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Requirements for CAA and their Relation to Quantum Computing

Computational Aeroacoustics (CAA)
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/sound generation in flows \ /sound propagation in flowsx
* inherently due to /
turbulence can be in complex geometries
- e.g., effects like scattering
* fluid-structure interaction, or refraction
e.g., propeller or vibration
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M. Soni et al., 28th AIAA/CEAS Aeroacoustics Conference, M. Bauer et al., 15th AIAA/CEAS Aeroacoustics

S. Proskurov et al., Airframe noise simulation of an A320 aircraft o .
June 14 - 17 2022, Southampton, UK : ; et - Conference, 11 - 13 May 2009, Miami, Florida, USA
P in landing configuration, CEAS Aeronautical Journal (2025) y




Requirements for CAA and their Relation to Quantum Computing

State of the CAA Art
DLR

= currently managable at the DLR department ‘“Technical Acoustics":

simulation property order of magnitude

number of grid points 10°
highest resolved frequency 10* Hz
simulated time 1s

- requires ‘time-marching’ with a corresponding read out rate for the flow quantities,
e.g., done with the lattice Boltzmann method (LBM)

. !

. y — Implementation of a time step via collision step
fo f1 — 1 fo S s 0 N1 . .
e ¥ A z “4% | and streaming step as separate operations.
S. Kocherla et al., AVS Quantum Sci. 6, 033806 (2024)

-> Can steps of such time-marching algorithms for CAA be accelerated via
guantum computing (QC)?




Requirements for CAA and their Relation to Quantum Computing

Linear Operations
DLR

= often sufficient description of aeroacoustic problems via linear egs.

‘Quantum computers are naturally adept at performing linear operations [...]J

Z. Holmes et al., Phys. Rev. Research 5, 013105 (2023)
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-> theoretically fewer computation steps, e.g., for

LSB ]0)q
= Fourier transformation (FT) via the QFT . T
M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, il T b.,)
(20th anniversary edition, Cambridge University Press, 2010) B 10..0) . .
= solving systems of linear egs. via the HHL algorithm Tom m m

A. W. Harrow et al., Phys. Rev. Lett. 103, 150502 (2009) [0...0):®0),

Inverse Quantum Phase Estimation
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[0...0),
n-qubit QFT circuit.
H. Y. Wong, Introduction to

Quantum Computing
(2nd edition, Springer, 2023)
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Workflow of the HHL algorithm.
A. Zaman et al., IEEE Access 11, pp. 77117-77131 (2023)




Requirements for CAA and their Relation to Quantum Computing
Linear Differential Equations in Aeroacoustics ‘#7
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* FT for solving Poisson and wave eqs., e.g., for the Navier-Stokes eqgs. for
Incompressible flow

<
IS
|

0,

| =
g
1
S

%@+@-m+ Yu

>

0
0
or also ang@-_w:DZ@, w=V xu

with V°A=—-w, u=VxA for2D

» solving a system of linear egs., e.g., in the boundary element method (BEM)
-> involves no time-marching |

Simulation result of a FM-
BEM procedure (FMCAS)
used at the DLR department
‘Technical Acoustics'.




A Quantum Algorithm for the Inhomogeneous Poisson Equation for Free Field Conditions

Solution Approach

used FT convention:

DLR

" S : i .
f(kmm) :/ f(xi)elk::,-xi de; < f(xt) = %/. f(kmi)e_lk:imi dkmﬂ x; € {Sﬂ,y, 0o } = 6?[,‘ — _ikmi

FT of the given S(x)

implementable via the QFT

multiplication of
S(k) by ——

inverse FT of the
expression for ¢ (k)

corresponds to a multiplication of the state vector by a
corresponding diagonal matrix:

—1

W M S(klx, ky)
(e % 0 0 ... o\
ﬁ 0 ... 0 S(kaysky,)
—~ 0 0 S(kxwkyl)
{:) (‘] 1 g(kmN:EJkyNy)
\ ngm+k32’Ny)

- implementable via the linear combination of unitary matrices
(LCU method)




A Quantum Algorithm for the Inhomogeneous Poisson Equation for Free Field Conditions

Multi-dimensional QFT

P. Pfeffer, arXiv:2301.13835v1 [quant-ph] (2023) DLR

—> parallel implementation of the DFT of an amplitude encoded field S(x)
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A Quantum Algorithm for the Inhomogeneous Poisson Equation for Free Field Conditions

Linear Combination of Unitaries (LCU) 4#7
DLR

A. M. Childs and N. Wiebe, Quantum Information and Computation 12, No. 11 & 12 (2012)

= expression of an arbitrary matrix A as a linear combination of unitary

matrices: N—1
A=) aU, ar€C, Ul =U,"
k=0

—> A natural choice for the basis matrices are the tensor products of the
2 X 2-Pauli matrices {1,X,Y, Z}.

= definition of a ‘preparation gate‘ [PREP(c,, ..., cy—1)] for the state of an ancilla
gubit register and a ‘selection gate‘ [SELECT] according to

[PREP(a, ... Jav—D)] 10}, Z‘ﬁwﬂ A= TV () = a0
[SELECT) = Z|k (k|, ® Uy

= [SELECT]k), @ [¢) = |k>a ® Uklt)



A Quantum Algorithm for the Inhomogeneous Poisson Equation for Free Field Conditions
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= (0,[PREP((v/ao)", .., (van—1))] [SELECT|[PREP(\/ag, ... /an—1)][0), ® [¢)

N

= ([PREP((vag)*,...(van=1)")]10),)"
k" / v a v QK \/ /
kZ (K|, [SELECT Z = |k}, ® ) = ZZ = (K 11)Uklw) = Azakww SAl)
_6,6,,.3,
—> quantum circuit representation:
lgo = 0), —— —o o o o ‘e
lgp = 0), —— [PREP(\/ai,....\/an_1)] ; & & ) & _: [PREP((\/a_l)*F.._,(V/m)*}]f
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A Quantum Algorithm for the Inhomogeneous Poisson Equation for Free Field Conditions

