
A Sparse Linear System Solver for Transparent Integration of Emerging HPC

Technologies into CFD Solvers

SPLISS – LINEAR ALGEBRA
FOR IMPLICIT CFD METHODS

October 15th, 2025, 40th WSSP, Tohoku University, Sendai, Japan

Arne Rempke, Olaf Krzikalla, Jasmin Mohnke, Johannes Wendler, Michael Wagner,

Marco Cristofaro

Institute of Software Methods for Product Virtualization, High Performance Computing,

German Aerospace Center (DLR)

WHAT‘S THE CONTEXT

Arne Rempke, German Aerospace Center (DLR), Institute of Software

Methods for Product Virtualization, 40th WSSP, October 15th, 2025

What we (DLR aerospace) do

▪ Wind tunnel experiments

▪ Flight tests

▪ …

▪ Computational Fluid Dynamics
▪ Numerically solving nonlinear partial differential equations

▪ For implicit schemes the most expensive part is solving
linear equation systems

▪ Industrial relevant cases require efficient use of HPC
(turbulence is difficult)

Arne Rempke, German Aerospace Center (DLR), Institute of Software

Methods for Product Virtualization, 40th WSSP, October 15th, 2025

Our challenges/chances:

▪ Try to make use of current (and be ready for future) hardware technology, but codes are

often complex, large, calibrated to physical measurements and quality assured, so it is not

so easy to adopt fast

▪ Due to recent changes in hardware technology (Many-core, SIMD, GPU, …), we have

worked on new implementations

Software Approach to tackle these challenges

▪ Different CFD solvers for specific flow characteristics

▪ TRACE for turbomachinery

▪ CODA for aerodynamics

▪ …

▪ Contain physical modeling, handling of boundary conditions, nonlinear relations,

wind-tunnel calibration, transsonic/hypersonic/… flow regime, …

▪ Common library for (approximatively) solving a linear

equation system with characteristics from aeronautical CFD

▪ More focus on low-level performance and hardware technologies

▪ May adapt to specific technologies more easily due to its comparably limited

functional range

Arne Rempke, German Aerospace Center (DLR), Institute of Software

Methods for Product Virtualization, 40th WSSP, October 15th, 2025

Spliss

SPLISS OVERVIEW

Arne Rempke, German Aerospace Center (DLR), Institute of Software

Methods for Product Virtualization, 40th WSSP, October 15th, 2025

Key features of a linear solver for aeronautical CFD

Sparse matrices

▪ Dense blocks with a fixed block size or variable block sizes

▪ Mixed data types: e.g. some entries are complex, others real, some
multiscalars

Solver

▪ Different components should be combinable (as preconditioner)

▪ Robust methods for stiff CFD problems:

▪ Direct inversion of (generalized) diagonal blocks (LU/Thomas-Algorithm)

▪ Jacobi, Gauss-Seidel, GMRES, linear multigrid, …

Efficient parallelization for HPC

▪ Distributed memory (GASPI, MPI)

▪ Shared memory (Threading)

▪ GPU support

▪ Vector instructions (SIMD)

Arne Rempke, German Aerospace Center (DLR), Institute of Software

Methods for Product Virtualization, 40th WSSP, October 15th, 2025

Matrix Structure

Sparse matrices with dense blocks

▪ Blocks of fixed size (e.g. 5x5, 7x7, 12x12 for all blocks within a single sparse matrix) (finite-volume Euler or RANS

method)

▪ Blocks of variable sizes within one sparse matrix (e.g. 12x12, 48x48, 120x120 and 240x240 in one sparse matrix)

(mixed-order Discontinuous-Galerkin method)

▪ Mixed data types: e.g. some entries are complex, others real (time-spectral/harmonic balance method)

Arne Rempke, German Aerospace Center (DLR), Institute of Software

Methods for Product Virtualization, 40th WSSP, October 15th, 2025

complexreal

Solver Structure

Robust methods for stiff CFD problems:

▪ Block- and line-implicit methods relying on a direct solution of

diagonal blocks (LU) or tridiagonal blocks (=lines, Thomas-

Algorithm)

▪ Jacobi, Gauss-Seidel, GMRES, linear multigrid, …

Arne Rempke, German Aerospace Center (DLR), Institute of Software

Methods for Product Virtualization, 40th WSSP, October 15th, 2025

Line B-LU
(Th.-Alg.)

