FPSC Abstracts

Vol. 18, EPSC-DPS2025-903, 2025, updated on 23 Oct 2025 https://doi.org/10.5194/epsc-dps2025-903 EPSC-DPS Joint Meeting 2025 © Author(s) 2025. This work is distributed under the Creative Commons Attribution 4.0 License.

SuperCam Chlorine Detections on the Jezero Crater Floor

Z. Uriah Wolf¹, **Gorka Arana**², Juan Manuel Madariaga², Sam Clegg¹, Chip Legett¹, Iratxe Poblacion², Candice Bedford³, Travis S. J. Gabriel⁴, Olivier Forni⁵, Olivier Gasnault⁵, Ryan Anderson⁴, Elise Clavé⁶, Susanne Schröder⁶, Agnes Cousin⁵, and Roger C. Wiens³

¹Los Alamos National Laboratory, Los Alamos, NM, USA (wolf@lanl.gov)

Volatiles, such as chlorine (Cl), are important species that are easily mobilized by fluids and thus play a key role in alteration processes on Mars [1]. The first detections of Cl were made in the 1970's by the Viking 1 & 2 X-ray fluorescence (XRF) spectrometers. The □-proton x-ray spectrometer (APXS) instruments onboard the Mars Pathfinder (Sojourner), Mars Exploration rovers (Spirit & Opportunity), and the Curiosity rover continued to document Cl at their respective landing sites [2,3,4,5,6]. The Phoenix mission also detected Cl mainly in the form of soluble perchlorates and chlorides in the soil at its landing site [7]. The coexistence of soluble perchlorate and chloride salts in the soils of the Phoenix landing site is highly relevant for the redox potential point of view. The PIXL instrument onboard Perseverance produced Cl maps that show the Cl-rich regions overlapping sodium.

The SuperCam instrument onboard the Perseverance rover has been collecting Laser Induced Breakdown Spectroscopy (LIBS) data along our traverse for almost 1500 sols, with an elevation increase of 700 meters from the crater floor up to the crater rim. During this time, we have obtained more than 700 CI-bearing points in approximately 310 targets which have all been quantified. LIBS has the ability to detect Cl above 0.8 wt.% using the model developed by Wolf et al., (2025) [8]. All LIBS data collected by SuperCam were quantified and categorized by geologic unit and rock type. Results show that Jezero crater has higher average CI concentrations in soil, rock exterior, and rock interiors compared to previous landing sites. Results also show that Cl is highest in the rock interiors on the crater floor at the lowest elevation of -2500 meters in the Máaz formation. Raman data collected in abraded patches of Máaz formation confirmed that one of the phases of CI present on the crater floor is Na-perchlorate [9]. The presence of perchlorate salts in the pores of the rocks suggest the past presence of perchlorate-rich fluids in contact with the basaltic rocks of Máaz formation when the crater floor was covered by water. Quantified values show rock interiors on the crater floor have up to nearly 6 wt.% Cl, with an average concentration that is higher than all other geologic units including analyses on soils, rock exteriors, and rock interiors. This demonstrates a unique aqueous alteration history in Jezero crater, Mars compared to the landing sites of other rovers.

References:

²University of the Basque Country UPV/EHU, Leioa, Spain

³Purdue University, West Lafayette, IN, USA

⁴U.S. Geological Survey, Astrogeology Science Center, Flagstaff, AZ, USA

⁵Institut de Recherches en Astrophysique et Planétologie, Toulouse, France

⁶German Aerospace Center (DLR), Cologne, Germany

- [1] Williams, J. T., Shearer, C. K., Sharp, Z. D., Burger, P. V., McCubbin, F. M., Santos, A. R., ... & McKeegan, K. D. (2016). The chlorine isotopic composition of Martian meteorites 1: Chlorine isotope composition of Martian mantle and crustal reservoirs and their interactions. *Meteoritics & Planetary Science*, 51(11), 2092-2110.
- [2] Soffen, G. A. (1977). The viking project. Journal of Geophysical Research, 82(28), 3959-3970.
- [3] Golombek, M. P., Cook, R. A., Economou, T., Folkner, W. M., Haldemann, A. F. C., Kallemeyn, P. H., Knudsen, J. M., Manning, R. M., Moore, H. J., Parker, T. J., Rieder, R., Schofield, J. T., Smith, P. H., & Vaughan, R. M. (1997). Overview of the Mars Pathfinder mission and assessment of landing site predictions. *Science*, *278*(5344), 1743-1748. https://doi.org/10.1126/science.278.5344.1743
- [4] Arvidson, R. E., Ruff, S. W., Morris, R. V., Ming, D. W., Crumpler, L. S., Yen, A. S., ... & McLennan, S. M. (2008). Spirit Mars rover mission to the Columbia Hills, Gusev Crater: Mission overview and selected results from the Cumberland Ridge to Home Plate. *Journal of Geophysical Research: Planets, 113*(E12). https://doi.org/10.1029/2005JE002499
- [5] Rieder, R., et al. (2004), Chemistry of rocks and soils at Meridiani Planum from the Alpha Particle X-ray Spectrometer, *Science*, 306, 1746–1749, doi:10.1126/science.1104358
- [6] Litvak, M. L., Mitrofanov, I. G., Gellert, R., Djachkova, M. V., Lisov, D. I., Vasavada, A. R., & Czarnecki, S. (2023). Depth distribution of chlorine at Gale crater, Mars, as derived from the DAN and APXS experiments onboard the Curiosity rover. *Journal of Geophysical Research: Planets*, 128, e2022JE007694. https://doi.org/10.1029/2022JE007694
- [7] Hecht, M. H., Kounaves, S. P., Quinn, R. C., West, S. J., Young, S. M., Ming, D. W., ... & Smith, P. H. (2009). Detection of perchlorate and the soluble chemistry of martian soil at the Phoenix lander site. *Science*, *325*(5936), 64-67. https://doi.org/10.1126/science.1172466
- [8] Wolf, Z. U., Madariaga, J. M., Clegg, S., Legett, C., Arana, G., Gabriel, T. S. J., Poblacion, I., Forni, O., Gasnault, O., Anderson, R., Clavé, E., Schröder, S., Cousin, A., Wiens, R. C. (2025) Chlorine in Jezero Crater, Mars: Detections made by SuperCam. *56th Lunar and Planetary Science Conference*. Abstract #2456
- [9] Meslin, P.-I., Forni, O., Beck, P., Cousin, A., Beyssac, O., Lopez-Reyes, G.,... & Zorzano, M.-P. (2022) Evidence for perchlorate and sulfate salts in Jezero Crater, Mars from SuperCam observations. *53rd Lunar and Planetary Science Conference*. Abstract #2494