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What we (DLR aerospace) do

▪ Wind tunnel experiments

▪ Flight tests

▪ …

▪ Computational Fluid Dynamics
▪ Numerically solving nonlinear partial differential equations

▪ For implicit schemes the most expensive part is solving 
linear equation systems

▪ Industrial relevant cases require efficient use of HPC 
(turbulence is difficult)
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Our challenges/chances:

▪ Try to make use of current (and be ready for future) hardware technology, but codes are 

often complex, large, calibrated to physical measurements and quality assured, so it is not 

so easy to adopt fast

▪ Due to recent changes in hardware technology (Many-core, SIMD, GPU, …), we have 

worked on new implementations



Software Approach to tackle these challenges

▪ Different CFD solvers for specific flow characteristics

▪ TRACE for turbomachinery

▪ CODA for aerodynamics

▪ …

▪ Contain physical modeling, handling of boundary conditions, nonlinear relations, 

wind-tunnel calibration, transsonic/hypersonic/… flow regime, …

▪ Common library for (approximatively) solving a linear

equation system with characteristics from aeronautical CFD

▪ More focus on low-level performance and hardware technologies

▪ May adapt to specific technologies more easily due to its comparably limited 

functional range
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Spliss



SPLISS OVERVIEW
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Key features of a linear solver for aeronautical CFD

Sparse matrices

▪ Dense blocks with a fixed block size or variable block sizes

▪ Mixed data types: e.g. some entries are complex, others real, some 
multiscalars

Solver

▪ Different components should be combinable (as preconditioner)

▪ Robust methods for stiff CFD problems:

▪ Direct inversion of (generalized) diagonal blocks (LU/Thomas-Algorithm)

▪ Jacobi, Gauss-Seidel, GMRES, linear multigrid, …

Efficient parallelization for HPC

▪ Distributed memory (GASPI, MPI)

▪ Shared memory (Threading)

▪ GPU support

▪ Vector instructions (SIMD)
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Matrix Structure

Sparse matrices with dense blocks

▪ Blocks of fixed size (e.g. 5x5, 7x7, 12x12 for all blocks within a single sparse matrix) (finite-volume Euler or RANS 

method)

▪ Blocks of variable sizes within one sparse matrix (e.g. 12x12, 48x48, 120x120 and 240x240 in one sparse matrix) 

(mixed-order Discontinuous-Galerkin method)

▪ Mixed data types: e.g. some entries are complex, others real (time-spectral/harmonic balance method)
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Solver Structure

Robust methods for stiff CFD problems:

▪ Block- and line-implicit methods relying on a direct solution of 

diagonal blocks (LU) or tridiagonal blocks (=lines, Thomas-

Algorithm)

▪ Jacobi, Gauss-Seidel, GMRES, linear multigrid, …
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ALGORITHMICAL FEATURES
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Flexible solver components

▪ Standard linear algebra packages provide solver/preconditioner combination:

▪ Spliss supports to chain multiple solver components, even with different 

linear operators:
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x = GMRes(A).Apply(b):
  𝑣0 = 𝑏 − 𝐴 𝑥
  for 𝑖 = 0, … , maxIts:

𝑤 = 𝐴(Successor(𝑣𝑖))
    𝑣𝑖+1 = Orthonormalize 𝑤
    Update(𝐻, 𝛾)
  Solve 𝐻 𝑦 = 𝛾
  𝑤 = σ𝑖 𝑦𝑖𝑣𝑖

