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What iIs the fundamental issue?
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How do we usually cool? A#y
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Image by Stefan Kiihn, via Wikimedia Commons, CC BY-SA 3.0 Image by ChNPP, via Wikimedia Commons, CC BY-SA 3.0
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Why Is water so beneficial? ‘#7
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Propulsion
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The Engineering Task - develop an evaporation system
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Multiple ideas — none approved by fuel cell experts
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Conclusion — keep the conventional cooling loop ‘#7
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Hybrid cooling architecture

« Keep the conventional (e.g. liquid) cooling loop
« Purity to meet fuel cell requirements
water evaporation - Limited electrical conductivity
cooling system :
* Freeze-protection

ram air heat exchanger

« Ram-air cooling for normal operation, optimized for
cruise

« Additional water evaporation cooling system for
pump support during high cooling demand (e.g. takeoff at
hot-day conditions)

fuel cell
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Concepts
DLR
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1) Water injection A#y
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1) Water injection — extension A#y
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1) Water injection — temperature influence ‘#7
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2) Cooling Tower ‘#7
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ram air heat exchanger C00|ing Tower

ram al cooling tower
hot water > fan
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water evaporation ram air . I,
cooling system >

pump

* Recirculated hot water enters the tower
fuel cell « Water spreads and wets the fill media — large heat-exchange surface
« Part of the water evaporates into the airflow — remaining water cools
— Split heat exchange and evaporation (compared to injection into HEX)

Simplified system interfaces

Enhanced optimization opportunities

X Trade-off: additional system (potential weight)
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3) Negative Pressure Boiling

Reduced (negative) pressure — boiling point of water decreases DLR
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Extraction of water from fuel cell exhaust
DLR

heat from e.g. battery, e-motor,
power electronics, ECS, cabin, etc.
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 Additional condenser requires up to +30% cooling requirement

« Boost system (=5 min at 50 %) recovery in 10 — 20 min possible (relevant for go around)
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Water as additional thermal mass (similar to conventional

aircraft fuel)

Cooling potential
« 12 — 25 % without evaporation
* 100 % — 200 % with evaporation
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Conclusion
 Significant TMS-induced drag

* Reduction potential using water evaporation fullfilling many

requirements

* Hope to inspire further investigations into this approach

Fuel cell compatible Reliable High performance Low climate impact

cooling tower fan

ram air >;tm
| 7

hot water

moist air]
pump

Lower Heating Value
ram air heat exchanger excess water compressor 1000
with injection_ water fan
ram air (

a boiling

preheater ) > water

fuel cell
Raphael Gebhart, Institute of System Architectures in Aeronautics, 16.10.2025

Deutsches Zentrum fur Luft- und Raumfahrt e. V. (DLR)
German Aerospace Center

Institute of System Architectures in Aeronautics | Aviation System
Concepts and Assessment | Air-Vehicle Thermal and Energy Systems

Raphael Gebhart M.Sc | Research Associate
raphael.gebhart@dlr.de

PREVENTION OF CONTRAIL
FORMATION IN HYDROGEN
FUEL CELL AIRCRAFT :

Contrails

»

* Contrails are the |argest non-CO; climate impact of aviation
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* Theoretically great reduction in aviation’s climate impact possible
* Minimal drag penalty while avoiding contrail conditions
+ Major advantage for hydrogen fuel cell aircraft adoption
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