Quantum correlations in long-baseline quantum optics

Albert Roura

German Aerospace Center (DLR) Institute of Quantum Technologies, Ulm

Gravitational effects in the quantum regime

- Experimentally investigating the gravitational field *sourced* by a delocalized quantum superposition is still extremely challenging.
- But substantial progress in measuring gravitational effects on delocalized quantum superpositions (as *test* particles):
 - matter-wave interferometry
 - quantum-clock interferometry
- What about relativistic particles (photons)?
 Starting to explore aspects of quantum field theory (QFT) in curved spacetime.

Matter-wave interferometry

Effect of gravity on delocalized quantum superpositions

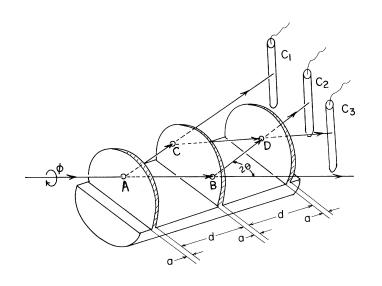
Observation of Gravitationally Induced Quantum Interference*

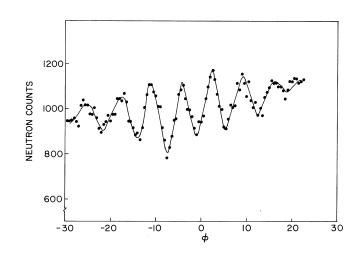
R. Colella and A. W. Overhauser

Department of Physics, Purdue University, West Lafayette, Indiana 47907

and

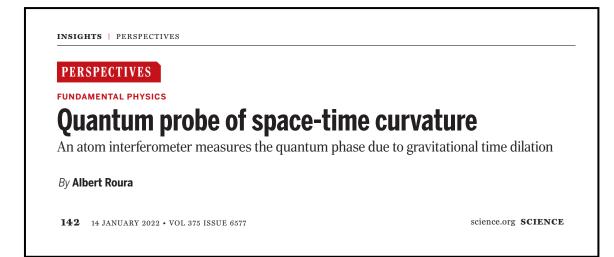
S. A. Werner


Scientific Research Staff, Ford Motor Company, Dearborn, Michigan 48121
(Received 14 April 1975)


We have used a neutron interferometer to observe the quantum-mechanical phase shift of neutrons caused by their interaction with Earth's gravitational field.

- Matter-wave interferometry with freely falling neutrons.
- Sensitive to Earth's approximately uniform gravitational field.
- Measures relative acceleration between freely falling neutrons and planes of Si crystal.

Effect of gravity on delocalized quantum superpositions



- Matter-wave interferometry with freely falling neutrons.
- Sensitive to Earth's approximately uniform gravitational field.
- Measures relative acceleration between freely falling neutrons and planes of Si crystal.

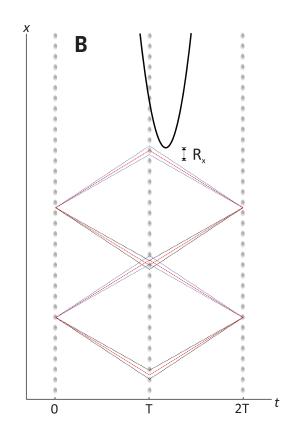
Spacetime curvature and proper-time difference

PHYSICS

Observation of a gravitational Aharonov-Bohm effect

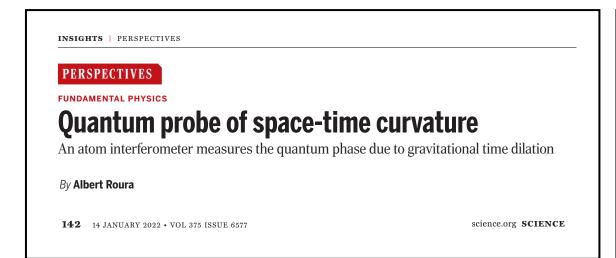
Chris Overstreet¹†, Peter Asenbaum^{1,2}†, Joseph Curti¹, Minjeong Kim¹, Mark A. Kasevich¹*

Overstreet et al., Science 375, 226-229 (2022) 14 January 2022


- Effect of *spacetime curvature* on a delocalized quantum superposition.
- Proper-time time difference between the two interferometer arms.
- Gravitational analog of the scalar Aharonov-Bohm effect.