LMG
GMRES

(Jcb 2nd)

iterative

direct line-block solution

LMG
GMRES
(Jcb 1st)

precond.preconditioned

Line B-GS
(Jcb 1st)

iterative iterative direct

Line B-LU
(Th.-Alg.)

LMG
GMRES
(full Jcb)

iterative

direct line-block solutionpreconditioned

Line B-GS
(full Jcb)

iterative direct

B-LULMG
GMRES

(Jcb 2nd)

iterative

direct block solutionpreconditioned

B-GS
(Jcb 1st)

iterative direct

B-LU

direct block solution

B-Jacobi
(Jcb 1st)

iterative direct

Example 1

Example 2

Example 3

Example 4

ALGORITHMICAL FEATURES

Arne Rempke, German Aerospace Center (DLR), Institute of Software

Methods for Product Virtualization, 40th WSSP, October 15th, 2025

Flexible solver components

▪ Standard linear algebra packages provide solver/preconditioner combination:

▪ Spliss supports to chain multiple solver components, even with different

linear operators:

Arne Rempke, German Aerospace Center (DLR), Institute of Software

Methods for Product Virtualization, 40th WSSP, October 15th, 2025

ILU(n)GMRES

preconditioned

Block LU
decomposition

LMG
GMRES

(matrix-free)

iterative

direct block solutionpreconditioned

Multi-color
Gauss-Seidel

iterative direct

Line Inversion
(Block-Th.-Alg.)

LMG
FGMRES

(matrix-free)

iterative

direct line-block
solution

LMGGMRES

precond.preconditioned

Jacobi

iterative iterative direct

x = GMRes(A).Apply(b):
 𝑣0 = 𝑏 − 𝐴 𝑥
 for 𝑖 = 0, … , maxIts:

𝑤 = 𝐴(Successor(𝑣𝑖))
 𝑣𝑖+1 = Orthonormalize 𝑤
 Update(𝐻, 𝛾)
 Solve 𝐻 𝑦 = 𝛾
 𝑤 = σ𝑖 𝑦𝑖𝑣𝑖

 𝑥 += Successor(𝑤)

x = Jacobi(A).Apply(b):
 if (𝐴 − 𝐴OffDiagonal = SuccessorMatrix):

 for 𝑖 = 0, … , maxIts:
 𝑟 = 𝑏 − 𝐴OffDiagonal 𝑥

 𝑥 = 1 − 𝜆 𝑥 + λ Successor(𝑟)
 else:
 for 𝑖 = 0, … , maxIts:
 𝑟 = 𝑏 − 𝐴 𝑥
 𝑥 += λ Successor(𝑟)

x = LU(D).Apply(b):
 𝑥 = 𝐷−1𝑏

GMRes(𝐴) Jacobi(𝐴) LU(𝐴Diagonal)

right preconditioned direct diagonal

solution

Note that in case the

matrices for different

solver components

match really well, an

optimized version is

applied

Solver chaining

Arne Rempke, German Aerospace Center (DLR), Institute of Software

Methods for Product Virtualization, 40th WSSP, October 15th, 2025

Featured Solver Components

Arne Rempke, German Aerospace Center (DLR), Institute of Software

Methods for Product Virtualization, 40th WSSP, October 15th, 2025

?
Matrix-free

operator

?
Linear Operator

(F)GMRes

BiCGStab

CG

= +

Matrix 𝐴 𝐴Diagonal𝐴OffDiagonal

LU

Invertible diagonalApplicable off-diagonal

= +

Jacobi

Gauss-
Seidel

ILU

Block-
Inversion

Lines-
Inversion

Linear Multigrid

Linear Multigrid Level

Multigrid Solver Component

▪ Each level can use its own smoother

▪ Transfer operators can be user-

provided

Flexible integration

▪ Reduction of time to solution by 1/3

already for very small test case

RAE2822 65k elements, CODA

Arne Rempke, German Aerospace Center (DLR), Institute of Software

Methods for Product Virtualization, 40th WSSP, October 15th, 2025

LUJacobi

Linear Multigrid

Linear Multigrid Level

Linear Multigrid Level

LUJacobi

LUJacobi

GMRes

LUJacobiGMRes

Algebraic agglomerations visualized

▪ Agglomerations are computed simply by inspecting

the matrix connectivity, not the values

▪ When the matrix blocks correspond to geometrical

elements/vertices, the agglomerates can be

visualized in the original mesh

▪ First level agglomerates for

a vertex-based discretization

Arne Rempke, German Aerospace Center (DLR), Institute of Software

Methods for Product Virtualization, 40th WSSP, October 15th, 2025

Algebraic agglomerations visualized

▪ First level agglomerates for a volume-based discretization (CODA FV)

