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YOLO-Pole: A Deep Learning Framework for
Precise Pole Localization in Aerial Orthophotos
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Abstract—Pole detection in aerial orthophotos is a critical yet
challenging task due to the small size of poles (often reduced
to just 1-2 pixels), limited vertical profile visibility, and varying
lighting conditions in aerial imagery. Existing approaches pri-
marily rely on bounding box detection, which lacks the precision
needed for practical applications such as urban infrastructure
mapping and autonomous navigation. In contrast, this paper
introduces YOLO-Pole, a novel end-to-end deep learning frame-
work based on You Only Look Once version 7 (YOLOv7) archi-
tecture, specifically designed for high-precision pole localization
in aerial orthophotos. Instead of providing a coarse bounding
box, YOLO-Pole directly predicts the precise pole footprint
using a single-stage process. To further refine localization, we
introduce a pointwise loss function based on Euclidean distance.
Experimental results on a custom dataset with 20 cm ground
sample distance (GSD) demonstrate significant improvements
in localization accuracy of poles over the standard YOLO
model, confirming that precise pole localization is achievable and
offering potential for image-based geolocalization.

Index Terms—Pole detection, YOLO, Aerial orthophoto.

I. INTRODUCTION

Accurate detection of poles, such as traffic lights, street-
lights, and sign poles, is essential for urban infrastructure
management and autonomous navigation systems [1]. As sta-
ble vertical structures, poles serve as ground-control points
(GCPs) for georeferencing, improving the positional accuracy
of aerial imagery and supporting high-definition (HD) map-
ping. Their precise localization also aids autonomous systems
by providing reliable landmarks for navigation.

While existing research focuses on street-view or unmanned
aerial vehicle (UAV) imagery [2], where poles are larger and
more distinguishable, detecting poles in aerial images is more
challenging due to their small size, which is often reduced to
just 1-2 pixels. Conventional pole detection methods rely on
hand-crafted features like edge detection or texture analysis
[3] and struggle with shadows, occlusions, and background
noise, requiring extensive manual intervention.

Recent advances in deep learning, particularly models such
as Mask R-CNN [4] and YOLO [5], have achieved notable
success in small object detection. These models are primarily
applied to street-view and UAV imagery [2], where poles are
more visible. However, aerial orthophoto-based pole detec-
tion remains challenging due to the small size and complex
backgrounds. A limited number of studies have addressed this
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challenge. For example, [1] uses shadow information to detect
poles from aerial imagery and co-register with radar imagery
to improve the geolocation accuracy of aerial imagery. But
the reliance on shadow visibility limits its applicability under
varying illumination conditions.

To address these challenges, we propose YOLO-Pole, an
end-to-end deep learning model for direct pole localization
from aerial orthophotos. As shown in Fig 1, YOLO-Pole
directly predicts pole locations from the input orthophoto
imagery. Our model also incorporates a pointwise loss func-
tion based on the Euclidean distance between predicted and
ground-truth pole locations, improving localization accuracy
for these tiny objects. We validate YOLO-Pole on a custom
dataset with 20 cm GSD aerial orthophotos. Our results show
significant improvements in detection performance, both in
terms of Intersection over Union (IoU) and pointwise local-
ization accuracy. By demonstrating that high-precision pole
localization is achievable, we aim to bridge the gap in aerial
pole detection research and enable improved geospatial appli-
cations, such as aligning aerial imagery with high-accuracy
radar datasets for enhanced positioning.

The primary contributions of our work are as follows:
• Proof of concept study: To the best of our knowledge,

this is the first deep learning-based study for directly
localizing pole footprints in aerial orthophotos. Unlike
conventional detection methods that provide bounding
boxes, our model precisely predicts pole positions in a
single-stage process.

• End-to-End Localization: YOLO-Pole is an end-to-end
model that directly outputs pole footprints, eliminating
the need for post-processing.

• Pointwise Distance-Based Loss Function: We introduce
a loss function based on the Euclidean distance of pole
footprints, improving geometric accuracy in detection.

II. METHODOLOGY

In this section, we describe the architecture of the proposed
YOLO-Pole model, as illustrated in Fig. 1.

A. Network Architecture

Backbone We adopt a pre-trained CSPDarknet53 [6] as
the backbone for its strong feature extraction capabilities
and computational efficiency, which is also a widely-used
backbone in YOLO-based models.

