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Abstract

This thesis investigates the generalization capabilities of deep learning models for the detec-
tion of heliostats with varying mirror geometries in aerial images of solar power tower plants.
A geometry-agnostic modeling strategy is developed and evaluated in three structured sce-
narios, each based on different configurations of training and test geometries. The proposed
methodology focuses on training models for object and keypoint detection using synthetic
datasets and evaluating their performance based on the AP' and PCK' metrics. The re-
sults indicate that keypoint prediction generalizes more robustly under structural variation
than bounding box detection, which is more sensitive to differences in geometric scale and
design. Additional comparisons with class-aware models, i.e., models that were trained and
tested on the same geometry, show that the geometry-agnostic models can achieve compet-
itive performance in keypoint detection, but consistently underperform in the bounding box
accuracy. Selected models trained on a diverse set of geometries, including the test geom-
etry, achieve up to 2 percentage points higher PCK scores than the class-aware baseline
while achieving comparable AP performance within a margin of 5 percentage points. Initial
experiments on real-world data demonstrate that the sim-to-real transfer remains highly chal-
lenging, with performance degrading significantly in the absence of realism-enhancing factors
such as soiling or contextual scene elements.

Keywords: Concentrated Solar Power, Deep Learning, Geometry-Agnostic, Object Detec-
tion, Keypoint Detection, Sim-to-Real Transfer, Pose Estimation

'average precision (AP), percentage of correct keypoints (PCK)
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1. Introduction

[Solar power tower (SPT)| plants generate renewable electrical energy by utilizing solar ra-
diation, thereby contributing to the reduction of greenhouse gas emissions. They primarily
consist of heliostats that track the sun’s movement on two axes and reflect the incoming solar
radiation onto a central receiver. In the receiver, the sun’s energy is transferred to a ther-
modynamic cycle for electricity generation. Excess solar energy can be stored as thermal
energy and converted into electricity when required. This flexibility enables the plants to en-
hance grid stability through demand-oriented power generation [1H3]. To ensure a high level
of plant efficiency, heliostat alignment must be monitored and calibrated regularly so that the
incoming solar radiation is optimally focused on the receiver [4-7].

State-of-the-art calibration methods rely on conventional image processing techniques. Typi-
cally, heliostats are calibrated sequentially in order to achieve sufficient calibration accuracy.
However, this sequential procedure results in long processing times, particularly in large-scale
[SPT]|plants [6]. To address this limitation, more recent approaches use drones equipped with
high-resolution cameras that can quickly capture all heliostats in a field using aerial images.
The current orientation of a heliostat is then determined by identifying the heliostat via con-
ventional edge and corner detection algorithms. While these conventional image processing
methods generally provide adequate results, they are not sufficiently fast and robust, as they
primarily rely on handcrafted feature engineering [8-11]. Manual calibration work is often re-
quired, which makes the process increasingly costly and time-consuming [12,[13].

The emergence of [artificial intelligence (Al)| and [machine learning (ML)] is opening up new
possibilities in various fields, with image processing being a key area of application [14} 15].
Initial research has explored the use of [ML}based methods for heliostat detection in images.
However, existing approaches either still partly use conventional image processing methods
or ground-based imagery rather than aerial images [12,{16-18]. To the best of my knowledge,
the work by Broda et al. [19] at the [German Aerospace Center (DLR))| Institute for Solar Re-
search (Almeria, Spain) is the only exception found in the existing literature. This work serves
as the foundation for this master’s thesis. The results are utilized to identify existing research
gaps as well as to motivate the objectives of this study in the following.

Broda et al. [19] train a neural network (NN)|to detect heliostats in aerial images. The model
works exclusively with synthetically generated image data® during training to overcome the
challenge of limited training data and to have improved control over the variables affecting

2Synthetic image data generated with the open-source 3D modeling software Blender [20], BlenderProc [21] and
custom extensions [13].



the model performance. Figure shows the model predictions of the trained model for
a randomly selected test image. The model is class-aware, meaning it was trained on the
same mirror geometry used in testing. The train set size is 20,000 images. To ensure clarity
and distinguishability, the corresponding mirror geometry will be referred to as geometry A in
the following. As it is common in object detection 23], the position of the heliostats in
the image is predicted using their bounding box (in red). The positions of the corner points
(referred to as keypoints in the following) of the mirror facets are predicted using dots (in
green). By visual inspection, all heliostats are detected by the model in this test image. The
percentage of correctly predicted corner points is also high. Exceptions primarily include
heliostats that are located far from the camera.

Figure 1.1.: Bounding box and keypoint predictions of a class-aware model at a model confidence score of 0.5.
Model trained on 20,000 synthetic images and tested on seen geometry A.

For a mirror geometry not seen in training, referred to as geometry B in the following, the
model predictions for another test image are shown in Fig. [.2] For this image, it turns out
that the model can only recognize about half of all heliostats. This detection rate indicates,
that the model cannot directly transfer the learned patterns from geometry A to geometry B.
To improve the model’s performance on geometry B, Broda et al. fine-tuned the existing
model using an additional training set of 200 images from geometry B. The model predictions
of the fine-tuned model, using the same camera orientation as in Fig. are shown in Fig.

i3



Figure 1.2.: Bounding box and keypoint predictions of a class-aware model at a model confidence score of 0.5.
Model trained on 20,000 synthetic images and tested on unseen geometry B.

Figure 1.3.: Bounding box and keypoint predictions of a fine-tuned model at a model confidence score of 0.5.
Model trained on additional 200 synthetic images and tested on fine-tuned geometry B.



Retraining the existing model with an additional reduced train set improves the model predic-
tions significantly. This result indicates that fine-tuning constitutes a good strategy to enhance
the model’s adaptability to different geometries. However, testing on a third geometry, referred
to as geometry C in the following, shows that the model’s generalizability to further unseen
geometries remains limited. The model predictions for an image showing heliostats with this
geometry are shown in Fig. Notably, a considerable number of heliostats are either not
detected or are assigned by multiple bounding boxes. Moreover, fewer than half of all key-
points are identified successfully. In the current configuration, the model developed by Broda

Figure 1.4.: Bounding box and keypoint predictions of a fine-tuned model at a model confidence score of 0.5.
Model trained on additional 200 synthetic images and tested on an unseen geometry C.

et al. [19] is therefore only applicable to geometries on which it was trained. This finding
implies a significant limitation for the application range as the heliostat geometry can vary
with each plant [24]. Fine-tuning can improve the model performance for selected geome-
tries. However, this process means additional work through retraining and also implies that
the model would have to be tuned again for each additional geometry. Moreover, retraining
requires the generation of new synthetic training data, which is time-consuming and repre-
sents a significant bottleneck in the tuning process.

Building on the work of Broda et al. [19], this master’s thesis is therefore dedicated to
developing a geometry-agnostic (deep learning (DL) model that can detect heliostats
of different geometries on aerial images without additional training. This model would
then be capable of detecting heliostats on all types of [SPT|systems.




2. Fundamentals and Related Work

This chapter is subdivided into two main sections. Section one covers [ML] including[DL] as its
subarea. Section two considers technologies in the field of [concentrated solar power (CSP)|
and focuses particularly on [SPT| plants. In both sections, fundamental terms and concepts
are explained, and information is provided covering the current state-of-the-art.

2.1. Machine Learning

The following section begins by looking at the mathematical principles and techniques in the
context of[ML] Then,[NNs|are considered as a sub-area of [ML] [Convolutional neural networks|
[[CNNsj)| are a special type of [NNs|and are therefore considered separately. Finally, state-of-
the-art networks and their applications are reviewed.

2.1.1. Fundamental Terminology and Concepts

[ML] enables technical systems to learn from data and use this knowledge to make predictions
for new, unknown data. The machine detects patterns, trends or key features in the provided
data during the learning process without being explicitly programmed [14], [15]. [ML techniques
are commonly divided into four types: supervised, unsupervised, semi-supervised and rein-
forcement learning. In supervised learning, a function is learned by mapping given input data
to corresponding output data, known as labels. The entirety of the data used in the learning
phase is referred to as ground truth. This approach aims to learn a function that can generate
output data for new input data that was not used during the learning process. Typical super-
vised learning tasks are regression and classification. Regression is a method for predicting
continuous values, whereas classification assigns data points to discrete classes. Unsuper-
vised learning deals with unlabeled data, meaning there is no output data for given input data
during the learning phase. Unsupervised learning aims to detect hidden underlying patterns
or groups, like in a clustering process [14} |25]. Semi-supervised learning and reinforcement
learning are not considered further due to their lack of relevance to this thesis.

The key components of [ML]are a model, a strategy and an algorithm [26]. A linear regression
with one input parameter is used as an example to illustrate these key components (Eq. [2.7).
In this case, the model is a linear function f(x). The function consists of two parameters, the
weight w and the bias b. For a given input x, the function calculates a model output f(z)
based on the estimated model parameters [15} 27].



flx) =wx+0b (2.1)

An optimization strategy is defined to determine which choice of the model parameters w and
b is optimal. The corresponding objective is the minimization of a loss function, such as the
lresidual sum of squares (RSS)| also called I2 loss (Eq. [2.2).°

min[RSS = min z:(yZ — 9:)? (2.2)
=1

The[RSS|sums over the squared differences between the ground truth labels y; and the model
predictions g; for a given input value ;. The number of data points is n. Using the squared
loss ensures that deviations with different signs are not truncated. Therefore, a good model
is one with a small [RSS] It is convenient to multiply the [RSS| by the factor 0.5 to neutralize
the factor of two in the derivative of the [RSS| Closely related to the RSS|is the[mean squared|
which averages the [RSS|over the number of data points n [15} 27].

An algorithm is needed to compute the minimum of the loss function. A general approach
in is using gradient descent [25] 28]. Gradient descent changes the parameters to be
estimated iteratively based on the gradient of the loss function. The gradient for the linear
regression problem with one input parameter is shown in Eq. % resp. %—% is the partial
derivative of the loss function L with respect to w resp. b.

oL
VL(w,b) = [8%] (2.3)
ob

By definition, the gradient of the function V L(w, b) is a vector that points toward the steepest
increase of the function at a given point (w,b). Changing the parameters of the current
iteration ¢ in the direction of the negative gradient aims to bring the parameter values closer
to their minimum in the next iteration ¢ + 1 (Eq. and[2.5). The decisive factor here is a
good choice of the learning rate 7, which determines the step size with which the minimum is
approached. The iterative optimization stops, for example, when it converges to a minimum
or after a certain number of steps [27, 29, |30].

oL
W41 = Wt — 77% (24)
oL
biy1 :=b —n—- 2.
= b=y (2.5)

Optimizing the model parameters is the most crucial part of building a [ML] model. However,
the typical [ML] workflow consists of four steps [15]: dataset collection, data pre-processing,
model training (the learning phase) and model evaluation. The workflow is described in the
following, with reference to Fig.

3A detailed description of several state-of-the-art loss functions can be found in Appendix



The collected data is the fundamental factor for the effectiveness and efficiency of a[ML]model.
Therefore, the data should be representative, relevant in terms of the measured features, of
high quality and sufficient in quantity. However, real-world data is often unorganized and can-
not be directly utilized in the subsequent steps. Before proceeding, the data needs to be
pre-processed. Typical tasks include handling missing data, standardizing data features and
eliminating outliers [14]. Model training comprises the mathematical operations previously
discussed for optimizing the model parameters. Learning itself is realized through the com-
bination of a model, an optimization strategy and the associated algorithm. In general,
different model types ¢ and variants v are trained, varying in their mathematical approaches
or hyperparameters. For example, a regression model can be linear but also quadratic. The
learning rate, an example of a hyperparameter, is also adjustable as part of the gradient de-
scent optimization [15} |27]. For model training, only a part of the collected data is used. The
data is divided into a train set and a test set, e.g., in an 80:20 ratio. A common strategy is to
further divide the training set into a reduced training set and a validation set, allowing for the
monitoring of model performance during training [15].

| Training data | Validation data Testing data
Model type 1 Model type 2 Model type t
1
l | Variation in hyperparameters | l
+—
Model 1 Model 2 Model t
variant v variant v variant v
|
| Evaluation of model variants |
I Model 1 Model 2 Model t
variant v variant v variant v
l | Selecting best models for testing | l
Model 1 Model t P
variant 2 variant 3 «
Selecting best model on final
performance
Model t
variant 3

Figure 2.1.: Big picture: model training, validation, testing and selection |15} [31].



The monitoring provides a basis for excluding model variants or adjusting hyperparameters at
an early stage. A final evaluation of the model’s performance is conducted using the test set.
This evaluation is necessary because a good model performance achieved during training
and validation is not a sufficient indicator of its performance on unseen data. For example, a
model with a large number of parameters and precisely adjusted hyperparameters can tend
to approximate the given data (small training loss) and not learn the underlying function (high
testing loss). The model is overfitted |14, 15} [32].

Having a sufficiently large quantity of data available for a [M0 project is often challenging.
Reserving data aside for model evaluation can be critical to the remaining train set size. A
solution to this problem is the use of resampling methods, where existing data is utilized
in multiple iterations or to generate additional data artificially. One method is k-fold cross-
validation, which is explained in the following [15} |28]. After splitting the data into a train set
and a test set, the resulting train set is divided into K parts. In every iteration k € 1,..., K,
the model is trained on all the folds except fold &, which is used as a validation set. The [ MSE|
is calculated, which averages the squared errors calculated in the k iterations.

Training data
split1 | Fold1 || Fold2 || Fold3 Fold Fold k Fold for
k-1 training
. Fold Fold for
split2 | Fold1 || Fold2 || Fold3 o Fold k ot
split3 | Fold1 || Fold2 || Fold3 Fk‘_"1d Fold k
Fold1 || Fold2 || Fold3 '1‘3'1" Fold k
Split Fold
P Fold1 || Fold2 || Fold3 o Fold k
splitk | Fold1 || Fold2 || Fold3 Fk‘f'f Fold k

Figure 2.2.: k-fold cross-validation, own presentation based on [15].

After introducing fundamental concepts and terminology in the field of [ML] the following chap-
ter will focus on[DL] which is a major subfield of ML



2.1.2. Deep Learning

[DLis a subfield of [ML] and is based on[NNs| A[NN]is inspired by the information processing
structure in the human brain. A neuron receives information, processes and forwards it to
other neurons via synapses. Mathematically, this process is described as follows: A is
organized in layers. Information is given to the network at the input layer. The corresponding
neurons process the incoming information and forward it to the neurons in the next layer. The
information is successively processed by the intermediate layers and finally output through the
output layer. Due to the unidirectional flow of information from the input to the output layer, this
type of network is also referred to as a feedforward network. Except for the input and output
layer, an outside observer cannot observe the states and calculations. This is why these lay-
ers are referred to as hidden layers. Networks with many hidden layers are called|deep neurall
[networks (DNNs)| and the study and application of these networks are collectively referred to
as DL [14} [15, 27, 29| [32]. An exemplary structure of a small [NN| with two hidden layers is
shown on the left in Fig. The right side of Fig. [2.3) visualizes the information processing
of an artificial neuron. In focus is a neuron of the first hidden layer, which receives information
x; weighted with w; from all three neurons i € {1, 2, 3} of the input layer. The neuron sums
up the incoming information, processes it with an activation function and forwards the output
to the next neuron. The activation function used is the [rectified linear unit (ReLU)| [ReL U] has
established itself as state-of-the-art and is defined as ReLU (z) = maxz(0, x) [15}[27]. While
applying other activation functions is possible, a closer examination of this subtopic is not ad-
dressed in this thesis.

The strength of a[NN] lies in the number of hidden layers, respectively, its depth. A neuron
processes weighted input data, applies an activation function to reduce the input to a single
value, and passes the information to a downstream neuron. Note that activation functions of
hidden layers are in general non-linear. The composition of these non-linear functions enables
the mathematical modeling of complex non-linear relationships. Thus, the deep architecture
provides the capacity to learn highly complex data structures [29, |33].

3
“1 ReLU Z W * %
w, N =1

w3 * X3

k

Input Hidden Hidden Output
Layer layer 1 layer 2 layer

Figure 2.3.: Architecture of a(leﬂ) and structure of an artificial neuron with weighted input (right),
based on [15].
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Training a [DNN]is fitting its weights to minimize a certain optimization function by applying
a training algorithm. For regression tasks, the 12 loss function and the gradient descent al-
gorithm are also applicable within a[DNN]|[28, 29]. However, due to the chaining of network
layers and their associated weights, training a[DNN|becomes significantly more challenging.
This difficulty is explained in the following. The change in the output of a function f(z) is
based on its derivative %. If the input is first transformed by a function z(z) before being
passed into f, the total derivative is calculated by applying the chain rule (Eq. [2.6).

df dz df

Tr = dr * e (2.6)
The optimization of the weights in a [NN] underlies this fundamental principle. During train-
ing, the gradient of the loss function with respect to the weights of any layer is propagated
backwards from the output layer. This procedure is known as backpropagation. However, the
complexity of backpropagation increases significantly with the depth of the because the
gradient descent algorithm must compute derivatives of multiple non-linear transformations.
One resulting problem is the vanishing gradient, where the gradients in the first layers of a
[DNN]| can have very small values, making it difficult to train the corresponding weights. The
vanishing gradient is caused by the use of activation functions with a derivative in the range
[0, 1] in general, and their multiplication by the chain rule |27, |29, |30].

Although the small[NNJin Fig. [2.3] consists of only 12 neurons, 32 weights are required due
to its full connectivity. A Iargecan have more than 102 parameters [27], which must be
optimized during model training. Therefore, a large amount of training data and massive com-
puting power are necessary. A high volume of training data enables the training algorithms to
discover more hidden data features and dependencies, thereby improving the calculations of
the weights [27, [29, [32] [34]. To train a[DNN]in a reasonable time, [graphics processing units|
are used to provide the necessary computing power [27} |29]. are specialized
hardware components originally developed as graphics processing hardware for the video
gaming market. Their strength lies above all in their ability to parallelize tasks. This property
is utilized in the calculation of the gradients, as the calculation of a gradient for a weight of
a certain neuron connection can be carried out independently of other gradient calculations
[27],35].

After introducing fundamental concepts and terminology in the field of DL in this chapter, the
next one focuses on as a special DNN| architecture.
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2.1.3. Convolutional Neural Networks

This section introduces the convolutional operation, its application in and particularly
the strength of CNNs]|in image processing. Therefore, a short introduction to the structure of
image data is necessary.

An image can be described by the number of pixels in both the horizontal and vertical direc-
tions, along with their corresponding color values. In a grayscale image, the color of a pixel
is determined by a numerical value ranging from 0 to 255 (for an 8-bit image). A value of 0
corresponds to the color black, and a value of 255 corresponds to the color white. Color im-
ages, in turn, consist of three layered channels - red, green, and blue. Three values are then
assigned to each pixel, corresponding to the intensity in the red, green and blue channels [27,,
36].

Now, a color image with size of 10 x 102 pixels is considered that is to be processed by a
Each pixel is handled as a separate input. This example results in 10° neurons in the
input layer. For a fully connected feed-forward and, e.g., 10® neurons in the first hidden
layer, such a network would have to learn 3 % 10% weights only in the first layer. The factor
three results from the three color channels. If this example were to be taken further, a
would be created whose computing times and training data requirements would exceed a
reasonable level [27]. however, make use of the 2D grid-like structure of each channel
of the input data [14]. Moreover, they take advantage of the fact that neighboring pixels have
a certain correlation in their color when forming patterns and objects. This knowledge is used
to process image data efficiently [27H29].

To illustrate the principle of the convolutional operation, a 5 x 5-pixel grid is convolved with a
3 x 3-pixel kernel as shown in Fig. [2.4] The kernel can be considered a small, two-dimensional
grid, where each grid entry serves as a weight. The kernel takes as input only a rectangular
region, called a receptive field, of its own size from the image.

A
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feature | ______...----- mmsmmereTTT
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Figure 2.4.: Convolutional operation, visually left, mathematically right, own presentation based on |27].
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In the convolutional operation, each input pixel of the receptive field is multiplied by the cor-
responding weight of the kernel, and the sum of these products is calculated. Before being
passed to the next layer, the output is also transformed by a non-linear function, such as
the [ReLU| [37]. In the following, the convolutional kernel slides along the input image until
all entries from the input grid are convolved. Notice that the kernel uses the same weights
during every convolutional operation. The weight sharing significantly reduces the number of
trainable weights. By sliding the kernel over the input image, a transformed and compressed
representation of the original image is created [27, 28].

The result of the convolutional operation is known as a feature map. The name originates
from the fact that it is possible to emphasize specific image elements (features) by selecting
the appropriate kernel. The feature selection is illustrated in Fig. A 4 x 4 input feature
map is taken, consisting of a black area on the left side and a white area on the right side.
By choosing so, the input feature map has a vertical edge in the transition from the third to
the fourth column, counted from left to right. A typical kernel for detecting vertical edges is a
3 x 3 kernel with a zero value in its middle column and values of minus one in its left column
and values of one in the right column. Sliding this kernel over the input feature map calculates
an output feature map of size 2 x 2. The kernel is visualized by a moving red rectangle that
starts in the input’s top-left corner. The kernel then slides to the right, then slides down left
and finally to the bottom right corner. The output feature map is a compressed version of the
input, emphasizing the vertical edge [27].
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1. iteration: black
(-1)*0+0*0+1*0=0

2. iteration: white
(-1)*0+0*0+1*255=
255

3. iteration: black
(-1)*0+0*0+1*0=0

4. iteration: white
(-1)*0+0*0+1*255=
255

Figure 2.5.: Filtering vertical edges in a convolutional layer, own presentation based on |27].
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The kernel shown in Fig. is configured to detect vertical edges. Comparably, a 3 x 3
kernel can be defined for detecting horizontal edges. Obviously, edges in an input feature
map do not have to be aligned horizontally or vertically. Implementing a kernel for every pos-
sible edge orientation is time-consuming and computationally expensive. However, traditional
image processing techniques rely on these handcrafted features, thus making them less effi-

cient and effective (see Appendix [A.2) [33| [38]. This is where the true strength of CNNg] lies:
the convolutional kernels are not handcrafted but instead learned during the training process

(27, 29].

