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Gravitational effects in the quantum regime ’ EDLR

e Experimentally investigating the gravitational field sourced by a delocalized quantum superposition
is still extremely challenging.

e But substantial progress in measuring gravitational effects on delocalized quantum superpositions
(as test particles):

» matter-wave interferometry

» quantum-clock interferometry

¢ \What about relativistic particles (photons)?

Starting to explore aspects of quantum field theory (QFT) in curved spacetime.
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Matter-wave interferometry
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Effect of gravity on delocalized quantum superpositions DLR
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We have used a neutron interferometer to observe the quantum-mechanical phase shift
of neutrons caused by their interaction with Earth’s gravitational field.

¢ Matter-wave interferometry with freely falling neutrons.
¢ Sensitive to Earth’s approximately uniform gravitational field.

® Measures relative acceleration between freely falling neutrons and planes of Si crystal.
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Spacetime curvature and proper-time difference
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Quantum probe of space-time curvature

An atom interferometer measures the quantum phase due to gravitational time dilation

By Albert Roura

142 14 JANUARY 2022 « VOL 375 ISSUE 6577 science.org SCIENCE

RESEARCH

PHYSICS

Observation of a gravitational Aharonov-Bohm effect

Chris Overstreet't, Peter Asenbaum®?t, Joseph Curtil, Minjeong Kim?, Mark A. Kasevich'*

Overstreet et al., Science 375, 226-229 (2022) 14 January 2022

o Effect of spacetime curvature on a delocalized quantum superposition.

e Proper-time time difference between the two interferometer arms.

¢ Gravitational analog of the scalar Aharonov-Bohm effect.
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Spacetime curvature and proper-time difference DLR
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Stanford (USA) lab frame freely falling frame
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¢ |nterpretation in terms of spacetime curvature and proper-time time difference

within the framework of general relativity.

e BUT alternative description in terms of non-relativistic quantum mechanics plus

Newtonian gravity also possible.
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Long-baseline quantum optics
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Interferometry with quantum states of light EDLR

e Compared to state-of-the-art matter-wave interferometers, optical interferometers
with quantum states of light offer the following appealing features:

» Use of relativistic particles =—» quantum field theory
» Multiparticle entanglement including external degrees of freedom.
» Multiparticle interference with no classical analog.

» Long baselines and large arm separations (up to hundreds of kilometers or more)
—3 greater sensitivity to spacetime curvature effects.
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Long-baseline quantum optics experiments DLR
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e Comprehensive study by the Science Definition Team for a NASA mission concept.

e Recognized with a NASA Group Achievement Award.
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(i) Gravitational-redshift measurement DLR

¢ Delay lines with equal proper length in different gravitational

potentials = gravitational time dilation /~ a N
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(i) Gravitational-redshift measurement DLR
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¢ The two delay lines need to be calibrated and stabilized with identical frequency references. DLR
e Gravitational redshift over Earth-Moon baseline —> calibration at 10~'° level or better.

¢ Linear Doppler shift needs to be post-corrected with laser-ranging measurement
(smaller, slowly varying and much more stable than for LEO spacecraft)
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Collaboration with Paul Kwiat, Makan Mohageg, Alex Lohrmann and Spencer Johnson
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(i) Long-baseline Bell tests EDLR

Well beyond previous Bell tests: much longer baselines, much larger variations of gravitational potential,
spacetime curvature effects (test of QFT in curved spacetime)

Main challenge: beam divergence for such long baselines =—» very small number of detected photons
» use large aperture telescopes + adaptive optics

» entangled photon-pair source with very high emission rate is needed

Optimal encoding still to be determined (e.g. polarization vs. time bins).
Could use of continuous (e.g. entangled squeezed states) rather than discrete variables be advantageous?

Micius satellite: demonstrated entanglement distribution & passive quantum teleportation over 103 km.
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(iii) Long-baseline Bell test with quantum memories

e Possibility of closing the “memory loophole”.

e Possibility of performing human-decision Bell tests.

e Quantum memories could be used instead of extra spacecraft

—3 storage time feasible, but major requirement on multiplexing.

HUMAN DECISION BELL TEST
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Conclusions EDLR

e Quantum optics experiments over long baselines (Earth—Moon) = opportunity to explore the interplay

between quantum mechanics and gravitation with relativistic particles in an unprecedented regime.

e Key experiments identified:
» gravitational-redshift measurement with quantum states of light

» long-baseline Bell tests (+ quantum memories) & quantum teleportation

¢ Main challenges for practical implementation:
» huge losses due to beam divergence —» small number of detected photons (vs. dark counts)
» source of entangled photon pairs with high emission rate is needed

» major requirements on multiplexing in experiments with quantum memories
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