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Tilt-wing aircraft promise to combine cruise efficiency with vertical take-off and landing

capability. However, this introduces the complex but crucial transition flight phase, which is not

yet well understood regarding aerodynamics and flight dynamics. To better understand the

aircraft dynamic behavior within this flight regime, this paper analyzes the longitudinal tilt-wing

transition, considering various operational strategies for the maneuver. The analysis is based on

an optimal control approach where the dynamic control problem is transcribed into a nonlinear

programming (NLP) problem. The developed framework allows for successfully exploring

different transition strategies by adapting constraints and objective functions. Compared to the

results of static trim analyses, the phenomena of transition folds are attenuated in the dynamic

investigation due to inertial effects. Furthermore, the backward transition maneuver from

cruise to hover flight proves to be more challenging from a flight physics perspective because of

high effective angles of attack, and requires upward motion if flow separation is to be avoided.

Nomenclature

𝑏, 𝑐 = wing span and chord, m

𝐶𝐿 , 𝐶𝐷 , 𝐶𝑀 = aerodynamic coefficient for lift, drag, pitch moment

𝒄 = constraint vector

𝒄𝑑 = defect constraints

𝒄𝑙 , 𝒄𝑢 = upper and lower constraint limits
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𝑑𝑠 = distance between propeller plane and wing quarter line, m

𝐹𝐵
𝐴,𝑥

, 𝐹𝐵
𝐴,𝑧

= aerodynamic force in body x and z direction, N

𝒇 𝐴 = aerodynamic force vector, N

𝑮 = Jacobian

𝑔 = gravitational acceleration, m s−2

𝑯𝐿 = Hessian of the Lagrangian

𝐼𝑦𝑦 = inertia around aircraft y-axis, kg m2

𝐽 = cost function

𝐿 = Lagrangian

𝑙 = lever arm of thrust vector, m

𝑀 = big number (representing unboundedness)

𝑀𝐴,𝑦 = aerodynamic moment around y-axis, N m

𝒎𝐴 = aerodynamic moment vector, N m

𝑚 = aircraft mass, kg

𝑞 = pitch rate, rad s−1

𝑞𝑖 = dynamic pressure at wing 𝑖, N m−2

𝑹 (...) = rotation matrix around y-axis

𝑅𝑝 = propeller diameter, m

𝒓𝑤𝑏 = relative position between wing and center of gravity, m

𝑆 = wing reference area, m2

𝑠sc = slipstream contraction factor

𝑇 = thrust, N

𝑡0, 𝑡 𝑓 = initial and final trajectory time, s

𝑢𝐵, 𝑤𝐵 = velocities in body x and z directions, m s−1

𝒗𝐵 = velocity vector in body coordinates, m s−1

𝑉𝑥 , 𝑣ax = axial propeller inflow and propeller induced velocity, m s−1

𝑤 = weight in cost function

𝑥𝐸 , 𝑧𝐸 = horizontal and vertical position in ENU (East-North-Up), m

𝑥 𝑓 , 𝑧 𝑓 = final horizontal and vertical position, m

𝑧, 𝑥, 𝑢 = NLP variable vector, state vector, input vector

𝑧ref = reference altitude, m

𝛼eff, 𝛼 = (effective) angle of attack, ◦
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𝛾 = flight path angle, ◦

𝛿𝑤 , 𝛿𝑒 = tilt angle and control surface deflection, ◦

𝜃 = aircraft pitch angle, ◦

Λ = wing aspect ratio

𝜆 = Lagrange multiplier

𝜌 = air density, kg m−3

𝜏𝑘 = non-dimensional time in collocation at grid point 𝑘

𝜏𝑇 , 𝜏𝛿𝑤 = thrust and tilt actuator time constant, s

𝜙 𝑓 , 𝜙𝑡 = terminal point cost, integral stage cost

𝜙𝑔, 𝜙𝑏, 𝜙𝑟 = path, boundary and rate constraints

F𝐵 = body frame

F𝐸 = earth frame (ENU)

F𝑊 = wing frame

Subscripts

𝑖 = index for front (2) and rear (1) wing

𝐴 = Aerodynamic

2D, 3D = 2D aerodynamic coefficients, and 3D-corrected coefficients

𝑘 = time step on grid

𝑢, 𝑙 = upper and lower limit

rc = rate constraint

𝑐 = commanded value

0, 𝑓 = initial and final value

Superscripts

B = body frame

W = wing frame

E = ENU frame

I. Introduction

Transformational aircraft promise to combine the advantages of both fixed- and rotary-wing flight, thereby

establishing efficient, flexible, and time-saving transport options for poorly connected regions. The subcategory of

tilt-wing aircraft provides efficient cruise flight with low requirements on ground infrastructure. As engines and airfoil

stay aligned throughout the flight envelope, slipstream effects can be exploited. At the same time, these vehicles show a
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high complexity compared to other types of the emerging electric vertical takeoff and landing (eVTOL) fleet. Historical

challenges arose from complex mechanical control systems [1], bad handling qualities due to the heterogeneous flight

envelope [2, 3], and especially restricted design freedom due to fuel-based propulsion [4, 5]. Today, distributed electric

propulsion (DEP) allows for flexible vehicle configurations, and recent developments in digitization and automation

alleviate limitations of the control system. A remaining challenge is the intuition for and understanding of the flight

dynamic behavior, which is characterized by aero-propulsive interactional effects and flow separation. From a flight

control perspective, the missing knowledge is circumvented, e.g., in the form of robust [6, 7] or sensor-based [8, 9]

control methods. However, a better understanding of the dynamic system is required to derive safe and efficient

maneuvers for both nominal and failure cases. In a previous work [10], we developed a representative aircraft model

with the ambition to cover all dominant effects. The accompanying static trim analysis provided first insights into the

transition behavior but neglected important dynamic characteristics. Therefore, this paper will extend the investigation

on tilt-wing transition with a dynamic analysis of different transition strategies, providing insight into the flight dynamic

behavior during the crucial transition flight phase.

A. Related Work

Bridging both flight regimes of hover and cruise flight, the transition is the crucial maneuver for tilt-wing aircraft.