Generally, several kernels convolve an input to detect all relevant features, resulting in multiple
output feature maps. The feature maps collectively form the output of a convolutional layer.
As a standard [NN| a [CNN]| consists of multiple of such layers. Each of the following layers
has its own kernels and gets the output feature maps of the previous layer as input. The
subsequent layers are trained to detect features, which are combinations of the features of
the earlier layers. As the number of layers increases, so does the compression of the input
data. At a certain point, a person can no longer extract useful information from the feature
maps [27]. Local combinations of corners and edges form motifs, which are assembled into
parts, and these, in turn, form larger objects. A hierarchy becomes recognizable in which
convolutional layers pass on detected features in aggregated form to the subsequent layer.
This concept is known as hierarchical feature extraction 39].

[CNNs]| were first applied with a notable performance by LeCun et al. (1998) for the task of
recognizing handwritten digits [37]. The developed model architecture, known as LeNet-5, is

shown in Fig. 2.6]

RE® I

/
Input /
32x32 C1 S2 S4 C5 F6 Output
6@28x28 6@14x14 C3 16@5x5 120 84 10
16@10x10

Figure 2.6.: LeNet-5 architecture, own presentation based on .

An input image of size 32 x 32 pixels is convolved with six kernels, resulting in six feature
maps (also called channels) in the first convolutional layer C1. This layer is followed by a
pooling layer S2, the second common building block in a[CNN| The pooling operation sum-
marizes the response of a receptive field into a single value. Common pooling operations are
max pooling and mean pooling. Max pooling takes the maximum pixel value of a receptive
field, and mean pooling takes the mean of the pixel values within a receptive field [33]. Thus,
the pooling operation makes the output of a convolutional layer more robust, as variations in
the input are reduced and only the most important information is processed in compact form.
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The pooling layer is followed by another pair of a convolutional layer C3 and a pooling layer
S4, both with 16 kernels. One channel in the convolutional layer C3 is generated by a kernel
simultaneously sliding over all channels of the previous layer. Layer C5 is a convolutional layer
with the special characteristic that the kernel size corresponds to the size of the channels in
the pooling layer S4 (5 x 5). This means that each channel in the convolutional layer has a
size of 1 x 1 and thus represents a simple neuron. Each neuron in layer C5 is connected to
every neuron in layer S4. This type of connection is called a full connection, aiming to com-
bine features learned in the previous layers. Layer C5 consists of 120 neurons, meaning the
channels in layer S4 were convolved with 120 kernels. Layer F6 consists of 84 neurons that
are fully connected to the neurons in layer C5. The last layer is the output layer, consisting of
ten neurons fully connected to the neurons in layer six. Each of the ten neurons represents
a digit between zero and nine. The output of each neuron represents the probability that the
input digit is the digit associated with that neuron [37].

In this chapter, the convolutional operation, its application in[CNNs|and particularly the strength
of in image processing were introduced. The LeNet-5 architecture was explained,
which was a groundbreaking innovation at the time and the starting point for further develop-
ments. The following chapter will review selected model architectures with relevance for this
thesis.

2.1.4. Review of Relevant Model Architectures

Since the availability of[GPUs]for high computing power and large amounts of labeled training
data, intensive research has been conducted in the field of [DL [33]. This research has led
to the development of new and even more advanced network architectures [15} 32, 33, 140].
Models relevant to this thesis are reviewed in the following section.

The U-net was developed by Ronneberger et al. [41] for biomedical image segmentation pur-
poses. Image segmentation refers to assigning a class label to every pixel on an image.
The U-net architecture consists of a contracting path, called encoder, and an expanding path,
called decoder. The architecture of the encoder is a typical[CNN]with alternating convolutional
and pooling layers. The decoder consists of alternating upsampling and convolutional layers,
aiming to reconstruct the encoded image. Upsampling can be understood as the counterpart
to the pooling operation, where the image size is increased [27]. By first contracting and then
expanding an image, the encoder-decoder learns to extract the relevant features of an im-
age. During contraction, however, high-resolution features cannot be restored with sufficient
accuracy, as would be necessary for instance segmentation. For this reason, feature maps
with high resolution from the contracting path are combined via skip connections with the up-
sampled output at each stage of the expanding path. The successive convolutional layer can,
therefore, generate more precise output [41].

The [residual network (ResNet)| was developed by He et al. [42] to tackle the problem of
training very deep [NNs|with a large number of hidden layers. As discussed in Chapter[2.1.2]
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the vanishing gradient problem makes learning weights in the early layers of a DNN] difficult.
To overcome this problem, uses the approach of deep residual learning. The concept
is illustrated in Fig. 2.7}

x
identity

x| weight layer T:T;)u weight layer O Relu

F(x)+x

Figure 2.7.: Structure of a residual block in|ResNet| own presentation based on [42].

ADNN]Jshould be able to learn deep features while also skipping unnecessary layers. In other
words, allowing an input to pass through layers without transformation should be possible if
no meaningful changes are needed. In this case, the concatenation of the non-linear transfor-
mation functions of several concatenated layers has to form an identity mapping H () = =.
Here, z is the input of the first layer to be skipped, and H (z) represents the desired concate-
nation of the non-linear functions of the skipped layers. He et al. [42] assume that learning
F(z) = H(x) = =z is difficult, where F'(x) is the learned function. That is why the iden-
tity « is directly passed to the end of the skipped layers via skip connections, which allows
F(z) to be set to zero. Formally, F'(z) = H(xz) —x = 0, which means that F'(x) is set
to the residuum between H(x) and z. Learning the residuum is assumed to be easier to
train. Since the gradient of the skipped layers increases by one (the derivative of the iden-
tity), model training becomes stable even when % = F(z) = 0. Thus, the problem of the
vanishing gradient is also prevented. Due to the increasing number of layers, are
structured in stages, which serve the purpose of clarity and an overview of the feature hier-
archy. The core of [ResNeiB34 (34 layers) described in [42] consists of four stages containing
several residual blocks. The kernel size remains the same for every stage, but the number
of kernels increases to extract more features in depth. Using the [ResNet| architecture, it was
possible to train a[DNN|with 152 layers efficiently, showing outstanding performance and out-
performing current state-of-the-art models [42].

The R-CNN was developed by Girshick et al. [22]. It is a[DNN|dedicated to the task of object
detection. Object detection refers to estimating the location and type of objects in an image
[33l |43]. The location of an object is predicted by determining its bounding box, a rectan-
gle that closely fits the object’'s boundaries [27]. The model takes an image as input and
extracts proposals from around 2000 object regions. Subsequently, a large is trained
to learn the relevant features to make different objects distinguishable. Based on the output
of the [CNN] a[ML-based classifier generates class predictions for each region. The R-CNN
achieved significantly better prediction results than other models available at the time of its
introduction [22]. However, the bottleneck of the R-CNN is a high processing time due to the
large number of region proposals. For this reason, the Fast R-CNN [44] and Faster R-CNN
[45] were developed in the following years. A further development of Faster R-CNN is Mask
R-CNN, which can provide pixel-accurate masks for the predicted objects. This task is known
as object instance segmentation. [46]
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The [you only Took once (YOLO) model architecture was developed by Redmon et al.
and is also designed for object detection tasks. In comparison to the R-CNN architecture and
its subsequent developments, [YOLO| does not require a separate region proposal network
but only employs a single [CNN] resulting in a significant increase in processing speed. The
basic idea of the [YOLO| model is to divide the image into a fixed grid (e.g., 7 x 7 [23]). In
each cell of the image, objects are detected via their bounding boxes and assigned to a class.
[YOLQ] initially had problems identifying small objects due to the coarse grid size. However,
this problem was reduced by further developments [47, [48].

Another major application for DNNs]is keypoint detection. A keypoint is defined as a ,local
distinctive region" [49], and keypoint detection refers to the task of finding these regions in
an image [49]. For instance, keypoint detection is used in human pose estimation. Here, the
joints of the human body are considered keypoints for predicting human posture [50]. Figure
[2:8] shows an example of object detection performed by [YOLO|on the left and of human pose
estimation performed by R-CNN on the right. The[YOLO]model predicts bounding boxes and
a probability for a classification. The R-CNN predicts the human pose by detecting the joints
as keypoints.

(a) Example of object detection performed by Im- (b) Example of keypoint detection and human pose esti-
age from . mation performed by R-CNN. Image from .

Figure 2.8.: Object detection and human pose estimation examples.

The CenterNet, developed by Zhou et al. [53], combines the approaches of object and key-
point detection. Instead of identifying objects by directly predicting the location and size of the
corresponding bounding box, the center point of the bounding box is predicted in first stage.
The model returns a heatmap where each peak corresponds to the location of an object cen-
ter in the input image. The bounding box size is then regressed from the predicted bounding
box center. Additional sub-pixel regression is necessary due to the different resolutions of the
input image and output heatmap. Bounding box centers and keypoints are represented as
2D Gaussian heatmaps rather than single-pixel labels. This approach improves the training
stability because the model can even learn from nearby pixels, providing smoother gradients
and better localization performance [53].
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As mentioned at the beginning of Chapter [2.2] a sufficiently large amount of data is required
for effective training of DNNs|and [CNNs| Publicly accessible databases provide a large vol-
ume of labeled data. ImageNet is a well-known example of such a resource. It is an image
database containing over 14 million hand-annotated images, which have been classified into
more than 20,000 categories [54} |55]. Each image was hand-annotated (labeled) with the
correct object class and bounding box position for every object it contains [56].

Note, that conventional object detection is class-aware, meaning models are applied to de-
tect objects from classes seen during training. ,However, these models do not generalize
well to unseen object-types." [43] Class-agnostic models are not limited to the object types
seen during training [43]. In comparison to class-aware models, they can be applied to other
classes without retraining, which significantly reduces the volume of training data and cost of
data annotation [57].

In this chapter, state-of-the-art model architectures relevant to this thesis were reviewed. Fur-
thermore, use cases for DNNs| such as object and keypoint detection, were explained. The
following chapter concludes by examining the special criteria that are used to evaluate the
performance of detection models.

2.1.5. Performance Metrics for Model Evaluation

This section provides insights of metrics that are used to quantify the performance of detec-
tion models.

Theaverage precision (AP)|is the most common metric used to quantify the performance of
an object detector [51]. To understand the[AP} some basic concepts are reviewed beforehand.
They refer to [15}32].

« A [true positive (TP)| prediction corresponds to a correct detection of a ground truth
bounding box.

» Alfalse positive (FP)|prediction corresponds to an incorrect detection of a non-existent
object or an incorrect placement of an existing object.

- Alfalse negative (FN)| prediction corresponds to an undetected ground truth bounding
box.

» A [frue negative (TN)| prediction corresponds to a correct detection of a non-existing
object. However, predicting non-existing objects is irrelevant for a detector as there is
an infinite number of bounding boxes that should not be detected in an image.

The categorization of a prediction as correct or incorrect is based on the [intersection over|
[union (TOU)| The [[OU]measures the area of intersection between the predicted bounding box
and the ground truth bounding box divided by the area of the union between them. A detection
is classified as correct if the[[OU]is equal to or greater than a given threshold. Otherwise, the
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detection is classified as incorrect [51]. From[TP} [FP|and [FN] the (Eq. and
(Eq. are computed as follows:

Precision = ™ (2.7)
- TP+FP '
TP
Recall = ——— (2.8)
TP + FN

[Plis defined as the ratio of the [TP] detections to all detections. [Blis defined as the ratio of
the [TP| detections to all ground truths [15] [32]. A good object detector should find all ground
truth objects (FN|= 0, high [R) and identify only relevant objects (FP|= 0, high precision). The
precision and recall change when the threshold is varied. A trade-off is observed, where the
[FP] decreases (as the precision increases) and the [FN]increases (as the recall decreases)
as the threshold increases, and vice versa [51]. The [area under the curve (AUC)]is the area
under the precision-recall curve and the final metric used to measure model performance
[32]. However, the curve is discontinuous, which is why the precision values are computed at a
fixed set of recall levels. In this thesis, the definition of the famous|Common Objects in Context|
[[COCO)|detection challenge [51} 58] is followed by choosing 101 equally spaced recall values
from zero to one. The precision at each point is derived by taking the maximum precision
at each recall threshold. Choosing the maximum makes the calculation less susceptible to
downward outliers [51} [59]. The [AP] (Eq. is computed as the average over the derived
precision values.

1
AP = oo > max Precision(7) (2.9)

1 T>r
r€{0.00,0.01,...,1.00}

The [mean average precision (mAP)|then measures the accuracy of an object detector by
summing the |AP|over all classes IV and taking the mean value (Eqg. [2.10) [51}59].

1 N
mAP = — ; AP(7) (2.10)

The |percentage of correct keypoints (PCK)|is a popular metric for keypoint detection [57].
A keypoint prediction is considered correct if the normalized distance between the prediction
f(,» and the ground truth K is equal to or less than a certain threshold « [57, 60]. 1(-) is
the indicator function. d is the normalization factor, e.g., the longest side of the ground truth
bounding box. As a standard, the [PCKlis also calculated for different threshold values « [57,

60]. The [PCK|formula is shown in Eq.

N ~
1 | K — Kill2
PCK= Y"1 —— 2.11
N =1 < d = ( )

To normalize the distance between the prediction and ground truth via a bounding box edge,
a correspondence between the keypoint and the object must be established. However, such
correspondences are not always obtainable, as shown in [12,[19]. In these cases, « is set to
a fixed distance in
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Intermediate Results

In Chapter[2.7]of this thesis, the theoretical foundations from the fields of [ML]and DL were pre-
sented in detail. [ML enables technical systems to learn from data and use this knowledge to
make predictions for new data. In contrast to standard models, [DNNs|are capable of rec-
ognizing deep patterns in input data due to their highly complex network architecture. A major
field of application is image processing due to the special structure of image data. ar-
chitectures are used to process image data efficiently. They are based on the convolutional
operation, taking into account the grid-like structure of images and the relation between neigh-
boring pixels. The recognition and classification of objects as well as keypoints on images is
a central application of[CNNs| Furthermore,[CNNs|are the backbone of many state-of-the-art
network architectures that were developed specifically for detection tasks. CenterNet,
and U-Net in particular will play a role in the further course of this work. The following section
lays the theoretical foundations for the [CSP]technology focusing on [SPT]
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2.2. Concentrated Solar Power

This chapter is structured as follows: First, a general overview of the four relevant technolo-
gies regarding [CSP|is provided. The focus of this work lies on the [SPT|technology, which is
why this technology is considered in detail. After introducing the fundamentals, a literature
review reveals the state-of-the-art heliostat monitoring and calibration approaches. Based on
this, the use of DL in heliostat calibration techniques will be discussed.

2.2.1. Concentrated Solar Power Technologies

[CSP| systems consist of four core elements: solar reflectors, solar receivers, power conver-
sion systems, and electric generators. The solar reflectors are used to concentrate solar
irradiance on a receiver. A heat exchanger integrated into the receiver transfers the energy
of the focused solar rays as thermal energy to a circuit fluid. The heated fluid then drives a
thermodynamic circuit process to produce electric energy [1},[61H63].

[CSP| technologies can be categorized into four distinctive types: [linear fresnel reflectors|
[CFR])] solar power towers (SPT), [solar parabolic dishes (SPD)| and jparabolic trough collec
Figure [2.9] depicts the basic functionality of these four technologies. First, the
technologies shown can be classified by focus and receiver types. Line focus technologies
(Fig. 2.9 1 and 4) focus the irradiance on a linear receiver, and point focus technologies
(Fig. [2.9f 2 and 3) at a single point receiver. The receiver can be fixed (Fig. 2.9} 1 and 2)
or integrated (Fig. 2.9} 3 and 4). In the case of a fixed receiver, the receiver is stationary. In
the case of an integrated receiver, the receiver moves with the tracking reflector. Integrated
receiver systems can produce more energy because they can better focus the irradiance on
the receiver [2-4].

Linear Fresnel Reflectors Solar Power Towers Solar Parabolic Dishes  Parabolic Through Collectors
(LFR) (SPT) (SPD) (PTC)
. Solar tower : ¢
Curved L4

1 /,}[! ‘l\i\\ é Receiver), o—

JUH DO | <& Bowe| &S

Absorber tube Heliostats Reflector
and reconcentrator

(M ) @) (4)

% Reflector
Absorber tube

«— Solar field piping

Figure 2.9.: CSP technologies |2].
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In the following, the four technologies are explained in more detail.

1. [LFR| systems are line-focusing systems with a fixed receiver. The systems consist of

parallel flat or slightly curved mirrors. The irradiance is focused on an absorber tube.
As these tubes are fixed, only the mirrors can move, and only along the longitudinal
axis. Due to their simple design, the systems are cost-effective. However, this
simplicity adversely affects the system’s efficiency [2, (3} 63].

. systems are point-focusing systems with a fixed receiver. The systems consist

of two-axis tracking mirrors, so-called heliostats, which concentrate the irradiance onto
one solar receiver. The receiver is typically located at the top of a tower. The localiza-
tion of the receiver at a certain height is necessary to prevent the reflected radiation of
heliostats in the back rows from being blocked by those in the front rows. The function-
ality of a[SPT|plant is covered in detail in the next Chapter [2.2.2][1H3, 63].

3. systems are point-focusing systems with an integrated receiver. The systems

consist of a parabolic two-axis tracking mirror that concentrates the solar irradiance at
a focal point propped above the dish’s center. The unique feature of this technology
is the independent generator (e.g., a Stirling machine) at the focal point. As a Stirling
machine directly converts heat into mechanical energy by compressing a gas (e.g., air)
to generate electricity [64], a heat transfer fluid is not required. This direct power and
heat cogeneration enables the highest efficiency of all the [CSP|systems [3]. However,
the typical capacity of one dish is very low, which makes it necessary to co-locate
hundreds to thousands of dishes to compete with other [CSP| technologies [2, [3, [63,
65].

. systems are line-focusing systems with an integrated receiver. The systems con-

sist of parallel rows of reflectors curved in one dimension. The irradiance is concen-
trated onto absorber tubes, through which a heat transfer fluid (typically oil) flows, trans-
ferring the solar energy into a circuit process. The reflectors and the absorber tube are
connected in their movement by following the sun during the day. Typically, movement
is only possible by rotation along the longitudinal axis [2} [3, [63].

As discussed, [CSP|technology can be categorized into four main types. However, this thesis
focuses exclusively on [SPT|technology, which reflects the scope defined in the thesis title.
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2.2.2. Solar Power Tower Plants

In the following, the working principle of [SPT|systems is described. The description refers to
Fig. [2.10]and 165]. [SPT] systems use a large number of two-axis tracking heliostats
to concentrate solar irradiance onto a receiver. The sun’s thermal energy is transferred to
a working fluid via a heat exchanger in the receiver. The heated fluid then drives a ther-
modynamic circuit process to produce electric energy. There are two common concepts for
transferring heat to the thermodynamic circuit process. The first option is to use the working
fluid initially heated in the receiver for the whole circuit process. The second option is to use
the initially heated fluid as an intermediate fluid. The intermediate fluid transfers its heat via
a second heat-exchanger to another fluid in the power-block system, which runs the down-
stream circuit process. The commonly used intermediate fluids are oil and molten salt [3].
Although one-fluid systems require less investment (only one heat-exchanger in the receiver
is needed), the strong dependence of fluid pressure on temperature, especially for water,
makes it difficult to manage these systems. Controlling the process and preventing damages
gets more challenging [4]. For this reason, these systems are generally less efficient.

The fluid choice in the power-block system is particularly dependent on the installed turbine.
In the case of a steam turbine (Clausius-Rankine process), water and steam are used as the
working fluid. The water is compressed in a pump and vaporized in a steam generator. The
steam is then passed through a steam turbine and finally condensed back to its original state
in a condenser. In the case of a gas turbine (Joule process), air is used as the working fluid.
The hot air is first compressed and then passed through a turbine, where it expands. In both
cases, the turbine is connected to a generator to produce electricity 65].

s Hot working fluid

e Cold working fluid

Heliostat Thermal
Field Receiver Storage Power Block
System

Figure 2.10.: Simplified working principle of a plant with a Clausius-Rankine process and one fluid, own

presentation based on .
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The ability to store heat is the most relevant advantage of [SPT|systems over other renewable
energies (such as photovoltaic or wind energy). Excess thermal energy not needed to pro-
duce electrical energy in a specific period is stored in a thermal storage system. Another heat
exchanger transfers the heat of the working fluid to the fluid in the thermal storage system,
typically molten salt [66]. After sunset, the stored heat can be released into the power-block-

system to produce electricity [2]. In this way, [CSP|systems function as a dispatchable energy
source, and electrical energy can be produced on demand, contributing to a stable power grid

[13,[61].

