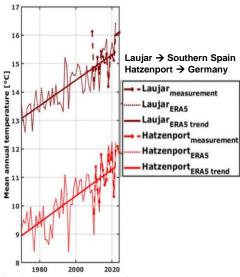


MICROCLIMATE EFFECTS AND SYNERGIES OF ELEVATED AGRIVOLTAIC SYSTEMS IN AN ECOLOGICAL VINEYARD: A CASE STUDY IN ALMERÍA, SOUTHERN SPAIN

Álvaro Fernández Solas¹, Natalie Hanrieder¹, Anna Kujawa¹, Sergio González Rodríguez¹, Aitor Castillo², Estefanía Sánchez Vizcaíno³, Stefan Wilbert¹

- 1 German Aerospace Center (DLR e.V.), Institute of Solar Research, Almería, Spain,
- 2 Bettergy SL, Málaga, Spain,
- 3 Cortijo El Cura Eco-Bodega, Laujar de Andarax, Spain.

Background



Viticulture & Climate Change

- In 2024, global wine production fell to lowest level since 1961 due to extreme weather events (droughts, heatwaves and hail) in many winemaking regions [1].
- Climate change is reshaping Europe's wine regions
 - Traditional winemaking regions, such as Spain and southern France, are struggling with scarce precipitation and extreme heat.
 - Regions at northern latitudes are becoming more suitable for wine production.
- Since 1970, temperature has risen by ~2.5 °C in winemaking regions in Germany and Spain [2].
- Some future climate projections by 2100 indicate:
 - Higher average temperatures (↑ 4°C in some months, particularly in summer).
 - More frequent and intense heat waves in Europe.
 - Higher probabilities of droughts, specially in southern Europe.
- These events may negatively affect crop development, leading to:
 - Heat stress.
 - Water stress.
 - Phenological shifts (earlier budburst and accelerated ripening).

Berries after a heat wave

Historical average annual temperatures in two winemaking locations. Source of data: ERA5. Plot in [2].

Background

Viticulture & Agrivoltaics

• In some vineyards, shading nets have been installed to mitigate and adapt the effects of climate change.

 APV systems as a replacement for these shading nets → Simultaneous crop protection and energy generation. Multiple APV installations have been deployed in Europe/Spain in the last decade:

- [1] Marigliano et al. (2022), https://doi.org/10.3389/fagro.2022.898870
- [2] Dal sole al vino: il Convivio Agrivoltaico racconta la Puglia che innova-Gazzetta dal Tacco
- [3] Harvesting the sun, protecting the vines innovation for sustainable agriculture

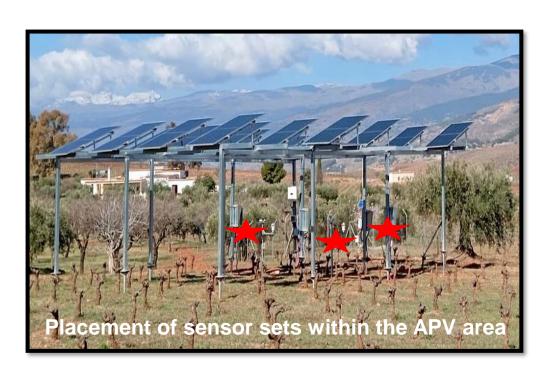
Aim of the study

Viticulture & Agrivoltaics

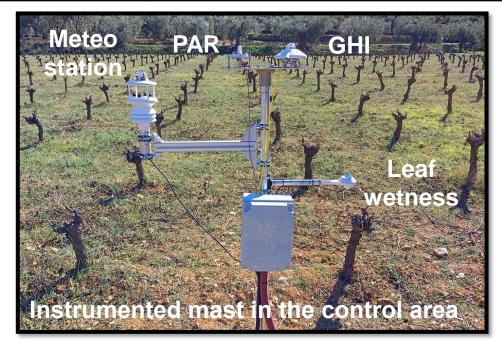
How do elevated agrivoltaic systems influence vineyard microclimate, crop performance, and energy production in southern Spain?