As these vehicles are not designed for continuous vertical flight, the forward transition (from hover to cruise) is to

be performed soon after take-off. In the opposite direction, the backward transition (from cruise to hover) is crucial

to enable a safe vertical landing. While the behavior in the regimes of wing-borne and thrust-borne flight resembles

other, more familiar aircraft configurations like airplanes, helicopters, and multicopters with well-established theory, the

transition regime remains the subject of research. This is, in particular, due to its inhomogeneity with rapidly changing

flight conditions. The backward transition is an especially challenging maneuver as the descent flight condition at low

thrust settings pushes the effective angle of attack (AoA) towards flow separation [2, 11]. Static trim analyses [10, 12, 13]

are often deployed for an initial evaluation and indicate in [10, 12] that flow separation cannot be avoided for level

backward transition flight. To avoid flight in post-stall, Fredericks et al. [14] introduce the zoom maneuver, which

exploits upward aircraft motion during forward and backward transition. By aligning the flight path angle with the

wing’s attitude, the vertical inflow component in the wing frame is effectively reduced.

To investigate dynamic tilt-wing transition flight without designing a closed-loop controller, optimal control (OC)

is commonly deployed. In OC, optimization problems, including continuous system dynamics, are transcribed to

nonlinear programming problems (NLP), which can then be solved, for example, using Newton-based solvers [15]. The

system dynamics are considered in the form of constraints in the NLP formulation. The OC approach was deployed

by Doff-Sotta et al. [16], Chauhan and Martins [17], and Panish and Bacic [18] to optimize transition trajectories for

tilt-wing aircraft. These works minimize energy demand during transition or the integral squared thrust as a proxy.

4



Exploiting a priori knowledge of an Air Traffic Control (ATC) provided flight corridor, [16] reformulates the aircraft

equation of motion (EoM) in order to obtain an optimization problem that is convex in objective and constraints. The

approach is extended in [19] to model-predictive control (MPC) to form a closed-loop controller. Both works consider

slipstream interaction in their modeling approach but otherwise maintain a low complexity, for example, by considering

only translational motion in 2D flight path coordinates. Cook [12] identifies dynamic transition trajectories for a

pitch-controlled tilt-wing within the level flight manifold without optimization but instead using best guess control

policies for the tilt angle to minimize unwanted transition effects.

Besides tilt-wings, transition flight has also been investigated for other types of transformational aircraft, and results

and findings can be transferred from there. From a flight mechanics perspective, tailsitter aircraft are particularly

comparable to tilt-wing aircraft. Instead of tilting their wings with respect to the fuselage, the pitch attitude of the

complete aircraft is changed to convert from hover to cruise flight. Still, this means that (in contrast to, for example,

tilt-rotor aircraft) the wing and rotor stay aligned throughout the transition of both tailsitter and tilt-wing, resulting in

similar effective angles of attack and aero-propulsive interactions. Compared to tilt-wings, more literature can be found

for tailsitter transition analysis, where most investigations likewise use the optimal control approach [20]. While [21]

uses a general formulation for the transition, Oosedo et al. [22] optimize for different transition strategies and verify

them experimentally. Introducing a constraint to avoid flow separation, [23] creates transitions that exploit vertical

aircraft motion to maintain low effective AoA, similar to the strategy proposed in [14] for a tilt-wing aircraft. With the

intention of online planning or even control in the form of model predictive control (MPC), [24, 25] use differential

flatness properties of the dynamics to reduce the computational cost of the optimization.

B. Scope of the Paper

This paper focuses on the dynamic analysis of the longitudinal tilt-wing transition maneuvers for both forward (from

hover to cruise) and backward (from cruise to hover) transition. A setup for trajectory optimization in the form of an

optimal control problem formulation is implemented. Based on that, different transition strategies with their respective

objectives and constraints are investigated and evaluated. With a focus on manned flight, maneuvers with extreme

conditions for pilots and passengers are not considered. Other than that, the intention is to include the most relevant

transition strategies.

II. Optimal Control Framework
The developed optimal control framework is primarily based on the guidelines presented by Betts [15] and was extended

with insights into the toolboxes FALCON by TUM [26], and ICLOCS2 by Imperial College London [27]. Like both

reference toolboxes, the framework is interfaced with the common solver IPOPT [28], which is based on the interior

point method. In the following, the dynamic model of the tilt-wing is described first before transferring it to the optimal
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control formulation.

A. Tilt-Wing Aircraft

The transition analysis is conducted on a tandem tilt-wing configuration as illustrated in Fig. 1. All relevant model

parameters are provided in Table 1, with detailed quantitative descriptions given in [10, 29]. The longitudinal motion of

the aircraft is of chief interest for the analysis of the transition maneuver. Ignoring failures and lateral wind effects, the

aircraft is assumed to be symmetrical with respect to the 𝑥-𝑧-plane. Eight propellers and four control surfaces are evenly

distributed along both wings and can be summarized in single 2D components. Main (rear) wing components are

denoted by index 1, while canard (front) wing components are denoted by index 2. Note that these indices consequently

deviate from the notation used in [10, 29], where full 6-degree-of-freedom (DoF) motion was considered. The state of

each wing is defined by three inputs, the tilt angle 𝛿𝑤 with a range of [0◦; 90◦] from level to vertical deflection, the

control surface deflection 𝛿𝑒 limited to [−30◦; 30◦] and the thrust 𝑇 . In terms of propulsion, the aircraft is controlled by

rotor speed, whereas the collective blade pitch is adapted to the different operating states throughout the flight envelope.

It is assumed that the maximum thrust of the vehicle equals twice the gravitational force to allow both maneuverability

and redundancy in failure cases. Note that this assumption is optimistic, and realistic thrust-to-weight ratios might

be significantly lower, depending on the vehicle design. For this work, however, the resulting variable range for 𝑇 is

[0 N; 4500 N] for the grouped propellers respectively. The index 𝑖 will be used for wing-dependent variables in the

following. While both wings have the same NASA GA(W)-2 profile and a rectangular planform, the reference area of

the main wing is larger than that of the canard wing. The center of gravity (CG) is slightly shifted towards the rear

section. These design choices characterize the pitching moment behavior during the transition.

(a) (b)

Fig. 1 Tandem tilt-wing configuration, (a) sideview in early transition , (b) 3D view in late transition
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Table 1 Relevant Tilt-Wing Model Parameter.