2.2.3. Heliostat and Field Designs

The basic design of a rectangular-shaped heliostat is shown in Fig. [2.71] The reflective
surface of a heliostat typically consists of multiple small mirrors, so-called facets. Between
the individual facets is a gap. Heliostats can track the sun by rotating around two axes: the
azimuth and elevation axes [1]. With an even number of facets in the direction of the x-axis,
it is possible to design the width of the middle gap larger so that the pedestal of the heliostat
protrudes from this gap. The gap allows increased freedom of movement concerning rotation

around the elevation axis (not shown in the figure).
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Figure 2.11.: Basic design of a heliostat, generated with the 3D graphics software Blender Blender, labeling of

elements based on [67).

[SPT] systems offer flexibility in designing not only the heliostats but also the heliostat field.
Rizvi et al. [62] distinguish between patterned heliostat field layouts and unpatterned ones. In
this thesis, only patterned ones will be considered further. Patterned heliostat field layouts can
be divided into the broader categories of rectangular and radial fields. In a rectangular field,
heliostats are placed in straight rows and columns. In a radial (or circular) field, heliostats are
placed in concentric circles around the tower. Furthermore, the field layout depends on the
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geographical latitude of the system location. For heliostat fields in the northern hemisphere,
the heliostats are positioned to the north of the tower (north field). For heliostat fields in the
southern hemisphere, the heliostats are positioned to the south of the tower (south field). For
heliostat fields near the equator, it is worth placing heliostats around the tower (surrounding
field) 68]. The number of heliostats in the heliostat fields depends on the size of
the heliostats and the installed and desired capacity of the power-block system, especially
on the turbine and generator. The range of generating capacities of commercially operational
[SPT]plants in 2022 was from 11 [MW]installed at the [Plantar Solar 10 (PS10)]in Spain to 377
MW installed at the [lvanpah Solar Electric Generating System (ISEGS)|in the United States
[1]. Figure [2.72]depicts a bird’s eye view of these plants.

Figure 2.12.: Aerial view of the [PS10]in the front and [Plantar Solar 20 (PS20)|in the back (left) [69], and the

|1§E_'GS| (right) .

The picture on the left shows the circular field layout of the two plants [PS70]and [PS20l The
right image shows the system [SEGS] The [SEGS|is made up of a total of three separate,
circular fields with a surrounding angle of 360°. Table gives technical information about
the respective power plants.

Table 2.1.: Technical data of the|PS10 andlISEG§l data from .
Fact |PS1 0| |ISEGS|

Number of heliostats 624 173,500
Heliostat mirror area (m?) 120 15

Area of heliostat field (m2)* 75,000 2,600,000
Generating capacity (MW)? 11 377
Installation costs (Mio. €) 35 2200

“The area of the heliostat field of the|PS10|corresponds to approximately 10 soccer fields, the area of the|[ISEGS]
even approximately 347 soccer fields .
5 . " . .
At full load, the|PS10|can produce as much energy in one hour as five single-person households consume in ap-
proximately one year. The [SEGS]|can produce as much energy in one hour as 180 single-person households
consume in approximately one year |[7_Z]|
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As can be gathered from Tab. [SPT] systems do not only offer flexibility in terms of de-
signing the heliostat field but also in terms of the heliostat design itself. Most of the heliostat
fields around the world use heliostats with a rectangular surface design, but a pentagonal
design is also possible |1, [75H77]. The range of possible heliostat sizes extends from very
small heliostats (approximately 1 m?) to large heliostats (approximately 180 m2). However, it
is noticeable that medium-sized heliostats (60-100 m?) are not in use [75], which can be jus-
tified by the trade-off between the performance of a heliostat and its costs. Large heliostats
generally have a lower irradiance concentration ratio than small heliostats, but have lower
costs per square meter [75, 77, [78]. Furthermore, the optimal dimensions of a heliostat are
influenced by the operating and environmental conditions [79].

Heliostats are a major cost driver for [SPT| plants (see Tab. [3, /5 [78], and their pre-
cise alignment is a key factor for a high plant efficiency [5, 6, [75]. Precisely focusing the
heliostats’ reflected solar irradiance onto the receiver achieves high concentration ratios and
temperatures and, thus, high efficiency |1, [4]. Regular condition monitoring of the heliostat
field is therefore essential to ensure an efficient and reliable plant operation [6]. The following
chapter thus addresses potential sources of errors in heliostats and their monitoring.

2.2.4. Heliostat Calibration

This chapter is divided into three sections. The first section explains the necessity for heliostat
control. The second section analyses state-of-the-art methods for heliostat calibration. The
last section focuses on using [DL] methods in this field.

2.2.4.1. Importance of Heliostat Calibration

Heliostats are a core element of a[SPT|plant and their precise alignment is essential to opti-
mize the plant’s efficiency [4-/]. However, many reasons can cause misalignment, like wind
loads, a tilt of the heliostats’ pedestal, or non-level terrain [12, [80]. There are several math-
ematical methods for analyzing the alignment accuracy of the heliostats. The calculation of
the tracking, slope and canting errors are the most relevant ones [8}, |75, |78]. These errors are
defined as follows:

» The tracking error of a heliostat is defined as the deviation of the actual reflective sur-
face orientation from the desired orientation [6]. The orientation is given by the normal
vector of the reflective surface, called the optical axis [78].

» The slope error of a heliostat is defined as the difference between the desired design
shape of the reflective surface at a certain point and the actual one [78]. The error is
measured as the difference between the local normal vector at a given point and the
optical axis of the heliostat [10].
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« The canting error describes a systematic deviation of an entire mirror facet from its
intended orientation. Since canting introduces a uniform bias across the facet, it is
first determined as the average of the pointwise slope errors and then subtracted from
the measured slope error values. In this way, the actual local deviations of the mirror
surface are isolated [8].

The heliostat reflects incident solar irradiance based on the law of reflection. The angle of
incidence equals the angle of reflection [81]. In other words, the angle of the incident radiation
is mirrored on the (local) normal vector. This principle is illustrated in Fig. In the case
of correct alignment, the heliostat normal vector corresponds to the angle bisector between
the vector of the incident solar radiation and the vector from the heliostat to the receiver. A
minimal deviation of the heliostat alignment can significantly impact the solar focus on the
receiver. For a heliostat at a distance of one [km|from the tower, a tracking error of one|mrad|
- which equals 0.0057° - causes a deviation of around two meters between the desired aim
point of the solar focus and the actual one [6]. As a result, the incident radiation on the helio-
stat is partially or entirely not reflected onto the receiver. This effect is called spillage [4} |80].
Besides reducing the power production of the [SPT]|plant, the uneven focusing of the sunlight
on the receiver can cause hotspots, which can cause damage [78} [80]. To reduce spillage
and the risk of receiver damages, the angular accuracy should be in the range of 0.1 to 0.3
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Figure 2.13.: Reflection of solar irradiance from a heliostat onto the receiver by law of reflection. Orange lines
illustrate solar irradiance, a blue dashed line illustrates the optical axis of the heliostat. lllustration based on
[82].

Heliostat control and calibration are necessary to ensure highly accurate heliostat alignment.
Heliostat control refers to adjusting certain parameters, such as the drive positions (see Fig.
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[2.11), to obtain a desired heliostat orientation in which the incident solar radiation is reflected
on the right target point on the receiver. Differences between the desired heliostat orientation
given to the control system and the actual orientation are measured and compensated during
heliostat calibration [6].

2.2.4.2. State-of-the-art Heliostat Calibration Methods

After the necessity of heliostat calibration was motivated, this section will cover state-of-the-art
heliostat calibration methods. In a detailed study, Sattler et al. [6] review about 30 heliostat
calibration and tracking control methods and categorize them into five groups. The gen-
eral working principles of the control methods in these categories are explained in Appendix
At this point, only one calibration method will be focused on in more detail, namely the
camera-target method. Although the method was already developed in 1984 by Stone [83], it
remains the most commonly used method in operating [CSP]|plants. During a calibration, one
heliostat is moved in such a way that the irradiance is pointing towards a white Lambertian
target screen. The solar focus position on the target is then captured by a camera on the
ground and compared to a reference position by using conventional image processing soft-
ware. The identified difference between the actual and desired position of the reflection is
used to adjust the heliostat’s orientation in the heliostat control system. For a full calibration,
this procedure has to be done for different sun positions [6), [83].

Although the camera-target-method has a sufficiently high accuracy, it has three significant
weaknesses. First, the measurement depends on the sun because a specific heliostat orien-
tation can only be calibrated with a specific sun position. Second, calibrating each heliostat
one after another makes the calibration method time-consuming, which is especially a prob-
lem for large [SPT] plants. Third, the calibration is only possible if the tower and target are
fully constructed. This circumstance prevents the heliostats from being calibrated during the
construction phase [10].

A brief look at other calibration methods is provided in Appendix It can be stated that
newly developed methods compete against the camera-target method in terms of measure-
ment time and accuracy. However, if methods provide a sufficiently high accuracy, they suffer
from a high measurement time [6, [8]. The reasons include individual calibrations [84, 85|, the
necessity of attaching markers or other sensors on each heliostat manually [86 87| or apply-
ing solutions that must be fitted to the current heliostat field [88, 89]. Another major drawback
of the majority of the respective methods is their applied approach of placing the camera
and additional devices at a fixed position. As a result, the number of possible orientations
for a heliostat that the camera can see is restricted. Furthermore, in scenarios where the
camera is mounted on the tower [5} |85, 90|, the mounting height must be sufficient to ensure
that heliostats in the rear rows of the field are also visible. Additionally, it can be difficult to
detect high-resolution reflections in the heliostat mirrors if the heliostat is far away from the
tower [11]. For these reasons, the use of unmanned aerial vehicles (UAVs)| or drones, is a
promising alternative and has become a prominent field of research in recent years. Images
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taken by [UAVs|can supply a higher variation of camera positions and angles and can thereby
reduce the distance between the camera and a heliostat. Two optical measurement meth-
ods are briefly introduced below before discussing approaches to using for heliostat
monitoring.

» Photogrammetry is a general method for deriving an object’'s 3D shape and location
based on one or more 2D images of this object. Part of the photogrammetric pro-
cess is the image acquisition, image measurement, and object reconstruction based
on physical models and mathematical formulas. For high-precision reconstruction, ap-
propriate measurement systems are necessary. Moreover, photogrammetry allows for
the calculation of the camera pose from known reference points. The pose includes the
position and orientation [91].

 Deflectometry comprises methods to gain information about the shape and conditions
of reflective surfaces by analyzing the reflected image of known objects. By analyzing
the distortions (deflections) occurring in the reflected image, it is possible to obtain
information about the surface properties, such as curvatures or defects [92].

These two methods form the basis for various research projects on the calibration of heliostats
using[UAV}based image acquisition. Building on these measurement principles, the studies in
[8H11] present different approaches that utilize [UAVIbased imagery to accurately determine
the orientation of heliostats. These approaches are summarized in Fig. and explained
in the following. Images are taken by a camera-equipped[UAV]| Conventional
(CV)| methods are used to process the images and derive the heliostat facet corner points
from these images. By applying methods of the field of photogrammetry, the camera pose for
every image and the approximate heliostat’s optical axis for every heliostat on these images
are calculated. Different approaches from the field of deflectometry are used to calculate the
local normal vectors on the mirror surface for a heliostat at a certain point. Mitchell et al. [8]
use the reflection of the tower. Jessen et al. [9] and Krauth et al. [10] use the reflection of a
[light emitting diode (LED)Fequipped drone. Yellowhair et al. [11] use the reflection of a neigh-
boring heliostat. By taking the average of the derived local normal vectors, the optical axis
of each heliostat can then be calculated. Finally, the tracking and slope errors are derived,
as explained above. Based on the measured errors, the heliostats’ mirror surfaces can be
adjusted to optimize the reflected solar irradiance onto the tower. This process step is shown
in Fig. [2.14] with a dashed arrow to indicate that further intermediate steps are necessary at
this point.

In all of the discussed approaches, the heliostat edge and corner detection is based on con-
ventional image processing techniques, which have limitations and lack robustness®. For a
heliostat pointing towards the ground due to a malfunction, its mirror surface is difficult to
see from the air. Reflections of other objects (such as clouds or heliostats), varying lighting
conditions or damaged and soiled mirrors influence the measurement negatively [8}[13]. Fur-
thermore, the application of conventional image processing techniques requires prior knowl-
edge of the heliostat’s orientation within the image. The prior knowledge is needed since

5A separate research of selected conventional image processing techniques is provided in Appendix
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Figure 2.14.: Heliostat calibration process based on [8-11]. Note that the canting error is also derived in |8, [11].

conventional edge and corner detection algorithms are typically optimized to identify features
aligned with predefined directions, such as horizontal or vertical edges (see Appendix[A.2).
Consequently, the images often need to be orthogonalized to improve detection accuracy [91].
Moreover, many traditional approaches rely on so-called search windows or regions, within
which specific image features such as corners or edges are searched for. These regions
must be manually defined, introducing additional assumptions about the heliostat orientation
and potential sources of error (see [12]). Overall, the tasks of orthogonalization and search
window definition create a bottleneck in terms of the processing speed, which limits the ap-
plicability of the methods to commercial-scale power plants [13]. From the reasons stated,
the integration of [DL] methods into the calibration process is currently being investigated. [DL]
methods have already proven their wide range of use cases (see Chapter[2.1) and their ,su-
periority over conventional image processing techniques in many domains." [13]. Therefore,
the following section provides an overview of current approaches in this subfield.

2.2.4.3. Application of DL]Methods in the Heliostat Calibration Process

Carballo et al. [16] use a computer vision (CV) approach to detect the sun, the tower target
area and heliostats on images taken by cameras positioned at the heliostat mirror surfaces.
Based on the gained information, the tracking error is calculated and the heliostat orienta-
tion is adjusted. The procedure is investigated for several available pretrained models. Liu
et al. [17] use a[CNN]to obtain pixel-accurate segmentation masks of heliostats in the solar
field. The is supposed to enable robustness against two factors. Firstly, the images
show varying lighting and soiling conditions. Secondly, the size of the heliostats varies in
the images due to variable distances from the capturing camera. The results of the instance
segmentation are used to estimate the optical axis of each heliostat by means of a not further
specified algorithm. Although the results of Carballo et al. [16] show promising results, they
rely on a fixed camera position. Kesseli et al. [12] use a combined and [CV] approach. In
a first step, segmentation masks of[PTCs|are obtained using instance segmentation models.
In the following, two distinct methods are used to detect the corner points of each
Subsequently, the surface slope and offset of the absorber tube are computed. Even though
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the images of the solar field are taken by a camera-equipped [UAV] this approach still relies
on conventional image processing techniques. Xu et al. [18] developed a [NN}architecture to
detect heliostats in images. Results show an effective heliostat detection even with difficult
lighting conditions. Nevertheless, the disadvantage of this approach is using a camera po-
sitioned at a fixed location. Broda et al. [13] propose model training with synthetic training
data to overcome the problems of unbalanced and insufficiently large datasets. Preliminary
results from testing the [DL] model with synthetic and real-world data demonstrate the plausi-
bility of the approach. However, there is room for improvement regarding the application of
real-world data. Also, the synthetic and real-world images are taken by an airborne camera.
In a subsequent work by Broda et al., the influence of various parameters used to generate
synthetic training images on the model’s performance when applied to real-world data is an-
alyzed [19]. Key parameters include ground texture, lighting conditions, heliostat soiling, and
the placement and orientation of objects within the scene. The model is trained to detect
heliostats along with their four outer mirror corners. With a suitable combination of simulation
parameters, the results demonstrate good transferability from synthetic to real-world scenar-
ios. Furthermore, the transferability of the results to other heliostat geometries is examined.
In this case, however, the existing model must be retrained with the image data of the new
geometry. As a qualitative analysis shows, the model cannot fully identify all heliostats and
their four outer corners. Therefore, further work is recommended to improve transferability. In
the following, Tab. sums up the related work in the field of applying [DL] methods in the
heliostat calibration process.

Table 2.2.: Overview of state-of-the-art literature covering methods in the heliostat detection.

Author Kesseli et al. Broda et al. Carballo et al. Liuetal Xu et al.
112] 113,119] 116] 117] 118]
Fixed camera position X X v v v
Conventional image pro- (v X X X X
cessing techniques
More than one heliostat X ) X X X
geometry involved
Model Architecture Mask R-CNN Mask R-CNN SSD MobileNet” Mask R-CNN YOLO
CenterNet SSD Inception®
Mask R-CNN

As was elaborated, only [12, 13, [19] deal with a[UAV| and airborne image generation. How-
ever, [12] uses conventional image processing techniques that lack robustness and process-
ing speed. Furthermore, it must be particularly emphasized that only [19] consider more than
one heliostat geometry for the model used.

See source [93] for more information
8See source [94] for more information
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Intermediate results

Chapter [2.2]initially looks at the fundamentals of the [CSP]technologies. [CSP|comprises four
technologies, whereby the [SPT|technology is focused in this thesis. It has been shown that
the dimensioning of a heliostat field and the individual heliostats is flexible within certain lim-
its. However, what all the[SPT|systems have in common is that continuous and highly precise
monitoring of the alignment of the heliostats is necessary to ensure high system efficiency.
Although it is already outdated, the camera-target method is widely used for heliostat calibra-
tion. Even though a high level of research is being carried out in this field, there is no other
generally accepted method suitable for practical use regarding processing speed and accu-
racy. Using drones equipped with high-resolution cameras and optical measuring methods
shows improvements in process speed and accuracy. However, using conventional image
processing methods for the initial detection of heliostats still remains a weak point. Conse-
quently, the entire calibration process becomes prone to errors in difficult lighting conditions,
unfavorable positions of the camera concerning the heliostat or soiling. Recent research is
therefore investigating the use of [DL] methods as part of the calibration process. Neverthe-
less, existing approaches either combine [DL]methods with conventional approaches or use a
fixed camera, which is inferior to drone technology. All approaches, except for [19], focus only
on detecting heliostats with one defined geometry. This focus implies a significant limitation
for the application range because the heliostat geometry can vary with each plant. To detect
heliostats with a second geometry, [19] trains an existing model with a further geometry. The
evaluation shows promising results but also formulates a need for further investigation of the
model transferability to other heliostat geometries and therefore other [SPT|plants.

Building on the work of Broda et al. [13,19], this master’s thesis is therefore dedicated
to developing a geometry-agnostic [DL] model that can detect heliostats of different
geometries on aerial images without additional training. This method would then be
capable of detecting heliostats on all types of [SPT| systems.
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3. Methodology

This thesis directly continues on the results of [13} [19]. Referring to Chapter[2.2.4.3] Broda
et al. [19] examine the model performance by training and testing their detection model for
one mirror geometry. Further, the model performance is analyzed when testing on another
geometry. However, this investigation is carried out qualitatively and based on retraining. Un-
der these conditions, the test results do not allow well-founded statements about the model’'s
transferability to different heliostat geometries [19]. Therefore, this work aims to develop
a geometry-agnostic [DL] model for detecting heliostats in [SPT| plants. The detection task
includes the prediction of the heliostat bounding boxes as well as all heliostat keypoints. In
particular, the developed geometry-agnostic model could recognize different heliostat geome-
tries without having to be explicitly trained on each. As a result, the model could be applied
to a large number of [SPT]|plants.

Chapter [3| covers the steps of the methodology applied to develop a geometry-agnostic
model to detect heliostats in [SPT|plants. As shown in Fig. the designed methodology
consists of five consecutive steps. A separate subchapter in this chapter is dedicated to the
steps of synthetic data generation, data pre-processing and cluster-based model training.
The evaluation of the results achieved by model training, testing and post-processing is done
separately in the following chapter. The procedure is therefore only roughly outlined here.
The model is trained with synthetic data due to the limited availability of real, labeled data. As
a preparatory task, the synthetic data undergoes pre-processing to ensure compatibility with
the further training pipeline. The model architecture developed by Broda et al. [19] is used for
model training. The training is based on an iterative clustering approach. Various training and
testing procedures are implemented and compared to ensure optimal results. In the model
post-processing stage, an algorithm is proposed to further enhance model performance by
applying geometric constraints to refine the keypoint predictions. In the following, section|(3.1
begins by describing the model architecture.

Synthetic data Data pre- Cluster-based Model Model post-
generation processing model training evaluation processing

Figure 3.1.: Underlying methodology for developing a geometry-agnostic deep learning model in this thesis.
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3.1. Model Architecture

This section provides a detailed overview of the architecture of the [DL]model employed in this
work. The model was developed in preliminary work, which can be read in detail in [13}[19].
In the further course, the focus is on the model components used and how they interact.

The [D0 model is designed to detect heliostats and their mirror facet corner points. In the fol-
lowing, the mirror facet corner points are called keypoints. These two tasks can be executed
simultaneously, but also function independently of one another. The fundamental structure
of the model is based on an encoder-decoder architecture. The encoder is a [ResNef| with
50 layers, called 0, which was pretrained on ImageNet® [56]. Similar to U-Net [41],
skip connections are employed between the encoder and the decoder. Adapted from Center-
Net [96], the model generates a heatmap in which each prediction corresponds to a location
within the image’s pixel-based coordinate system. It predicts both the center of the heliostat’s
bounding box and the positions of its keypoints. The output stride of the model, defined as
the ratio between the input image and output heatmap resolution, is set to two. Thereby,
the resulting heatmap has only half the resolution of the input image. Thus, a prediction on
the heatmap does not directly correspond to a specific pixel in the input image. By applying
sub-pixel regression, the coarse heatmap predictions are refined by estimating their precise
positions in the original image space.

