicity through sum over lattice translation vectors 𝑇
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Second Quantization

▪ Rewrite Hamiltonian in 2nd quant. to use on a quantum computer

▪ One-electron terms

▪ Two-electron terms

▪ Constant terms                                                          and

▪ Now: Compute the ground state!
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VQE: Finding the ground state
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Calculating charges on atoms: Bader charges

▪ Quantifying charges on atoms

▪ Bonding

▪ Oxidation states

▪ Charge locality and charge transfer

▪ Bader regions

▪ Real-space is divided into regions

bound by zero-flux surfaces

running through minima of the charge density

▪ Bader (excess) charge:

▪ From density:
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Computational details

▪ Spin-unpolarized, Γ-only DFT calculations

▪ Active space with frozen core approximation

▪ UCCSD ansatz
▪ Two Trotter steps for CrO2, RhO2, RuO2

▪ L-BFGS optimizer

▪ Simulation using TenCirChem1

▪ References are k-mesh calculations
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Bader charges: MgH2-TM

▪ Weakly correlated systems: Bader charges match DFT and
DFT literature values
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Bader charges: Transition metal oxides
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▪ Strongly correlated systems: Bader charges different and improves towards 
k-mesh spin-polarized DFT+U values 

Schultheis et al., arXiv:2510.12887

Two Trotter steps for 

CrO2, RhO2, RuO2



Summary and future work

▪ Improvement of Bader charges towards k-mesh DFT+U for

strongly correlated materials

▪ Software available: Dopyqo

▪ Generates and solves Hamiltonians of periodic materials

▪ Bader charge dependence on active space

▪ Investigating other properties: bulk modulus, excited states

12
Erik Schultheis, DLR Institute of Materials Research, 23.10.2025



Questions?
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