Description of the system

- **Pioneering APV project** in Almería, southern Spain, located within an organic vineyard¹. Installation date: **January 2025**.
- Overhead PV system with a checkerboard layout, covering 120 m² and shading 32 Merlot vines.
 - Planting pattern: 2 m x 2 m spacing (2003). Ground Coverage Ratio GCR: **38%**.
- System classified as Category I Use 1A under DIN SPEC 91434 (Germany).
- Eco-friendly foundation using ground screws to prevent soil compaction.
- PV capacity: 10.8 kWp from 18 bifacial modules. Inverter of 10 kWn.
- Energy use: Electricity is used on-site for selfconsumption by the main winery building.


Description of the system

DLR


Monitoring system

4 measurement zones to assess the impact of shading on microclimate, soil and crop performance:

- Under the PV structure (x3) → APV area
- Control area (no shading)

Category	Parameters Measured
Meteorological	Air temperature • Relative humidityWind speed and direction • Precipitation
Irradiance	• Solar irradiance (PAR, GHI, G _{POA_f} , G _{POA_r})
Soil	Soil temperature Soil moisture
Crop	Leaf wetness • Brix (sugar content) • Physiological traits • Yield quantity and quality

Description of the system

DLR

Monitoring system

Other sensors

Soiling

Measurements of the electrical losses caused by dust, pollen and other particulates that deposit on the PV modules.

- Higher seasonality of soiling losses due to agricultural management and pollen when compared with traditional GM PV installations.
- Higher risk of bird droppings that can cause hotspots, leading to nonreparable defects in PV modules.

Pyranocam + Albedocam

Measurements of all irradiance components → Direct, Diffuse and Global.

- Use of a pyranometer + sky eye camera.
- o Useful for quantifying the amount of diffuse light, which plants like.
- Monitoring of albedo (reflected irradiance) changes throughout the crop cycle → Impact on PV yield of bifacial modules.

Crop monitoring Refractometer (Pre-harvest)

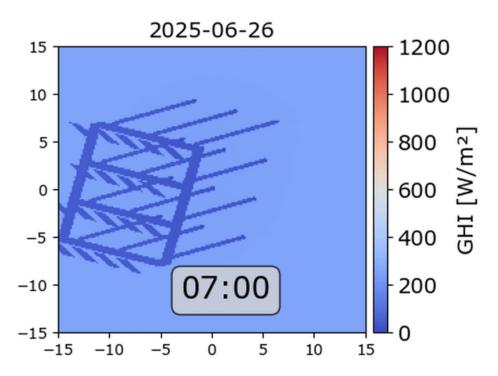
 Measures the sugar concentration (°Brix) in grape juice to assess fruit ripeness and harvest timing.

Side-by-side reference cells (soiled vs clean)

Credit: Niklas Blum (DLR)

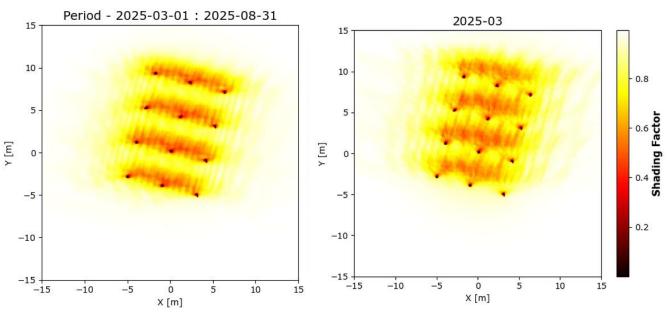
Hydrometer (Post-harvest)

 Measures the specific gravity of grape must or wine to track fermentation progress.