Combining an encoder-decoder structure with skip connections and implementing a[ResNet50
enables the prediction of high-resolution features. Instead of relying on region proposals (see
[22]), the prediction of the bounding box center, along with subsequent regression of its size,
accelerates the object detection [53]. Another advantage of this architecture is its flexibility.
The encoder can be easily exchanged for an even faster CNN| such as MobileNet. Theoreti-
cally, this exchange enables real-time applications with a drone [19]. The model architecture
is shown in Fig. Within each encoder layer and within each decoder stage, the convo-
lutional layers have the same number of kernels and the same kernel size. For a detailed
description, reference is made to [19].

Minimizing the multi-task loss is the primary objective for the model training [44]. The multi-
task loss is derived as the weighted sum of the losses of the individual model tasks. Keypoint
detection involves predicting a keypoint heatmap and regressing the corresponding pixel off-
set. In object detection, the center of the bounding box is predicted by means of a heatmap,
the bounding box size and the corresponding bounding box pixel offset. The focal loss is used
for predictions on the heatmap [97] and the smooth I1 loss for the regressions.'®

®Learned features can be transferred to new datasets. The transfer results in a reduction of computing time and
data required for training. Furthermore, the model’'s performance increases compared to one that has been
trained from scratch. In particular, the features of early layers (e.g., corners and edges) are well transferable.
However, the transferability decreases with increasing differences between source and target objects [95].
%A detailed description of the individual loss functions can be found in Appendix
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Figure 3.2.: Representation of the employed encoder-decoder model architecture [19].

In conclusion for this subchapter, Fig. [3.3]shows an exemplary bounding box heatmap for a
sample image. A peak in the heatmap, indicating the bounding box center, is represented
by a 2D Gaussian distribution. In the shown figure, the color of the peak correlates with the
confidence for this prediction, with values close to one indicating a high degree of confidence.

Figure 3.3.: Visualization of a bounding box heatmap for a sample image. The heatmap is overlaid on the original
image with 50% transparency.

The model architecture was described in this subchapter. The following subchapter focuses
on generating the artificial training data.
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3.2. Data Generation

In this thesis, the study on the learnability of geometry agnosticism through a[DL]model relies
entirely on the usage of synthetic data. This is a consequence of the limited availability of real
image data from commercial or research [SPT]| plants. Furthermore, even if data is available,
manual annotation of e.g., keypoints or bounding boxes, is error-prone and time-intensive. In
particular, the annotation of keypoints must be done very precisely [19]. During the work on
this master thesis, real annotated data was only available from the CESA1'° test plant as part
of the[Plataforma Solar de Aimeria (PSA)|located in Almeria (Spain).

The underlying idea in developing a geometry-agnostic model is to include a wide range of
geometries in the training process. The central hypothesis is that the model can learn not
only to detect heliostats and their keypoints within known geometries, but, with this training
strategy, also to generalize to unseen geometries. For the purpose of generating various
training data, the 3D modeling software Blender is used. Within Blender, an already exist-
ing parametric heliostat model is utilized to replicate different geometries. Furthermore, an
existing pipeline [13] is used to create entire heliostat fields. The selection of parameters
used to generate diverse heliostat geometries plays a crucial role. To ensure practical rele-
vance, these parameters should not be chosen arbitrarily, but instead be based on real-world
heliostat geometries currently deployed in [SPT]| plants worldwide. Chapter [3.2.1] outlines the
methodology and findings of the literature review conducted on existing heliostat geometries.
Chapter [3.2.2)focuses the process of generating synthetic training data based on these real-
world geometries.

3.2.1. Literature Research on Existing Heliostat Geometries

The |Heliostat Consortium for Concentrating Solar-Thermal Power (HelioCon)| maintains a
database containing technical data on [SPT| plants worldwide and the installed heliostat de-
signs [1}, [24]. This database will be used to parameterize various heliostat models in Blender.
In addition to [1} 24], other sources were also investigated. Further available studies give
information on the state-of-the-art [SPT| technology, where a wide range of [SPT| plants are
documented [3} 61} |62, [75H77} 198]. However, technical information regarding the heliostats
is a rarity and is, if available, limited exclusively to the size of the whole mirror surface of a
heliostat. From this information, the parameters of the heliostat model in Blender (see Tab.
cannot be derived.

Tabular [3.1] contains the heliostat geometries listed in the [HelioCon| database. Not all entries
in the database could be transferred due to a lack of technical data. In some cases, missing
data could be supplemented by taking the average of the available data. These entries are
marked with a star (*). A detailed explanation of how the database was analyzed
can be found in Appendix|A.3]

'"CESAT1 test plant owned and operated by [Centre for Energy, Environmental and Technological Research|
(CTEMAT)
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Table 3.1.: Summary of operational heliostat geometries worldwide based on [1} |24]. *Missing data was me-
thodically complemented (see Appendix . ng, Ny denote the number of panels in x and y directions, s,
sy represent panel dimensions in|m| rounded to one decimal place. middle_gap is true if the heliostat type
installed in the corresponding plant has a middle gap, false otherwise.

Id Plant Ng Ny Sz [mM] Sy [m] middle_gap
1 Shouhang Dunhuang 100-MW Phase Il (China) 7 5 1.5 2.2 false
3 Luneng Haixi 50-MW Molten Salt Tower (China)* 4 8 2.2 2.2 false
4 PowerChina Gonghe 50-MW CSP Plant (China) 2 2 29 1.8 true
5 SupCon Delingha 50-MW Tower (China) 2 2 29 1.8 true
6 Shouhang Dunhuang 10-MW Phase | (China) 7 5 1.5 2.2 false
7 Ashalim Plot B (Israel) 2 2 2.0 2.6 false
8 NOOR Il (Morocco) 9 6 1.5 2.2 false
9 Khi Solar One (South Africa) 2 8 6.6 1.3 false
10 Gemasolar Thermosolar Plant (Spain) 7 5 1.6 21 false
11 Planta Solar 20 (Spain) 4 7 3.2 1.4 false
12 Planta Solar 10 (Spain) 4 7 3.2 1.4 false
13 Crescent Dunes Solar Energy Project (USA) 7 5 1.5 2.2 false
14 Ivanpah Solar Electric Generating System (USA) 2 1 2.3 3.0 true
15 ACME Solar Tower (India)* 1 1 1.0 1.0 false
16 Atacama | (Chile)* 4 8 2.2 2.2 false
17 Badaling Dahan (China) 8 8 1.3 1.3 false
19 CTGR Qinghai Golmud 100MW (China)* 5 7 2.2 2.2 false
21 Jemalong Solar Thermal Station (Australia)* 3 1 2.2 22 false
29 Sierra SunTower (USA) 1 1 1.0 1.0 false
33 Yumen Xinneng-Xinchen (China) 4 4 1.1 1.0 true
34 Sundrop CSP (Australia) 1 1 1.5 1.5 false

It should be noted that the in the first column is an internal [[D] and does not
correspond to the row number in the table. The existence of a middle gap in the mirror
geometries of the heliostats was determined visually based on the existing image data in the
respective entries of the[HelioCon|database. Moreover, note that the same (e.g., Planta Solar
10, Planta Solar 20) or very similar (e.g., Yumen Xinneng-Xinchen, Sundrop CSP) geometries
are installed in some plants. At this point, these geometries are not deleted from the table to
reflect the actual installations in the real world.

3.2.2. Scene Generation in Blender

Blender, an open-source 3D modeling and rendering software [20], serves as the backend
for the entire data generation pipeline. In this work, Blender is used to model heliostats, build
3D heliostat fields (referred to as scenes), and render photorealistic images, where rendering
denotes the creation of 2D images from 3D scenes [20]. Based on Blender, BlenderProc [21]
99| enables the automated generation of image labels, while a custom code library provides
tools for heliostat modeling, scene construction, and coordinated rendering [13]. A model of
a heliostat has already been developed in Blender, allowing for a flexible design using several
parameters. Figure [3.4] shows four different specifications of the parametric heliostat model.
Functionalities to create damaged mirrors (second from left) and soiling (third from left) are
also implemented. The second and third heliostats (from the left) are distinguished from the
others by a noticeable gap in their center.
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Figure 3.4.: Blender 3.5.0 parametric heliostat model \\

In the following, Tab. 3.2 shows an extract of the parameters to be defined to configure the
heliostat model in Blender.

Table 3.2.: Parameters of the heliostat model in Blender. Units: panel counts in panels, rotation angles in degrees,
all lengths in

Parameter Physical interpretation

n_panels_x Number of panels of the heliostat mirror surface along the x-axis

n_panels_y Number of panels of the heliostat mirror surface along the y-axis

panel_size_x Width of a panel along its x-axis

panel_size_y Width of a panel along its y-axis

panel_thickness Thickness of a mirror panel

gap_x Width of the gap between two mirror panels along the x-axis

gap_y Width of the gap between two mirror panels along the y-axis

middle_gap Width of the central gap between the adjacent panels to the left and right of the center along the

x-axis (only greater than zero if the panel count is even)
min_elevation_deg Lowest permissible value for the angle of rotation around the elevation axis
max_elevation_deg Highest permissible value for the angle of rotation around the elevation axis

To recreate the real geometries from Tab. [3-]in Blender, the number and size of the facets of
each geometry can be used directly. Information on the gap size and panel thickness could
not be determined during the literature research. However, to represent a good approximation
for a realistic heliostat geometry, the values are chosen as follows: gap_x =gap_y = 0.01
middle_gap = 0.75|m|and panel_thickness = 0.004|m] These values were assumed
constant for all geometries. For heliostats without a middle gap, the permissible rotation range
around the elevation axis is set to the interval [0°, 80°]. Limiting the elevation angle prevents
the mirror surface from cutting through the stand of the heliostat in the Blender model. This
problem cannot occur with heliostats with a middle gap, which is why the permissible rotation
range is set to the interval [0°, 180°]. Damaged or dirty mirror facets are excluded from this
work.

In the following, heliostat fields are generated based on the parameterized heliostat models.
To do so, an existing Python script is used, independently of Blender. Depending on the
choice of the field layout (rectangular, circular), layout parameters (e.g., minimum and max-
imum distance of a heliostat to the field center) and other parameters, the positions of the
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heliostats are calculated and saved as 3D coordinates. Additionally, an azimuth and elevation
angle is calculated for each heliostat based on the sun’s position and the coordinates of the
field location. The calculated data is exported as a|comma separated values (CSV)|file. An
excerpt of an entry for a heliostat position is shown in the following Tab.

Table 3.3.: Exemplary entry of a field.csv file (excerpt). x, y and z in azimuth and elevation in °.

X y z Azimuth | Elevation
-11.92 | -79.11 | 0.0 111.49 61.90

The entry shows the data for a heliostat at the position [-11.92, -79.11, 0.0]. The coordinate
system is based on the|east-north-up (ENU)|standard where the x-axis points in the east, the
y-axis in the north and the z-axis upwards [100]. According to this coordinate convention, the
heliostat is located in the southwest of the tower in a circular heliostat field. In a second step,
a random drone flight route over the simulated heliostat field is created. A function generates
and saves 3D camera positions and orientations and also exports them as a[CSV|file. The
flight routes are based on user-defined parameters such as altitude ranges and flight zones.
An excerpt of an entry for a camera orientation is shown in the following Tab.

Table 3.4.: Exemplary entry of a drone.csv (excerpt). X, y and z in|m| Pitch ¢, Roll § and yaw v in °.
X y z Pitch | Roll Yaw
-169.59 | 28.12 | 22.66 | 41.46 0.0 67.38

Roll 8, pitch ¢ and yaw ) refer to rotations about the x-, y-, and z-axes, respectively. The
specification of the rotation angle is based on the Tait-Bryan (also known as YRP) conven-
tion. The rotation angles are defined using a hierarchy in which the rotation axes change
depending on the orientation of the coordinate system. The rotation takes place in the se-
quence yaw, roll, pitch. This means that the coordinate system is first rotated about the initial
z-axis, then about the y-axis of the intermediate frame, and finally about the x-axis of the
resulting frame [101H103]. The angles refer to a coordinate system according to the [ENU]
standard, which is rotated 180 degrees around the x-axis. When taking aerial photographs
with a drone, this convention reduces the roll angle as the z-axis (the direction of the camera)
is already directed downwards.

After explaining the relevant configurations for generating synthetic image data, the following
subsection provides a detailed overview of the resulting synthetic datasets.

3.2.2.1. Presentation of Generated Synthetic Image Data

By determining the parameters of the heliostat model, the positioning and orientation of the
heliostats in space and various camera poses, all the data required to create the artificial
images is now in place. All of the Blender scenes created in this work are made up as follows:
For each of the geometries listed in Table four scenes were generated. Two of these
scenes feature a rectangular field layout, while the other two follow a circular arrangement.
Within each field layout, one scene uses grass and the other soil as the ground texture. The
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drone takes 125 pictures per scene from a varying altitude of between 20 and 100 meters.
This procedure results in a dataset comprising 11,000 synthetic images in total at this point,
each with a resolution of 6000 x 4000 Four sample images are shown below. Figures
and [3:5b] show two images from different scenes with a rectangular field layout. Figure
shows a rendered image of geometry one (see Tab. [3:7) with grass as ground texture
and a low drone flight altitude. Figure [3.5b|shows a rendered image of geometry seven with
soil as ground texture and a higher drone flight altitude. Figures and [3.5d| show two
images from different scenes with a circular field layout. Figure [3.:5¢|shows a rendered image
of geometry 15 with grass as ground texture and a very high drone flight altitude. Also visible
is the tower in the center of the field, which was included in every scene. Figure [3.5d|shows a
rendered image of geometry 19 with soil as ground texture and a medium drone flight altitude.

(a) Blender scene | geometry: 1, field layout: rectangular, (b) Blender scene | geometry: 7, field layout: rectangular,
ground: grass, image id: 18. ground: soil, image id: 113.

(c) Blender scene | geometry: 15, field layout: circular, (d) Blender scene | geometry: 19, field layout: circular,
ground: grass, image id: 114. ground: soil, image id: 112.

Figure 3.5.: Examples of rendered images of Blender scenes with rectangular (top) and circular (bottom) field
layouts, grass ground (left) and soil ground (right). Resolution reduced to decrease file size.
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The example images show that, despite the given position of the sun, even neighboring he-
liostats are aligned very differently from one another. The varying alignments were controlled
by a randomness factor added to the elevation and azimuth angle of each heliostat. The aim
was to introduce more variation into the poses of the heliostats, thereby varying the training
data to a larger extent. This idea will become relevant again in the following Chapter [3.3]

In addition to Blender, the extension BlenderProc2 is used. Blenderproc2 can render and
label photo-realistic images for the supervised training of[NNs|[21][99]. In this thesis, Blender-
proc2 is used to create the labels for the objects in a scene in the form of a[COCO]annotation
file [58]. Figure[3.6|shows a sample image and corresponding ground truth labels for a scene
created with the described simulation environment.

: 3% visible keypoints
4 =] hidden keypoints
500 | :

1000

2000
2500
3000

3500

4000 .
0 1000 2000 3000 4000 5000 6000

Figure 3.6.: Visualized ground truth labels for keypoints and bounding boxes on Blender scene | geometry: 4,
field layout: rectangular, ground: soil, image id: 9. An excerpt of the[COCO]annotation of the heliostat marked
with a white arrow is shown in the following.

The mirror surface shown consists of four facets and has a middle gap. Keypoints are marked
by a green circle, bounding boxes by a red rectangle. Keypoints are not annotated for he-
liostats that are only visible from the rear, such as when the mirror surface is not visible due
to heliostats’ orientation to the camera. Listing [3-1] shows an excerpt of the corresponding
[COCQ(file, including the ground truth data for the heliostat marked with a white arrow.
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N o o s W N =

10
11
12
13
14

"id": 317,

"image_id": 9,

"category_id": 9,

"bbox": [2295, 1727, 591, 750],

"segmentation": [
[25643.0, 2055.5, ..., 2543.0, 2055.5],
[2885.0, 2476.5, ..., 2885.0, 2476.5]
1,
"keypoints": [

2885.96, 2476.30, 2, 2793.14, 1749.52, 2,
1,

"num_keypoints": 12

Listing 3.1: Exemplary [COCO|entry for an annotated solar module (excerpt).

Following the [COCQ] convention [58], every annotation in a rendered Blender scene has its
own [D] Moreover, each image (image_id) and geometry type (category_id) has its own
D] Note that the category_id is not the [ID|from Tab. [3.7]but is a unique pre-defined [ID] for
every geometry and is used consistently throughout all generated datasets. A bounding box
in a[COCQ|file is represented by four values: the x and y coordinates of its top left corner,
followed by the width and height of the box. Mirror surfaces of category_id four consist
of 12 keypoints. Each keypoint is defined by three values: the x and y coordinates and the
visibility, in this order. A visibility of zero implies a keypoint that is outside the image frame. A
visibility of one means that a keypoint is not visible in case of a heliostat facing away from the
camera or overlap with other heliostats or objects. A keypoint with visibility two implicates a
keypoint, which is visible in this image frame.

The synthetic[COCQ]annotation files created with Blender and BlenderProc are pre-processed
in the following. This is explained in the subsequent subchapter.

3.3. Data Pre-Processing

As part of this master’s thesis, the existing model architecture will be expanded to include
additional functionalities. Therefore, as a preparatory task, the synthetic data undergoes pre-
processing to ensure compatibility with the further training pipeline. The tasks performed are
explained in the following subsections.

3.3.1. Keypoint Accuracy Requirements for Reliable Calibration

Accurate detection of heliostat keypoints is essential, as they serve as the base for the helio-
stat calibration techniques discussed in Section For an accurate heliostat calibration,
Sattler et al. [6] state, that the angular accuracy for the detected keypoints should be in the
range of 0.1 to 0.3 (see Chapter [2.2.4). In their study, Kesseli et al. [12] investigate
the maximum permissible distance between ground truth and model detection for the corner
points of a[PTC|to ensure this angular accuracy. Since the requirements for keypoint detec-
tion accuracy are primarily determined by local image features, it is assumed that the results
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presented in [12] are transferable to heliostats and the[SPT|technology. Kesseli et al. [12] shift
the four outer ground truth keypoints by a certain length in the image plane and measure the
resulting angular accuracy. The length of the displacement was measured in rather than
by L,using a known length-scale in the image." [12] The analyses made show that with 95%
certainty, if the module corner points identified are within 1.18 of the manually marked
ground truth points, the resulting angular accuracy remains within < 40.25 Using a
metric unit, such as[cm] instead of [px| to determine the allowed tolerance, makes the corner
identification sensitivity independent from camera parameters like the resolution or distance
to the keypoints [12].

In preliminary works from Broda et al. [19], a fixed tolerance of three [px] was used to detect
the four outer mirror corners. However, this does not account for the varying flight altitudes
of the drone. Therefore, the fundamental idea of a keypoint tolerance based on a metric unit,
such asfcm| was adopted from Kesseli et al. [12] in this thesis. However, in contrast to Kesseli
et al. [12], a fixed-length scale in the image is not known. Without going into further detail
at this point, this is because at this stage of the detection process, no assignment is done
between detected keypoints in the image plane and keypoints in 3D space. For this reason,
a novel procedure was developed as part of this master’s thesis to define a tolerance radius
for a keypoint prediction in the image plane based on a metric unit without known length
measurements in the image. As a theoretical foundation and for better understanding, the
principles of camera models and projections are introduced in the following.

3.3.1.1. Excursus: Camera Projection Models

The simplest camera model, but good enough for the purposes of this work, is the pinhole
camera model. It defines the projection of a point defined in R3*2 onto an image. The three-
step projection is shown in Fig. 3.7 In general, points in space are expressed in a Euclidean
coordinate frame, in the following called |global coordinate system (GCS)| (see on the
left). The coordinate system of the camera (see in the middle), here defined as
[coordinate system (OCS)| as in [104], can be derived from the [GCS| by applying a rotation
R3*3 and a translation t3*!. The transformation is shown visually by a curved dotted arrow

connecting the origins of the [GCS|and[OCS|

image plane

YOCS

Global Coordinate System (GCS) Observer Coordinate Sytem (OCS) Image Coordinate Sytem (ICS)

Figure 3.7.: Definition ofand based on [105].
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Transforming a point Xgiopal from the [GCS|into the [OCS|is mathematically defined by Eq.
[105].

Xcam = R - Xglobal 1 t (3.1)

By definition, the camera shows in the direction of the z-axis, also known as the optical axis.
The optical axis has the important property that it is perpendicular to the image plane. In
the following, the camera projects a point from the Euclidean 3-space R? onto the Euclidean
2-space R? image plane, defined by theimage coordinate system (ICS)| (seeon the right).
The distance between the image plane and the origin of the[OCS]is defined by the focal length
f of the camera. The position of the projection of a point x¢am in R? space onto the image
plane results from the intersection of the connecting line between the [OCS| origin and Xcam,
and the image plane. The projection is visualized in Fig. [3.7|with the red point and the dotted
circle. Note, while coordinates in the [GCS| and [OCS] are expressed in metric units (e.g.,
[m), the[[CY)is based on pixels.

The projection is mathematically described by Eq. In the intrinsic camera matrix K, the
focal length f is scaled by the image width (f;) and image height (f,), with the dimensions
measured in pixels. The parameters ¢, and ¢, are the coordinates of the intersection of the
image plane with the optical axis in the[I[C§

Ximg = K+ Xcam (3.2)
Jr 0 ¢
withK= 10 f, ¢
0 0 1

Based on the derived knowledge about camera models and projection, the following shows
how a keypoint detection tolerance based on a metric unit can be converted into a pixel
tolerance.

