Probing gravity with quantum sensors

Albert Roura

German Aerospace Center (DLR) Institute of Quantum Technologies, Ulm

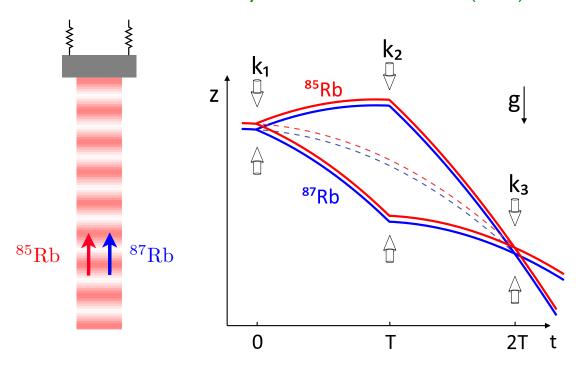
Project Leader at Institute of Quantum Technologies German Aerospace Center (DLR)

Co-Leader of WG on *Gravitational Quantum Physics and Metrology*COST Action *Relativistic Quantum Information*

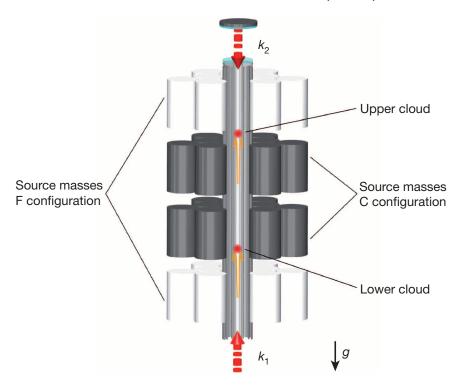
Co-Chair of ESA's *Physical Sciences Working Group* (PSWG)

Ex officio member of ESA's *Space Science Advisory Committee* (SSAC)

Member of the ACES Scientific Collaboration

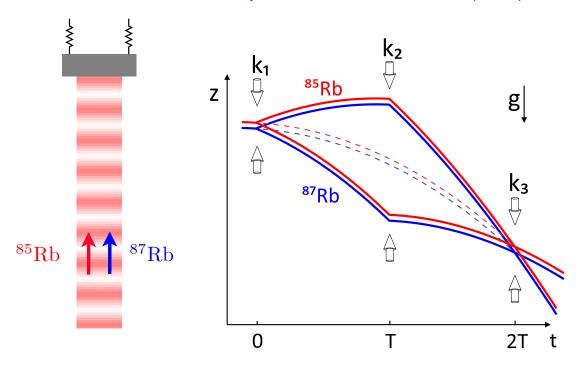

- 1. Atom interferometry
- 2. Atomic clocks and time/frequency links
- 3. General relativistic effects in the quantum regime:
 - Quantum-clock interferometry
 - Atom interferometer as a freely falling clock
 - Interferometry with quantum states of light

Atom interferometry

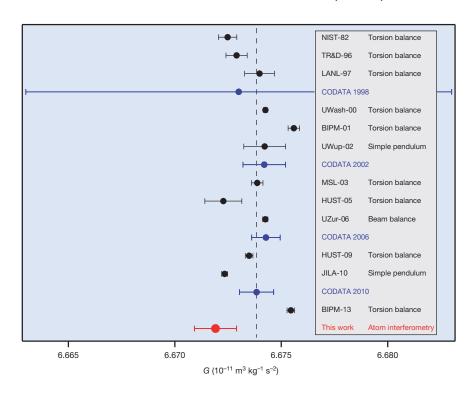

Asenbaum et al., Phys. Rev. Lett. 125, 191101 (2020)