Microclimate: GHI – Ground level (Simulations)

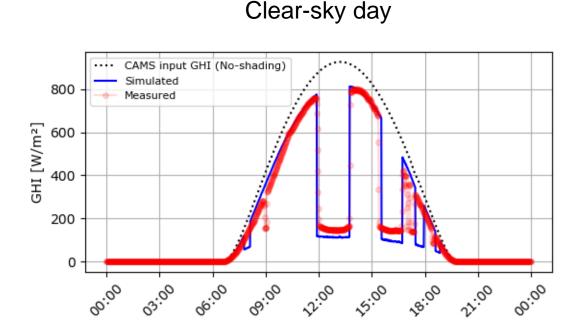
Instantaneous GHI simulations

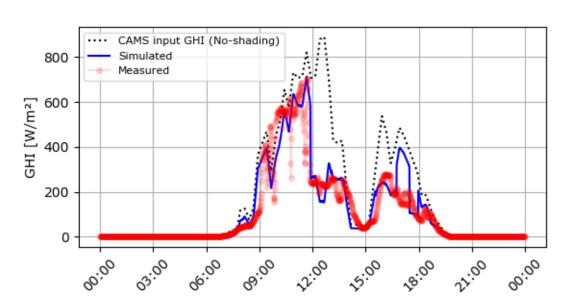

- Potential to optimize modules' positions in tracked APV systems as a function of light requirements of crops.
- Possibility to conduct simulations up to 1-min resolution – based on <u>Anna Kujawa et al. [1]</u>.

Shading Factor

- Simulations of spatial distribution of accumulative solar radiation reduction (1 Shading Factor).

 Shading Factor = 0.6 → Radiation received: 60% of unshaded area.
- Support in APV design optimization and crop choice.
- Possibility to use both TMY data or measured (reanalysis or on-site measured) irradiance data as inputs.

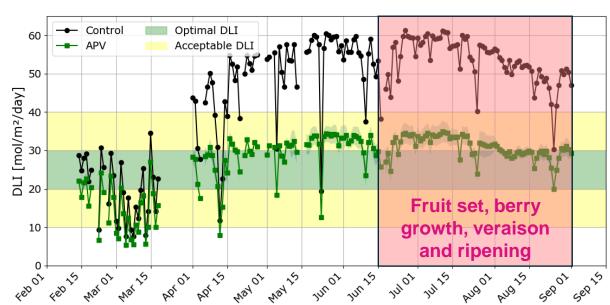

[1] Kujawa et al. (2025), "A Ray-Tracing-Based Irradiance Model for Agrivoltaic Greenhouses: Development and Application", https://doi.org/10.3390/agronomy15030665


Microclimate: GHI profile - Simulations validation

Instantaneous GHI simulations vs measurements

- Validation of simulations using CAMS reanalysis irradiance data (0.1° resolution, ~10 km).
- Simulated shading patterns closely match pyranometer measurements.
- Future work will explore using models to derive PAR from GHI.

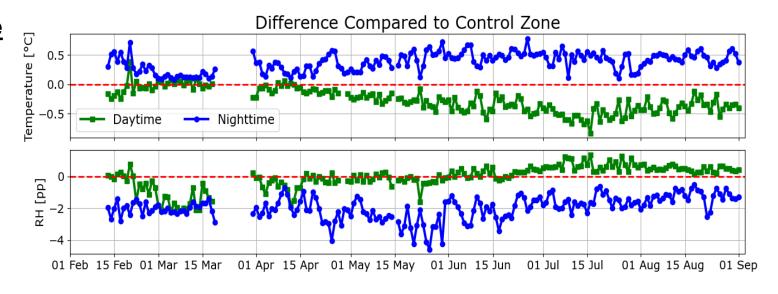
Cloudy day

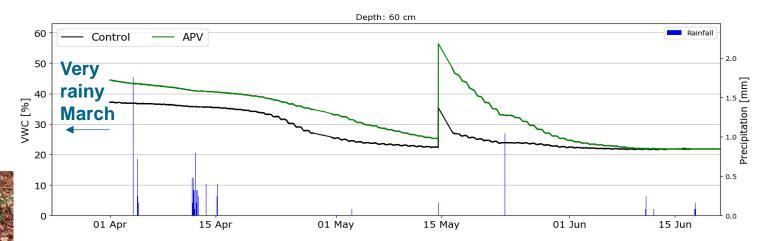


Microclimate: Radiation – DLI

- PAR (DLI) was monitored with EKO ML-020P PAR sensors at 1.5 m height.
- In APV zone, excessive DLI values are partially mitigated.
- Optimal DLI for grapevines: 20–30 mol m⁻² d⁻¹ (stage & weather dependent) [1].
- DLI > 20 mol m⁻² d⁻¹ in both APV and control zones, except on very cloudy days.
- During berry growth-ripening, DLI in APV zone stayed within the acceptable range, ~40% lower than control.