3.3.1.2. Methodology for Local Keypoint-Individual Detection Tolerance

Based on the work of Kesseli et al. [12], a tolerance radius ¢ of 1.18 [cm| for potential model
predictions is defined for each keypoint in an image. In [12], Kesseli et al. are able to project
the given tolerance into the image plane by knowing a fixed length scale. This approach is
possible because the images of the[PTCs|were taken without significant perspective distortion
(from nearly orthogonal viewpoints). As a result, the distances between keypoints in the[GCS]
could be directly related to pixel distances in the [CS| enabling the definition of a constant
scaling factor per image. Importantly, this scaling factor was identical for all keypoints within a
given image. The image dataset generated in this master thesis, however, differs fundamen-
tally. Due to the varying orientations of the heliostats and the random camera positions, the
heliostats appear perspectively distorted in the images. Only in rare cases, where the camera
normal vector is aligned with the optical axis of a heliostat, a heliostat would appear undis-
torted and the application of the method from Kesseli et al. [12] would be valid. Consequently,
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a new method is required in this thesis that allows projecting a tolerance § in a metric unit into
the image plane even under perspective distortion. Therefore, a procedure was developed
that first defines a keypoint tolerance zone in the [GCS and then projects it into the [CS] The
procedure is explained below.

Initially, the relevant matrices and coordinate systems from the previous subchapter are de-
fined. The [GCS|is used to describe the position of the heliostats and the camera (see Tab.
[3.3/and Tab. [3.4). The origin of the [GCS|is defined as the intersection point of the east-west
and north-south symmetry axes of the heliostat field with the ground plane. By knowing the
position (x, y, z) and orientation (pitch ¢, roll 8, yaw 1)) of the camera, the transformation of a
point xccg from the [GCS|to the[OCS]is possible by using Eq. The overall rotation matrix
R is constructed using the Tait-Bryan convention (Chapter [3.2.2). In this convention, three
successive rotations around the z, y, and x-axis are applied. The mathematical formulation is
shown below in Eq. 3.3

R = R.(¢) - Ry(0) - R=(¢) (3.3)

R.(¢), Ry(0) and R.(¢)) are defined as the standard rotation matrices in the 3D space
[102, 103]. The rotation matrix is multiplied from the left to the xgcsg so that the stepwise
sequence of the rotations is in the correct order, although R is formally defined in a reverse
order (see Eq. [3.1). The parameters of the intrinsic camera matrix K are set in the Blender
settings and have the following values: f, = f, = 4000, ¢, = 3000 and ¢, = 2000.

Based on the defined matrices and coordinate frames, Algorithm [1| provides the pseudocode
to project the keypoint tolerance zone defined in the [GCS|into the [CY

Algorithm 1 Computation of keypoint tolerance zone in the[ICS|for one image.

1: Get camera position (x, y, z) and orientation (¢, 6, ¢) from drone.csv
2: Transform camera’s optical axis Xopt,0cs = [0, 0, 1] from to[GCSusing Eq.
3: for each heliostat in the image do

4 for each keypoint of the heliostat do

5 Get keypoint position Xy, acs in[GCS]|from Blender

6: Compute support point xs ,ccs such that:

7: |xs5,Gos — Xup, acs| = 0 > Defines the radius of the tolerance zone
8: (x5,c08 — Xip, acs) L Xopt,aCs > Ensures displacement lies in the image plane
9: Project x5,ccs into[[CS|using Eq.

10: Get ground truth keypoint Xip, coco from[COCQfile

11: Compute pixel distance: dpixel = ||X5,pr0j — Xkp, coco |

12: Write dpiel to[COCQfile

13: end for

14: end for

The procedure is run through for each of the 11,000 images generated, setting 6 = 1,18
Due to the unique combination of keypoint positions, camera positions and orientations,
the algorithm results in a keypoint-individual tolerance radius in the image plane. Figure [3.9]
shows the distribution of the generated tolerance radii and its statistics below. Compared to
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the previously used constant radius of three the newly computed, locally adaptive radii
show significantly lower values. The median is only 0.355 with 50% of the values falling
between 0.248 |px| and 0.507 Even the 95th percentile remains well below the former
threshold, at just 0.848 px} Only a few outliers extend up to a maximum of 5.437 [px} Overall,
the reduced tolerance range may lead to a higher number of [FP|detections. As a result, the
[PCK|metric could decrease, not necessarily because the model performs worse, but because
the evaluation criterion has become stricter.

The following images in Fig. [3.8]illustrate how the local keypoint distance threshold behaves
for two keypoints at different distances from the camera. This example shows that the keypoint
tolerance zone varies significantly with the distance between the keypoint and the camera
position.

(a) Blender scene | geometry: 13, field layout: circular, (b) Blender scene | geometry: 13, field layout: circular,

ground: soil, image id: 26, heliostat id: 1159, local ground: soil, image id: 26, heliostat id: 1159, local
tolerance of 0.42[px] Scaling factor 150, Zoom factor tolerance of 0.42 Scaling factor 0, Zoom factor
0. 55.

(c) Blender scene | geometry: 13, field layout: circular, (d) Blender scene | geometry: 13, field layout: circular,

ground: soil, image id: 121, heliostat id: 803, local ground: soil, image id: 121, heliostat id: 803, local
tolerance of 3.09|px} Scaling factor 150, Zoom factor tolerance of 3.09 Scaling factor 0, Zoom factor
0. 330.

Figure 3.8.: Visualization of developed local keypoint tolerance for two keypoints with different distances to the
camera. The tolerance radii have been enlarged 150 times on the left-hand images to increase their visibility.
The zoom factor describes the optical enlargement of the image section, which includes the marked keypoint.
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3.3.2. Heliostat Pose Estimation for Improved Keypoint Detection

The introduction of this thesis (see Chapter [) showed, that even a class-aware model that
was trained on a large dataset with 20,000 images is still not able to detect all keypoints in
an image. This chapter presents a post-processing method to partially complement missing
keypoints. However, it includes learning further parameters that have to be additionally in-
cluded in the generated [COCQ|files. This method is therefore covered in the pre-processing
section. The aim is to train the model on predicting the pose, defined by the rotation matrix
R and translation vector t, of a heliostat in the Therefore, the two parameters have to
be calculated and integrated into the training data. Their calculation is done separately in two
steps below. The position and orientation of the [GCS] the coordinates of the heliostats in the
[GCS] and the position and orientation of the [OCS|for each image can be assumed as given.
The calculation of thelio, ocs is shown in Algorithm via pseudocode.

Algorithm 2 Computation of heliostat location in[GCS|and [OCS|

1: Get outer mirror corners A, B, C, D in[GCS] for one heliostat from Blender (ordered: down-left, top-left,
top-right, down-right)

2: Compute diagonal midpoints:

3: XAC — %(A —+ C)

4: XBD %(B =+ D)

5: Compute heliostat center in[GCS}

6:  thelio, ccs %(XAC + xBD)

7.

8:

9:

10:

Load camera translation vector t¢,m and rotation matrix Rcam from drone.csv
Transform to [OCSt
Translation: theiio, trans <— thelio, accs — tcam
Rotation: theio, ocs < Ream * trsiio, trans B helio, trans IS @ FOW vector

In a second step, the rotation matrix of the heliostat in the[OCS]is determined. The calculation
is shown in Algorithm [3]via pseudocode.

Algorithm 3 Computation of heliostat orientation in[GCS|and[OCS|

1: Get outer mirror corners A, B, C, D in for one heliostat from Blender (ordered: down-left, top-left,
top-right, down-right)
Compute local axes of heliostat in[GCS}

Xaxis Hgiig\\ > horizontal edge (top)

Vaxis ﬁ > vertical edge (left)

Xaxis X Yaxis
axis [Iaxis X ¥axis ||

2:
3:
4:
5: > normal vector
6: Construct heliostat rotation matrix in[GCS}

7. Rhelio, cos — [Xaxis | Yaxis | Zaxis]

8: Load camera rotation matrix Rcam

9: Transform heliostat rotation into[OCS}

10:

at
Rheiio,ocs < Ream * Rhelio, acs

A valid rotation matrix Rhelio, ocs must satisfy the condition that its column vectors are pairwise
orthogonal and each has unit norm. However, representing a rotation using all three column
vectors of a 3 X 3 matrix is redundant, as the third vector (e.g., zaxis) can be computed as
the normalized cross product of the first two (e.9., Xaxis X Yaxis)- 10 reduce redundancy and
computational load, a six-dimensional representation of the rotation matrix, encoding only the
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first two column vectors, is learned. This idea is based on the works of Zhou et al. [106].
3D rotations can also be represented using quaternions q. However, their representation of
rotation is discontinuous, since the same rotation can be described by the same quaternion
with a positive and a negative sign [106].

The two algorithms shown are applied to derive the parameters thejio. ocs and Reiio, ocs for
every heliostat on the 11,000 rendered images. The parameters are then added to the corre-
sponding annotation of the corresponding [COCQ]file. With the right model configuration, the
model theoretically can now also learn the pose of a heliostat. By adding a randomness factor
to the elevation and azimuth angle of each heliostat during data generation (see Chapter[3.2),
the model is able to learn various poses during training. The value of the pose in the context
of post-processing and the benefit for keypoint detection is shown visually in Fig.

—— Mirror edges
«  Ground truth keypoints

Figure 3.10.: Visualization of the ground truth pose | geometry: 1, field layout: circular, ground: grass, image id:
6, heliostat id: 149.

To visualize the ground truth pose for one heliostat, the mirror surface of the heliostat is ap-
proximated by a rectangular grid-like structure. lts dimensions are derived from known facet
and gap sizes of the heliostat mirror surface. The grid is first defined in the [OCS] then trans-
formed using the calculated rotation Ryejio. ocs and translation theiio, ocs, and finally projected
onto the image plane using Eq. [3:2] The resulting projection overlays the actual mirror surface
in the image, thereby providing a visual reference for the keypoint positions. In theory, if the
pose is predicted accurately, the geometric constraints can be used to determine the position
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of unpredicted keypoints and interpolate the position of hidden ones. Furthermore, know-
ing the pose would enable a direct assignment of keypoints to individual heliostats, which is
required for subsequent steps in the heliostat calibration. After supplementing the existing
training data in two pre-processing steps, the following sections of Chapter [3| deal with the
chosen cluster-based training strategy to develop a geometry-agnostic model.

3.4. Training Data Clustering

The underlying idea behind an agnostic detection model is, by definition, the ability to transfer
features learned from one object class to others. To evaluate this transferability, it is therefore
necessary to test the detector on unseen object classes. In the context of this master’s the-
sis, each heliostat mirror design from Tab. referred to as a geometry in the following, is
categorized as a separate class. As already discussed in Chapter [3.2.1] certain geometries
show remarkable similarities or differences due to variations in their number of facets and
dimensions. It is therefore reasonable to cluster the geometries. Each cluster then comprises
a set of geometries clearly distinguishable from those in other clusters. This approach en-
ables the implementation of various training scenarios in which one cluster serves as the test
dataset, while the remaining clusters are used to train the model. Also, the chosen approach
is comparable to the k-fold cross-validation and thus has a theoretical foundation.

It is started with clustering the given geometries. The procedure is based on [107]. The
parameters n_panels_x, n_panels_y and middle_gap are selected as cluster variables.
The parameter middle_gap is a dichotomous parameter and can only take two values, true
and false. By convention [107], it is converted into a binary variable by encoding, so that:

1, iftrue

middle_gap = {O |
, ¢else.

The euclidean distance is used as a measure to determine the distance between two geome-
tries. The Ward method, a hierarchical agglomerative clustering algorithm, is used as the
merging algorithm. The method is highly relevant in practice [107] and additionally aims to
form clusters with the lowest possible internal variance. Minimizing the internal variance con-
tributes to the formation of homogeneous clusters with high separability from other classes.
The process of an agglomerative cluster algorithm can be illustrated graphically with a den-
drogram. A dendrogram indicates the heterogeneity measure associated with a given cluster
number. Figure[3.11]shows the dendrogram for the clustering of the heliostat geometries. The
vertical axis shows the individual geometries. As a starting point, each geometry represents
a separate cluster, with heterogeneity equal to 0. As the fusion progresses, the heterogeneity
measure increases. The dendrogram then graphically connects the geometries that are fused
at a particular stage [107].

50



Hierarchical clustering
criteria: n_panels_x, n_panels_y, middle_gap, method: ward

heterogeneity

| [ 1

m o A © © ~ T un ~
- - ;o

9
3
16
19
11
12

o - ™
N N ™
geometries

Figure 3.11.: Hierarchical clustering of heliostat geometries.

As a result, one must decide on ones own which cluster solution is considered the best. The
elbow criterion is particularly useful for supporting this decision. According to this criterion,
the optimal number of clusters k (the elbow) is the point at which the variance reduction
decreases significantly as the number of clusters increases [107]. The application of the
elbow method for the clustering of the geometries is graphically shown in Fig. The
elbow can be obtained for & = 4.

Elbow-method for optimal cluster size

Within-cluster sum of squares

2 3 4 5 6 7 8 9 10
number of clusters (k)

Figure 3.12.: Elbow-method for optimal cluster size.
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With the determined cluster number, the assignment of the geometries to the respective clus-
ters can be done using the dendrogram. For this purpose, an assumed horizontal cut is made
in the dendrogram to cut exactly k£ = 4 branches. This cut is possible, e.g., for a heterogene-
ity of value three. The final assignment of the geometries to the clusters can be seen in Fig.

B.13

3D plot of heliostat geometries with clusters
Cutting height: 3.0
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Figure 3.13.: 3D clustering of heliostat geometries.

The individual clusters are well separated. Figure [3.14] below shows exemplary geometries
from the developed clusters. Clusters one (Fig. and two (Fig. comprise geome-
tries with a medium to large mirror design, with geometries in cluster two having more facets
in the x-direction than those in cluster one. Furthermore, geometries 8 and 17 stand out in
cluster two due to their large number of facets. Cluster three (Fig. contains geometries
with a particularly small number of facets. Cluster four (Fig. comprises geometries
with a middle gap. Based on the cluster constellation, various training scenarios are derived,
evaluated, and compared with each other in the following section.
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(a) Cluster 1 Blender scene | geometry: 3, field layout: (b) Cluster 2 Blender scene | geometry: 8, field layout:
circular, ground: grass, image id: 1. circular, ground: grass, image id: 9.

(c) Cluster 3 Blender scene | geometry: 7, field layout: (d) Cluster 4 Blender scene | geometry: 4, field layout:
circular, ground: grass, image id: 4. circular, ground: grass, image id: 2.

Figure 3.14.: Example geometries from the developed clusters. Resolution decreased to reduce file size.

3.5. Training Framework

A cluster-based training and evaluation approach is used to investigate geometry agnosti-
cism. For this purpose, the existing geometries were divided into four clusters in the previous
Section[3.4] Analogous to the k-fold cross-validation methodology, the following procedure is
now used for model training: The set of clusters is defined as K with K = {1,2,3,4}. In
an iteration k with k € K, cluster k is defined as the validation dataset. The three remaining
clusters K \ {k} are defined as the training dataset. In four iterations, the generalizability
of the model is thus checked for different combinations of training and validation geometries.
Furthermore, it is investigated how the integration of a specific cluster into the training dataset
affects the model performance. Thus, in an iteration k, the model is not only trained with the
clusters K \ {k}, but also in m € {1,2,3} iterations with one, two, and all three training
clusters. The choice of the clusters in iteration m is determined based on the distance matrix
between the cluster centers. Thus, for m = 1, the model is trained with the cluster whose
cluster center has the smallest Euclidean distance to the center of the validation cluster. For
m = 2, the cluster whose cluster center has the second smallest Euclidean distance to the
center of the validation cluster is added to the training. For m = 3, all clusters K \ {k} are
included in the training.
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At another level, it is examined how integrating or removing selected geometries from their
clusters affects training and model performance. Three scenarios were defined for this pur-
pose:

1. Scenario No Duplicates: Duplicates are excluded from model development and evalu-
ation. A geometry is defined as a duplicate if its parameters n_panels_x andn_panels_y
match those of another geometry. The geometry with the smallest[ID] (see Tab.
among the duplicates is selected for this scenario. This scenario results in 13 geome-
tries.

2. Scenario One Geometry per Cluster: The cluster size is reduced to the extreme case
of one geometry per cluster. For this purpose, the medoid of each cluster is selected.
Thus, this scenario includes four geometries.

3. Scenario All Geometries: All 21 geometries listed in Tab. are included in model
development and evaluation.

Each model is trained (and tested) with two random seeds to reduce the influence of random
effects (e.g., random weight initialization, data shuffling and data augmentation [109]) on
model training and performance evaluation, thereby ensuring more robust and reliable results.

3.6. Testing Framework

The model performance for a test dataset is evaluated based on the [AP| and the [PCK| The
is evaluated for all predictions with a model confidence (i.e. heatmap peak value) higher
than 0.5, and using a fixed tolerance radius of 3|px|for ground truth to prediction assignment.
This selection allows direct comparison with the studies by Broda et al. [19]. On the other
hand, the [PCK| is determined with a projected variable tolerance radius of 1.18 This
method was derived in Chapter[3.3.1.2]

Significant discrepancies in model performance between the rectangular and circular scenes
were found within the scope of the tests, without prejudging the results. Specifically, the tests
for the circular scenes are significantly worse regarding the [PCK| To present the test met-
rics for the rectangular scenes without distortion, tests for the rectangular and circular scenes
were carried out separately. The separation allows representative test results to be presented
for the rectangular scenes. The test metrics for the circular scenes were also collected for the
sake of completeness. These and possible reasons for the discrepancies between the two
field layouts can be found in Appendix[C.1]

Drone images taken from a low altitude, combined with a flat camera angle, capture many he-
liostats and keypoints due to the strong depth effect. However, the bounding box centers and

""The medoid of a cluster is the data point for which the sum of distances to all other points in the cluster is the
smallest. In contrast to the centroid, a medoid must actually exist. This means it is a real point from the data
and not a calculated average [108|.
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keypoints are barely detected reliably at this image depth due to significant occlusions and
overlaps. Such camera angles are rare in practical applications and can negatively influence
the testing metrics. Therefore, the models will be further tested on datasets in which images
with the above characteristics are filtered out. Based on visual inspection, as a quantitative
filtering criterion, all samples with a camera pitch angle greater than 50° are excluded. Figure
[3:15] shows two exemplary images, which are filtered out.

(a) Blender scene | geometry: 4, field layout: rectangular, (b) Blender scene | geometry: 11, field layout: circular,
ground: grass, image id: 49. ground: soil, image id: 44.

Figure 3.15.: Examples of filtered images for criterion pitch > 50°. Resolution decreased to reduce file size.

Testing is carried out using consistent test datasets across all scenarios. This strategy en-
sures comparability between the scenarios. The test datasets are based on the clusters
defined in the No Duplicates scenario, as they do not include duplicates (as in scenario All
Geometries) or are limited to a small size of geometries (as in scenario One Geometry per
Cluster). Circular scenes and image data with a camera pitch angle of > 50° are filtered out.
Within the No Duplicates scenario, using the same data for validation and testing is unprob-
lematic, as no model tuning during training is performed based on the validation results. Table
[3:5] shows the four test clusters and their corresponding dataset sizes.

Table 3.5.: Test datasets corresponding to the four
validation clusters for all scenarios. Datasets
are filtered for pitch > 50°. Only rectangular
scenes are included. The dataset size indi-
cates the number of synthetic images.

Test Cluster Dataset Size Dataset Size
Unfiltered Filtered
1 1000 780
2 750 580
3 750 578
4 750 566
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3.7. Hyperparameter Settings

By combining various elements, the model architecture has several hyperparameters. How-
ever, as the scope of this work lies on the geometry agnosticism and to ensure comparability,
they are not tuned in this work but mostly adopted from the work of Broda et al. [19]. Table
[3.6] shows the most important model and training hyperparameters.

Table 3.6.: Thematically grouped overview of selected hyperparameters in the model
and training configuration. *Cropping is only used in model training. **Increased
to 30,000 for model testing. Abbreviations: bbox = bounding box, kpt = keypoint,
reg = regression. The settings were taken from the work of Broda et al. [19].

Hyperparameter Value

1. Data and Pre-Processing

batch size 8
crop width* 2048

crop height* 2048

max peaks™* 2000

2. Loss and Training Objective

reduction sum

weights bbox heatmap 1.0

weights bbox reg offsets 1.0

weights bbox reg bounds 5.0

weights kpt heatmap 1.0

weights kpt reg offsets 5.0

weights pose estimation 5.0

bbox sigma 64

kpt sigma 16

3. Training Strategy and Stability

max epochs 200

learning rate 0.001
optimizer AdamW

Ir scheduler OneCycleLR

The model uses random cropping as a data augmentation technique to synthetically increase
the training dataset variance and to improve computational efficiency [110]. To ensure ten-
sor shape compatibility during computations, the maximum number of allowed model pre-
dictions per (cropped) image and heatmap must be pre-initialized by defining the parameter
max_n_peaks. Keypoints and bounding box centers are counted separately, but share the
same max_n_peaks limit. Tests have shown that a value of 2,000 for model training is suf-
ficient. Increasing this value by a factor of ten did not lead to any significant improvement
in model performance during testing that would have justified the additional computational
cost. During testing, the is only evaluated on visible keypoints, although the model might
also predict occluded ones. For testing, max_n_peaks is set to 30,000 because unlike during
training, the full image is evaluated. This value was verified to be sufficiently high to ensure
that no potential predictions are lost due to limitations of the model hyperparameters. The
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multi-task loss to be minimized is the sum of the weighted losses of the individual tasks. Em-
pirical pre-tests in previous works of Broda et al. [19] have shown that using a weight of five
for the regression loss terms of the bounding box bounds, the keypoint offsets and the pose
estimation task, improves model performance. Therefore, this value is adopted. All other loss
terms are not amplified, but their weight is set to one. The bounding box sigma and keypoint
sigma (both in indicate the 2D Gaussian standard deviation for ground truth heatmap cre-
ation. The training process uses the AdamW optimizer [111]. For fast model convergence,
a OneCycle learning rate schedule is applied, where the learning rate is increased and then
decreased over the course of training [112].