Variable Description Value

𝜌 density 1.13 kg m−3

𝑚 mass 475 kg

𝐼𝑦𝑦 pitch moment of inertia 1080 kg m2

𝑅𝑝 rotor radius 0.75 m

Λ1, Λ2 aspect ratio 6.9, 9.2

𝑐1, 𝑐2 chord 0.78 m , 0.57 m

𝑆1, 𝑆2 surface area 4.1 m2, 2.9 m2

𝑑𝑠,1, 𝑑𝑠,2 axial distance rotor to wing 0.52 m, 0.4 m

𝑙1,𝑥 , 𝑙2,𝑥 hor. distance CG to wing 1.4 m, 2.38 m

𝑙1,𝑧 , 𝑙2,𝑧 vert. distance CG to wing 0.61 m, 0.47 m

B. Longitudinal Dynamic Model

To keep the number of optimization variables and thereby the size of the resulting NLP problem small, the lateral motion

of the aircraft is neglected and a longitudinal model including pitching motion is implemented. The resulting equations

of motion can be expressed as:

¤𝑥𝐸 = 𝑢𝐵 cos 𝜃 + 𝑤𝐵 sin 𝜃 (1)

¤𝑧𝐸 = 𝑢𝐵 sin 𝜃 − 𝑤𝐵 cos 𝜃 (2)

¤𝑢𝐵 = −𝑞𝑤𝐵 − 𝑔 sin 𝜃 + 1
𝑚

2∑︁
𝑖=1

(
𝑇𝑖 cos 𝛿𝑤,𝑖 + 𝐹𝐵

𝐴,𝑥,𝑖

(
𝑣𝐵, 𝛿𝑤,𝑖 , 𝑇𝑖 , 𝛿𝑒,𝑖

))
(3)

¤𝑤𝐵 = 𝑞𝑢𝐵 + 𝑔 cos 𝜃 + 1
𝑚

2∑︁
𝑖=1

(
−𝑇𝑖 sin 𝛿𝑤,𝑖 + 𝐹𝐵

𝐴,𝑧,𝑖

(
𝑣𝐵, 𝛿𝑤,𝑖 , 𝑇𝑖 , 𝛿𝑒,𝑖

))
(4)

¤𝜃 = 𝑞 (5)

¤𝑞 =
1
𝐼yy

( 2∑︁
𝑖=1

𝑀𝐵
𝐴,𝑦,𝑖

(
𝑣𝐵, 𝛿𝑤,𝑖 , 𝑇𝑖 , 𝛿𝑒,𝑖

)
+ 𝑇𝑖 𝑙𝑖

(
𝛿𝑤,𝑖

))
(6)

where the aircraft position 𝒙𝐸 =
[
𝑥𝐸 𝑧𝐸

]T is defined in the ENU frame F𝐸 , while the velocity 𝒗𝐵 =
[
𝑢𝐵 𝑤𝐵

]T and its

derivative is defined in body coordinates F𝐵 (see Fig. 1(a)). The states for the rotational motion are pitch angle 𝜃 and
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pitch rate 𝑞, and the inertia around the 𝑦-axis is represented by 𝐼yy. The respective thrust forces of main and canard

wing have a tilt-angle-dependent lever arm 𝑙𝑖 = 𝑓
(
𝛿𝑤,𝑖

)
to create a control pitching moment. Next to the freestream

defined by the body velocity and tilt angle, the thrust-induced slipstream and control surface deflections 𝛿𝑒,𝑖 determine

the aerodynamic forces 𝐹𝐵
𝐴,𝑥,𝑖

and 𝐹𝐵
𝐴,𝑧,𝑖

, and aerodynamic moment 𝑀𝐵
𝐴,𝑦,𝑖

, given in F𝐵.

For reduced complexity, the rotor model deploys constant thrust and torque coefficients. This assumption is based

on a perfect adaptation of the collective blade pitch angle to the axial rotor inflow and the neglect of the lateral inflow

component. In addition, the arrangement of counter-rotating propellers, in combination with the symmetry assumption

with respect to the x-z plane, results in a cancellation of propeller torque. Therefore, the commanded thrust 𝑇𝑐,𝑖 is

modeled as a direct input.

Concerning aerodynamics and slipstream interactions, the model used for optimization is a simplified form of

the strip-theory model presented in [10]. Tandem aerodynamic effects between both wings are neglected, primarily

because there exist no generic models that capture the complexity, and reliable data is not available for the considered

aircraft configuration. Similarly, the reduction in dynamic pressure due to upstream components (blockage) is not

considered. The effect of slipstream interaction is limited to the axially induced velocity, as radial velocities are assumed

to cancel due to symmetry. The tangential swirl velocity is neglected to maintain two-dimensional aerodynamics.

Further neglecting lateral inflow, the axially induced slipstream velocity [30] is

𝑣𝑖,ax = −
𝑉𝑥,𝑖

2
+

√√
𝑉2
𝑥,𝑖

4
+ 𝑇𝑖/4

2𝜌𝜋𝑅2
𝑝

(7)

where 𝑉𝑥,𝑖 is the inflow velocity perpendicular to the rotor plane. For fully contracted slipstreams, the induced velocity

is twice as high as the velocity in the rotor plane [30]. In [6], it was assumed that the aerodynamic reference point

is located at the position of full slipstream contraction. As the slipstream contraction model by McCormick [31] is a

function of geometry parameters (distance between propeller plane and wing reference point 𝑑𝑠,𝑖 , and propeller radius

𝑅𝑝) which remain constant for the tilt-wing, the induced velocity in the aerodynamic reference point can be represented

accurately by a constant slipstream contraction factor 𝑠sc,𝑖 < 2, which is different for both wings:

𝑠sc,𝑖 = 1 +
𝑑𝑠,𝑖/𝑅𝑝√︃

1 + (𝑑𝑠,𝑖/𝑅𝑝)2
(8)

In order to obtain the effective angle of attack 𝛼eff at wing 𝑖, the effective velocity at the airfoil is calculated by
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transforming 𝒗𝐵 to the wing frame F𝑊 and adding the slipstream induced velocity:

𝒗𝑊𝑖 = 𝑹𝑊𝐵
𝑖

(
𝛿𝑤,𝑖

)
· 𝒗𝐵 + 𝑣𝑖,ax · 𝑠𝑠𝑐,𝑖

[
1 0 0

]T
(9)

𝛼eff,𝑖 = arctan

(
𝑣𝑊
𝑧,𝑖

𝑣𝑊
𝑥,𝑖

)
(10)

{𝐶𝐿 , 𝐶𝐷 , 𝐶𝑀 }𝑖 = 𝑓
(
𝛼eff,i

)
(11)

with the rotation matrix from body to wing frame 𝑹𝑊𝐵
𝑖 . The effect of body rotational rates on the resulting velocity is

neglected, as the effect would be small for realistic rates and the pitch motion is balanced to zero within the optimization.