Test of universality of free fall (UFF)

$$\eta_{AB} = 2 \frac{|g_A - g_B|}{g_A + g_B} \lesssim 10^{-12}$$

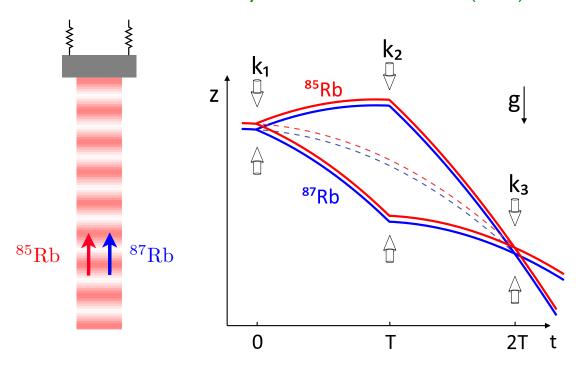

Rosi et al., Nature 510, 518 (2014)

$$\Delta G/G = 1.5 \times 10^{-4}$$

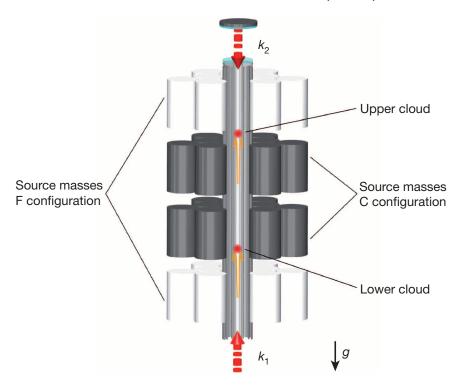

Asenbaum et al., Phys. Rev. Lett. 125, 191101 (2020)

Test of universality of free fall (UFF)

$$\eta_{AB} = 2 \frac{|g_A - g_B|}{g_A + g_B} \lesssim 10^{-12}$$


Rosi et al., Nature 510, 518 (2014)

$$\Delta G/G = 1.5 \times 10^{-4}$$


Asenbaum et al., Phys. Rev. Lett. 125, 191101 (2020)

Test of universality of free fall (UFF)

$$\eta_{AB} = 2 \frac{|g_A - g_B|}{g_A + g_B} \lesssim 10^{-12}$$

Rosi et al., Nature 510, 518 (2014)

$$\Delta G/G = 1.5 \times 10^{-4}$$

Major challenges posed by gravity gradients

• Systematics associated with initial central position & momentum of the two atomic species can mimic a violation of UFF:

$$\Delta g \sim \Gamma_{zz} \, \Delta z_0 + \Gamma_{zz} \, \Delta v_0 \, T$$

$$\Gamma_{zz} = -\partial^2 U/\partial z^2 \approx 3 \times 10^{-6} \, \mathrm{s}^2$$

$$\frac{\Delta g}{g} \lesssim 10^{-15} \longrightarrow \frac{\Delta z_0 \lesssim 1 \, \mathrm{nm}}{\Delta v_0 \lesssim 10^2 \, \mathrm{pm/s}}$$

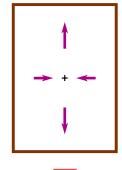
• Such sensitivity to initial conditions due to gravity gradients is one of the main systematic effects in most precision measurements based on atom interferometry.

Major challenges posed by gravity gradients

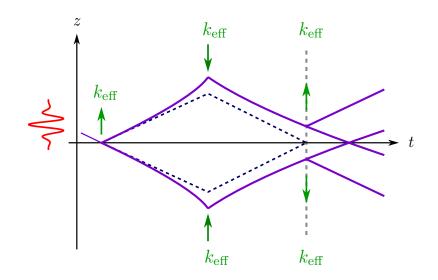
PRL 118, 160401 (2017)

PHYSICAL REVIEW LETTERS

Circumventing Heisenberg's Uncertainty Principle in Atom Interferometry


Tests of the Equivalence Principle

Albert Roura


Tidal forces lead to an open interferometer:

$$\delta z = (\Gamma_{zz} T^2) v_{\text{rec}} T$$
$$\delta p = (\Gamma_{zz} T^2) m v_{\text{rec}}$$