Intermediate Results

Chapter [3| forms the methodological core of this thesis. It considers all preparatory steps
of model training. First, the existing model architecture was examined. Then, the focus
was placed on the generation of artificial training data. The process pipeline and several
sample images were examined in detail, demonstrating the quality and quantity of the gener-
ated image data. For the specific purposes of this master’s thesis, the generated data was
pre-processed in two steps. First, a procedure was presented that calculates an individual
tolerance radius in the image plane for each keypoint. A post-processing algorithm based on
the additionally added model task of pose estimation was proposed. The clustering of the
derived heliostat geometries lays the direct foundation for the implementation of various train-
ing and testing scenarios. The developed framework for model training and testing, as well
as the hyperparameter selection, was also presented. The detailed evaluation of the defined
training scenarios begins in the following.
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4. Model Evaluation

In the previous chapter, three experimental scenarios were introduced, in which different mod-
els are developed based on variations in training data volume and combinations of training
and testing clusters. In this chapter, the results of these model evaluations are compared both
across the scenarios and against class-aware baseline models, which were only trained on
one heliostat geometry. Furthermore, the transferability of the models to real-world data is as-
sessed. Moreover, the functionality of the developed pose estimation approach is examined
as part of the post-processing pipeline.

4.1. Scenario No Duplicates

In this scenario, duplicates are excluded from model development and evaluation. The ge-
ometry with the smallest[[D]among the duplicates is selected for this scenario. This filters out
eight duplicates distributed across five geometries. The selection of the geometry with the
smallest [[D]is justified, as six out of the eight removed duplicates are not only duplicates in
terms of the number of facets but also share the exact same facet dimensions (see Tab.
s, and sy). Thus, these geometries were parametrized identically in Blender and show no
geometric differences. The remaining two duplicates exhibit only minor geometric differences
compared to their respective reference geometries. Due to the negligible nature of these dif-
ferences, the implementation of a more elaborate selection criterion was deemed scientifically
unjustified for the purposes of this scenario. Overall, this scenario results in 13 geometries.
The 13 geometries, their cluster assignment, as well as the cluster size are presented in Tab.
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Table 4.1.: Overview of clusters in scenario No Duplicates. Total amount of images: 6500.

Cluster Geometries Dataset Size
1 3,9,11,19 2000
2 1,8,17 1500
3 7,15, 21 1500
4 4,14,33 1500

The training cases are derived based on the distance matrix between the centers of the
four clusters, as shown in Tab. For iteration k = 1, with cluster 1 serving as the test
cluster, the training scenarios are defined in ascending order of distance as follows: training
with cluster 2 (distance: 4.4), training with clusters 2 and 4 (distance: 6.7), and training with
clusters 2, 4, and 3 (distance: 7.8). The evaluation strategy is referred to as Close First (CF).
This approach can be applied analogously to iterations with test clusters 2, 3, and 4. In total,
this yields twelve distinct combinations of training and testing clusters. Figure provides
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Table 4.2.: Distance matrix between clusters for scenario No Duplicates.

Cluster | 1 2 3 4
1 0.00 44 78 6.7
2 4.4 0.00 6.4 54
3 7.8 6.4 00 1.6
4 6.7 54 1.6 0.0

a visualization of the training and testing results for the twelve training cases. Each subplot
corresponds to one test cluster and presents the results for different training cluster combina-
tions. The performance metrics (AP, [PCK[@3px, and[PCK[@1.18cm) are plotted on the y-axis.
The models were tested on the test clusters presented in Tab. Complementary to Fig.
[41] Tab. @3] provides the corresponding numerical values.

B AP mm PCK@3px =--- PCK@1.18cm

CF - Test Cluster: 1 CF - Test Cluster: 2
1.0 1.0
0.8 0.8

o
o
o
o
|

mMAP / PCK (%)
MAP / PCK (%)

o
>
o
>
L

0.2 1 0.2

0.0 0.0

2 2,4 2,43 1 1,4 1,43

CF - Test Cluster: 3 CF - Test Cluster: 4
1.0 1.0

0.8 0.8 1

o
o
o
o
|

I
IS

mMAP / PCK (%)
N
>

MAP / PCK (%)

0.2 0.2

3 3,2 321

0.0-

Figure 4.1.: Scenario No Duplicates | Performance metrics, grouped by test cluster and averaged for two seeds.
[AP|and[PCK]are given in %. Order of training cluster merging: Close First (CF).

Test cluster 1 comprises medium to large geometries (see Fig. [3.14). The model was initially
trained solely with cluster 2, which is most similar in terms of geometric structure. By adding
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further training clusters, the [AP] increases from 64.2% to 70.0%, while the [PCKl@3px rises
from 44.1% to 46.7%. Including additional geometries has a stronger impact on the [AP|than
on the [PCK| The stricter metric PCK@1.18cm, which defines a narrower tolerance range,
performs on average 15.5 percentage points worse than the [PCK(@3px.

Table 4.3.: Scenario No Duplicates | Numerical values of performance metrics, grouped by test cluster and
averaged for two seeds. Order of training cluster merging: Close First (CF).

Test Cluster Training Cluster PCK@3px PCK@1.18cm AP
2 441 26.6 64.2
1 2,4 45.9 30.9 67.3
2,4,3 46.7 32.8 70.0
1 55.5 36.7 70.5
2 1,4 56.9 39.8 71.6
1,4,3 57.6 41.7 73.2
4 78.5 54.4 52.1
3 4,2 80.6 56.0 60.9
4,21 81.5 57.1 62.2
3 6.7 4.4 6.4
4 3,2 6.6 4.3 71
3,2,1 6.7 4.4 9.3

Test cluster 2 contains geometries that are similar in size or larger than those in cluster 1.
As before, the model is initially trained with the most geometrically similar cluster (cluster
1). By including additional training clusters, the increases from 70.5% to 73.2%, while
the [PCKI@3px rises from 55.5% to 57.6%. The stricter metric[PCK[@1.18cm again performs
significantly lower than the [PCKI@3px (-17.3 percentage points on average). Notably, gener-
alization from cluster 1 to cluster 2 results in better performance than vice versa.

Test cluster 3 contains small geometries and achieves the highest[PCK(@3px values (81.5%
for training with all three clusters). In contrast, the [AP|remains below the levels observed for
clusters 1 and 2. However, a significant performance gain in the [AP| can be observed when
moving from training solely with cluster 4 to combinations including clusters 1 and 2 (+10.1
percentage points). Nevertheless, the [AP] stays lower overall compared to the tests on clus-
ters 1 and 2.

Test cluster 4 contains geometries with a middle gap. The model performs significantly
worse in both object and keypoint detection than in the previous cases across all three train-
ing stages (AP} 7,6%,[PCKI@3px: 6.7%, values averaged for three training stages).

Interpretation of Results

The results demonstrate the model’s overall generalization capability across different geo-
metric clusters. Training with geometrically similar clusters provides a stable foundation: even
training with a single, structurally similar cluster (e.g., training cluster 1 and testing cluster 2,
and vice versa) yields promising performance in the respective test scenarios. The succes-
sive inclusion of additional, less similar clusters then only leads to moderate improvements.
This finding highlights the importance of structural similarity for successful model transfer.
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Particularly noteworthy is the model’s performance on small geometries (testing on cluster
3). In this case, the model achieves the best keypoint localization results (PCK). At the same
time, the remains below the values observed in other clusters. One possible explanation
for the increased [PCK]is the lower keypoint density per image caused by the smaller geome-
tries, which leads to a less cluttered prediction context and thus simplifies the model’s task.
The lower [AP] by contrast, may result from the fact that the training data contains geometries
featuring middle gaps (cluster 4) or large bounding boxes (clusters 1 and 2), which differ sig-
nificantly from the test geometries.

Interesting results are also evident with test cluster 4. The performances for object and key-
point detection consistently show the poorest test metrics, regardless of the configuration of
the training data. Increasing the geometric diversity in the training set does not lead to any
significant performance improvements for this cluster. This observation suggests that certain
structural features, such as a middle gap, cannot be adequately approximated by other ge-
ometry types within the current model configuration. Furthermore, it is noteworthy that the
generalization behavior is asymmetric: while generalization from cluster 4 to cluster 3 works
relatively well, the reverse direction fails.

The above analysis shows in particular the influence of the training cluster closest to the test-
ing cluster on the model performance. This means that the influence of the clusters added
in subsequent iterations cannot be examined in isolation. Therefore, in the following, the
strategy Far First (FF) is considered, in which the training cluster with the greatest Eu-
clidean distance to the test cluster is used first for training. This is followed by the cluster with
the second greatest distance, and finally all three training clusters are included. Figure
provides a structured visualization of the training and testing results for this scenario. The
test metric values corresponding to training with all three clusters are the same as in the
previous case and are therefore adopted from Tab. The diagrams are not examined
with the same granularity as in the preceding analyses. Instead, the emphasis is placed on
extracting overarching insights by interpreting the broader training and test outcomes. The
analysis therefore moves beyond individual metric values to identify general trends and un-
derlying patterns. Concrete numerical values can be found in the complementary Tab.

Test Cluster 1 & 2

Training begins with cluster 3, which is geometrically the most distant from the test clusters
(small vs. large geometries). This strong discrepancy is reflected in low [AP| scores. The
[PCK|performs better than the [AP|when trained on the more distant clusters 3 and 4. The test
metrics increase significantly when the more similar clusters are added to the training set.

Test Cluster 3

The [AP] increases substantially when the more similar clusters 2 and 4 are added to the
training set. In contrast, the improvement in the [PCK| remains moderate.

61



BN AP W PCK@3px  —--- PCK@1.18cm

FF - Test Cluster: 1 FF - Test Cluster: 2
1.0 1.0

0.8 0.8

MAP / PCK (%)
mMAP / PCK (%)

3 3.4 3,42 3 3,4 34,1

FF - Test Cluster: 3 FF - Test Cluster: 4
1.0 1.0

0.8 A
g g 0.6 A
~ ¥
o O
o a
% %
€ £ 041

1,2 1,2,3

Figure 4.2.: Scenario No Duplicates | Performance metrics, grouped by test cluster and averaged for two seeds.
Order of training cluster merging: Far First (FF).

Table 4.4.: Scenario No Duplicates | Numerical values of performance metrics, grouped by test cluster and
averaged for two seeds. [AP|and [PCK|are given in %. Order of training cluster merging: Far First (FF).

Test Cluster Training Cluster PCK@3px PCK@1.18cm AP
1 3 33.7 22.8 31.8
3,4 44.6 31.2 41.3
34,2 46.6 32.8 70.0
5 3 36.8 26.2 26.4
3,4 53.5 38.8 38.3
34,1 57.6 41.7 73.2
3 1 74.6 47.0 35.8
1,2 75.8 49.7 45.0
1,2,4 81.5 57.1 62.2
4 1 6.1 3.6 23.4
1,2 6.2 3.8 24.8
1,2,3 6.7 4.4 9.3
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Test Cluster 4

Both [AP|and remain at relatively low levels. Notably, the integration of cluster 3 into the
training process leads to a deterioration in the object detection performance. This is indicated
by decreasing[AP|values. The[PCKlis largely unaffected by this change.

Interpretation of Results

The results confirm that object detection generalization is more effective between geomet-
rically similar clusters (e.g., clusters 1 and 2), which suggests that bounding box prediction
relies on global structural features. In contrast, keypoint detection, as a locally defined task,
remains more robust under geometric variation, as reflected by consistently higher [PCK]val-
ues compared to [AP| when training and testing clusters differ significantly (testing cluster 1
and 2 on clusters 3 and 4). The choice of the training clusters has a major impact on model
performance. With the exception of test cluster 4, integrating geometrically closer clusters
leads to clear improvements across the test metrics, while more distant clusters contribute
only marginal gains (see Fig. 4.1). Model performance declines due to adding another clus-
ter only when training on clusters 1, 2, and 3 and testing on cluster 4. In this case, object
detection performs worse than when the model is trained on clusters 1 and 2 alone. The
findings highlight the relevance of the clustering strategy applied in this work, particularly the
distinction between the Close First and Far First training sequences based on inter-cluster
distances.

4.2. Scenario One Geometlry per Cluster

In this scenario, the cluster size is reduced to the extreme case of one geometry per cluster.
The aim is therefore to investigate how the significant reduction in training data and geome-
tries affects model performance in testing. For this purpose, the medoid of each cluster is
selected. This results in four geometries falling into this scenario. The four geometries, their
cluster assignment, as well as the cluster size are presented in Tab. [4.5

Table 4.5.: Overview of clusters in scenario One Geometry per Cluster. Total amount of images: 2000.

Cluster Geometry Dataset Size
1 11 500
2 8 500
3 7 500
4 4 500

With regard to the generation of training cases in this scenario, the procedure follows the
same approach as described in the previous section. The order of the training clusters for
iterative training is determined based on the Close First strategy, as previous results have
shown that training with geometries similar to the test cluster leads to improved performance.
The corresponding distance matrix is provided in Tab. [4.6] below.
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Table 4.6.: Distance matrix between clusters for scenario One Geometry per Cluster.

Cluster | 1 2 3 4
1 0.00 5.10 8.12 8.06
2 5.10 0.00 5.48 5.39
3 8.12 5.48 0.00 1.00
4 8.06 5.39 1.00 0.00

The evaluation of the model tests is based on the established metrics [AP| [PCKI@3px, and
[PCK[@1.18cm. The datasets listed in Tab. [3.5)are used again for model testing, allowing for a
direct comparison of model performance across the different scenarios. Figure provides
a visualization of the testing results for the twelve training cases. Complementary to Fig.
Tab. [4.7| provides the corresponding numerical values.

This section focuses on comparing the test results of the current scenario with those ob-
tained in the No Duplicates (CF) scenario. As can be computed from Tab. the average
decrease in the [AP] across test clusters 1 to 3 is 19.8 percentage points compared to the
values in Tab. while a smaller drop of 2.8 percentage points is observed for cluster 4.
Regarding [PCKI@3px, the average decrease across all four clusters is 2.6 percentage points.
Consistent with the No Duplicates (CF) results, the [PCK(@1.18cm metric yields lower values
due to its in general stricter tolerance radius.

Interpretation of Results

The results indicate that, despite a significant reduction in the training dataset size from 2000
and 1500 images per cluster in the No Duplicates scenario to only 500 images per cluster
in this scenario, the model is still able to generalize well to keypoints without substantial
performance losses. However, the [AP|values show a much more notable drop. This contrast
suggests that the prediction of bounding box centers is particularly sensitive to the amount
of training data and geometries available. Test metrics for test cluster 4 also decline due to
the reduced training set size. However, due to the already limited generalization capability
observed for this cluster, further detailed comparisons are of limited interpretive value.
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Figure 4.3.: Scenario One Geometry per Cluster | Performance metrics, grouped by test cluster and averaged
for two seeds. Order of training cluster merging: Close First (CF).

Table 4.7.: Scenario One Geometry per Cluster | Numerical values of performance metrics, grouped by test
cluster and averaged for two seeds. [AP]| and [PCK|are given in %. Order of training cluster merging: Close

First (CF).

Test Cluster Training Cluster PCK@3px PCK@1.18cm AP
2 41.6 20.5 25.5

1 2,3 44.6 26.9 56.1
2,34 45.2 29.1 58.1
1 51.1 29.0 52.2

2 1,3 53.3 34.3 57.0
1,34 53.7 36.0 59.6
4 72.0 44 .4 25.8

3 4.1 77.0 48.6 36.4
41,2 77.7 49.6 43.6
3 6.4 3.6 1.1

4 3,1 6.4 3.7 5.6
3,1,2 6.4 3.8 7.7
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4.3. Scenario All Geometries

In the All Geometries scenario, all 21 geometries listed in Tab. are included. The 21
geometries, their cluster assignment, as well as the cluster size are presented in Tab. [4.8|
Compared to scenario No Duplicates, eight additional geometries are included in the train-
ing and evaluation. Except of geometries 10 and 34, these additional entries are not only
duplicates but also share the same facet dimensions (s,., s,) as their corresponding coun-
terparts in the No Duplicates scenario. The reason for this is the missing technical data for
some geometries, which was supplemented by averaging values from the available geome-
tries (see Chapter[3.2). The aim is therefore to investigate how the increase in training data
and geometries affects model performance in testing.

Table 4.8.: Overview of clusters in scenario All Geometries. Total amount of images: 10500. *Marked geometries
are new compared to scenario No Duplicates.

Cluster Geometries Dataset Size
1 3,9,11,12* 16%, 19 3000
2 1, 6% 8,10*% 13*, 17 3000
3 7,15, 21, 29*, 34* 2500
4 4,5* 14, 33 2000

Compared to the No Duplicates scenario, the training set in the current setting includes 1000
additional images for cluster 1, 1500 for cluster 2, 1000 for cluster 3, and 500 for cluster 4.
With regard to the creation of training cases in this scenario, the procedure follows the same
approach as in the previous sections. The order of the training clusters for iterative training is
determined based on the Close First strategy. The corresponding distance matrix is shown
in Tab.

Table 4.9.: Distance matrix between clusters for scenario All Geometries.

Cluster | 1 2 3 4
1 0.0 41 67 55

2 41 00 74 6.1
3 6.7 74 00 1.7
4 55 6.1 1.7 0.0

The datasets listed in Tab. [3.5|are used again for model testing. Figure[4.4]provides a visual-
ization of the testing results for the twelve training cases in this scenario. Complementary to
Fig. 4.4] Tab. [4.10] provides the corresponding numerical values.

Comparable to the previous section this section focuses on comparing the test results
of the current scenario with those obtained in the No Duplicates (CF) scenario. As can be
computed from Tab. and Tab. the average increase in [AP| across the test cases
of test clusters 1 to 3 is 2.4 percentage points while a smaller increase of 0.1 percentage
points is observed for cluster 4. Regarding the [PCKI@3px, the average increase across all
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four clusters is 0.6 percentage points. Cluster 4 is not an outlier in this case. Analogous to
the other scenarios, the PCKI@1.18cm metric yields lower values.
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Figure 4.4.: Scenario All Geometries | Performance metrics, grouped by test cluster and averaged for two seeds.
Order of training cluster merging: Close First (CF).

Interpretation of Results

As expected, increasing the size of the training dataset leads to improved model performance
during testing. Thus, this scenario yields the best overall results across all test clusters ob-
served in this study. However, the diagram also indicates that the model performance ap-
proaches a saturation point: the effect of adding further geometries is much smaller com-
pared to the performance increase observed between the One Geometry per Cluster and No
Duplicates scenarios. Due to the design of this scenario, the effect of adding additional ge-
ometries ([Ds| 10 and 34) cannot be assessed independently from the simultaneous increase
in the overall size of the training dataset. While a further increase of the training dataset by
including new geometries instead of duplicates could allow for additional insights, such addi-
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tions would deviate from practical relevance. This is because the additional geometries would
be geometries that are not currently used in real-world applications.

Table 4.10.: Scenario All Geometries | Numerical values of performance metrics, grouped by test cluster and
averaged for two seeds. and PCK]are given in %. Order of training cluster merging: Close First (CF).

Test Cluster Training Cluster PCK@3px PCK@1.18cm AP
2 44.9 28.6 68.3
1 2,4 46.3 32.0 70.2
2,4,3 47.2 34.3 71.6
1 56.3 38.1 71.8
2 1,4 57.4 40.9 73.3
1,4,3 58.3 43.7 73.6
4 79.3 56.3 56.7
3 1,4 81.7 58.6 63.7
1,4,2 82.2 59.4 64.8
3 6.9 4.8 5.4
4 1,3 6.9 4.8 8.8
1,3,2 6.9 4.8 8.8

4.4. Comparison to Baseline Models

In addition to comparing the performance of the geometry-agnostic models across the sce-
narios, the model performance is also evaluated in relation to class-aware models, which
were trained on one mirror geometry. This comparison is conducted exclusively for the test
results with rectangular fields. For this purpose, three class-aware models from previous work
by Broda et al. [19] are used as so-called baseline models, each of which was trained on a dif-
ferent dataset size. These baseline models were trained with synthetic data of the CESA1'2
mirror geometries. The heliostat designs are listed in Tab.

Table 4.11.: Data of mirror geometries of the CESA1 heliostats. n., n, denote the number of panels in x and y
directions. Both heliostat types have a middle gap.

Id Plant Ng Ny middle_gap
47 Cesal (Spain) 2 6 true
48 Cesa1l (Spain) 4 6 true

Since the class-aware baseline models are designed for geometry-specific learning, they
were trained and tested on synthetic data from the CESA1 geometries. The test data was
generated in this work following the procedure described in Chapter[3] The test dataset com-
prises 368 images and consists of two rectangular fields including heliostats of [[Ds| 47 and
48. It only includes images with a camera pitch angle of < 50°. Table lists the three
baseline models and the numerical values of their test metrics.

In the three scenarios No Duplicates, One Geometry per Cluster and All Geometries, twelve
training cases were developed respectively and evaluated on consistent test datasets. This

'2CESAT1 test plant owned and operated by [CIEMAT
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Table 4.12.: Class-aware baseline Models for three different train dataset sizes. Test dataset size: 368. Evaluation
only on rectangular fields. [K_P]and[P'C'Klare given in %.

