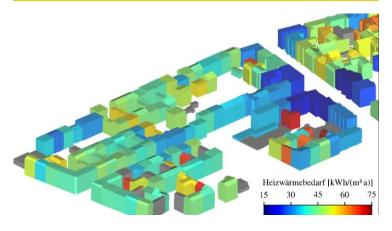
#### Defossilisierung der Energieversorgung eines Standortes der chemischen Industrie mittels Wärmespeicherkraftwerk

2. Jahrestreffen der DECHEMA-Fachsektion Energie, Chemie und Klima



### Institut für Solarforschung - Abteilung Nachhaltige Systemverfahrenstechnik




#### **Systemmodellierung**

# The Section State of the Secti

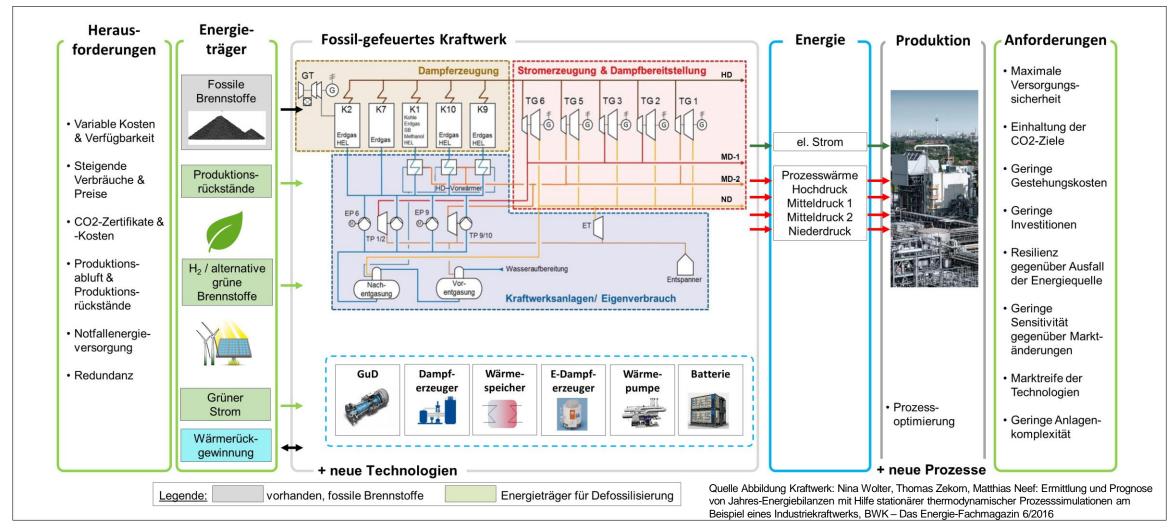
- Systemmodellierung und -design
- Techno-ökonomische Bewertung
- Betriebsverhalten und Steuerung von Parabolrinnensystemen

#### Bedarfsanalyse



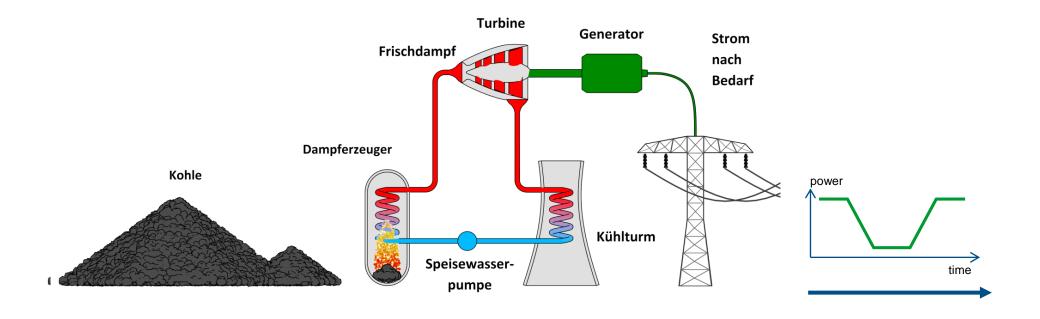
 Automatisierte Erfassung und Charakterisierung bestehender Infrastrukturen, Freiflächen und Gebäude