With the effective angle of attack, the aerodynamic coefficients (compare Eq. (11)) can be computed using the model

presented by [32], which we adopted in [10]. To improve computational performance, the 360◦ AoA coefficient model

can be preprocessed and saved in look-up tables (LUT). As recommended in [15] for improved convergence, tabular

data is interpolated using splines to obtain continuous functions up to second-order derivatives. The effect of control

surface deflection on the aerodynamic coefficients is modeled according to [33] and leads to offsets of the aerodynamic

coefficients, see Eq. (13) and Eq. (14). However, the control surface model does not capture the change in lift curve

slope and stall onset, which are assumed to stay constant. To include the reduced flap effectiveness in post-stall without

sacrificing continuity, the offsets due to flap deflections fade out with a scaled arctan-function. Furthermore, an elliptic

lift distribution is applied to correct the 2D lift coefficient, resulting in

(
𝐶𝐿,3D

)
𝑖
=

(
𝐶𝐿,2D

)
𝑖

𝜋

4
(
𝐶𝐷,3D

)
𝑖
=

(
𝐶𝐷,2D +

𝐶2
𝐿,3D

𝜋Λ

)
𝑖

(12)

with aspect ratio Λ𝑖 = 𝑏2
𝑖/𝑆𝑖, 𝑏𝑖 and 𝑆𝑖 being wing span and wing reference area.

The aerodynamic coefficients are defined in the aerodynamic frame and first need to be transformed to F𝐵 by

applying the rotation matrix 𝑹𝑦 (𝜑) for a rotation around the 𝑦-axis. The resulting aerodynamic forces and moments in

the body frame are:
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𝒇 𝐵𝐴,𝑖 = 𝑞𝑖𝑆𝑖𝑹𝑦

(
𝛼eff,i − 𝛿𝑤,𝑖

)


−
(
𝐶𝐷,3D + Δ𝐶𝐷,𝛿𝑒

)
0

−
(
𝐶𝐿,2D + Δ𝐶𝐿, 𝛿𝑒

)
𝜋
4

 𝑖
(13)

𝒎𝐵
𝐴,𝑖 = 𝑞𝑖𝑆𝑖𝑐𝑖



0

𝐶𝑀 + Δ𝐶𝑀,𝛿𝑒

0

 𝑖
+ 𝒇 𝐵𝐴,𝑖 × 𝒓𝐵𝑤𝑏,𝑖 (14)

Here, 𝑐𝑖 is the mean aerodynamic chord and the dynamic pressure is 𝑞𝑖 = 1/2 𝜌 | |𝒗𝑊
𝑖
| |2, while 𝒓𝐵

𝑤𝑏,𝑖
describes the position

of the wing relative to the CG.
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Fig. 2 Comparison of 2D low fidelity and 3D strip theory aerodynamic model for constant axial flight velocity of
𝑽 = 25 m s−1 and at constant thrust settings of 𝑻1 = 𝑻2 = 1500 N.

In order to consider actuator dynamics, system inputs 𝑢 are modeled as simple transfer functions or by applying lower

and upper rate constraints 𝑢rc,𝑙 and 𝑢rc,𝑢 in discrete form [15]:

𝑢rc,𝑙 ≤
𝑢𝑘+1 − 𝑢𝑘

Δ𝜏𝑘 · 𝑡 𝑓
≤ 𝑢rc,𝑢 (15)

where the central term describes the change of variable 𝑢 per discrete time step Δ𝜏𝑘 · 𝑡 𝑓 , with Δ𝜏𝑘 = (𝜏𝑘+1 − 𝜏𝑘) and

non-dimensional time at grid point 𝑘 defined as 𝜏𝑘 ∈ [0, 1].
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In Fig. 2, the accuracy of this reduced fidelity model for optimal control is compared to the strip theory aerodynamic

model presented in [10]. Lateral stabilizers and airfoils on the landing skids, which can be seen in Fig. 1(b)), are

neglected in the considered longitudinal models, as their effect is primarily in the lateral direction. Both models show

good conformance in the force responses. The trend of the pitching moment is captured with some deviation for cruise

and transition flight phases but diverges stronger towards hover conditions (𝛿𝑤 → 90◦) and shows a sign reversal. The

differences result chiefly from the effect of induced swirl velocity.

C. Optimal Control Problem Formulation

The aim of an optimal control approach is to find the control vector 𝑢 (𝑡) ∈ R𝑛𝑢 that minimizes a cost function

𝐽 : R𝑛𝑥 × R𝑛𝑢 × R → R subject to the dynamics 𝑓 : R𝑛𝑥 × R𝑛𝑢 × R → R𝑛𝑥 of a system with states 𝑥 (𝑡) ∈ R𝑛𝑥 while

complying with path, boundary and derivative constraint functions (𝜙𝑔, 𝜙𝑏 and 𝜙𝑟 ). While path constraints limit

output variables 𝑦 = 𝑔 (𝑥, 𝑢), boundary constraints define the initial and final states 𝑥0 = 𝑥 (𝑡0) and 𝑥 𝑓 = 𝑥
(
𝑡 𝑓

)
and the

according inputs 𝑢0 = 𝑢 (𝑡0) and 𝑢 𝑓 = 𝑢
(
𝑡 𝑓

)
. The general mathematical formulation of the problem is

min
𝑡 𝑓 , 𝑢(𝑡 )

𝐽 = 𝜙 𝑓

(
𝑡 𝑓 , 𝑥

(
𝑡 𝑓

)
, 𝑢

(
𝑡 𝑓

) )
+

∫ 𝑡 𝑓

𝑡0

𝜙𝑡 (𝑡, 𝑥 (𝑡) , 𝑢 (𝑡)) 𝑑𝑡

such that ¤𝑥 = 𝑓 (𝑥 (𝑡) , 𝑢 (𝑡))

𝑡𝑙 ≤ 𝑡 𝑓 ≤ 𝑡𝑢

𝑥𝑙 ≤ 𝑥 (𝑡) ≤ 𝑥𝑢

𝑢𝑙 ≤ 𝑢 (𝑡) ≤ 𝑢𝑢

𝑔𝑙 ≤ 𝜙𝑔 (𝑥 (𝑡) , 𝑢 (𝑡)) ≤ 𝑔𝑢

𝑏𝑙 ≤ 𝜙𝑏

(
𝑥0, 𝑢0, 𝑥 𝑓 , 𝑢 𝑓

)
≤ 𝑏𝑢

𝑟𝑙 ≤ 𝜙𝑟 (𝑥 (𝑡) , 𝑢 (𝑡)) ≤ 𝑟𝑢

(16)

where 𝜙 𝑓 represents the terminal point cost and 𝜙𝑡 is the integral cost, usually used in squared form. The initial time 𝑡0

is fixed to zero, while the terminal time 𝑡 𝑓 is free and part of the optimization problem. Subscripts 𝑢 and 𝑙 indicate

upper and lower limits, respectively.