Baseline Model Train Dataset Size AP PCK@3px
B2 2,000 80.52 53.50
B5 5,000 84.12 55.20
B20 20,000 86.13 57.20

setup allows for a direct comparison of the model performances across the scenarios. How-
ever, these results do not permit an adequate comparison with the baseline models, as the
baseline models are evaluated on the CESA1 dataset. To ensure comparability, the trained
models are now evaluated on the CESA1 dataset. The evaluation is based on the and
[PCK@3px metrics. It is important to note that the size of the training datasets varies both be-
tween and within the previously evaluated scenarios. For this reason, each trained model is
compared with the baseline model that was trained with the closest larger amount of training
data. The results of these comparisons are presented in Tab. - Tab.

It is acknowledged that the selection of baseline models may be suboptimal to some extent,
as they were trained and evaluated on geometries with a middle gap. Previous results have
shown that generalization to such geometries is particularly challenging. Nevertheless, the
baseline models were used for practical reasons, as they had already been trained and pub-
lished in the work by Broda et al. [19]. Developing additional baseline models, especially
those trained on large datasets containing 5,000 or 20,000 images, was beyond the scope of
this thesis. Furthermore, testing on these geometries remains valuable, since corresponding
real-world data is available (see subsequent Section |4.5).

Negative values in Tab. [4.13]- Tab. indicate a lower performance compared to the base-
line model. Gray-shaded cells refer to models whose training included cluster 4. When tested
on the CESA1 geometries, these models cannot be considered entirely geometry-agnostic,
as clusters 47 and 48 also contain a middle gap. A green color indicates a better perfor-
mance than the corresponding baseline model. A yellow color indicates deviations within 10
percentage points of the baseline performance, while red denotes larger discrepancies.
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Table 4.13.: Comparison of developed models with baseline model B2 on the CESA1 test set. [AP|and are
given in %. Aap2 and Apck 2 in percentage points.
Scenario All Geometries

Training Cluster AP PCK@3px  Train Set Size ~ Aap2 Apck@3px,2
4 54.33 55.60 2000 -26.19 2.10
Scenario No Duplicates
Training Cluster AP PCK@3px Train Set Size  Aap2  Apck@3px2
1 17.58 52.75 2000 -62.94 -0.75
2 15.29 49.30 1500 -65.23 -4.20
3 6.71 46.90 1500 -73.81 -6.60
4 48.32 55.00 1500 -32.20 1.50
Scenario One Geometry per Cluster
Training Cluster AP PCK@3px  Train Set Size ~ Aap2 Apck@3px,2
1 11.05 49.25 500 -69.47 -4.25
2 7.07 45.95 500 -73.45 -7.55
3 0.76 46.55 500 -79.76 -6.95
4 5.50 48.90 500 -75.02 -4.60
1,3 12.30 53.05 1000 -68.22 -0.45
1,4 64.82 53.35 1000 =18.70 -0.15
2,3 8.65 50.65 1000 -71.87 -2.85
1,2,3 12.93 53.15 1500 -67.59 -0.35
12,4 69.41 53.95 1500 -11.11 0.45
1,3,4 70.81 53.80 1500 CL7 0.30
2,34 69.22 51.00 1500 -11.30 -2.50

Table 4.14.: Comparison of developed models with baseline model B5 on the CESA1 test set. and are
given in %. Aaps and Apck s in percentage points.
Scenario All Geometries
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Training Cluster AP PCK@3px  Train Set Size Apps APCK@3PX,5
1 19.95 52.95 3000 -64.17 -2.25
2 20.03 49.75 3000 -64.09 -5.45
3 6.07 47.70 2500 -78.05 -7.50
4 54.33 55.60 2000 -29.79 0.40
Scenario No Duplicates
Training Cluster AP PCK@3px  Train Set Size ~ Aaps Apck@3px,5
1,4 77.83 56.35 3500 -6.29 1.15
23 11.34 52.20 3000 -72.78 -3.00
2,4 75.85 55.50 3000 -8.27 0.30
2,34 77.67 56.40 4500 -6.45 1.20




Table 4.15.: Comparison of developed models with baseline model B20 on the CESA1 test set. [AP|and are
given in %. Aapao and Apck 20 in percentage points.
Scenario All Geometries

Training Cluster AP PCK@3px Train SetSize  Aap20  Apck@3px,20

1,3 15.31 55.45 5500 -70.82 -1.75
2,4 7718 56.00 5500 -8.95 -1.20
1,2,3 14.27 55.85 8500 -71.86 -1.35
1,2,4 80.92 57.05 8000 =5.21 =0:15
1,3,4 78.46 57.80 7500 -7.67 0.60
2,34 78.50 57.20 7500 -7.63 0.00

Evaluation of geometry-agnostic models

None of the geometry-agnostic models outperforms the baseline models in terms of overall
performance. However, several models approximate the [PCK of the baseline models within
a few percentage points. The closest result is achieved by the model trained on clusters 1, 2
and 3 in the One Geometry per Cluster scenario. Furthermore, it is important to note that the
models referred to in Table are compared against baseline model B20, although their
training set consists of only up to 8,500 images. Given this significant difference in training
volume, the [PCK| deviation of just 1.35 percentage points appears comparatively low. Inter-
estingly, the [PCK] values on the CESA1 test set here are higher than previously observed
for test cluster 4 across all three scenarios. This performance difference could indicate that
individual geometries within test cluster 4 may act as outliers and negatively impact the model
performance in the previous scenarios. Thus, the assessment that keypoint detection gen-
eralizes poorly to test cluster 4 requires a more differentiated analysis. Future work should
examine whether certain geometries within a cluster exert a stronger influence on the eval-
uation results. As observed in the three scenarios, the generalization of object detection to
geometries with a middle gap remains a challenge. Thus, the geometry-agnostic models
show substantial object detection deficits compared to their respective baseline models.

Evaluation of non-agnostic models

The non-agnostic models are trained on data consisting of or including cluster 4. In several
cases, these models achieve equal or slightly higher [PCK] values than their baseline coun-
terparts. Nevertheless, the [AP| remains lower in all comparisons. The evaluation of the [PCK|
suggests that training a model not only on geometries included in the test set, but also on addi-
tional, diverse geometries can enhance keypoint detection. However, the geometry-agnostic
training is potentially at the cost of the object detection performance. These [AP]deficits could
potentially be tackled by increasing the number of training samples for the test geometries.
This approach would, however, tend towards a class-aware approach.
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4.5. Evaluation of the Simulation-to-Real Transferability

The focus of this thesis lies on the training, testing, and evaluation of geometry-agnostic
models trained on synthetic data. Nevertheless, the transferability of the results to real-world
data is also briefly examined and related to the previously defined baseline models. In order
to enable a meaningful comparison between the baseline models and the geometry-agnostic
models presented in this work, it is essential to understand the underlying principles according
to which the synthetic data used in the work by Broda et al. [19] was generated. Therefore, the
Blender settings, used for the training data generation for the baseline models from [19], and
the geometry-agnostic models in this work are compared in Tab. The configuration of
the baseline models serves as a reference, as it is the result of an in-depth study conducted.
These settings were specifically chosen to maximize the transferability of the models to real-
world data [19].

Table 4.16.: Comparison of Blender settings for synthetic data generation between baseline models from [19] and
geometry-agnostic models.

Geometry-Agnostic

Criterion Baseline Model Settings |19] Model Settings
(this work)

Appearance

Ground texture Procedural with randomized 3D surface features v

Lighting Realistic lighting aligned with test conditions v

Mirror soiling Realistic simulation of dirt on mirror surfaces X

Content

Distractor objects Realistic objects (e.g., vehicles, buildings) X

Obiject orientation Physically plausible (e.g., aligned to sun, no extreme angles) )

Object placement Randomized, but plausible (not chaotic or physically impossible) X

Camera & Flight Setup
Camera positions and altitudes Realistic drone perspectives and altitude variation across field v

Intrinsics matching real hardware (e.g., 6000x4000 px, fx = fy = v

Camera calibration 4000)

The comparison reveals that some of the criteria were not applied to the synthetic data gen-
erated in this study. This difference is primarily because the corresponding study results
became available after the training data had already been created. In addition, the focus on
the geometric variation of the synthetic data and the omission of certain aspects (e.g., soiling)
helped to simplify the data generation process.

Table shows the numerical values of the test metrics for the three baseline models. It
should be noted that the real test images were manually annotated with considerable effort,
which explains the small test set size of only six images.

To evaluate the transferability to real-world data, three models from the All Geometries sce-
nario are selected as they overall show the highest test performances. The first model (M1)
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Table 4.17.: Class-aware baseline Models for three different train dataset sizes. Tested on real data from CESA1.
Test dataset size: 6. The[PCK]was calculated for a fixed tolerance radius of [7-T_P]and [PCK]are given in %.

Baseline Model Train Dataset Size AP cal PCK@3pXyeal
B2 2,000 56.68 36.6
B5 5,000 59.51 37.0
B20 20,000 65.76 42.6

was trained on clusters 1, 2 and 4. The second model (M2) was trained on clusters 1, 3
and 4. These are the models with the highest overall [AP| (M1) and [PCK[@3px (M2) across
all scenarios. The third model (M3) is the one trained on clusters 1,2 and 3 and is therefore
considered a geometry-agnostic model. Table [4.18]presents the evaluation results of the test
metrics for the aforementioned models. The results indicate that, under the current config-
uration used for generating the synthetic images, the learned patterns do not transfer well
to real-world data. These observations hold true for both the class-aware models and the
geometry-agnostic model. This can be partially explained by the fact that several parameters
relevant for transferability (e.g., soiling, random distractor objects) were not included in the
training data generation process. However, the findings presented in [19] demonstrate signif-
icantly better results even with suboptimal generated synthetic data, compared to what could
be achieved within the scope of this thesis. Further analysis of this discrepancy could be part
of future research efforts.

For the sake of completeness and to provide additional insight for the reader, the predictions
on the test dataset are visualized in Fig. [4.5] For the predictions, however, the model con-
fidence threshold used to identify a keypoint or bounding box center on the heatmap was
lowered from 0.5 to 0.1. This adjustment allows at least some predictions to be visible. Nev-
ertheless, these results do not hold any practical relevance.

Table 4.18.: Overall best models tested on real data. Models from scenario All Geometries. Real data from
CESA1. Test dataset size: six real-world images. The[PCK|was calculated for a fixed tolerance radius of 3px]

and PCK]are given in %.

Test Model Train Dataset Size Train Clusters AP eal PCK@3pXyeal
M1 8,000 1,2,4 0.06 0.2
M2 7,500 1,3,4 0.016 0.4
M3 8,500 1,2,3 0.3 0.3
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Figure 4.5.: Visualization of model predictions on real-world data. Real world data from Jessen et al. [9]'s measurement fight at the

[CTEMAT] Compare Broda et al.

[19]

).

(owned and operated by
The model confidence threshold for the model predictions was reduced to 0.1 to allow visualization of model predictions.

Note that this visualization does not correspond to the test metrics reported in Tab. _mﬂ_
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4.6. Model Post-Processing

In Chapter [3.3.2] a methodology for estimating the heliostat pose was presented. This ap-
proach is based on estimating the translation and rotation of a heliostat relative to the observer
(i.e., camera) coordinate system [OCS] In this section of the evaluation, the model’'s perfor-
mance with respect to pose estimation is analyzed. For a precise assessment of the pose
estimation performance, one could compute the average difference between the estimated
rotation and the ground truth rotation, as well as between the estimated and ground truth
translation. However, since estimating the heliostat pose represents a novel and exploratory
approach at the [DLR] Institute of Solar Research (Almeria, Spain), a visual inspection is con-
sidered sufficient at this stage. The model’s ability to learn heliostat pose estimation is initially
demonstrated by the low loss values for translation and rotation, as presented in Table [4.19]

Table 4.19.: Pose Estimation | Evaluation of translation and rotation loss. For proper loss weighting, the norm of
the translation vectors, representing the distance between the observer and an object in meters, is divided by
a constant factor of 100.

Models Training Data Translation Loss Rotation Loss
B2 2,000 0.06 0.08

BS 5,000 0.03 0.03

B20 20,000 0.06 0.008

To evaluate the feasibility of the proposed training approach, the baseline model B20 is used,
as it achieves the lowest combined translation and rotation loss. The estimated pose of two
test heliostats is compared to their ground truth pose in Fig. [4.6]

The results indicate that, with the current training setup and model configuration, the overall
pose cannot be estimated accurately. While the translation of the grid generally points in the
correct direction (especially in Fig. [4.6D), the estimated rotation angles show larger devia-
tions. The deviation is particularly evident for rotation around the horizontal axis. Although
the loss values for pose estimation are low (see Table [4.19), they do not necessarily indicate
accurate results. This finding suggests that the current loss formulation may not sufficiently
guide the model, and increasing the corresponding weights could help improve overall pose
estimation performance. Enhancing this approach or exploring alternative methods remains
a subject for future investigation.
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(a) Ground truth | geometry: 47, field layout: rectangular, (b) Pose estimation | geometry: 47, field layout: rectan-
ground: soil, image id: 1, heliostat id: 380. gular, ground: soil, image id: 1, heliostat id: 380.

(c) Ground truth | geometry: 47, field layout: rectangular, (d) Pose Estimation | geometry: 47, field layout: rectan-
ground: soil, image id: 9, heliostat id: 126. gular, ground: soil, image id: 9, heliostat id: 126

Figure 4.6.: Pose estimation for exemplary Blender scenes. Left: Ground Truth. Right: Model Prediction.
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5. Conclusion and Outlook

In Chapter [4] of this thesis, the extent to which learned patterns for detecting objects and
keypoints can be transferred across different mirror geometries was investigated. To this end,
twelve different combinations of training and testing clusters were generated in each of the
three developed scenarios. The evaluation of the test results reveals a number of valuable
insights, which are summarized below.

Summary

» The evaluation of the geometry-agnostic modeling approach revealed a generally good
generalization capability across different geometric clusters. A key finding is the impor-
tance of structural similarity between training and testing clusters.

» Object detection is more sensitive to geometric variation, as it seems to rely on global
structural features and shows noticeable performance drops when training and testing
clusters differ significantly.

+ Keypoint detection is more robust under geometric variation. As a locally defined task,
in most of the analyzed cases, it yields good performance values even when the training
and testing clusters differ significantly.

» The generalization behavior itself is not necessarily symmetric. While models trained
on large geometries or geometries with a middle gap can generalize to smaller ones,
the reverse is not true. Especially geometries with a middle gap cannot be adequately
approximated by other geometry types within the current model configuration.

« Training data reduction has a noticeably stronger negative effect on object than on
keypoint detection. This comparison supports the robustness of keypoint-based ap-
proaches under data scarcity and structural variation.

Furthermore, the trained geometry-agnostic models were evaluated on the CESA1 geometry
to assess their performance compared to a class-aware baseline model.

* In terms of object detection, the geometry-agnostic models perform noticeably worse.
However, for keypoint detection, their results approach those of the baseline models,
with the best model showing a minimal difference of only 0.35 percentage points.

* Interestingly, some non-agnostic model variants outperform the baseline models in key-
point prediction, although being partly trained on smaller datasets. While using these
non-agnostic models also leads to improvements in the [AP} the overall [AP| values re-
main consistently below those of the baseline models.
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» These findings further support the observation that keypoint detection generalizes more

robustly than bounding box prediction across geometric variations.

In addition, the study briefly examined the extent to which learned patterns from synthetic
data can be transferred to real-world data.

» The transferability of results from the geometry-agnostic study based on synthetic data

could not be confirmed for real-world data. The test metrics and [PCKlfor the three
best-performing models were close to zero.

The poor model performances can be partially explained by the fact that several pa-
rameters relevant for transferability (e.g., soiling and random distractor objects) were
not included in the training data generation process. However, the findings presented
by Broda et al. [19] demonstrate significantly better results even with suboptimal gen-
erated synthetic data, compared to what could be achieved within the scope of this
thesis.

Given the limited focus on this aspect, the present work can only conclude that the
learned patterns from synthetic data do not transfer effectively to real-world data, nei-
ther for class-aware nor for geometry-agnostic models.

Finally, the pose estimation was qualitatively evaluated. Initial results for randomly selected
heliostats show that the translation vector can be roughly approximated, whereas the predic-
tion of the rotation remains challenging for the model.

Recommendations for applications of the developed geometry-agnostic models

The generalization performance of the geometry-agnostic models was shown to be highly
dependent on the specific combination of training and testing clusters. Therefore, any ap-
plication of these models requires case-specific evaluations based on the underlying testing
geometry to determine whether a geometry-gnostic model is suitable, and if so, which one
performs best.
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» Generalization from clusters 2, 3, and 4 to cluster 1, as well as from clusters 1, 3,

and 4 to cluster 2, yielded promising results in testing. The results suggest that a
model trained on all four clusters can likely be applied effectively to geometries from
clusters 1 and 2. Since these clusters would also be included in the training set, further
performance improvements can be expected, though this effect would require additional
evaluation. If training resources are to be reduced, one could consider training only on
geometries from clusters 1 and 2, as clusters 3 and 4 were shown to contribute only
minor performance gains.

Generalization from clusters 1, 2, and 4 to cluster 3 was also found to be reasonably
effective. In this case, [PCK|scores were the highest, while [AP] values remained lower
compared to other test cases. Therefore, adding training data from cluster 3 is assumed
to further improve performance. In combination with the findings related to the point
before, it can be concluded that a model trained on all four clusters should be applicable
to geometries from clusters 1 to 3.



Generalization to geometries with a middle gap was found to be poor, both in terms of
object and keypoint detection. Based on these findings, it is recommended to use a
dedicated model trained exclusively on geometries with a middle gap when applied to
such geometries.

The results indicate that[PCK|is comparatively robust with respect to variations in train-
ing data volume. This insight may support the decision to reduce the number of ge-
ometries per cluster in scenarios where training effort needs to be constrained.

Outlook

The key findings of this thesis have identified several relevant directions for future research.
Some of these aspects were already addressed during the analyses in Chapter [4 The fol-
lowing concludes this thesis by proposing further studies and research tasks.

The analyses suggest, that the transferability from large to small geometries is less
effective than in the opposite direction. One potential explanation is the low density of
keypoints and bounding box centers in fields with small geometries. To verify this hy-
pothesis, fields with large geometries but reduced heliostat density could be generated
to assess whether this parameter has a measurable impact on model performance.

Interestingly, the developed geometry-agnostic models achieved better[PCK|values on
the CESA1 test dataset than on test cluster 4, although CESA1 geometries are struc-
turally similar to those in that cluster. This difference suggests the presence of an outlier
geometry within the test cluster. Further training experiments could be conducted by it-
eratively excluding individual geometries from cluster 4 to investigate this effect in more
detail.

It would be valuable to train baseline models on geometries without a middle gap, where
geometry-agnostic models are expected to perform better. A promising candidate is
the geometry used in the [SPT]| plant in Jilich (Germany), for which real-world data is
also available. However, this study did not utilize these data due to currently missing
annotations.

Further investigations into the simulation-to-real transferability are recommended. This
includes incorporating additional realism factors such as soiling, random objects, and
randomized heliostat placement, as proposed in [19].

A more in-depth examination of the pose estimation process is needed, as current
results are not yet satisfactory.
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Appendix A

A.1. Comparison of Selected Loss Functions

In this chapter, selected loss functions are introduced mathematically, their fields of applica-
tion and their benefits are explained. This starts with the I1, 12 and smooth I1 loss, which are
used for training models dedicated to regression tasks. The 1 loss (Eq. computes the
absolute difference between a model prediction ¢ and the corresponding ground truth value
y [113].

Li1(9,y) =19 -yl (A1)

The 12 loss (Eq. computes the squared difference between a model prediction ¢ and the
corresponding ground truth value y [113].

Lo(f,y) = (G —y)? (A.2)

The smooth I1 loss (Eq. behaves like the 12 loss for values smaller than one. For values
equal to or greater than one, the loss function behaves like the 11 loss [44]. The factor 0.5
neutralizes the factor 2 from the derivative. The summand 0.5 is then additionally required to
ensure continuity in the point |y — y| = 1.

0.5(5 —y)* iflg—yl <1

A3
| —y| — 0.5 otherwise (A3)

LsmoothL1 (Qa y) = {

Fig. [A.1] shows the functions of the I1, 12 and smooth I1 losses plotted over the prediction er-
ror. Due to its quadratic error behavior, the 12 loss is sensitive to outliers and leads to strongly
increasing loss values for a prediction error greater than one. This quadratic increase can
impact the stability of the training. The I1 loss, on the other hand, has a linear error term, but
is not differentiable for [y — y| = 0. The smooth |1 loss combines the advantages of both
functions. It is overall differentiable and less sensitive to outliers than the 12 loss [15].

Another standard use case in supervised learning is classification. A typical loss function
for classification tasks is the cross-entropy, which evaluates the difference in the probability
distributions of the ground truth and the model prediction. The [pinary cross entropy (BCE)|
loss function for a classification problem with two classes (C=2) is stated in Eq. y is the
ground truth label, p the predicted probability that a given input belongs to class one. Note
that y isin {0,1} and pisin [0, 1].
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Comparison of L1, L2, and Smooth L1 Loss Functions
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Figure A.1.: Comparison of I1, 12, and smooth I1 Loss functions, own presentation.
—log (p) ify =1
Lace = B (A.4)
—log(1—p), ify=0

For a perfect correct prediction (e.g., y = 1 and p = 1), the loss is equal to zero. The
loss increases as the prediction probability for the correct class decreases [28| [29, 39]. A
shortcoming of cross-entropy is that for unbalanced datasets, the model simply learns to
select the dominant class. Although the total loss is low as a result, the model has not
learnt from the data. This is a particular problem in object detection. The CenterNet [49, |53]
architecture, for example, predicts bounding box centers as single pixels on a heatmap, which
only have a very small proportion of all pixels in the image. The focal loss (Eq. exactly
takes this aspect into account [97].