DLI evolution during the crop cycle $DLI = \int PPFD (PAR) dt$

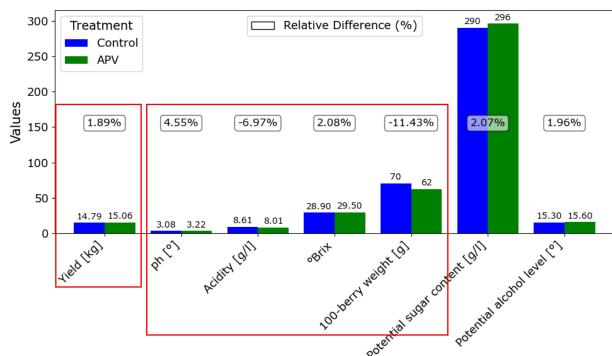

Microclimate: Air Temperature, RH and soil moisture


Microclimate Effects in the APV Zone

- Daytime:
- Temperature up to –0.5 °C
- Relative Humidity similar
- Nighttime:
- Temperature +0.6 °C
- Relative Humidity up to -4 pp

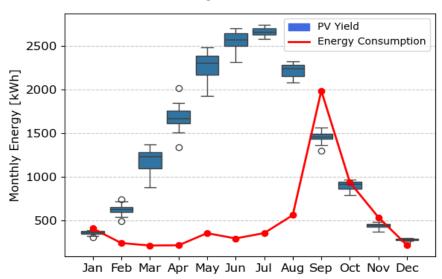
Soil moisture

- Measurements of volumetric water content (VWC) at different depths.
- Extended soil moisture retention in the APV area, suggesting lower evapotranspiration.

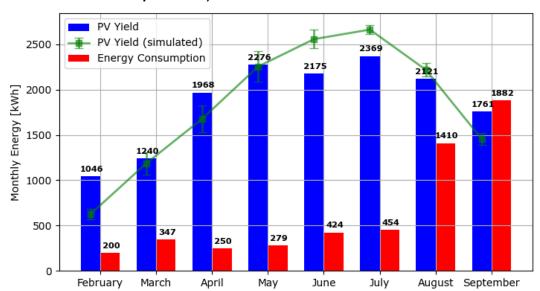


Crop yield

- 28 plants were harvested in each zone.
- As expected due to the relatively small size of the system:
 - No differences were observed during the crop cycle. All phenological stages had the same start and end dates in both areas.
 - Yield → Slightly positive impact in the APV area (~2% higher), aspect that should be further analyzed in upcoming years.
- Smaller grapes in the APV area, but with slightly higher sugar content, lower acidity and higher pH than the grapes in the control zone.
- More advanced technical maturity in the APV area despite reduced light.



Energy yield


Simulations

- PV yield: 16400 ± 280 kWh/year (2.6 x winery demand); based on 19 years of weather data (2005 2023).
- Consumption profile: energy use is concentrated post-harvest, peaking between end August – October.

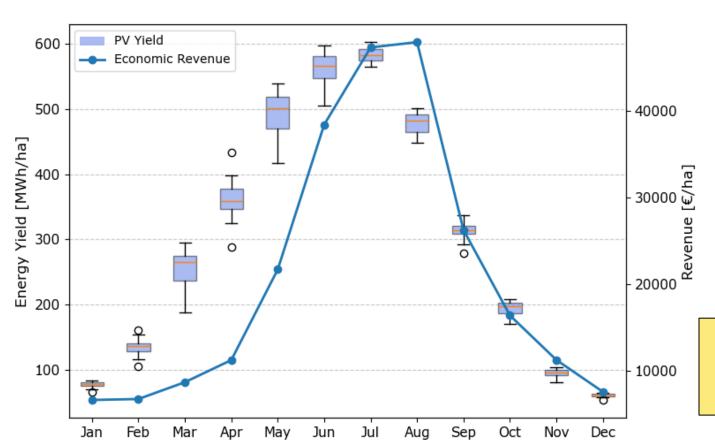
Actual data (2025)