The system dynamics are enforced as collocation defects 𝒄𝑑 (state integration errors on the collocation grid). To

ensure valid system dynamics, all defects must be zero, which results in the additional constraints 𝒄𝑑 = 0. The full

constraint vector contains the collocation defects, as well as path, boundary, and rate constraints:

𝒄 =
[
𝒄𝑑 , 𝜙𝑔, 𝜙𝑏, 𝜙𝑟

]
(17)

with upper and lower limits 𝒄𝑙 ≤ 𝒄 ≤ 𝒄𝑢.
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To solve the problem with Newton-based methods on a finite set of variables and constraints, the continuous problem

is transcribed using a direct collocation method to obtain an NLP. Here, direct collocation with the trapezoidal method

on a grid with 𝑁 points is applied. The resulting NLP variables to be optimized are:

𝒛 =
[
𝑡 𝑓 , 𝑥1, 𝑢1, 𝑥2, 𝑢2, . . . , 𝑥𝑁 , 𝑢𝑁

]T (18)

where the indices 𝑘 = 1, ..., 𝑁 correspond to the respective time grid points. The resulting variable time step is a

function of terminal time Δ𝑡 = 𝑡 𝑓

𝑁−1 . Eq. (18) shows that the size of the NLP depends on the number of inputs and states

describing the dynamic system as well as the temporal discretization. The form of the variable vector 𝒛 exploits the

sparsity pattern of the Jacobian 𝑮 ≡ 𝜕𝒄
𝜕𝒛 and the Hessian of the Lagrangian

𝑯𝐿 = ∇2
𝑧𝑧𝐿 (𝑧) = ∇2

𝑧𝑧𝐽 (𝑧) −
𝑚∑︁
𝑖=1

𝜆𝑖∇2
𝑧𝑧𝒄𝑖 (𝑧) (19)

with Lagrange multipliers 𝜆𝑖 , as explained in [15]. Further methods applied to improve accuracy and convergence are

scaling of variables and a remesh strategy.

Transferred to the tilt-wing 3-DoF application, the state and input vectors, according to Section II.B, are:

𝒙 =

[
𝑥𝐸 𝑧𝐸 𝑢𝐵 𝑤𝐵 𝜃 𝑞 𝑇1 𝑇2 𝛿𝑤1 𝛿𝑤2

]T
(20)

𝒖 =

[
𝑇1,𝑐 𝑇2,𝑐 𝛿𝑤1,𝑐 𝛿𝑤2,𝑐 𝛿𝑒1,𝑐 𝛿𝑒2,𝑐

]T
(21)

Here, the inputs of thrust 𝑇 and tilt angle 𝛿𝑤 were modelled as first-order delay elements (time constants 𝜏𝑇 = 1/5 and

𝜏𝛿𝑤 = 2). This introduces additional states to the problem and thus increases the complexity. Nevertheless, capturing

the correct dynamics of tilt actuation and thrust is considered essential for realistic trajectories. In contrast, control

surface deflections (𝛿𝑒) are responsive and thus are only rate-limited according to Eq. (15) as a compromise between

complexity and accuracy. Table 2 gives an overview of nominal variable bounds and rate constraints. Single variables

are then adapted to the respective transition strategy. The constant 𝑀 is an appropriately large number that represents

unboundedness. Maximum accelerations in F𝐵 are given as ratios of gravitational acceleration 𝑔 and are adopted from

values for nominal takeoff and landing maneuvers of commercial airliners. In addition to the first-order delay behavior

of thrust and tilt angle, the commanded inputs are smoothed using additional rate constraints. As the exploration space

of the IPOPT solver is not hard-limited by the variable boundaries, the lower bound for the thrust is increased from 0 to

1 to avoid complex results in Eq. (7).

The optimized transition trajectory leads the aircraft from hover (𝑥ℎ) to cruise (𝑥𝑐) conditions or vice versa.

Considering the state variables, the hover flight state is defined by zero body velocities 𝑢𝐵 = 𝑤𝐵 = 0 and a high tilt angle

12



Table 2 State and input variables of the optimal control problem and their respective boundaries and rate
constraints.

State Variables
Variable Unit lower Bound upper Bound lower Rate Constraint upper Rate Constraint

𝑥𝐸 m 0 𝑀 0 100
𝑧𝐸 m −𝑀 𝑀 −50 50
𝑢𝐵 m s−1 0 100 −0.5𝑔 0.5𝑔
𝑤𝐵 m s−1 −50 50 −0.25𝑔 0.25𝑔
𝜃 ◦ −0.5 0.5 −𝑀 𝑀

𝑞 ◦ s−1 −0.01 0.01 −𝑀 𝑀

𝑇1 N 1 4500 −𝑀 𝑀

𝑇2 N 1 4500 −𝑀 𝑀

𝛿𝑤,1
◦ 0 90 −𝑀 𝑀

𝛿𝑤,2
◦ 0 90 −𝑀 𝑀

Input Variables
Variable Unit lower Bound upper Bound lower Rate Constraint upper Rate Constraint
𝑇1,𝑐 N 1 4500 −𝑀 𝑀

𝑇1,𝑐 N 1 4500 −𝑀 𝑀

𝛿𝑤1,𝑐
◦ 0 90 −45 45

𝛿𝑤2,𝑐
◦ 0 90 −45 45

𝛿𝑒1,𝑐
◦ −30 30 −45 45

𝛿𝑒2,𝑐
◦ −30 30 −45 45

𝛿𝑤,𝑖,hover = {𝛿𝑤,𝑖 | 80◦ ≤ 𝛿𝑤,𝑖 ≤ 90◦}, while cruise conditions entail zero vertical velocity 𝑤𝐵 = 0 but a horizontal

velocity 𝑢𝐵cruise = {𝑢𝐵 | 40 m s−1 ≤ 𝑢𝐵 ≤ 50 m s−1} and low tilt angle 𝛿𝑤,𝑖,cruise = {𝛿𝑤,𝑖 | 0◦ ≤ 𝛿𝑤,𝑖 ≤ 10◦}. Note that

in contrast to conventional aircraft, the wing AoA can be controlled via wing tilt angle next to the aircraft’s vertical