#### Verfahrenstechnik



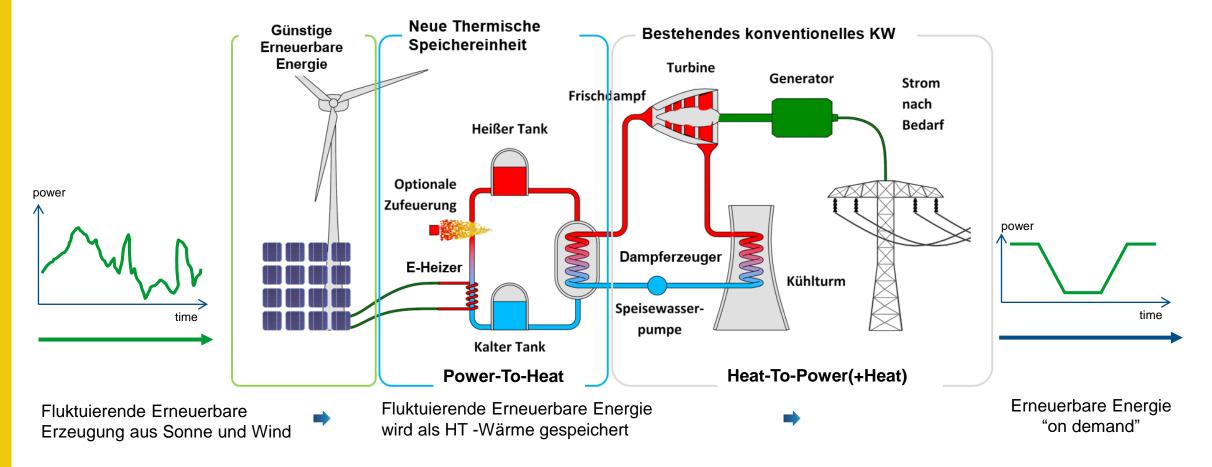

 Entwicklung, Bau und Betrieb von Großanlagen für die Erprobung chemischer Produktionsprozesse