- The APV installation has reduced grid dependence by 53% since February.
- PV yield in line with the simulations, with the exceptions of:
 - February → Better performance (sunnier than normal)
 - Summer → Underperformance (higher thermal and soiling losses than expected)

Energy yield

Impact of soiling losses

- Agricultural activities and pollen can greatly impact the impact of soiling in elevated APV systems.
- Several modules affected by bird droppings, which rain might not effectively fully clean.
- We have measured **losses higher than 10%** using reference cells, but the actual losses could be even higher due to the non-uniform distribution of them across the modules.



Energy yield

* Costs were not considered.

Simulations: Potential Energy Yield and Economic Revenues per ha of APV in Laujar

- Revenues calculated considering monthly average electricity prices in Spain from 2024*.
- Annual Energy Yield = 3630 MWh/ha
- Energy income: 250 k€/ha per year
- Wine-related revenue: 1.145 €/ha** [1]
 ** average value in Almería
- Energy income ≈ 250× wine revenue
 Agrivoltaics: a solution for climate change
 AND a new business model for farmers.

^[1] Junta de Andalucía – Consejería de agricultura y pesca, "Caracterización del Sector Agrario y Pesquero de Andalucía 2023: https://ws142.juntadeandalucia.es/agriculturaypesca/caracterizacion-sector-agrario-pesquero-2023/index.html#p=1)

Conclusions

- The motivation of this pilot APV system was to meet farmer's urgent needs in mitigating climate change impacts on grape yield.
- Microclimate benefits: Positive effects observed, helping to mitigate the impacts of extreme weather conditions.
- Crop performance: No negative impact on yield or quality during the first year of operation.
- Farmer benefits: Reduced electricity bills and crop protection against excessive radiation and hail.
 - ☐ This pilot site demonstrated that **simultaneous energy and grape production** is feasible and can enhance yield.

Next steps

- Farmer ready to scale up APV system with storage for optimizing self-consumption.
- Multi-year validation of shading impacts on crop performance.
- Implementation of technical solutions to optimize rainfall distribution below panels.
- Assess O&M challenges (e.g., soiling) in elevated APV systems.

DLR's Expertise and Activities in Agrivoltaics

Experimental Infrastructure

- Currently installing a tracked APV experimental system in Tabernas (semi-arid climate), aimed to optimize light management for different crops.
- International Collaboration and Leadership
- Active participants in IEA PVPS Task 13 (Performance & Reliability of PV Systems) and Task 16 (Solar Resource).
- Authors of the IEA PVPS Agrivoltaics Report (scan the QR code).
- Engaged in the IEA-PVPS Agrivoltaics Action Group for knowledge exchange and best practices in the APV field.

Research Focus

- Investigating climate change impacts on APV performance, crop yield, and water use in Spain.
- Integrating irradiance modelling, and PV energy-agriculture interaction studies for APV.

IEA PVPS Agrivoltaics Report

Bettergy

Let's connect on LinkedIn

¡Muchas gracias por su atención!

Álvaro Fernández Solas

alvaro.fernandezsolas@dlr.de

¡Abiertos a colaborar en agrivoltaica y análisis climático! ¡Contáctanos!

- Dr. rer. nat. Natalie Hanrieder (Agrivoltaics Team Leader at DLR): Natalie.Hanrieder@dlr.de
- Dr. Álvaro Fernández Solas (Agrivoltaics and PV soiling scientist)

¿Listo para una experiencia única en Almería? Visítanos y descubre lo que la Alpujarra almeriense y Cortijo el Cura pueden ofrecerte (y no te olvides de visitar el sistema AgriPV ©!!!)

