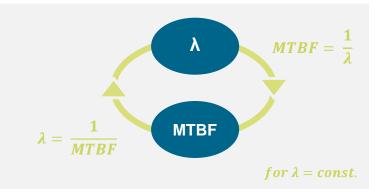

Estimating the maintenance-related material cost for battery-powered aircraft propulsion systems

Jan-Alexander Wolf, Robert Meissner, Ahmad Ali Pohya & Gerko Wende German Aerospace Center (DLR) Institute of Maintenance Repair and Overhaul

What will maintenance of new drive concepts cost?

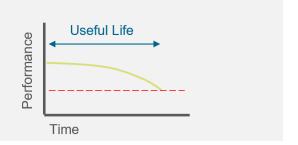
¹ Sources: R. Meissner et al. (2023) Towards climate-neutral aviation: Assessment of maintenance requirements for airborne hydrogen storage and distribution systems. DOI: 10.1016/j.ijhydene.2023.04.058
T. Hoff et al. (2023) Implementation of Fuel Cells in Aviation from a Maintenance, Repair and Overhaul Perspective. DOI: 10.3390/aerospace10010023

Agenda


Reliability assessment of components

A) Failure-driven

Failure Rate: Number of failures of an item in a given time interval divided by the time interval


Mean Time Between Failure: Statistical expectation of the time between failures

Measurement

B) Performance-driven

Useful Life: Time interval until a limiting state of component performance is reached

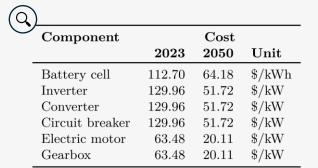
Our approach of a reliability-based maintenance analysis

1 Reliability analysis

Collecting failure rates and MTBF values from literature and operational data

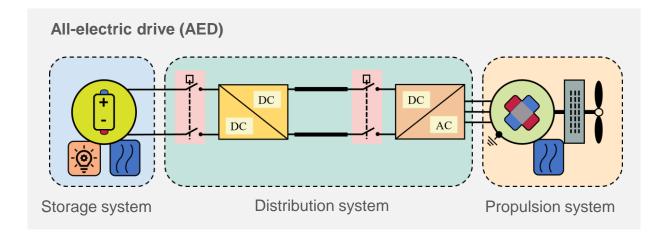
Simulating useful lifetimes and degradation behavior

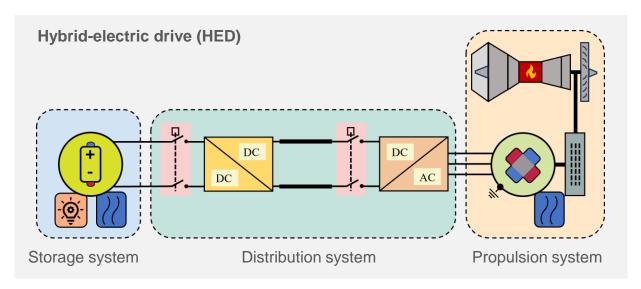
Referencing spare part prices from aircraft operation


Applying cost forecasts from literature

Establishing a novel reliability-based methodology for estimating material costs due to repair or replacement tasks

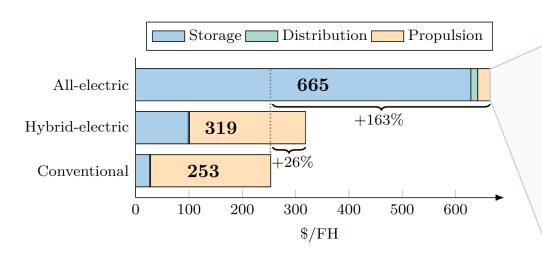
Component	Failure Rate $(x10^{-6})$				
	\mathbf{Min}	Mean	Max		
BMS	1.000	1.945	5.285		
Inverter	1.912	5.746	86.000		
Converter	2.044	4.035	28.660		
Circuit breaker	1.967	4.821	46.000		
Gearbox	1.500	5.254	17.700		
El. motor	5.930	11.330	92.400		
Heat exchanger	2.863	6.170	17.300		
Pump	12.060	19.330	59.800		
Cable	0.042	0.100	0.681		





System architecture

Layout for a battery-powered A320 equivalent drive train

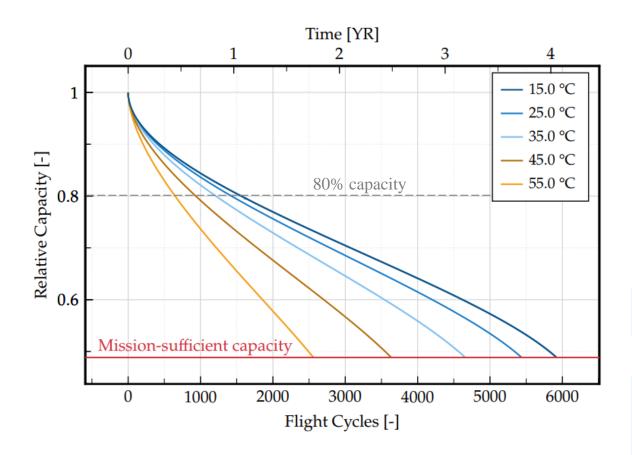

Key aspects

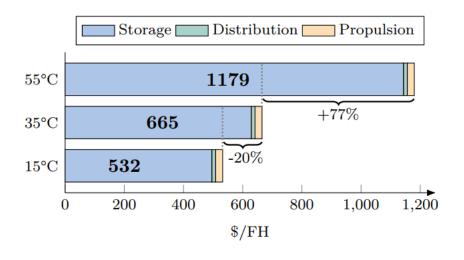
- Battery sizing results in unfeasible system mass for AED configuration
- Parallel HED allows additional usage of electric motors and results in a manageable battery mass