motion and pitch angle. This allows limiting the pitch angle to values close to 0◦, see Table 2. Other variable bounds are

either consistent with Table 2 or depend on the considered transition strategy. The respective flight states are assigned

to the initial and terminal state conditions 𝑥0 and 𝑥 𝑓 according to the transition direction. The initial and final inputs

are found with a trim analysis, 𝒖0 ∈ {𝒖 | ¤𝒙 (𝑡0, 𝒖) = 0} and 𝒖 𝑓 ∈
{
𝒖 | ¤𝒙

(
𝑡 𝑓 , 𝒖

)
= 0

}
, enforcing both hover and cruise to

be equilibrium flight states. In [18], the importance of the initial guess solution for convergence is highlighted. For

the presented setup, it was sufficient to interpolate between initial and final trim state to obtain initial guesses on the

discrete time grid. However, this setup solves a sequence of optimal control problems with increasing complexity and

forwarding the solution from one stage to the next. A simple model, neglecting flaps and first-order delay behavior of

inputs, is solved first before the presented "full" problem is warm-started with that solution. This improves computation

time, while the standalone "full" problem can likewise be solved directly. A similar positive effect on computation time

is observed when the problem is initially solved on a coarse grid and mesh refinement is applied subsequently. Final

results are obtained on a grid with 𝑁 = 101 control points.
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In general, the following objectives are of interest for the optimization of transition trajectories:

• minimize the transition time 𝑡 𝑓 , as flight within the thrust-based flight regime is energy-demanding

• minimize the terminal distance 𝑥𝐸
𝑓
, for transition maneuvers in tight spaces

• minimize the terminal altitude 𝑧𝐸
𝑓
, especially for backward transition, as vertical descent is energy-demanding

• minimize the error from a reference trajectory, defined by 𝑧ref , for level or glide-path transitions

which results in the following multi-objective cost function.

𝐽 = 𝑤1 𝑡 𝑓 + 𝑤2 𝑥
𝐸
𝑓 + 𝑤3 𝑧

𝐸
𝑓 +

∫ 𝑡 𝑓

0

[
𝑤4

(
𝑧𝐸 − 𝑧𝐸ref

)2
]
𝑑𝑡 (22)

The weights 𝑤 𝑗 determine the user-defined importance of single objectives but are also used to scale all terms to a value

close to unity to obtain a well-posed Hessian matrix.

In this work, the objective function expressed in Eq. (22) primarily serves to enforce a certain transition strategy, as

will be presented in detail in Section III. For future applications, this could be extended or replaced by other optimization

criteria like energy or noise. However, this requires adapting the model accordingly.

III. Transition Strategies
In this section, different strategies for performing the transition maneuver are explained, described mathematically in the

form of constraint and cost functions, and discussed with respect to the optimization results. Only appropriate options

for manned flight are considered, which yields three main conversion maneuvers. First, the initial altitude is maintained.

Second, an upward motion of the aircraft can be exploited to positively affect the AoA, thereby avoiding flow separation.

The last option is the opposite and consequently includes a downward motion, which initially sounds counterintuitive, as

that further increases the AoA.

A. Level Transition

The level transition maintains the initial altitude 𝑧𝐸 throughout the maneuver, leading to ¤𝑧𝐸 = 0. It is a typical

reference case for static trim analysis [12, 34], allowing a simple initial examination of transition characteristics. Without

a vertical velocity component, high effective AoA are usually encountered during the transition, and flow separation

occurs. This is more severe for backward transition maneuvers, as the thrust setting is low and the effect of the slipstream

is small. The post-stall flight regime is characterized by its non-linearity, wherefore trim points are not unique when

crossing the stall boundary, and the tilt angle trajectory takes the shape of an "S"-curve or fold. This effect was

discovered in 1968 by Kirkpatrick and Murphy[34] in the course of static wind-tunnel investigations (see Fig. 3(b)), and

was reproduced independently in previous work [10] (compare Fig. 3(a)) and by Cook[12]. The occurrence of the fold in

the tilt-angle range depends on the selected airfoil and its respective stall onset. It implies the aircraft would decelerate
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in an accelerated conversion maneuver, and vice versa. This is not only counterintuitive but also uncomfortable for pilot

and passengers. According to [34], the effect can be reduced by deploying stall-delaying airfoils or control surfaces

acting like high-lift devices. Furthermore, the author in [34] mentions that the transition fold is not encountered or at

least strongly decreased in the course of flight tests. That is primarily due to inertial effects in dynamic transitions,

which were neglected in the trim studies. One motivation for this work is to see whether the same result can be obtained

in a dynamic analysis using the optimal control approach. If this is confirmed, it would suggest that the simple trim

analysis can be misleading in terms of tilt-wing flight characteristics.

Still, the static trim lines in Fig. 3(a) indicate a general trend. With increasing acceleration, the region of non-linear

behavior becomes smaller, meaning that the forward transition maneuver is good-natured. In contrast, the non-linearities

increase for higher decelerations during the backward maneuver, and there is a region between 30 m s−1 to 40 m s−1

where no trim solutions are found. This might be an indicator of difficult transition flight conditions.
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Fig. 3 Comparison of transition trajectories with characteristic fold, for simulation-based tandem tilt-wing (a)
and wind-tunnel-based single wing trim studies (b).

Instead of strictly limiting the vertical motion by adapting variable and rate boundaries in Table 2, an upward motion

(0 ≤ 𝑧𝐸 , 0 ≤ ¤𝑧𝐸) is allowed to avoid too hard constraints for the optimization. Instead, the cost function enforces the

level transition, with 𝑤2 = 𝑤3 = 0 in Eq. (22). The reference altitude is replaced with the initial altitude 𝑧𝐸0 . The solver

is capable of minimizing the integral squared vertical displacement to the order of 10−7. If only the vertical offset is

considered as objective, longer transition times do not significantly impact the cost function, and the solution runs to the

upper limit of the terminal time. Therefore, 𝑡 𝑓 is preserved in the cost function, but with 𝑤1 ≪ 𝑤4.
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𝐽 = 𝑤1 𝑡 𝑓 +
∫ 𝑡 𝑓

0

[
𝑤4

(
𝑧𝐸 − 𝑧𝐸0

)2
]
𝑑𝑡 (23)

𝑤1 = 1 , 𝑤4 = 100 (24)

Forward The resulting trajectory is shown in Fig. 4. In the upper plot, the black arrow represents the sum of the

aerodynamic and propulsive force vectors, which accelerates the vehicle in the horizontal direction while balancing the

gravitational vertical force. As can be seen, the initial and terminal force vectors are purely vertical with the magnitude

of the gravitational force, as these states are trimmed. In the second plot, arrows represent the attitude of both wings. To

better illustrate the difference between both wing tilt angles, both arrows share the same origin in the vehicle’s CG.