Detection Neck Following the backbone, the Feature Pyra-
mid Network (FPN) [7] is used to build a feature pyramid
with lateral connections between feature maps. A series of
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Fig. 1: Technical workflow of the proposed pole detection method.

convolutional layers are employed to refine and concatenate
feature maps from different stages of the backbone. Consistent
with common YOLO configurations for small object detection
tasks, we use the third, fourth, and fifth pyramid levels (P3-P5)
as inputs to the detection head because these layers provide a
good balance between spatial resolution and semantic abstrac-
tion [7], [8], which is critical for detecting small structures
like poles in aerial imagery.

Detection Head Our detection head incorporates a dual-
branch structure to achieve precise localization of pole foot-
prints. After receiving fused multi-scale features from the
neck, the head first applies a 1×1 convolution to reduce
feature dimensions, followed by a 3×3 convolution to capture
local context. The resulting feature maps are split into two
branches: one outputs bounding box parameters (e.g., center,
size, objectness), and the other regresses the pole’s relative (x,
y) location for precise footprint localization.

B. Loss Function

Traditional object detection metrics, such as the IoU, often
fall short in scenarios involving extremely small objects,
as these metrics tend to lose sensitivity when the objects
occupy a minuscule area of the image. This challenge is
particularly pronounced in the context of aerial imagery, where
objects such as pole footprints may only span 1-2 pixels. The
introduction of a pointwise loss, inspired by Xu et al. [9]’s
development of the Dot Distance (DotD) metric, addresses
this limitation. The DotD metric effectively measures the
Euclidean distance between the predicted and actual central
points of the objects, providing a direct and highly sensitive
indication of localization accuracy.

Therefore, we integrate pointwise loss for poles into our
loss function. The total loss function for YOLO-Pole model
L including the loss components for bounding box regression,
objectness, classification, and pole regression, is defined as:

L = λbboxLbbox + λobjLobj + λclassLclass + λpoleLpole. (1)

• Lbbox is the bounding box regression loss calculated using
Complete Intersection over Union (CIoU) [10]:

Lbbox = 1− IoU +
ρ2(b,bgt)

c2
+ α · v, (2)

where ρ(b,bgt) is the Euclidean distance between the
centers of the predicted and ground-truth bounding boxes,
c is the diagonal length of the smallest enclosing box cov-
ering both bounding boxes, v measures the consistency
of aspect ratio, and α is a trade-off parameter.

• Lobj is the objectness loss, which measures the model’s
confidence in predicting the presence of an object:

Lobj =

{
− log(ŷobj), if an object is present,
− log(1− ŷobj), otherwise.

(3)

where ŷobj is the predicted probability of an object being
present in a given bounding box.

• Lclass is the classification loss for predicting the correct
class of an object using cross-entropy:

Lclass = −
C∑

c=1

yc log(ŷc), (4)

where C is the number of classes, yc is a binary indicator
(0 or 1) if class label c is correct for the observation, and
ŷc is the predicted probability of class c.

• Lpole is the pole regression loss, which is calculated using
the Euclidean distance for a precise localization:

Lpole =
√
(px − p̂x)2 + (py − p̂y)2, (5)

where p and p̂ denote the actual and predicted pole center
coordinates (x, y), respectively.

• λbbox, λobj, λclass, λpole are the weighting factors for each
respective loss component. The specific weights used are
detailed in Section III.

III. EXPERIMENT

A. Dataset

The dataset consists of true orthophotos with 20 cm resolu-
tion, chosen as a challenging test case where pole footprints
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often span only 1–2 pixels. This setup serves as a strict bench-
mark for evaluating localization under limited spatial detail.
The images are collected from the Munich and Lindau regions
in southern Bavaria, covering diverse rural and urban scenes
(Fig. 2). The pole class includes traffic signals, streetlights, and
sign poles, each manually annotated with a precise footprint
and bounding box. To ensure high annotation quality, only
fully visible poles are labeled. In total, 83 orthophotos (3500
× 3500 pixels) with 7763 annotated poles are used.

(a) (b)

Fig. 2: Orthophoto images used in Experiment. (a) A rural area
in Lindau, Germany. (b) An urban area in Munich, Germany.