Material scope – All-electric system

Comparison of material cost for a battery-powered A320 equivalent drive train

Expected impact


- Battery cells are responsible for 94% of the material cost due to their enormous number and strong degradation effects
- Components of the propulsion system have only a minor impact due to reliable and costeffective electric motors

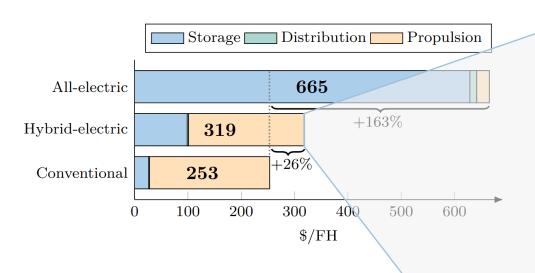

System	Component	\mathbf{Cost}	\mathbf{Unit}	Share
Storage	Battery cells	627.15	\$/FH	94.2%
	BCS	1.66	\$/FH	0.2%
	BMS	0.08	\$/FH	0.01%
	Sub-total	628.89	\$/FH	94.5%
Distribution	Circuit breakers	6.43	\$/FH	1.0%
	Inverters	3.73	\$/FH	0.6%
	Converters	2.68	\$/FH	0.4%
	Sub-total	12.84	\$/FH	1.9%
Propulsion	Propeller units	16.41	\$/FH	2.4%
	Electric motors	3.52	\$/FH	0.5%
	MCS	2.21	\$/FH	0.3%
	Gearboxes	1.62	\$/FH	0.2%
	Sub-total	23.76	\$/FH	3.6%
Total		665.49	\$/FH	100%

Estimating the useful lifetime of the battery cells

Applying a semi-empirical degradation model¹

Useful lifetime is highly dependent on

- a) Operating temperature
 - → Lever: Powerful cooling system
- b) Depth of discharge
 - → Lever: Battery over-sizing, hybridization


¹ Model: J. Schmalstieg et al. (2014) A holistic aging model for Li(NiMnCo)O2 based 18650 lithium-ion batteries. DOI: 10.1016/j.jpowsour.2014.02.012

M. Clarke et al. (2021) Lithium-Ion Battery Modeling for Aerospace Applications. DOI: 10.2514/1.C036209

Material scope – Hybrid-electric system

Comparison of material cost for a battery-powered A320 equivalent drive train

Expected impact

- 85% lower battery cost compared to allelectric drive train due to a smaller system and less degradation ¹
- 11% lower engine cost compared to conventional drive train due to hybridization and less engine load ²

System	Drive train	Component	\mathbf{Cost}	\mathbf{Unit}	Share
Storage	Conventional	_	-	_	_
		Battery cells	96.91	\$/FH	30.4%
	Electric	BCS	1.66	\$/FH	0.5%
		BMS	0.08	\$/FH	0.03%
	Sub-total		98.65	\$/FH	30.9%
Distribution	Conventional	FQIC	0.83	\$/FH	0.3%
		Miscellaneous	0.65	\$/FH	0.2%
	Electric	Circuit breakers	0.62	\$/FH	0.2%
		Inverters	0.36	\$/FH	0.1%
		Converters	0.26	FH	0.1%
	Sub-total		2.72	FH	0.9%
Propulsion	Conventional	Main engines	204.91	\$/FH	$\boldsymbol{64.3\%}$
		ECU	4.08	\$/FH	1.3%
		TRU	3.08	\$/FH	1.0%
		Miscellaneous	3.79	\$/FH	1.2%
		MCS	1.11	\$/FH	0.3%
	Electric	Electric motors	0.34	\$/FH	0.1%
		Gearboxes	0.15	\$/FH	0.05%
	Sub-total		217.46	\$/FH	68.2%
Total			318.83	\$/FH	100%

^{1:} Assuming battery usage mainly during taxi and takeoff

^{2:} Assuming 10% degree of hybridization during takeoff

Main findings

Material cost for a **fully-battery powered** A320-equivalent is expected to **increase by 163%** compared to the conventional configuration

→ Not economically and technologically viable

Cost of a **hybrid-electric** version is expected to **increase by 26%** without a major increase in battery mass

➡ Economical and technological potential for a quicker market entry

Battery cells show to be one of the **greatest cost drivers** and cost-optimizing decisions should focus on their design and operation

→ Over-sizing by a certain reserve capacity and low operating temperature

THANK YOU FOR YOUR ATTENTION

Get more insights

Pre-published paper

Jan-Alexander Wolf, German Aerospace Center (DLR)

Imprint

Topic: Estimating the maintenance-related material cost for battery-

powered aircraft propulsion systems

Date: 2025-10-16

Authors: Jan-Alexander Wolf, Robert Meissner, Ahmad Ali Pohya, Gerko

Wende

Institute: Institute of Maintenance, Repair and Overhaul, Hamburg,

Germany

Image sources: All images "DLR (CC BY-NC-ND 3.0)" unless otherwise stated