,CFocaI = {_04 ' (1 N }5)7 ‘ log(ﬁ) ! V= ! (A.5)

~(1—a)- 57 log(1—p) ify=0
The focal loss scales the loss by a factor of (1 — p)?” respectively p”. If the model is very
reliable and the prediction is correct, the loss tends to be suppressed. In contrast, the factor

for incorrectly or uncertainly classified data becomes dominant. + controls the strength of the
focus and « optionally compensates for the imbalance between the classes [96, 97].
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A.2. Conventional Image Processing Techniques for Edge and
Corner Detection

The intermediate conclusion at the end of Subchapter [2.2.4.2] shows the limitations of con-
ventional image processing methods regarding edge and corner detection for heliostats in
aerial images compared to [DL] methods. At this point, investigations into this topic are also
being carried out as part of this work. Four well-known mathematical methods for edge and
corner detection are considered below. The information provided is based on Gonzalez et al.
[114] unless otherwise stated.

Conventional edge detection in images is a gradient-based method. A vertical respectively
horizontal edge can be seen as a significant local change in the intensity of neighboring pixels
in the horizontal respectively vertical plane [27]. This is illustrated in Fig. On the left side,
an excerpt of an image with a local vertical edge is shown. This edge causes a linear change
in the horizontal intensity profile. The profile is increasing due to the change of a dark color
with low pixel values and intensity to a brighter light-gray with higher pixel values and intensity
(see Fig. [2.5). The first derivative of this intensity profile thus shows the vertical edge as a
local maximum.

S Horizontal intensity profile

First derivative

Figure A.2.: Intensity profile of a vertical edge, own figure based on [114].

The local gradients can be derived by applying the Sobel operators. The Sobel operators
are mathematical operators based on the convolutional operation. The operator consists of
two 3 X 3 kernels for combined detection of vertical and horizontal edges. They can be
seen in Fig. The factor of two in the center position provides image smoothing because
neighboring pixels are strongly weighted (not considered further). Convolving the two kernels
with an image obtains every pixel’s local gradients in the vertical and horizontal directions.
Based on these gradients, the edge strength and direction are derived. Due to the specific
choice of the kernels, the Sobel operators are designed to find horizontal and vertical edges.
However, edges in other directions can also be detected via the local gradients but only with
a lower intensity. Since only detected edges are considered as such if their intensity is higher
than a threshold value, the Sobel operators neglect edges that run, for instance, diagonally
and do not detect them.
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Figure A.3.: Sobel kernels, own figure based on [114].

Canny edge detection is a more advanced method to detect edges. In a first step, the input
image is smoothed with a Gaussian filter. This task corresponds with the assumption that
noise - random color and intensity deviation - is distributed by a Gaussian normal distribution.
Suppressing this noise improves the quality of the detected edges. In the following, edges
are detected with the Sobel kernels and their strength and direction are computed. A feature
of the Sobel operators is that the edges are strengthened but also widened by using a 3 x
3 kernel. Canny edge detection avoids this problem of wide edges by using a nonmaxima
suppression. This means that the edge strength of a pixel is compared with the neighboring
pixels along the normal vector of the edge. If the current pixel value is not the local maximum
in this direction, the pixel is set to 0. This process results in thin edges. In the final step, a
method with two threshold values checks whether an identified pixel represents an edge point
or noise. Reliable edge points are pixels with an intensity higher than the upper threshold.
Pixels with a low intensity - but still higher than the lower threshold - are only categorized as
edge points if they are adjacent to a pixel with a high intensity. Pixels with an intensity lower
than the lower threshold are ignored. In this way, it is ensured that only connected edges are
recognized.

The Harris corner detector is a gradient-based method to detect corners in images. Com-
parable to the Canny edge detection procedure, a Gaussian filter suppresses noise. In the
next step, the local gradients for each pixel in the horizontal and vertical directions are com-
puted with the Sobel operators. For every pixel, the Harris matrix is calculated, which contains
information about the intensity changes in all directions in 2D. A parameter R is introduced,
describing the pixel’'s squareness. R is calculated based on the Harris matrix’s eigenvalues. A
pixel is classified as a flat area, edge or corner depending on R. An edge is characterized by
a significant change in intensity in one direction, while a corner is characterized by a change
in intensity in all directions. This is illustrated in Fig. The figure shows a black corner
on white ground detected by a kernel. The intensity of the pixel values changes from low
(black) to high (white) in the directions of bottom-top and right-left. A corner’s greater change
in intensity is reflected in the Harris matrix’s eigenvalues and the squareness parameter R.
High values of R classify a pixel as a corner, and values near zero classify a pixel as an edge.
Values smaller than zero classify a pixel as a flat area. Nonmaxima suppression allows the
detection of thin edges respectively corners.
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kernel

Figure A.4.: Intensity changes at a corner in an image, own figure based on [114].

Methods such as the Canny edge detector or the Harris corner detector provide specific
features in the image, such as edge points or corner points. These features provide local in-
formation about structural properties but do not allow direct conclusions about complete edge
lines. Gaining this information requires higher-quality methods, such as the Hough transfor-
mation.

The Hough transformation is a method that allows global geometric structures such as
straight lines, circles, or ellipses to be reconstructed from a set of point features. Instead
of searching directly for connected edge lines in the image space, the Hough transformation
transfers the problem to a so-called parameter space. There, possible shapes are repre-
sented by their characteristic parameters (e.g., slope and axis intercept for straight lines).
For each edge point, the parameter space determines which geometric shapes could pass
through that point. A single image point generates a curve in the parameter space. If several
of these curves meet at one point, this means that many image points support a common
geometric structure, such as a line. This accumulation is made visible by a so-called accumu-
lator field. In this way, it is possible to make robust estimates about the presence of geometric
objects even in noisy or incomplete image data.

Conclusions

The classical methods for edge and corner detection presented here rely on handcrafted
features and fixed parameter settings. This fundamental characteristic introduces several lim-
itations: Firstly, methods such as the Sobel operators are based on predefined filter kernels
primarily designed to detect vertical and horizontal edges. Edges with different orientations
are detected with reduced intensity or may be missed entirely. While other kernels can be
used, they must be specifically tailored to the edges of interest, requiring prior knowledge and
additional implementation effort. Furthermore, both the Canny edge detector and the Harris
corner detector rely on fixed threshold values to classify pixels as relevant features (e.g.,
edge or corner points). These thresholds are often image-dependent and typically require
manual tuning or heuristic approaches, making the process inflexible and labor-intensive. An-
other challenge lies in the limited robustness to image noise, despite the use of smoothing
techniques such as the Gaussian filter. In addition, the lack of scale invariance is a critical
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weakness: thick edges or features in images with varying resolutions are not consistently
detected, as the fixed filter sizes fail to adapt accordingly. Non-maximum suppression, while
providing thin, one-pixel-wide edges, may also be limiting in applications where the full width
of an edge carries relevant information. The Hough transformation, though useful for detect-
ing global geometric structures, requires a prior definition of the desired shape (e.g., line,
circle), which restricts flexibility and further increases the need for manual parameter se-
lection. Overall, these techniques demand manual adjustment and in-depth knowledge of
the image content and context to produce reliable results. Their performance is thus highly
context-dependent and lacks adaptability to varying image conditions.

A.3. State-of-the-art Heliostat Calibration Methods

This section corresponds to chapter 2.2.4] and delivers additional information about state-of-
the-art heliostat calibration methods. In a detailed study Sattler et al. [6] review about 30
heliostat calibration and tracking control methods and categorize them into five groups. The
general working principles of the control methods in these categories are explained below.

Group one includes variations of the camera-target method, which was developed in 1984
and still is state-of-the-art in many [CSP]| plants [6, [83]. During a calibration, one heliostat is
moved so that the irradiance is not focused any longer onto the receiver but onto a white
target screen underneath the receiver. The solar focus position on the target is then captured
by a camera, which is placed on the ground, and finally compared to a reference position.
For a full calibration, this process has to be done for different points in time with varying sun
positions [6, 83]. Further developments like the one from Bern et al. [115] allow the calibration
of multiple heliostats at one time. This is done by coding the heliostats’ reflected sun arrays
(beams) through movement of the heliostat itself.

In group two, calibration methods process images of the heliostat instead of the heliostat
beam. Rdger et al. [5] presents an approach in which an individual image of a heliostat
and an edge detection algorithm are used to calculate the heliostat’s position relative to a
fixed camera. An alternative approach is the attachment of special markers on each heliostat
whose reflection patterns provide information about the heliostat orientation relative to the
camera [90]. Group two also includes methods using multiple images of one heliostat to cal-
culate its position. Photogrammetric'® processes are used to merge the multiple orientation
information of each heliostat [116]. Another approach that differs from those mentioned is
to use reflected images of an object in the heliostat mirror like a [LED] By the position and
size of the reflection on the heliostat mirror, the heliostat orientation can be determined [117].
Another option is to use an airborne camera mounted on an[UAV|to get a higher variation of
camera positions and angles [9, [117].

Calibration methods in group three use central laser or radar-based approaches to determine

the heliostat orientation. Dabrowski et al. [85] propose a laser calibration system where a
laser, oriented towards the heliostat mirror, emits a short laser pulse that is reflected into the
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sky. Parts of the laser beam are scattered by molecules in the atmosphere, making it visible
to cameras. The normal vector of the heliostat mirror can be calculated based on the vector
of the laser beam. The method proposed by Klimek et al. [118] determines the orientation of
a heliostat by using radar technology to analyze the reflections from three markers mounted
on the heliostat. The orientation of the mirror is calculated from the returned radar signals.

Group four includes a small collection of calibration methods that detect the heliostats’ re-
flection with cameras mounted on the tower or around the receiver. A method researched
in depth can be traced back to Yogev et al. [88]. Their approach is based on comparing the
brightness of a reflection in a heliostat mirror between four photos. The photos are taken by
four cameras mounted around the receiver. An alignment is considered accurate if the bright-
ness is identical on all four images.

Cameras or sensors on each heliostat are used in the calibration methods of group five. The
orientation of a heliostat mirror is computed via the recognition of objects and their position
in the camera image. Therefore, the location of the reference objects has to be known. The
sun, the tower, or the receiver can be used as a reference [86, 87].

The amount of available calibration methods shows the intensive research that is done in this
field. Despite that, the authors Zhu et al. [1] and Sattler et al. [6] come to the following conclu-
sion: ,Although the high number of published calibration methods and unique concepts show
that much work in this field is being done, it is still uncertain which ones might be success-
ful." [6] That is because all the listed methods have to deal with significant disadvantages, as
shown in the Tab. [A ] below.

Table A.1.: Limitations of state-of-the-art heliostat calibration methods based on [5].

Group Author Significant Limitations
(1) Camera on ground |6} 183] High process time due to individual heliostat calibration
via camera target method.
[115] Distant heliostat coding beams are difficult to measure.
(2) Camera on tower or 15, |9 |90, 116, Heliostats with extreme angles to the camera orientation
117) are difficult to measure. Reflections of the ground are
complex to detect and process.
(3) Central laser or radar 185] High process time due to individual heliostat calibration
via laser.
[118] Effort for manual installation of markers.
(4) Central solar focus 188, (89] Individual software for error analysis, heliostat identifica-
position detection tion and correction calculation for every solar field
(5) Camera or sensor on [86,(87] High investment costs and manual effort for manual in-
each heliostat stallation

The limitations identified show that none of the state-of-the-art calibration methods fulfill en-
tirely the requirements regarding efficiency and effectivity.

3The term Photogrammetry is defined in Chapter
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Appendix B

B.1. Derivation of Heliostat Parameters from Real Geometries

Zhu et al. [1] summarizes technical data of commercially operational heliostat designs around
the world (see [1] p. 8). Relevant columns are the heliostat dimensions, the heliostat facets in
columns and rows of the heliostat mirror surface and the heliostat mirror area. The parameters
panel_size_x and panel_size_y, which are needed for the parametric heliostat model in
Blender (see Tab. [3.2), are computed by dividing the size of the heliostat in a dimension
by the number of facets in this dimension. The size of the middle gap is neglected in this
calculation in order to simplify the calculation. In addition, the aim is to cover the variety of
geometries relevant in practice and not to reproduce them exactly. The heliostat dimensions
for the entry Luneng Haixi 50-MW Molten Salt Tower are missing. The procedure to
compute these values is described below. At the present time, a parametric model in Blender
is only available for heliostats with a rectangular mirror surface. Thus, the entry Hami 50-MW
CSP Project and its pentagonal heliostat geometry is neglected.

Table B.1.: Heliostat panel configurations of various CSP plants. n., n, denote the number of panels in x and y
directions, s, sy represent panel dimensions in meters.

Plant Ny Ny Sz [M] Sy [mM]
Shouhang Dunhuang 100-MW Phase Il (China) 7 5 1.5 2.2
Luneng Haixi 50-MW Molten Salt Tower (China) 4 8 - -
PowerChina Gonghe 50-MW CSP Plant (China) 2 2 29 1.8
SupCon Delingha 50-MW Tower (China) 2 2 2.9 1.8
Shouhang Dunhuang 10-MW Phase | (China) 7 5 1.5 2.2
Ashalim Plot B (Israel) 2 2 2.0 2.6
NOOR Il (Morocco) 9 6 1.5 2.2
Khi Solar One (South Africa) 2 8 6.6 1.3
Gemasolar Thermosolar Plant (Spain) 7 5 1.6 2.1
Planta Solar 20 (Spain) 4 7 3.2 1.4
Planta Solar 10 (Spain) 4 7 3.2 1.4
Crescent Dunes Solar Energy Project (USA) 7 5 1.5 2.2
Ivanpah Solar Electric Generating System (USA) 2 1 2.3 3.0

maintains two databases including technical heliostat data [24]. The database
Power Tower Plant Database contains a list of[SPT|plants, which give information about
the installed heliostats. The database Heliostat Database offers essentially the same
content. Here, an entry is identified by the model code of the heliostat. The entry contains,
among others, the information on the plants in which this heliostat is installed. This database
therefore offers no added value for the purposes of this master’s thesis.
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Only a fraction of the data available in the databases can be used directly and has added
value. These are shown in the following Tab.

Table B.2.: Heliostat panel configurations of additional CSP plants. n, n, denote the number of panels in x and
y directions, s., sy represent panel dimensions in meters.

Plant Ny Ny Sz [mM] Sy [m]
Badaling Dahan (China) 8 8 1.25 1.25
Jilich Solar Tower (Germany) 2 2 1.41 1.41
Sierra SunTower (USA) 1 1 1.00 1.00
Yumen Xinneng-Xinchen (China) 4 4 1.10 1.00
Sundrop CSP (Australia) 1 1 1.48 1.48

The majority of the data entered in the Power Tower Plant Database is duplicated from
the data from [1] or does not provide any technical data on the installed heliostats. However,
a few entries provide enough information to calculate or estimate the missing values, which
is done below. Also, the missing values for the entry Luneng Haixi 50-MW Molten Salt
Tower from Tab. are calculated. For the entries in Tab. [B.3|below, the number of panels
in the x-axis and y-axis and the area of the heliostat mirror surface are given. Entries in the
database, where only the number of panels or only the mirror surface size is given, were not
taken into account due to insufficient data.

Table B.3.: CSP plants without available panel size data but with known number of panels and total surface area.

Plant ny mny Surface area [m?]
Luneng Haixi 50-MW Molten Salt Tower (China) 4 8 138.0

ACME Solar Tower (India) 1 1 1.0

Atacama | (Chile) 4 8 140.0

CTGR Qinghai Golmud 100MW (China) 5 7 1158

Jemalong Solar Thermal Station (Australia) 3 1 3.6

To complete the missing values for the parameters panel_size_x and panel_size_y, the

. . — . panel_size_x
following steps are taken. First, the mean value n, and the mean panel ratio panel size y

are calculated for the merged Tab. and Tab. N, is set as panel_size_x for the

entries in Tab. Missing values of panel_size_y are obtained by scaling panel_size_x

using %. The entry Jiilich Solar Tower is not included in this table because its

geometry is intended for model tests using real data, rather than for generating synthetic data
with Blender.'*

", =2.2and % =1 for the data shown in Tab. and Tab. However, due to the incorrect inclusion
of duplicates at that time, the mean and panel ratio were slightly distorted. The Blender models were therefore
developed with different parameters than those given here (n, = 1.76 and % = 1.3). However, as

Chapter [3.4] shows, this miscalculation does not influence the clustering, since the cluster variables are the

number of panels and not their dimensions. Furthermore, the overall task is not to exactly reproduce existing

geometries, but to use them as a reference.
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Appendix C

C.1. Evaluation of Circular Scenes

In the main part of the analysis, evaluations were conducted exclusively on rectangular Blender
scenes. In this section, the corresponding evaluations for the circular scenes are presented.
The [AP] values across all scenarios and trained models in the circular scenes are similar
to those from the rectangular scenes. Nonetheless, a separate evaluation was performed,
as the in the circular scenes is significantly lower and would have distorted the over-
all interpretation if included in the same analysis. Furthermore, since the [PCK@1.18cm is
consistently lower than [PCK[@3px, no additional insights could be gained from the stricter
threshold. Therefore, the PCK(@1.18cm was not computed.

The following tables Tab. [C.1]- Tab. [C.4]show the numerical values of the test metrics[AP|and
[PCK(@3px for each of the three scenarios. As in the main evaluation, the metrics are grouped
by the test clusters and averaged for two seeds. All metric values are given in %. Images with
a camera pitch angle of > 50° are filtered out. The parameter n_max_peaks is set to 2,000
in training and to 30,000 in testing. The abbreviation circ stands for circular.

Table C.1.: Performance evaluation of models from scenario No Duplicates, strategy Close First (CF). Tested on
circular scenes.

Test Cluster Training Cluster mAP;,c PCK@3pxirc
2 66.38 0.10
1 2,4 68.21 0.10
2,43 71.31 0.10
1 69.95 0.10
2 1,4 71.16 0.10
1,4,3 72.52 0.10
4 40.53 1.40
3 42 49.49 1.40
421 50.04 1.40
3 5.69 0.60
4 3,2 6.67 0.60
3,2,1 8.68 0.60
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Table C.2.: Performance evaluation of models from scenario No Duplicates, Strategy Close First (FF). Tested on
circular scenes.

Test Cluster Training Cluster mAP;c PCK@3pXcirc
1 3 30.84 0.10
3,4 43.68 0.10
5 3 25.61 0.10
3,4 39.97 0.10
1 23.75 1.30
° 1,2 30.40 1.40
p 1 21.44 0.50
1,2 22.31 0.50

Table C.3.: Performance evaluation of models from scenario All Geometries, strategy Close First (CF). Tested on
circular scenes.

Test Cluster Training Cluster mMAP ;¢ PCK@3pXcirc
2 68.81 0.10
1 2,4 58.90 0.10
2,4,3 72.51 0.10
1 71.59 0.10
2 1,4 72.73 0.15
1,43 73.01 0.10
4 45.82 1.40
3 4,1 52.73 1.40
41,2 52.49 1.40
3 5.16 0.60
4 3,1 8.48 0.60
3,1,2 8.43 0.60

Table C.4.: Performance evaluation of models from scenario One Geometry per Cluster, strategy Close First
(CF). Tested on circular scenes.

Test Cluster Training Cluster mAP ;. PCK@3pXcirc
2 25.59 0.1

1 2,3 56.41 0.1
2,3,4 58.51 0.1
1 51.33 0.1

2 1,3 56.89 0.1
1,3,4 59.83 0.1
4 19.71 1.2

3 4.1 30.88 1.35
4,1,2 31.8 1.4
3 1.22 0.5

4 3,1 6.11 0.5
3,1,2 7.57 0.5
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The parameter max_n_peaks limits the number of possible predictions the model can make
on a heatmap. Predictions for keypoints and bounding box centers are handled separately.
As part of the model evaluation, it was investigated whether the low [PCK] values observed
in circular field layouts could be attributed to this parameter being set too low. Specifically,
the concern was that a value of 2,000 may prevent the model from detecting all keypoints in
densely populated scenes with many heliostats. To test this hypothesis, all models in the No
Duplicates scenario were retrained and evaluated with an increased value of max_n_peaks
set to 20,000. However, no significant improvements were observed that would justify a more
in-depth investigation in this direction.

The significant difference in the test scores of the [PCK| metric between the circular and rect-
angular Blender scenes was finally attributed to the following: All circular fields were created
with a larger number of heliostats than the rectangular ones. This is because in rectangular
fields, the number of heliostats can be increased more gradually by adding a single row of
heliostats. However, the circumference of a circular field grows with each additional row of
heliostats, making it difficult to precisely match the size of rectangular fields. As a result of the
higher number of heliostats in the circular fields, drone imagery captures more heliostats and
thus more keypoints. The higher density of keypoints and their potential overlap can pose a
challenge for the model. Additionally, even with the same number of heliostats in the field,
more heliostats are visible in the image in the circular layout due to the curved arrangement
of the rows of heliostats, compared to the straight rows in the rectangular layout.
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