CODA integration and images by Wojciech LaskowskiArne Rempke, German Aerospace Center (DLR), Institute of Software

Methods for Product Virtualization, 40th WSSP, October 15th, 2025

Lines Inversion / Thomas Algorithm

▪ Jacobi-method uses a diagonal inversion:

𝑥(𝑖+1) ≔ 𝑥 𝑖 + 𝐷−1 𝑏 − 𝐴𝑥(𝑖)

 where

▪ 𝐷 ∶= diag(𝐴) (point-implicit) or

▪ Especially favourable/needed when mesh has very

anisotropic cells, aspect ratios ≥5000:1

Arne Rempke, German Aerospace Center (DLR), Institute of Software

Methods for Product Virtualization, 40th WSSP, October 15th, 2025

▪ 𝐷 ∶= tridiag(𝐴) (lines-implicit)

Improvements in line detection algorithm

Improvements especially for

▪ high proportion of elements in lines

▪ vertex-based discretizations

➔

Arne Rempke, German Aerospace Center (DLR), Institute of Software

Methods for Product Virtualization, 40th WSSP, October 15th, 2025

Efficiency of the tailored solver components

▪ Red solid curve is a „standard

linear solver“

▪ Multigrid gives speedup of 2-3

(dashed)

▪ LinesInversion gives additional

speedup of 3-4 (black/blue)

Arne Rempke, German Aerospace Center (DLR), Institute of Software

Methods for Product Virtualization, 40th WSSP, October 15th, 2025

MG: 3xLines: 4x

INCREASING PERFORMANCE:
MIXED PRECISION

Arne Rempke, German Aerospace Center (DLR), Institute of Software

Methods for Product Virtualization, 40th WSSP, October 15th, 2025

Mixed precision

▪ Idea: Reduce memory footprint of inner hot

loops since performance is memory bound

Arne Rempke, German Aerospace Center (DLR), Institute of Software

Methods for Product Virtualization, 40th WSSP, October 15th, 2025

25

50

100

200

400

1 2 3 4 5 6 7 8

Ti
m

e
to

 s
o

lu
ti

o
n

 [
s]

#nodes

CRM testcase on CARO: time to solution

inner mixed precision full double precision

LU
Decomposition

LMG
GMRES

(matrix free)

iterative

direct line-block
solution

LMG
double -> float

Conversion

precond.preconditioned

Jacobi

converter iterative direct

double precision single precision

▪ User still provides matrix / input vectors

and receives solution vector in double

precision

▪ Inner Spliss solver components operate

in float precision

Time to solution

reduced by factor 2.1

Investigations on numerical influence of mixed precision

▪ When the reduced precision is

used too much, numerical errors

can occur:

▪ Obvious for updates below single

precision accuracy

▪ But: also relevant for right-

preconditioned GMRES (operating

in high precision!) since the final

update within the Krylov subspace

is only computed in low precision

BIGauss
Seidel

Linear Multigrid

Linear Multigrid Level

Linear Multigrid Level

BIGauss
Seidel

BIGauss
Seidel

GMRes

BIGauss
Seidel

Linear Multigrid

Linear Multigrid Level

Linear Multigrid Level

BIGauss
Seidel

BIGauss
Seidel

double → float
conversionGMRes

soliddashed

Single

precision

eps: 1e-7

Arne Rempke, German Aerospace Center (DLR), Institute of Software

Methods for Product Virtualization, 40th WSSP, October 15th, 2025

GMRES(m) – variation of m

Almost entire MP runtime benefit lost due to more iterations

Arne Rempke, German Aerospace Center (DLR), Institute of Software

Methods for Product Virtualization, 40th WSSP, October 15th, 2025

GMRES – algorithm

Arne Rempke, German Aerospace Center (DLR), Institute of Software

Methods for Product Virtualization, 40th WSSP, October 15th, 2025

GMRES – source of problem: solution update

Possible solutions:

• Restart when single precision accuracy reached problem specific setting or

implementation of a custom restart criterion

• F-GMRES stores preconditioned Krylov vectors

 at the cost of additional memory

• Matrix only mixed precision vectors are kept in double precision

no full advantage from mixed precision

Applies preconditioner

to the sum of the weighted directions

 to save computational cost

Arne Rempke, German Aerospace Center (DLR), Institute of Software

Methods for Product Virtualization, 40th WSSP, October 15th, 2025

PARALLELIZATION AND SCALABILITY

Arne Rempke, German Aerospace Center (DLR), Institute of Software

Methods for Product Virtualization, 40th WSSP, October 15th, 2025

Main Operation during Solving: d = A ∙ s

With:

s: Source Vector

d: Destination Vector

A: Matrix

Formula: 𝒅𝒊 = σ𝑗=0
𝑁 𝑨𝒊𝒋 ∙ 𝒔𝒋

→ All rows can be computed independently.

Arne Rempke, German Aerospace Center (DLR), Institute of Software

Methods for Product Virtualization, 40th WSSP, October 15th, 2025

s

dA

Distributed Memory Parallelization

Arne Rempke, German Aerospace Center (DLR), Institute of Software

Methods for Product Virtualization, 40th WSSP, October 15th, 2025

Pure local

Halo-dependent

Entries on other processes

Local entries

Entries on other processes

Halo entries (originate
from other processes)

Destination vector

Source vector

Start sending
halo data

Computation of
pure local parts

Computation of
halo parts

Program run:

Shared Memory Parallelization

Straightforward derived from cluster level parallelization

▪ Every thread computes some rows

▪ Same strategy on CPU and GPU

Arne Rempke, German Aerospace Center (DLR), Institute of Software

Methods for Product Virtualization, 40th WSSP, October 15th, 2025

s

d

Thread 1

Thread 2

No synchronization

needed for write

Threading model

▪ Typical design of a library

▪ Single threaded

entry/exit points

▪ Unnecessary burden

if the user code also uses

threads

Arne Rempke, German Aerospace Center (DLR), Institute of Software

Methods for Product Virtualization, 40th WSSP, October 15th, 2025

▪ Spliss design

▪ Allows to enter/exit with all threads

GPU Parallelization

▪ Similar as for Multithreading

▪ Using alpaka* allows us to write a single Kernel to be executed

on CPU or GPU

▪ Spliss hides the CUDA backend/compiler/… from user code:

▪ Explicit template instantiations of CUDA-dependent classes on Spliss compilation

▪ No necessity to use nvcc for user code

▪ Since Spliss is a C++ template library, user calls to small functions, e.g.

A[row][col] += myContribution;

 can still be inlined, allowing a seamless integration while capsulating

 the actual memory layout

* https://github.com/alpaka-group/alpaka

Arne Rempke, German Aerospace Center (DLR), Institute of Software

Methods for Product Virtualization, 40th WSSP, October 15th, 2025

Efficiency: Scalability on Current Systems (CARA)

Scalability assessment on DLR’s production system CARA

▪ Strong scaling (CRM, fixed problem size, 24M elements):

▪ Scaling from 1 – 512 nodes (largest available partition)

▪ Reduce runtime from 1.2 days to 4.2 minutes

▪ Small mesh: just 730 elements/core @ 32,768 cores

▪ Scaling 64 – 32,768 cores: 85% strong scaling efficiency

▪ Small super-linear speedup

▪ Weak scaling (CRM, fixed workload per core, 3M – 192M elements):

▪ Scaling 512 – 32,768 cores: 96% weak scaling efficiency

Arne Rempke, German Aerospace Center (DLR), Institute of Software

Methods for Product Virtualization, 40th WSSP, October 15th, 2025

Runtime | strong scaling 24M elements

Runtime | weak scaling 3M–192M elements

Scalability of the Entire Workflow (FlowSimulator)

Scalability assessment on DLR’s production system CARO

▪ The entire workflow needs to …

▪ support large meshes (>1B elements)

▪ support large core counts (>1M cores)

Achievements (so far)

▪ Several improvements in FlowSimulator to scale to full system

▪ Improved hierarchical graph partitioning

▪ Support for meshes >1 billion elements tested

▪ Efficient scaling to 131,072 cores (full system CARO@DLR)

Arne Rempke, German Aerospace Center (DLR), Institute of Software

Methods for Product Virtualization, 40th WSSP, October 15th, 2025

Runtime | CARO (AMD Rome) vs. Juwels (4x Nvidia A100)

M6 wing, 69.2M elements, implicit Euler, Jacobi + Block Inv.