Object detection methods generally require bounding boxes
as input. Therefore, pole annotations are converted to bounding
boxes. Since shadows are key texture features, the boxes are
designed to encompass pole shadows. However, larger boxes
can capture irrelevant objects, introducing noise. To balance
inclusiveness and accuracy, we use square bounding boxes
of 45 × 45 pixels. To address manual annotation errors, we
position the pole near the bottom right corner of the box, with a
2-pixel vertical and horizontal offset, as shown in Fig. 3, where
(xbbox, ybbox) denotes the top left corner of the bounding
box and (xgt, ygt) denotes the ground-truth of the pole. This
ensures the pole is fully enclosed despite the existence of
potential annotation errors. Fig. 4 illustrates typical ground-
truth annotations, where yellow rectangles mark bounding
boxes, and red dots represent pole footprints. The shadows
show varying shapes and azimuth angles due to differing sun
positions at the time of acquisition.

(a) (b)

Fig. 3: Bounding box and pole ground-truth. (xbbox, ybbox)
in (a) denotes the top left corner of the bounding box and
(xgt, ygt) denotes the ground-truth of the pole. In (b), bound-
ing box is depicted in yellow and pole is highlighted in red.

B. Experimental Setup

To account for diverse pole shadows in our dataset, we
applied several data augmentation techniques. The original

images (3500 × 3500 pixels) were first cropped into 640 ×
640 patches. Since YOLO is not inherently rotation-invariant,
our preliminary attempts showed detection failure when using
only unrotated images, mainly due to differences in shadow
directions between training and test data. While applying a
full range of rotation angles would significantly increase the
training cost, we found that rotating each patch by 20° and 40°
(Fig. 5) provides a good trade-off between angular diversity
and training efficiency. In addition to these rotations, standard
augmentation techniques such as flipping, color jittering, and
affine transformations were also used to further enhance gen-
eralization.

We use a YOLOv7-tiny backbone with Path Aggregation
Feature Pyramid Network (PAFPN) neck, TinyDownSample-
Block, and LeakyReLU activation. The model is trained using
the MMDetection framework [11] on an Ubuntu 20.04.6 LTS
system with an NVIDIA RTX 3090 GPU. We initialize the
model with COCO-pretrained weights [12]. The dataset is
split into 50 orthophotos for training/validation and 33 for
testing, ensuring no spatial overlap. Input images are resized
to 640×640 pixels. We train the model with a batch size of 16
for 200 epochs using SGD optimizer with an initial learning
rate of 0.01, momentum of 0.937, Nesterov acceleration, and
a weight decay of 0.0005.

We adopt the default YOLO augmentations (e.g., mo-
saic, flipping, color jittering, affine transformations). The loss
weights are manually set to focus on precise point-level
localization. Specifically, we use λbbox = 0.1, λobj = 1.0,
λclass = 0.0, and λpole = 2.0. This configuration reflects the na-
ture of our task, where pole footprints are extremely small, and
pointwise accuracy is more critical than bounding box quality.
These values were selected through preliminary experiments
and manual tuning based on validation performance.

C. Results Visualization

The evaluation is carried out on the test set comprising 33
orthophoto images from Milbertshofen and Lindau. Figure 6
illustrates the visualization of pole detection results in various
scenarios, where Ground-truths are marked by red crosses and
predictions are marked by yellow crosses. It can be seen that
in most scenarios, many poles have been correctly detected
and localized. However, as the ground-truth annotation is not
perfect, some poles are overlooked during annotation although
they are well visible on the orthophoto, as shown in subfigure
(d), therefore the number of predicted poles is generally larger
than the number of ground-truth annotations.

D. Evaluation Criteria

To evaluate the precise localization of pole footprints, we
use both area-based and distance-based metrics. For area-based
metrics, the IoU metric compares predicted and ground-truth
bounding boxes, but since the bounding boxes (45×45 pixels)
are much larger than poles (1–2 pixels), IoU alone is not
representative enough. To address this problem, we calculate
the Euclidean distance between predicted and ground-truth
poles as well, using a threshold of 5 pixels (1 meter) for
positional accuracy.



IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, APRIL 2025 4

(a) (b) (c) (d)

Fig. 4: Ground truth of different types of poles. Poles are annotated as red dots enclosed by yellow bounding boxes: (a) Sign
pole, (b) Traffic light pole, (c) Single-arm streetlight pole, (d) Double-arm streetlight pole.