25 Mitarbeitende an den Standorten Jülich, Köln und Stuttgart


#### StoREN – Defossilisierung der Energieversorgung eines Chemiestandorts






### Wärmespeicherkraftwerk (WSK) für die Speicherung von regenerativer elektrischen Energie





### Wärmespeicherkraftwerk (WSK) für die Speicherung von regenerativer elektrischen Energie





### Schrittweises Vorgehen bei einer techno-ökonomischen Analyse

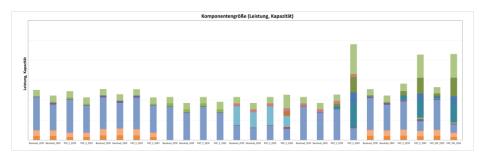


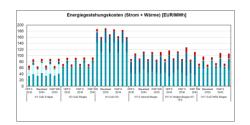
**Definition der Randbedingungen** 

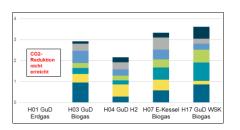
**Brainstorming zu Konzepten** 

Vorauswahl der Konzepte

**Detailliertes Anlagendesign** 


(Multi-) Jahresertragssimulation


Designoptimierung


**Techno-ökonomische Bewertung** 

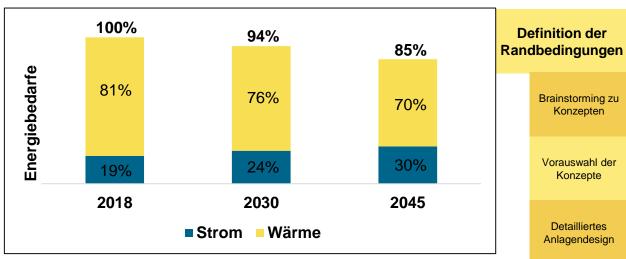
**Abschließende Bewertung** 

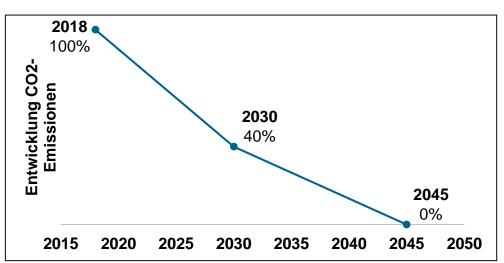









#### Energiepreise, Energiebedarfe, CO<sub>2</sub>-Reduktion Die Randbedingungen des Systems

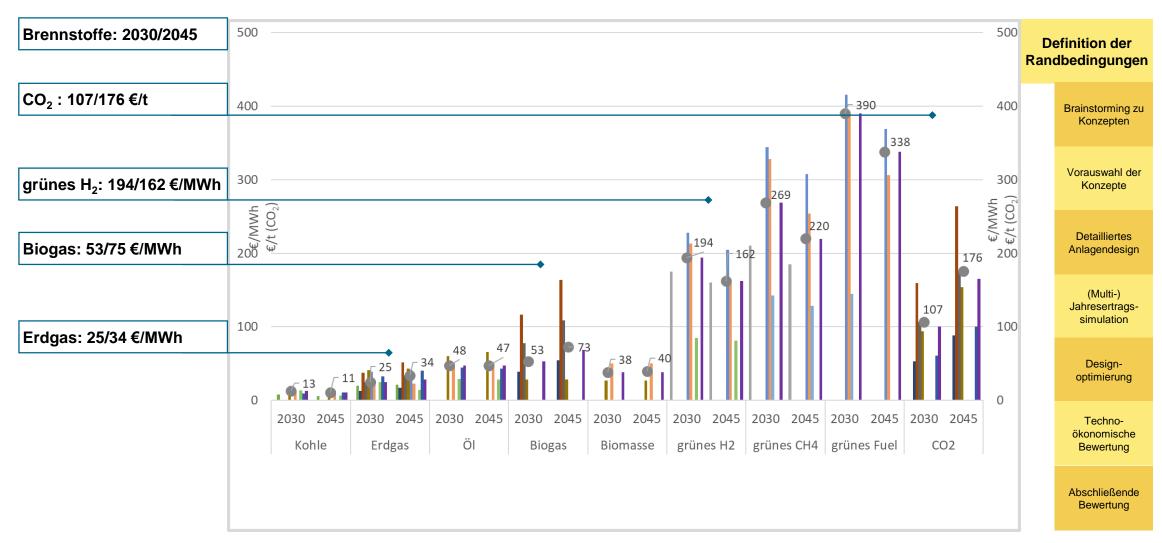



Energiebedarfe des Chemieparks

■ CO<sub>2</sub>-Reduktionsziele

 Technische und ökonomische Spezifikationen der betrachteten **Technologien** 

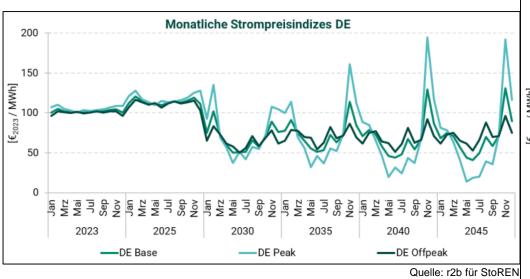


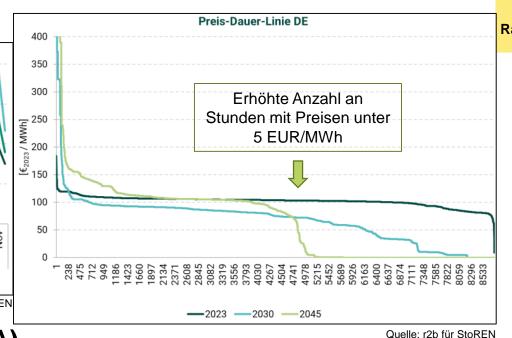





**Definition der** 

## Energiepreise, Energiebedarfe, CO<sub>2</sub>-Reduktion Die Randbedingungen des Systems




### Energiepreise, Energiebedarfe, CO<sub>2</sub>-Reduktion Die Randbedingungen des Systems









#### **Green Power Purchase Agreement (PPA)**

| Stromkosten [EUR/MWh]            | 2023 | 2030 | 2045 |
|----------------------------------|------|------|------|
| PPA Baseload                     | 137  | 106  | 118  |
| PPA Pay-As-Produced Solar        | 104  | 57   | 43   |
| PPA Pay-As-Produced Wind + Solar | 103  | 66   | 60   |

Definition der Randbedingungen

Brainstorming zu Konzepten

Vorauswahl der Konzepte

Detailliertes Anlagendesign

(Multi-)
Jahresertragssimulation

Designoptimierung

Technoökonomische Bewertung

Abschließende Bewertung