12k

128 GPUs

64 GPUs

32 GPUs

8k

6k

4k

Heterogeneity: Support for Nvidia GPUs via Spliss

System – Juwels Booster

▪ AMD Epyc 7401 (2x 24 cores) per node

▪ 4x Nvidia Tesla A100 per node

System – CARO

▪ Nodes with 128 cores (AMD Rome, 2x CARA)

▪ 8 memory channels @3.2GHz (1.2x CARA)

Observations

▪ Node-wise comparison (“unfair”): 8-9x speedup

▪ Energy-wise comparison (“fair”): 1.6-1.9 speedup

▪ Performance limited by non-linear part on slow CPU

▪ Hypothetical Juwels Booster node with CARO CPU:

1.8-2.3 speedup (energy-wise)

Arne Rempke, German Aerospace Center (DLR), Institute of Software

Methods for Product Virtualization, 40th WSSP, October 15th, 2025

J. Mohnke and M. Wagner: A Look at Performance and Scalability of

the GPU Accelerated Sparse Linear System Solver Spliss. In: Euro-

Par 2023: Parallel Processing. DOI 10.1007/978-3-031-39698-4_43

GPU Development
Impact of GPU support of Spliss on application wallclock time

▪ For implicit methods in CODA, linear equation systems are solved via Spliss

▪ Thus, only the linear part of CODA benefits from GPUs

▪ For future system with more or more powerful GPUs the non-linear part may become bottleneck

Arne Rempke, German Aerospace Center (DLR), Institute of Software

Methods for Product Virtualization, 40th WSSP, October 15th, 2025

40% 60%

4% 96% …

30% 70%

55% 45%

CARO

Juwels Booster

Juwels Booster with

CARO CPU

Future system with 8

A100 per node

1.4 Speedup for

1.8x Energy

non-linear linear CPU / linear GPU

QUESTIONS?

Arne Rempke, German Aerospace Center (DLR), Institute of Software

Methods for Product Virtualization, 40th WSSP, October 15th, 2025

	Folie 1: Spliss – Linear Algebra for implicit CFD methods
	Folie 2: What‘s the context
	Folie 3: What we (DLR aerospace) do
	Folie 4: Software Approach to tackle these challenges
	Folie 5: Spliss Overview
	Folie 6: Key features of a linear solver for aeronautical CFD
	Folie 7: Matrix Structure
	Folie 8: Solver Structure
	Folie 9: Algorithmical features
	Folie 10: Flexible solver components
	Folie 11: Solver chaining
	Folie 12: Featured Solver Components
	Folie 13: Multigrid Solver Component
	Folie 14: Algebraic agglomerations visualized
	Folie 15: Algebraic agglomerations visualized
	Folie 16: Lines Inversion / Thomas Algorithm
	Folie 17: Improvements in line detection algorithm
	Folie 18: Efficiency of the tailored solver components
	Folie 19: Increasing performance: Mixed precision
	Folie 20: Mixed precision
	Folie 21: Investigations on numerical influence of mixed precision
	Folie 22: GMRES(m) – variation of m
	Folie 23: GMRES – algorithm
	Folie 24: GMRES – source of problem: solution update
	Folie 25: ParalLelization And Scalability
	Folie 26: Main Operation during Solving: d = A Punkt s
	Folie 27: Distributed Memory Parallelization
	Folie 28: Shared Memory Parallelization
	Folie 29: Threading model
	Folie 30: GPU Parallelization
	Folie 31: Efficiency: Scalability on Current Systems (CARA)
	Folie 32: Scalability of the Entire Workflow (FlowSimulator)
	Folie 33: Heterogeneity: Support for Nvidia GPUs via Spliss
	Folie 34: GPU Development Impact of GPU support of Spliss on application wallclock time
	Folie 35: Questions?