Structure of the Full Quntum Algorithm ‘#7
DLR
0), ((PREP(/aq, ..., yav=—)] - H prep(va)”. ... (yav=") H
[SELECT)
0)., —/—[amplitude encodingJ—[ [multi-dimensional QFT] J—k ) {[multi—dimensiona.] QFT]T]i ~A

—> functionality verified via implementation and simulation with IBM Qiskit




A Quantum Algorithm for the Inhomogeneous Poisson Equation for Free Field Conditions

Results from Statevector Calculation
DLR
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in total 14 qubits

probability for the desired measurement outcome w.r.t. the ancilla qubits = 0.0001




A Quantum Algorithm for the Inhomogeneous Poisson Equation for Free Field Conditions

(z—wxg)> 0-2 (z—x0)2 O.ﬁ T — 0 DLR
» considered source term S(z) =e = o2 = pr)= ?e_ o2 5 (x — a:o)erf( ) + const.
Wlth0=m and x, = 4

encoded in the state vector
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in total 14 qubits

probability for the desired measurement outcome w.r.t. the ancilla qubits = 0.121



A Quantum Algorithm for the Inhomogeneous Poisson Equation for Free Field Conditions

DLR

= considered source term S(z,y) =

with o = —=— and x, = 4
In(2

(92 (92 _ (z—=zg)?+y? _(z—zg)%+y?
Ox2 + 8y2 € o? = 90(37;9) =€ o2 + const.

3

source field analytic solution Jlla=rm real part imaginary part

Ny=25=32, [,= 1.0, Ax~0.031, Ak, ~ 6.283,
N,=25=32,1,= 10, Ay ~0.031, Ak, ~ 6.283

0.8 0.8
0.4 . 0.4 0.4 1 0.0015
0.6 0.6 0.0010
0.2 ) 0.2 0.2
- 0.0005
0.4 - 0.4
» 00 . ~ 00 s 007 - 0.0000
- 0.2 - 0.2 L 00005
-0.2 : -0.2 —0.2 1
- —0.0010
0.0 0.0
-0.4 , -0. —0.4 4
o4 0.4 —0.0015
3.6 3.8 4.0 4.2 44 3.6 3.8 4.0 4.2 4.4 36 3.8 4.0 4.2 4.4 3_I6 3_IB 4I0 4:2 4.I4
X
X

x
probability for the desired measurement outcome w.r.t. the ancilla qubits = 0.144

In total 20 qubits



Preliminary Consideration on Computational Resources

Rough Estimation of Execution Times ‘#7
DLR

= considered so far:

|.) =3

= QC routines of the presented quantum algorithm

qy) =

] N

] N

. . . Initialization ] Streaming
= quantum algorithm for the LB simulation la:) = Collision
of a linear advection-diffusion eq. by — 1) = = e
D. Wawrzyniak et al., Computer Physics ao) -

Communications 306, 109373 (2025)

Fig. 1. Quantum circuit with general blocks for the computation of one time
step for the Lattice-Boltzmann method in three dimensions.

* done based on the decomposition of the gates in the depicted quantum circuits into
native gates according to the procedure in V. V. Shende et al., IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 25, 6 (2006)

and using time scales for superconducting circuits:

1-qubit-gates 50 ns
2-qubit-gates 200 ns
cf. values in
coherence time 100 ps F. Tennie et al., Nature Reviews Physics (2025);

15

A. Kandala et al., Phys. Rev. Lett. 127, 130501 (2021)




Preliminary Consideration on Computational Resources

DLR
_ number of native 1-qubit-gates | number of CX-gates
amplitude encoding 2ntl — 2 2"l —2(n+1)
Numb_er of req_uwed native gates | ampitrary diagonal operator 2n -1 2n -2
]'Eo rehallze trll_e listed QC roll;junes contributions  H-gates on 0
or the application to n qubits. 0the QFT  ¢p oo B M1 _9n 4 1)
multi-qubit-SWAP-gate 0 317
— classical LB simulation ’
10? { m amplitude encoding °
®  QFT ¢
A general diagonal operator o
contribution of the CX-gates .
10-2 * for a general gate operation

considered grid resolution
and stencil

300 x 300, 1000 x 1000 x 1000,
D2Q9 D3Q27

estimated computation time [s]

initialization 0.14 s 437 s
collision 1.68 s 13744 s
streaming 0.05s 1s
= addition 2.8-107°s 3.5-107°s
107 7 7 > 3 10 12 Estimation of the runtime for one run of the
number of points individual steps of the LB quantum algorithm
Estimated runtime for some procedures, where the runtimes proposed in D. Wawrzyniak et al., Computer
of the QC routines are referred to one run of the circuits. Physics Communications 306, 109373 (2025).




Preliminary Consideration on Computational Resources

Conclusion
DLR

—> execution of whole quantum algorithms for CAA problems on real hardware seems very challenging
(cf. coherence time)

» reference: for a classically implemented LB simulation = 1 ys per grid point and time step

considered grid resolution
and stencil

300 x 300, 1000 x 1000 x 1000,
D2Q9 D3Q27

(a): in total for one run of the quantum 1.87 s 14182 s
algorithm of D. Wawrzyniak et al.,

Computer Physics Communications

306, 109373 (2025)

(b): classical LB simulation 0.09 s 1000 s

ratio (a) / (b) 20.778 14.182

—> better scaling behavior of such quantum algorithms might be compensated by the need to perform
more runs in order to maintain the accuracy of the extraction of the solution values
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