  𝑥 += Successor(𝑤)

x = Jacobi(A).Apply(b):
  if (𝐴 − 𝐴OffDiagonal = SuccessorMatrix):

    for 𝑖 = 0, … , maxIts:
      𝑟 = 𝑏 − 𝐴OffDiagonal 𝑥

      𝑥 = 1 − 𝜆 𝑥 + λ Successor(𝑟)
  else:
    for 𝑖 = 0, … , maxIts:
      𝑟 = 𝑏 − 𝐴 𝑥
      𝑥 += λ Successor(𝑟)

x = LU(D).Apply(b):
  𝑥 = 𝐷−1𝑏

GMRes(𝐴) Jacobi(𝐴) LU(𝐴Diagonal)

right preconditioned direct diagonal 

solution

Note that in case the 

matrices for different 

solver components 

match really well, an 

optimized version is 

applied

Solver chaining
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Featured Solver Components
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Multigrid Solver Component

▪ Each level can use its own smoother

▪ Transfer operators can be user-

provided

Flexible integration

▪ Reduction of time to solution by 1/3 

already for very small test case

RAE2822 65k elements, CODA
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Algebraic agglomerations visualized

▪ Agglomerations are computed simply by inspecting 

the matrix connectivity, not the values

▪ When the matrix blocks correspond to geometrical 

elements/vertices, the agglomerates can be 

visualized in the original mesh

▪ First level agglomerates for 

a vertex-based discretization
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Algebraic agglomerations visualized

▪ First level agglomerates for a volume-based discretization (CODA FV)
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Lines Inversion / Thomas Algorithm

▪ Jacobi-method uses a diagonal inversion:

𝑥(𝑖+1) ≔ 𝑥 𝑖 + 𝐷−1 𝑏 − 𝐴𝑥(𝑖)

     where

▪ 𝐷 ∶= diag(𝐴) (point-implicit)  or

▪ Especially favourable/needed when mesh has very

anisotropic cells, aspect ratios ≥5000:1
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▪ 𝐷 ∶= tridiag(𝐴) (lines-implicit)



Improvements in line detection algorithm

Improvements especially for

▪ high proportion of elements in lines

▪ vertex-based discretizations

➔
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Efficiency of the tailored solver components

▪ Red solid curve is a „standard 

linear solver“

▪ Multigrid gives speedup of 2-3 

(dashed)

▪ LinesInversion gives additional 

speedup of 3-4 (black/blue)

Arne Rempke, German Aerospace Center (DLR), Institute of Software 

Methods for Product Virtualization, 40th WSSP, October 15th, 2025

MG: 3xLines: 4x



INCREASING PERFORMANCE:
MIXED PRECISION

Arne Rempke, German Aerospace Center (DLR), Institute of Software 

Methods for Product Virtualization, 40th WSSP, October 15th, 2025



Mixed precision

▪ Idea: Reduce memory footprint of inner hot 

loops since performance is memory bound
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▪ Inner Spliss solver components operate 
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reduced by factor 2.1



Investigations on numerical influence of mixed precision

▪ When the reduced precision is 

used too much, numerical errors 

can occur:

▪ Obvious for updates below single 

precision accuracy

▪ But: also relevant for right-

preconditioned GMRES (operating 

in high precision!) since the final 

update within the Krylov subspace 

is only computed in low precision

BIGauss
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conversionGMRes
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eps: 1e-7
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GMRES(m) – variation of m

Almost entire MP runtime benefit lost due to more iterations
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GMRES – algorithm
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GMRES – source of problem: solution update

Possible solutions:

• Restart when single precision accuracy reached problem specific setting or

implementation of a custom restart criterion

• F-GMRES stores preconditioned Krylov vectors

     at the cost of additional memory

• Matrix only mixed precision vectors are kept in double precision

no full advantage from mixed precision

Applies preconditioner

to the sum of the weighted directions

 to save computational cost
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PARALLELIZATION AND SCALABILITY
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Main Operation during Solving:  d = A ∙ s

With:

s: Source Vector

d: Destination Vector

A: Matrix

Formula: 𝒅𝒊 = σ𝑗=0
𝑁 𝑨𝒊𝒋 ∙ 𝒔𝒋

→ All rows can be computed independently.