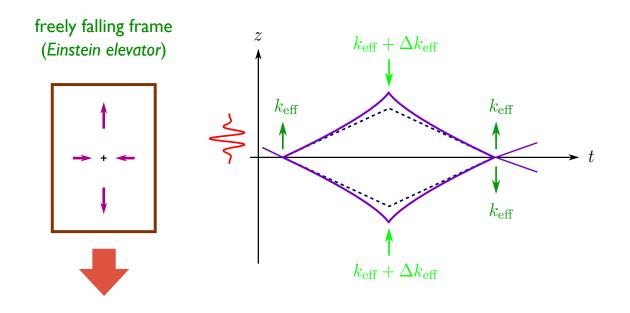
 Sensitivity to initial conditions directly related to such relative displacement between the two interfering wave packets at each exit port. freely falling frame (Einstein elevator)

Major challenges posed by gravity gradients

PRL 118, 160401 (2017)

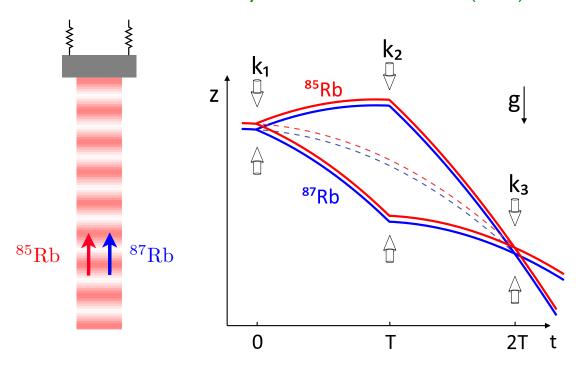
PHYSICAL REVIEW LETTERS

Circumventing Heisenberg's Uncertainty Principle in Atom Interferometry

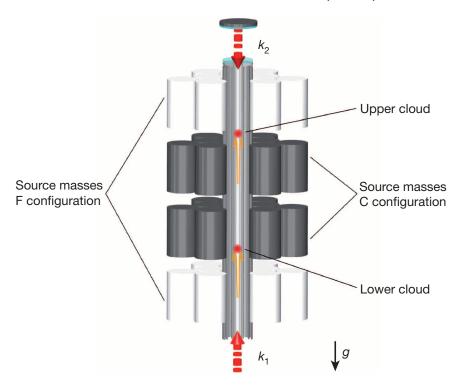

Tests of the Equivalence Principle

Albert Roura

Suitable frequency change of central pulse

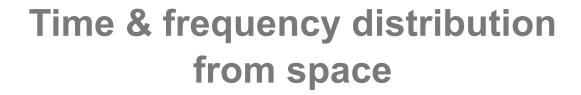

$$\Delta k_{\rm eff} = \left(\Gamma_{zz} T^2/2\right) k_{\rm eff}$$

leads to closed interferometer and removes sensitivity to initial conditions.


Asenbaum et al., Phys. Rev. Lett. 125, 191101 (2020)

Test of universality of free fall (UFF)

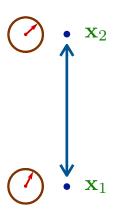
$$\eta_{AB} = 2 \frac{|g_A - g_B|}{g_A + g_B} \lesssim 10^{-12}$$


Rosi et al., Nature 510, 518 (2014)

$$\Delta G/G = 1.5 \times 10^{-4}$$

Atomic clocks and time/frequency links

- Next-generation GNSS.
- Clock comparisons for metrological and fundamental physics applications.
- Intercontinental comparisons.
- Eventually master clock in space.
- Global coverage.
- Chronometric geodesy.



Gravitational redshift

• General relativistic effect:

$$\frac{\Delta \tau}{\tau} \approx -\frac{\Delta f}{f} \approx (1+\alpha) \, \Delta U/c^2$$

$$\Delta U = U(\mathbf{x}_2) - U(\mathbf{x}_1)$$

- Test of Equivalence Principle: $\alpha = 0$?
- Must be taken into account in practical applications (e.g. GNSS).
- It can be exploited itself.