#### Vielzahl an Konzepten mit unterschiedlichem Grad an Elektrifizierung



|          | twerk<br>insto |          |                |               | Elektrifizierung ohne eigene<br>Stromerzeugung |                               |          |               |          |          |                | eige     |          |                | g mit          | SK)            |
|----------|----------------|----------|----------------|---------------|------------------------------------------------|-------------------------------|----------|---------------|----------|----------|----------------|----------|----------|----------------|----------------|----------------|
| H01      | H02            | H03      | H04            | H05           | H06                                            | H06 H07 H08 H09 H10 H11 H12 H |          |               |          |          |                | H13      | H14      | H15            | H16            | H17            |
| Erdgas   | Erdgas<br>CCS  | Biogas   | H <sub>2</sub> | Bio-<br>masse | Erdgas                                         | Biogas                        | $H_2$    | Bio-<br>masse | Erdgas   | Biogas   | Biogas         | Erdgas   | Biogas   | H <sub>2</sub> | Biogas         | Biogas         |
| GT<br>DT | GT<br>DT       | GT<br>DT | GT<br>DT       | DT            |                                                |                               |          |               |          |          |                | DT       | DT       | DT             | DT             | GT<br>DT       |
| DE<br>AK | DE<br>AK       | DE<br>AK | DE<br>AK       | DE            | DE<br>EK                                       | DE<br>EK                      | DE<br>EK | DE<br>EK      | DE<br>EH | DE<br>EH | DE<br>EK<br>WP | DE<br>EH | DE<br>EH | DE<br>EH       | DE<br>EH<br>WP | DE<br>AK<br>EH |
|          |                |          |                |               | Bat                                            | Bat                           | Bat      | Bat           | HTS      | HTS      |                | HTS      | HTS      | HTS            | HTS            | HTS            |