(a) (b) (c)

Fig. 5: Shadow simulation via image rotation: (a) Original
patch, (b) Patch rotated by 20◦, (c) Patch rotated by 40◦.

Fig. 6: Detected poles (yellow) and ground-truth (red).

Our evaluation metrics are defined as:
• True Positive (TP): A detected pole is within 5 pixels

of a ground-truth pole.
• False Positive (FP): A detected pole exceeds the 5-pixel

distance from any ground-truth pole.
• False Negative (FN): A ground-truth pole has no detected

pole within 5 pixels.
Fig. 7 shows examples of detection results. The first row il-

lustrates from left to right true positive samples with distances
of 1, 3, and 5 pixels, respectively. The second row shows false
negatives where the model missed to detect poles, while the
third row presents from left to right three false positive cases
caused by wrong semantics, distance exceeding the threshold,
and incorrect ground-truth labels.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 7: Examples of detection outcomes. Red: ground truth,
yellow: predictions. (a–c) TP; (d–f) FN; (g–i) FP.

E. Quantitative Evaluation

Table I presents a comparative analysis of performance
metrics among standard YOLOv7, Faster R-CNN [13], SSD
[14], YOLOv8 [15] and our proposed YOLO-Pole. The
evaluation includes mean IoU and mean Average Precision
(mAP) as area-based metrics, and precision, recall, and F1
score as distance-based metrics. YOLO-Pole achieves notable
improvements over the standard model. Notably, the bounding
boxes used for evaluation are much larger than the actual
poles, thereby incorporating irrelevant background and leading
to lower IoU and mAP values than typically seen in object
detection tasks. Additionally, we include an ablation variant,
YOLO-PoleIoU, which uses conventional IoU-based loss with-
out the pointwise Euclidean loss component. As shown in
Table I, YOLO-PoleIoU performs marginally below Standard
YOLOv7, because the pole footprint branch becomes inactive
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Fig. 8: False positive samples resulting from misannotations.

without the pointwise Euclidean loss and may introduce addi-
tional noise. It can be seen that the pointwise loss is essential
for achieving higher localization precision.

It is important to note that the ground-truth data is not
exhaustively annotated. As annotators typically label only
the poles they are confident are visible, poles obscured by
shadows or partially visible are often omitted. Consequently,
some semantically correct predictions are not annotated and
are marked as false positives, as shown in Fig. 8.

TABLE I: Comparison of performance metrics between base-
line methods and YOLO-Pole.

Model mean IoU mAP Precision Recall F1 Score
Standard YOLOv7 0.690 0.668 0.421 0.369 0.393
Faster R-CNN 0.712 0.682 0.419 0.390 0.404
SSD 0.645 0.621 0.390 0.330 0.357
YOLOv8 0.715 0.690 0.450 0.351 0.395
YOLO-Pole 0.752 0.711 0.485 0.413 0.446
YOLO-PoleIoU 0.686 0.665 0.420 0.367 0.391

IV. DISCUSSION AND CONCLUSIONS

Detecting pole footprints from 20 cm aerial orthophotos
is challenging due to the limitations of nadir-view imagery,
where poles often appear as small point-like features. Given
the scarcity of datasets and relevant methods, this work serves
as a feasibility study, demonstrating that high-precision pole
localization is achievable under such conditions.

Unlike conventional bounding box-based approaches,
YOLO-Pole directly predicts pole footprints in an end-to-end
manner, eliminating post-processing steps. The integration of
pointwise Euclidean loss further enhances localization accu-
racy, confirming the applicability of deep learning to this task.

This study is an initial step toward automated pole local-
ization in aerial imagery. We focus on 20 cm orthophotos, as
DOP 20 imagery is freely available for many European cities,
offering significant potential for large-scale application of this
approach. The approach is also expected to perform even
better on higher-resolution imagery (e.g., 10 cm), where pole
footprints are more clearly visible. In addition, the framework
can be extended to other point-like objects, such as utility
markers or fire hydrants, which are also difficult to detect using
traditional methods. We hope this work encourages further re-
search on expanding datasets and incorporating additional data
sources to improve detection performance and generalizability.
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