ACES (Atomic Clock Ensemble in Space)

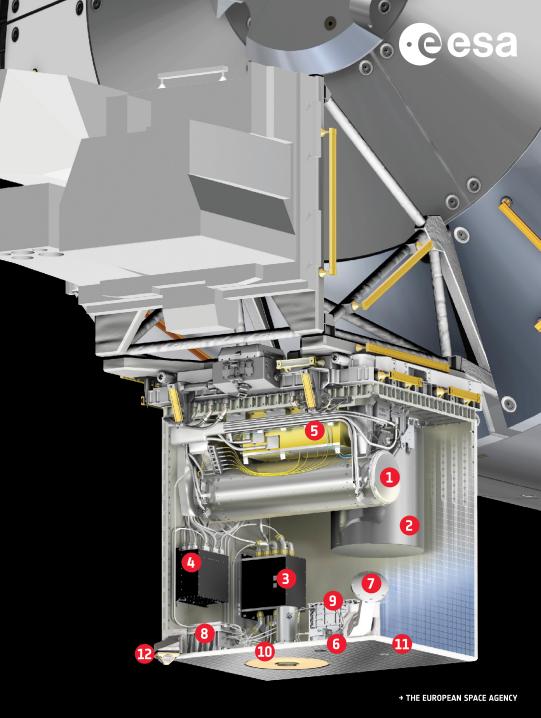
Project scientist: Luigi Cacciapuoti

PI: Christophe Salomon

- Target: first high-precision measurements with cold atoms in space.
- Important milestone for future ESA missions with cold atoms.
- Main scientific goals:
 - ightharpoonup measuring gravitational redshift at 10^{-6} level
 - searching for dark matter, variations of fundamental constants
 - ▶ intercontinental clock comparison at 10⁻¹⁷ level
 - ▶ demonstration of chronometric geodesy at 10 cm level

Successful launch on 21 April 2025 Space X, Falcon 9 rocket

Bartolomeo platform outside the ISS Columbus module


ACES

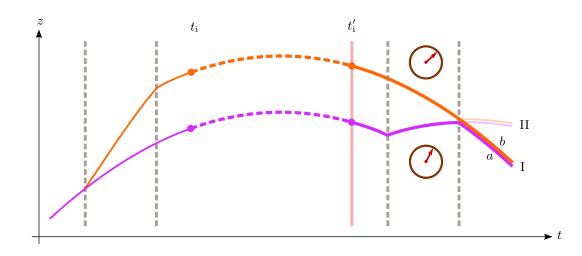
Atomic Clock Ensemble in Space

A European facility to test fundamental physics from outside ESA's Columbus module on the International Space Station. By creating a "network of clocks", ACES links its own precise timepieces, PHARAO and SHM, with the most accurate clocks on Earth to compare them and measure the flow of time.

- 1 PHARAO
 a clock which uses laser-cooled caesium atoms
- Space Hydrogen Maser, a clock which uses hydrogen atoms
- 3 External payload computer (XLPC)
 ACES computer
- 4 PHARAO on-board management unit (OMU)
 PHARAO clock's on-board computer
- 5 PHARAO laser source cools caesium atoms for the PHARAO clock
- 6 Single photon avalanche diode (SPAD)
 a highly sensitive device that can detect single photons of light
- 7 Global navigation satellite system
 (GNSS) antenna
 provides orbit determination of ACES to perform
 fundamental physics tests

- 8 Frequency comparison and distribution package (FCDP) compares PHARAO and SHM and sends the ACES clock signal to the microwave link electronics
- 9 Microwave link (MWL)
 enables the comparison of clocks on Earth
 and in space through the exchange
 of microwave signals
- 5-band microwave link antenna transmits microwave signals with a frequency of 2.4 GHz, within the 2-4 GHz S-band range used for Wi-Fi and mobile phone communications
- transmits microwave link antenna transmits microwave signals with a frequency of 14.7 GHz a receives signals at a frequency of 13.5 GHz, both within the Ku-band range used mostly for satellite communications
- **European Laser Timing (ELT) reflector**enables the comparison of clocks on Earth and
 in space by using laser pulses

General relativistic effects in the quantum regime

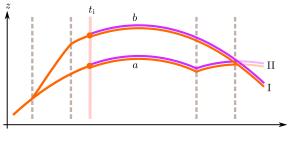

PHYSICAL REVIEW X 10, 021014 (2020)