Definition der Randbedingungen

Brainstorming zu Konzepten

Vorauswahl der Konzepte

Detailliertes Anlagendesign

(Multi-)
Jahresertragssimulation

Designoptimierung

Technoökonomische Bewertung

Abschließende Bewertung

GT = Gasturbine

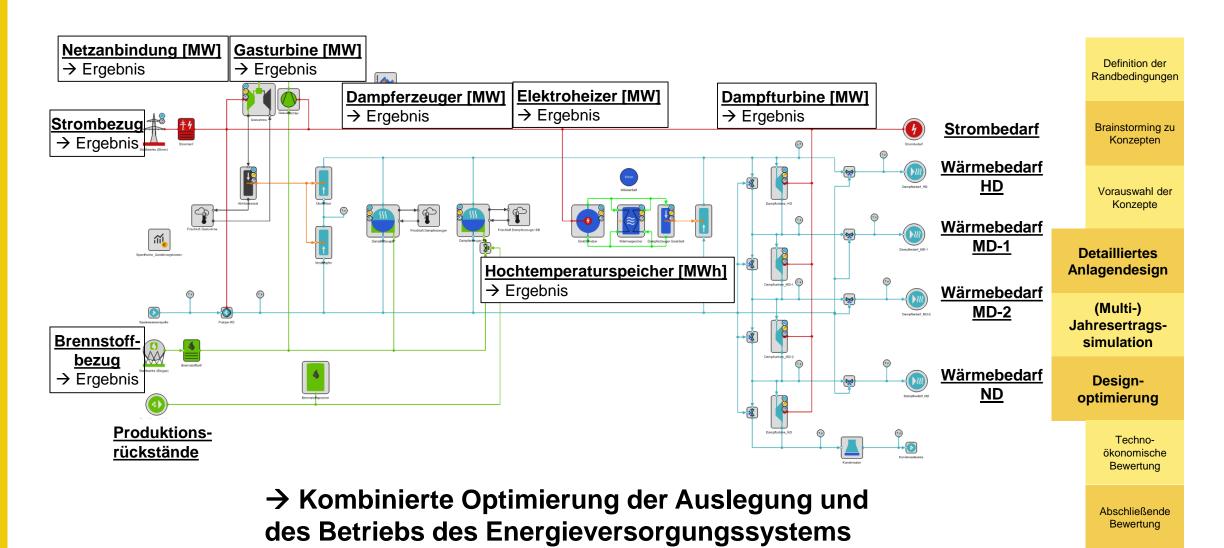
DT = Dampfturbine

DE = Dampferzeuger

AK = Abhitzekessel

EK = Elektrokessel

WP = Wärmepumpe


EH = Elektro-Heizer

Bat = Batterie

HTS = Hochtemperaturspeicher

### Modellierung der Konzepte zur Optimierung der Auslegung und des Betriebs





### Reduktion der CO<sub>2</sub>-Emissionen nicht in allen Konzepten technisch möglich



| Strombezugsmodell<br>Stützjahr      | Kraftwerke mit<br>Brennstoffwechsel |     |     |     | Elektrifizierung ohne eigene<br>Stromerzeugung |     |     |     |     |     |     |     | Elektrifizierung mit eigener<br>Stromerzeugung (WSK) |     |     |     |     |     |
|-------------------------------------|-------------------------------------|-----|-----|-----|------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|------------------------------------------------------|-----|-----|-----|-----|-----|
|                                     |                                     | H01 | H02 | H03 | H04                                            | H05 | H06 | H07 | H08 | H09 | H10 | H11 | H12                                                  | H13 | H14 | H15 | H16 | H17 |
| HPFC                                | 2030                                |     |     |     |                                                |     |     |     |     |     |     |     |                                                      |     |     |     |     |     |
|                                     | 2045                                |     |     |     |                                                |     |     |     |     |     |     |     |                                                      |     |     |     |     |     |
| PPA Baseload                        | 2030                                |     |     |     |                                                |     |     |     |     |     |     |     |                                                      |     |     |     |     |     |
|                                     | 2045                                |     |     |     |                                                |     |     |     |     |     |     |     |                                                      |     |     |     |     |     |
| PPA Pay-As-Produced (Solar)         | 2030                                |     |     |     |                                                |     |     |     |     |     |     |     |                                                      |     |     |     |     |     |
|                                     | 2045                                |     |     |     |                                                |     |     |     |     |     |     |     |                                                      |     |     |     |     |     |
| PPA Pay-As-Produced<br>(Solar/Wind) | 2030                                |     |     |     |                                                |     |     |     |     |     |     |     |                                                      |     |     |     |     |     |
|                                     | 2045                                |     |     |     |                                                |     |     |     |     |     |     |     |                                                      |     |     |     |     |     |

- 17 Konzepte, 4 Strompreismodelle, 2 Stützjahre → 136 Modelle
- Varianten mit Erdgas können in manchen Konstellationen die vorgegebenen Emissionsziele nicht erfüllen