While the canard tilt angle is higher in trimmed hover conditions (at 𝑥𝐸 = 0), it passes the main wing’s position in early

transition and leads the transition maneuver, until the main wing tilt angle catches up in late transition. This is also

visualized in Fig. 5(a). The behavior is due to the altered lever arms and their impact on the pitching moment as a

function of tilt angle.
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Fig. 4 Trajectory and velocities of level forward transition
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Fig. 5 Transition tilt angle trajectory and effective angles of attack for forward level transition.

The last plot in Fig. 4 shows the aircraft velocities in the body frame, corresponding to the NED-frame for zero pitch.

As intended, the vertical velocities are 0 while the horizontal velocity increases smoothly with ongoing transition.

As we were interested in the dynamic behavior in nonlinear post-stall, the resulting transition trajectory is transferred

to the same plot as in Fig. 3(a), where the tilt angle is plotted over flight velocity. This corresponds to the definition

of the tilt-wing transition corridor, and the plots thus give insides on the chosen path through the corridor during the

transition. Fig. 5(a) shows that, in comparison to the trim case, no transition fold is encountered. While there is a weak

hump in 𝛿𝑤,1 at around 30◦, 𝛿𝑤,2 stays smooth. The latter can be explained by Fig. 5(b), which shows that the canard

wing does not encounter severe flow separation, as the maximum of 𝛼eff,2 stays close to 𝛼stall = 12◦ (indicated by the

dashed horizontal line). That is due to the lower tilt angle of the canard wing, see Fig. 5(a). In contrast, the main wing

crosses into the post-stall regime. Still, the fold that was observed for trimmed flight is damped out. This confirms

that the results from the static trim analysis on the tilt-wings’ transition behavior should be reviewed with care, as the

dynamic behavior could be significantly different.

As explained above and shown in [6], forward acceleration has a positive effect on the transition characteristics,

wherefore the more meaningful analysis is on the backward transition.

Backward Compared to the forward case, the solution for level backward transition requires a larger horizontal

distance to perform the maneuver as the deceleration capabilities of tilt-wings are limited [35]. The relative motion

of the tilt angle for the backward case, shown in Fig. 6 and Fig. 7(a), is very similar to that of the forward case. For

low velocities 𝛿𝑤,1 < 𝛿𝑤,2 holds, which is reversed for high velocities. As predicted by the trim analysis Fig. 3(a),

decelerations push the tilt angle trajectories to higher values than the forward transition.
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Fig. 6 Trajectory and velocities of level backward transition
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Fig. 7 Transition tilt angle trajectory and effective angles of attack for backward level transition.

The decelerating maneuver dictates low thrust settings, which result in larger effective AoA (compare Fig. 7(b)).

Consequently, both wings enter deeply into the post-stall region, particularly in early backward transition which is

between approximately 32 m s−1 and 40 m s−1. This introduces non-linearities to the tilt angle trajectories in Fig. 7(a),

which occur when crossing the fold in Fig. 3(a) from linear AoA range to post stall conditions. This shows that the static

analysis helps to identify regions of the flight envelope with challenging transition conditions. Despite the non-linearities,

the curves for both tilt angles are still monotonic and a continuously decelerating maneuver can be observed in the

velocity plot. It is also apparent that deceleration capabilities are improved once the hump at 𝑢𝐵 = 35 m s−1 in Fig. 7(a),

corresponding to 𝑥𝐸 ≈ 300 m in Fig. 6, is passed. Nevertheless, note that flight in post-stall can introduce severe

buffeting, which might lead to comfort issues or induce high structural loads.

B. Transition without Flow Separation

Depending on aircraft and airfoil, the onset of stall is often accompanied by large fluctuations (buffeting), while the

resulting aerodynamic coefficients in [32] (used in Eq. (11)) represent an averaged result in this AoA range. Strong
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fluctuations of aerodynamic forces put stress on crew, passengers, and aircraft structure and might also impair flight

stability. Therefore, transformational aircraft often try to avoid flight in the post-stall regime [2] by loosening the vertical

velocity constraint [14]. Within the optimal control framework, path constraints for the effective AoA are introduced:

𝛼eff,𝑖 < 𝛼stall (25)

Upward aircraft motion is usually exploited to avoid flow separation. This can be included in the constraints by restricting

¤𝑧𝐸 to always be positive. It was already mentioned that a large increase in altitude during transition is undesired,

especially for the backward case. For forward transition, however, upward motion can be desired during transition to

initiate the climb phase. Nevertheless, we gain more insight by focusing on the boundary case and, therefore penalize

the terminal altitude within the cost function for both forward and backward transition:

𝐽 = 𝑤1 𝑡 𝑓 + 𝑤3 𝑧
𝐸
𝑓 (26)

𝑤1 = 1 , 𝑤3 = 0.01 (27)

Forward The results show that the aircraft is capable of satisfying both level and flow separation constraints, and the

resulting trajectory looks similar to the results obtained in Fig. 6. It is, therefore, not shown. Instead, we are more

interested in the differences between the two cases. For the level transition, the effective angles of attack only moderately

exceed the stall boundary, so slight modifications of actuator inputs are sufficient to prevent flow separation.
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Fig. 8 Comparison of actuator inputs at both wings, with and without flow separation prevention

A comparison between level forward transition with and without flow separation is given for thrust and tilt angle in Fig. 8.
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While the canard tilt angle stays almost unchanged, the main wing tilt angle is reduced within the time span from 3

to about 8 s, where stall occurred for the level maneuver (compare Fig. 5(b)), in order to reduce the effective AoA. A

combination of control surface deflection and differential thrust compensates for the change in tilt angle. In comparison

to the level case, where control surfaces are hardly deployed, significant deflections are required particularly on the main

wing. Fig. 9 shows that the effective angle of attack stays below the stall angle of attack, suggesting that flow separation

is successfully avoided. This leads to a smoother tilt angle trajectory when compared to the level case.
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Fig. 9 Transition tilt angle trajectory and effective angles of attack for forward transition without flow separation.

Backward While a forward level transition was possible without flow separation, the backward transition requires an

upward motion to reduce the effective angle of attack, see Fig. 10, if flow separation is to be avoided. The conversion

of kinetic to potential energy can be exploited to achieve short backward transitions when comparing final time and

distance with the level case.
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Fig. 10 Results for backward transition without flow separation.