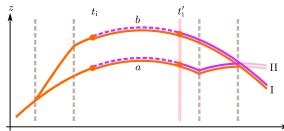
Gravitational Redshift in Quantum-Clock Interferometry

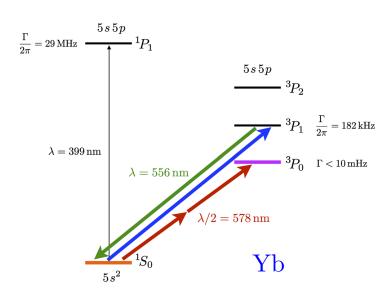
Albert Roura

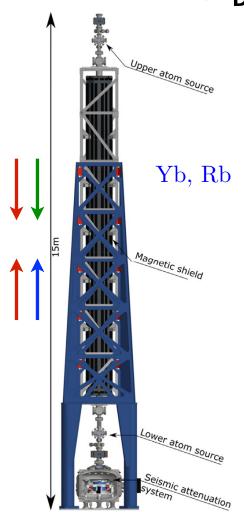
Quantum superposition of a single clock at two different heights

- Initialization pulse after the spatial superposition has been generated.
- Doubly differential measurement:
 - state-selective detection
 - compare different initialization times


(i) Quantum-clock interferometry




PHYSICAL REVIEW D 104, 084001 (2021)


Measuring gravitational time dilation with delocalized quantum superpositions

Albert Roura[®], ¹ Christian Schubert, ^{2,3} Dennis Schlippert, ² and Ernst M. Rasel²

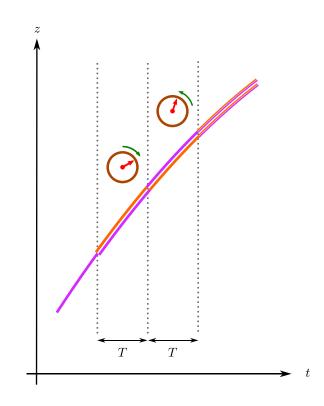
(ii) Atom interferometer as a freely falling clock

Quantum Sci. Technol. 10 (2025) 025004

https://doi.org/10.1088/2058-9565/ad9e2e

Quantum Science and Technology

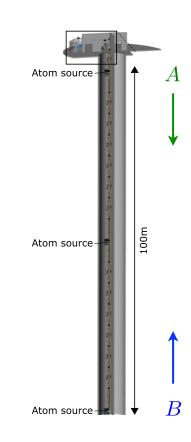
PAPER

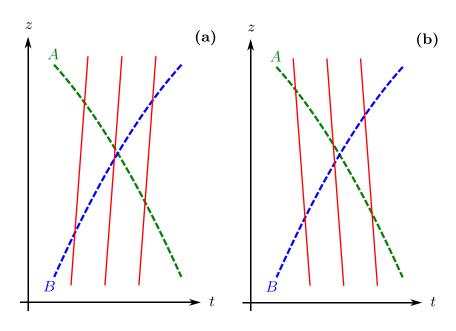

Atom interferometer as a freely falling clock for time-dilation measurements

Albert Roura

German Aerospace Center (DLR), Institute of Quantum Technologies, Wilhelm-Runge-Straße 10, 89081 Ulm, Germany

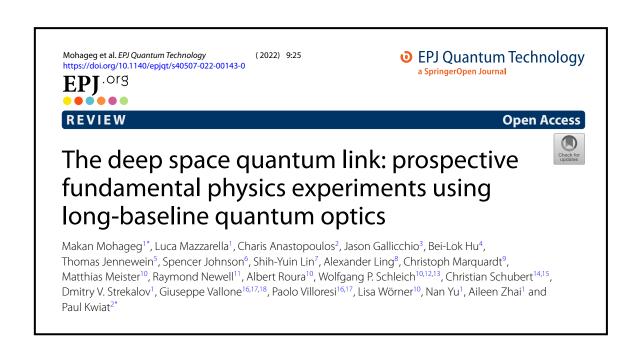
E-mail: albert.roura@dlr.de

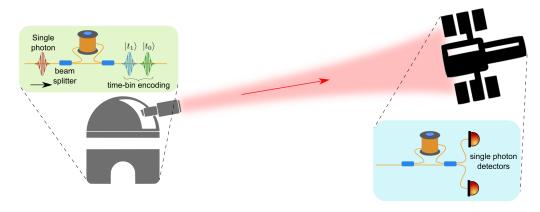

Keywords: atom interferometry, relativistic time dilation, gravitational and relativistic measurements, long-baseline facilities, single-photon clock transition


Clock ticks backwards after intermediate time. Imbalance due to relativistic time-dilation effects.