Spacetime curvature and proper-time difference

t = 0 st = 0.8 st = 1.6 s


Stanford (USA)

lab frame

freely falling frame

Spacetime curvature and proper-time difference

PHYSICS

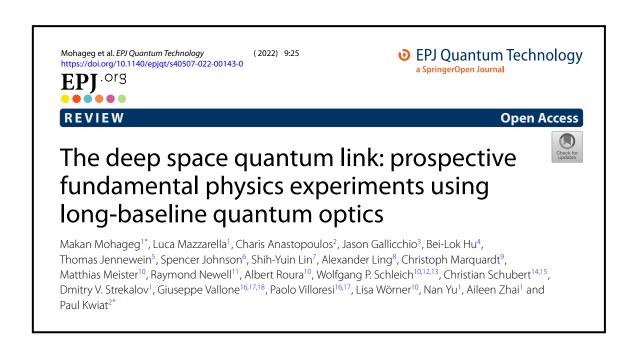
Observation of a gravitational Aharonov-Bohm effect

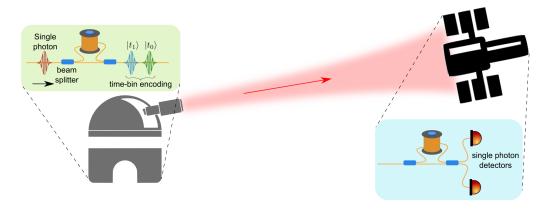
Chris Overstreet¹†, Peter Asenbaum^{1,2}†, Joseph Curti¹, Minjeong Kim¹, Mark A. Kasevich¹*

Overstreet et al., Science 375, 226-229 (2022) 14 January 2022

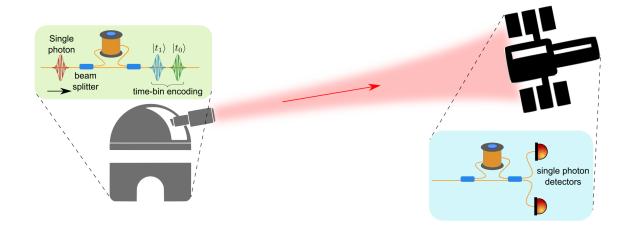
- Interpretation in terms of spacetime curvature and proper-time time difference within the framework of general relativity.
- BUT alternative description in terms of *non-relativistic* quantum mechanics plus *Newtonian gravity* also possible.

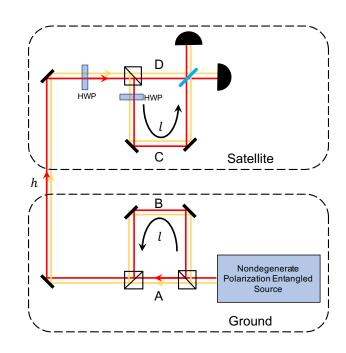
Long-baseline quantum optics




Interferometry with quantum states of light

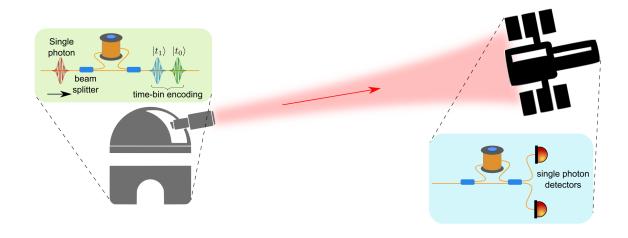
- Compared to state-of-the-art matter-wave interferometers, optical interferometers with quantum states of light offer the following appealing features:
 - ▶ Use of *relativistic* particles → quantum field theory
 - Multiparticle entanglement including external degrees of freedom.
 - Multiparticle interference with no classical analog.
 - Long baselines and large arm separations (up to hundreds of kilometers or more)
 - greater sensitivity to spacetime curvature effects.

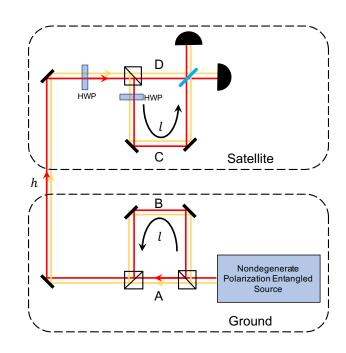



- Comprehensive study by the Science Definition Team for a NASA mission concept.
- Recognized with a NASA Group Achievement Award.