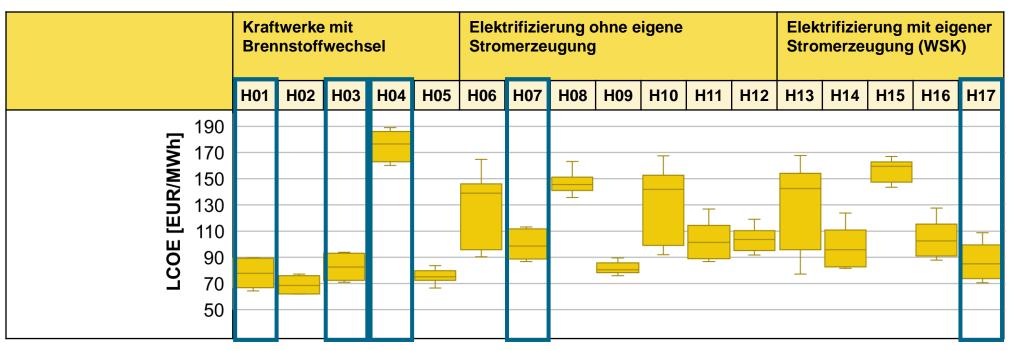
Definition der Randbedingungen

Brainstorming zu Konzepten

Vorauswahl der Konzepte

Detailliertes Anlagendesign

(Multi-)
Jahresertragssimulation


Designoptimierung

> Technoökonomische Bewertung

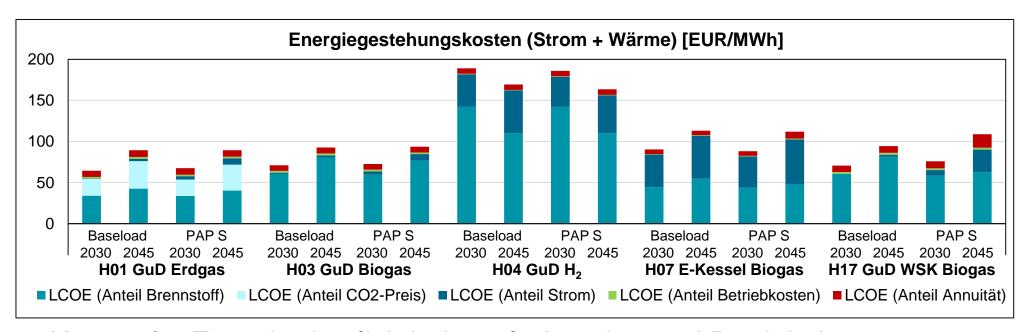
Abschließende Bewertung

### Techno-ökonomische Bewertung anhand der Energiegestehungskosten





- Biogas + Elektrifizierung → geringste LCOE
- Biomasse + Elektrifizierung → geringe LCOE, fragliche Nachhaltigkeit
- Wasserstoff Konzepte führen zu dem höchsten LCOE


Definition der Randbedingungen Brainstorming zu Konzepten Vorauswahl der Konzepte **Detailliertes** Anlagendesign (Multi-) Jahresertragssimulation Designoptimierung Technoökonomische **Bewertung** 

Abschließende

Bewertung

### Zusammensetzung der Energiegestehungskosten ausgewählter Konzepte





- Kosten für Energie deutlich höher als Annuität und Betriebskosten
- Geringste Kosten bei Varianten H1, H3 und H17
- Aufgrund des CO2-Preises ähnliche Kosten bei Erdgas und Biogas
- 2045 steigt der Bezug von elektrischem Strom
- H4 mit deutlich höheren Gestehungskosten