(ii) Atom interferometer as a freely falling clock

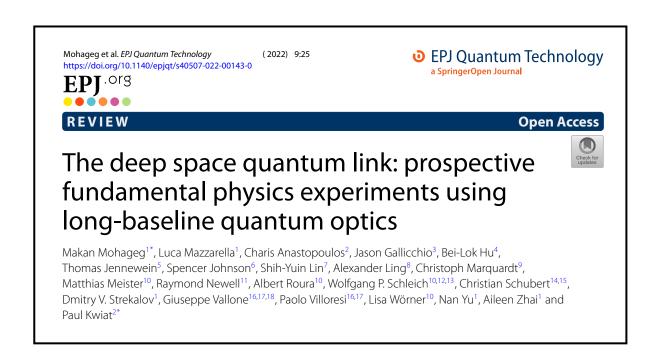
MAGIS-100



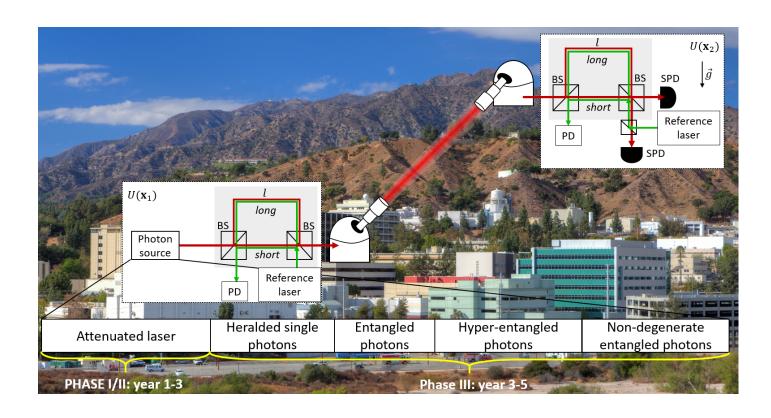

"gradiometric" configuration suppresses laser phase noise and effect of mirror vibrations

$$\delta\phi_A - \delta\phi_B = -2\left(\Delta E/\hbar\right)\left(\bar{\mathbf{v}}_0^A - \bar{\mathbf{v}}_0^B\right) \cdot \mathbf{g} \, T^2/c^2$$

(iv) Two-photon interference with frequency-entangled pairs



- Two-photon interference (similar to Hong-Ou-Mandel) with frequency-entangled pairs.
- Genuinely quantum interferometer with no classical analog.



- Part of a study by the Science Definition Team for a future space mission.
- Recognized with a NASA Group Achievement Award.

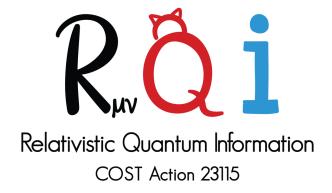
- Ground-based demonstration experiments in collaboration with
 - Spencer Johnson, Paul Kwiat (University of Illinois Urbana-Champaign)
 - Alex Lohrmann, Makan Mohageg (NASA, Jet Propulsion Laboratory)

- 10-km free-space link between Jet Propulsion Laboratory and Mt. Wilson (1.2 km height difference)
- Collaboration with Paul Kwiat, Makan Mohageg, Alex Lohrmann and Spencer Johnson.

Thank you for your attention.

Gefördert durch:

aufgrund eines Beschlusses des Deutschen Bundestages



Q-SENSE European Union H2020 RISE Project

Project Q-GRAV