Arne Rempke, German Aerospace Center (DLR), Institute of Software 

Methods for Product Virtualization, 40th WSSP, October 15th, 2025

s

dA



Distributed Memory Parallelization
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Shared Memory Parallelization

Straightforward derived from cluster level parallelization 

▪ Every thread computes some rows

▪ Same strategy on CPU and GPU 
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Threading model

▪ Typical design of a library

▪ Single threaded

entry/exit points

▪ Unnecessary burden

if the user code also uses 

threads
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▪ Spliss design

▪ Allows to enter/exit with all threads



GPU Parallelization

▪ Similar as for Multithreading

▪ Using alpaka* allows us to write a single Kernel to be executed

on CPU or GPU

▪ Spliss hides the CUDA backend/compiler/… from user code:

▪ Explicit template instantiations of CUDA-dependent classes on Spliss compilation

▪ No necessity to use nvcc for user code

▪ Since Spliss is a C++ template library, user calls to small functions, e.g.

A[row][col] += myContribution;

   can still be inlined, allowing a seamless integration while capsulating

   the actual memory layout

* https://github.com/alpaka-group/alpaka
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Efficiency: Scalability on Current Systems (CARA)

Scalability assessment on DLR’s production system CARA

▪ Strong scaling (CRM, fixed problem size, 24M elements):

▪ Scaling from 1 – 512 nodes (largest available partition)

▪ Reduce runtime from 1.2 days to 4.2 minutes

▪ Small mesh: just 730 elements/core @ 32,768 cores

▪ Scaling 64 – 32,768 cores: 85% strong scaling efficiency

▪ Small super-linear speedup

▪ Weak scaling (CRM, fixed workload per core, 3M – 192M elements):

▪ Scaling 512 – 32,768 cores: 96% weak scaling efficiency

Arne Rempke, German Aerospace Center (DLR), Institute of Software 

Methods for Product Virtualization, 40th WSSP, October 15th, 2025

Runtime | strong scaling 24M elements

Runtime | weak scaling 3M–192M elements



Scalability of the Entire Workflow (FlowSimulator)

Scalability assessment on DLR’s production system CARO

▪ The entire workflow needs to …

▪ support large meshes (>1B elements)

▪ support large core counts (>1M cores)

Achievements (so far)

▪ Several improvements in FlowSimulator to scale to full system

▪ Improved hierarchical graph partitioning

▪ Support for meshes >1 billion elements tested

▪ Efficient scaling to 131,072 cores (full system CARO@DLR)
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Runtime | CARO (AMD Rome) vs. Juwels (4x Nvidia A100)

M6 wing, 69.2M elements, implicit Euler, Jacobi + Block Inv.

12k

128 GPUs

64 GPUs

32 GPUs

8k

6k

4k

Heterogeneity: Support for Nvidia GPUs via Spliss

System – Juwels Booster

▪ AMD Epyc 7401 (2x 24 cores) per node

▪ 4x Nvidia Tesla A100 per node

System – CARO

▪ Nodes with 128 cores (AMD Rome, 2x CARA)

▪ 8 memory channels @3.2GHz (1.2x CARA)

Observations

▪ Node-wise comparison (“unfair”): 8-9x speedup

▪ Energy-wise comparison (“fair”): 1.6-1.9 speedup

▪ Performance limited by non-linear part on slow CPU

▪ Hypothetical Juwels Booster node with CARO CPU: 

1.8-2.3 speedup (energy-wise)
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J. Mohnke and M. Wagner: A Look at Performance and Scalability of 

the GPU Accelerated Sparse Linear System Solver Spliss. In: Euro-

Par 2023: Parallel Processing. DOI 10.1007/978-3-031-39698-4_43



GPU Development
Impact of GPU support of Spliss on application wallclock time

▪ For implicit methods in CODA, linear equation systems are solved via Spliss

▪ Thus, only the linear part of CODA benefits from GPUs

▪ For future system with more or more powerful GPUs the non-linear part may become bottleneck
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QUESTIONS?
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