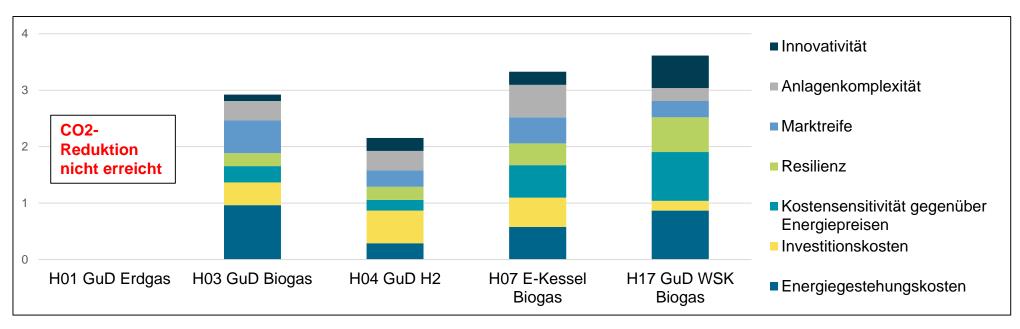
Definition der Randbedingungen

Brainstorming zu Konzepten

Vorauswahl der Konzepte

Detailliertes Anlagendesign

(Multi-)
Jahresertragssimulation


Designoptimierung

Technoökonomische Bewertung

> Abschließende Bewertung

#### Abschließende Bewertung anhand von sieben unterschiedlicher Kriterien





- H7 und H17 schneiden am Besten ab.
- H17 → Hohe Resilienz, geringe Kostensensitivität gegen Energiepreisänderung
- H4 aufgrund von hohen Energiegestehungskosten am schlechtesten bewertet

Definition der Randbedingungen

Brainstorming zu Konzepten

Vorauswahl der Konzepte

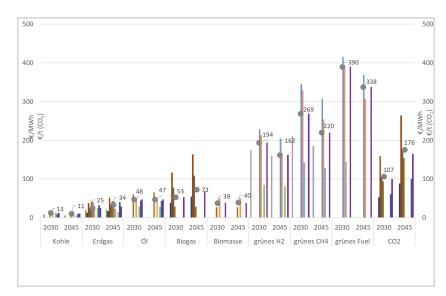
Detailliertes Anlagendesign

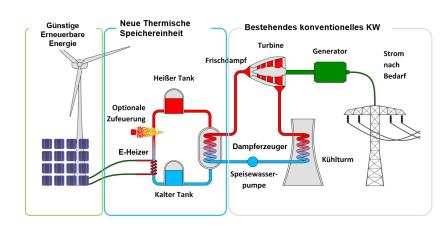
(Multi-)
Jahresertragssimulation

Designoptimierung

Technoökonomische Bewertung

Abschließende Bewertung


#### Zusammenfassung




- Biogas aufgrund des CO<sub>2</sub>-Preises ähnlich teuer wie Erdgas
- Wasserstoff führt zu deutlich erhöhten Gestehungskosten

- Hybride Konzepte führen zu geringen Gestehungskosten und hoher Flexibilität
  - → Netzausbau für Elektrifizierung notwendig

 Integration eines WSKs führt zu einer hohen Resilienz und zu geringer Sensitivität gegenüber Energiepreisen







StoREN - Phase 1 Dekarbonisierung der Strom- und Wärmeerzeugung mit Erneuerba<u>ren</u> im Industriepark Holthausen mit Wärmespeicherkraftwerken und

anderen innovativen Technologien

01.01.2023 bis 31.12.2023

Arnulf Reitze<sup>1</sup>, Stefano Giuliano<sup>2</sup>, Gerrit Koll<sup>2</sup>, Christiane Glasmacher-Remberg<sup>1</sup> Eike Mahnke<sup>1</sup>,

Michel Pepers<sup>1</sup>, Judith Jäger<sup>2</sup>, Martin Bolten<sup>2</sup>, Michael Dragovic<sup>3</sup>, Frank Thom<sup>3</sup>, Manja

Ostermann<sup>3</sup>, Philipp Pötzsch<sup>3</sup>, Daniel Meierhöfer<sup>3</sup>,

Michael Roling<sup>3</sup>

<sup>1</sup>BASF, <sup>2</sup>DLR, <sup>3</sup>Henkel

EFO 0187A, EFO 0187B

Ministerium für Wirtschaft, Industrie, Klimaschutz und Energie des Landes Nordrhein-Westfalen





Kontakt: martin.bolten@dlr.de