(i) Gravitational-redshift measurement

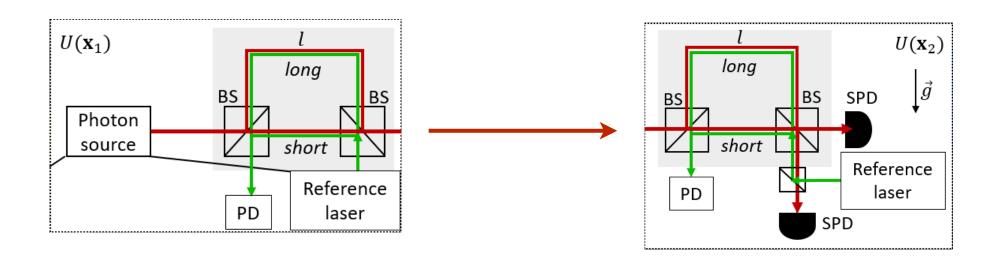
- - interesting version involving two-photon interference and frequency-entangled photon pairs
 - huge loses focus here on single-photon states




$$\ket{\Psi_0} = \frac{1}{\sqrt{2}} \Big(\ket{\omega_1, H} \ket{\omega_2, V} - \ket{\omega_1, V} \ket{\omega_2, H} \Big)$$

(i) Gravitational-redshift measurement

- Delay lines with equal proper length in different gravitational potentials
 gravitational time dilation
 - interesting version involving two-photon interference and frequency-entangled photon pairs
 - huge loses focus here on single-photon states

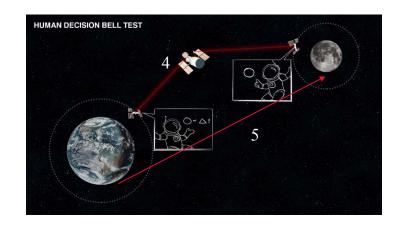


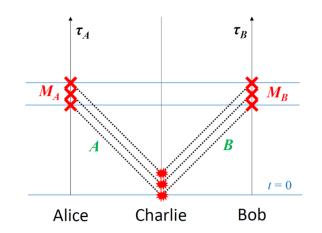
$$|\Psi_0
angle = rac{1}{\sqrt{2}}\Big(|\omega_1,H
angle + |\omega_1,V
angle\Big)$$

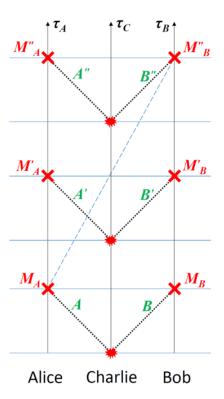
- The two delay lines need to be calibrated and stabilized with identical frequency references.
- Gravitational redshift over Earth-Moon baseline \longrightarrow calibration at 10^{-10} level or better.
- Linear Doppler shift needs to be post-corrected with laser-ranging measurement (smaller, slowly varying and much more stable than for LEO spacecraft)

Collaboration with Paul Kwiat, Makan Mohageg, Alex Lohrmann and Spencer Johnson

(ii) Long-baseline Bell tests


- Well beyond previous Bell tests: much longer baselines, much larger variations of gravitational potential,
 spacetime curvature effects (test of QFT in curved spacetime)
- Main challenge: beam divergence for such long baselines


 very small number of detected photons
 - use large aperture telescopes + adaptive optics
 - entangled photon-pair source with very high emission rate is needed
- Optimal encoding still to be determined (e.g. polarization vs. time bins).
 Could use of continuous (e.g. entangled squeezed states) rather than discrete variables be advantageous?
- Micius satellite: demonstrated entanglement distribution & passive quantum teleportation over 10^3 km.



- Possibility of closing the "memory loophole".
- Possibility of performing human-decision Bell tests.
- Quantum memories could be used instead of extra spacecraft
 - → storage time feasible, but major requirement on *multiplexing*.

Conclusions

- Key experiments identified:
 - gravitational-redshift measurement with quantum states of light
 - ▶ long-baseline Bell tests (+ quantum memories) & quantum teleportation
- Main challenges for practical implementation:
 - ▶ huge losses due to beam divergence → small number of detected photons (vs. dark counts)
 - source of entangled photon pairs with high emission rate is needed
 - major requirements on *multiplexing* in experiments with quantum memories

Thank you for your attention.

Project Q-GRAV