The total aerodynamic and propulsive force acts as a centripetal force that causes a circular upward motion, as

shown in the upper left plot in Fig. 10. In late backward transition, the force vector is tilted to the left, which leads to a

strong deceleration of both upward (due to gravitation) and forward motion. The center-left plot illustrates the idea

behind transition maneuvers avoiding flow separation: To reduce the effective AoA, the tilt angle deflection is kept

almost tangential to the flight path. That explains why both tilt angle deflections take similar trajectories in the lower

right plot until assuming the differential tilt configuration for trimmed hover flight at 𝑢𝐵 = 0. Comparing this plot with

the result for the level transition, the desired smoothing effect in the tilt angle trajectory is observed. The AoA plot in

Fig. 10 indicates that the effective angle of attack stays below the profile stall line.

C. Dive & Glide Path Transition

The previous cases demonstrated that an upward motion can effectively reduce the AoA and avoid stall. In contrast, this

section investigates the effect of downward aircraft motion during the transition phase.

Dive Transition The dive transition exploits the conversion of potential to kinetic energy to quickly gain velocity

in forward transition. A loss in altitude is accepted, wherefore the vertical force provided by airfoils and thrust is not
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required to balance gravity. From an optimal control perspective, the state boundaries in Table 2 are adapted to allow

only a downward motion. It was already observed for the backward transition with upward motion in Fig. 10 that the

shortest transitions can be achieved when exploiting energy conversion. To enforce a dive transition, the terminal time is

set as a single objective (similar results are obtained when minimizing the terminal distance).

𝐽 = 𝑤1 𝑡 𝑓 , 𝑤1 = 1 (28)

As shown in Fig. 11, the cost function successfully triggers the desired behavior, and the aircraft descends more than

80 m throughout the maneuver. Without having to create sufficient lift to balance gravity, the aircraft is allowed to

rapidly tilt both wings downwards. This results in a large acceleration in both downward and forward direction. With

rising flight speed, aerodynamic forces become dominant and the aircraft quickly transitions from thrust- to wing-borne

flight. As expected, the dive trajectory results in a severe increase of effective AoA (Fig. 12).
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Fig. 11 Trajectory and velocities of dive transition

Glide Path Conventional aircraft follow a glide path when approaching the runway. To reflect possible ATC

requirements, a similar operation is considered in the form of the glide path transition. This represents the most

challenging maneuver for common tilt-wing flight [2]. Not only does the downward motion increase the AoA, but at the

same time, the propellers are close to idle (to allow deceleration), which reduces the positive slipstream effect on the
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Fig. 12 Transition tilt angle trajectory and effective angles of attack for dive transition.

effective AoA. In addition, the conversion of potential to kinetic energy along the glide path counteracts the desired

decelerating maneuver. The strategy can be imposed by penalizing deviation from a commanded glide path, represented

by reference altitude 𝑧𝐸ref in the cost function:

𝐽 =

∫ 𝑡 𝑓

0
𝑤4

(
𝑧𝐸 − 𝑧𝐸ref

)2
𝑑𝑡 (29)

𝑤4 = 1/𝑡 𝑓 (30)

where the reference altitude is a function of the current horizontal position:

𝑧𝐸𝑟𝑒 𝑓 = 𝑧𝐸0 −
(
𝑥𝐸 − Δ𝑥𝐸

)
· tan 𝛾 (31)

with initial altitude 𝑧𝐸0 and glide path angle 𝛾. The "fade-in" distance Δ𝑥𝐸 allows the aircraft to intercept the glide

slope. Here, Δ𝑥𝐸 = 500 m, 𝑧𝐸0 = 100 m and 𝛾 = 15◦ were chosen. Although aircraft approaches are usually conducted

at angles of about 3◦, the high value for the path angle was chosen for better visualization of the trajectory (and because

the vehicle is capable of flying such a maneuver). To avoid climbing within the fade-in distance, an upward motion of

the aircraft is restricted by variable constraints.
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Fig. 13 Trajectory and velocities of glide path transition

Aiming at good tracking of the prescribed path, the influence of time on the objective is canceled by choosing 𝑤4 = 1/𝑡 𝑓 ,

see Eq. (30). Otherwise, the solver minimizes the flight time instead of accurately tracking the glide path.
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Fig. 14 Transition tilt angle trajectory and effective angles of attack for glide path transition.

The resulting trajectory is shown in Fig. 13, with the glide path being represented by a dashed line. It is interesting to

see that a strong deceleration is initiated by an upward motion of the main wing within the fade-in distance. In this flight

regime, both tilt wings show very different tilt angles and the angles’ trajectories are not monotonic (Fig. 14(a)). Fading

into the glide slope, the aircraft already reduced its velocity by a factor of 2. On the glide path, both tilt angles align,

and the aircraft can still decelerate horizontally. However, the gradient of 𝑢𝐵 is smaller on the glide path compared to

the fade-in distance. Fig. 14(b) confirms that this maneuver is undesirable from an aerodynamics point of view, as both

wings are in post-stall throughout most of the transition.

IV. Conclusion
This paper investigates tilt-wing transition flight using an optimal control approach. The presented setup for

trajectory optimization allows for increased model complexity compared to similar approaches, encompassing non-linear
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aerodynamics, propeller wing interaction, and relevant actuator dynamics. Despite a large number of optimization

variables and strong non-linearities, the framework still shows robust convergence without dependency on expensive

initialization procedures. In this work, different longitudinal transition strategies are enforced by adapting the constraints

and objectives of the problem formulation. It is shown that strong non-linearities due to flow separation, occurring in

static transition trim investigations, are attenuated significantly in this analysis due to inertial effects, thereby highlighting

the relevance of dynamic investigations. Furthermore, the backward transition from cruise to hover conditions proves

to be the critical maneuver due to the unfavorable combination of low thrust settings and high angles of attack. The

considered strategies show that flow separation during backward transition can only be avoided with an upward aircraft

motion, which is counter-productive regarding energy consumption and counter-intuitive for pilot and air traffic control.

In contrast, the effective angle of attack is even further increased when following a conventional glide path. This could,

therefore, be a potential showstopper for the tilt-wing aircraft and suggests that flight in post-stall conditions has to be

accepted for this type of aircraft. In general, the developed framework supports a better understanding of aerodynamics

and flight dynamics within a tilt-wing’s transition flight phase, which is a valuable contribution to the fields of vehicle

design, flight control, and flight guidance.
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