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WHAT'S THE CONTEXT
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What we (DLR aerospace) do

DLR

Wind tunnel experiments
Flight tests

Computational Fluid Dynamics
= Numerically solving nonlinear partial differential equations

= For implicit schemes the most expensive part is solving
linear equation systems

» |ndustrial relevant cases require efficient use of HPC
(turbulence is difficult)

Our challenges/chances:

* Try to make use of current (and be ready for future) hardware technology, but codes are
often complex, large, calibrated to physical measurements and quality assured, so it is not
SO0 easy to adopt fast

» Due to recent changes in hardware technology (Many-core, SIMD, GPU, ...), we have
worked on new implementations
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Software Approach to tackle these challenges ‘#7
DLR

= Different CFD solvers for specific flow characteristics
» TRACE for turbomachinery
= CODA for aerodynamics

= Contain physical modeling, handling of boundary conditions, nonlinear relations,
wind-tunnel calibration, transsonic/hypersonic/... flow regime, ...

= Common library for (approximatively) solving a linear D‘ Spl ISS

equation system with characteristics from aeronautical CFD
= More focus on low-level performance and hardware technologies

= May adapt to specific technologies more easily due to its comparably limited
functional range
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Key features of a linear solver for aeronautical CFD

DLR

Sparse matrices
= Dense blocks with a fixed block size or variable block sizes

= Mixed data types: e.g. some entries are complex, others real, some
multiscalars

Solver
= Different components should be combinable (as preconditioner)

» Robust methods for stiff CFD problems:
= Direct inversion of (generalized) diagonal blocks (LU/Thomas-Algorithm)
= Jacobi, Gauss-Seidel, GMRES, linear multigrid, ...

Efficient parallelization for HPC
= Distributed memory (GASPI, MPI)
» Shared memory (Threading)

= GPU support

= Vector instructions (SIMD)
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Matrix Structure
DLR

Sparse matrices with dense blocks

= Blocks of fixed size (e.g. 5x5, 7x7, 12x12 for all blocks within a single sparse matrix) (finite-volume Euler or RANS
method)

= Blocks of variable sizes within one sparse matrix (e.g. 12x12, 48x48, 120x120 and 240x240 in one sparse matrix)
(mixed-order Discontinuous-Galerkin method)

= Mixed data types: e.g. some entries are complex, others real (time-spectral/harmonic balance method)

|
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Solver Structure

DLR
direct block solution
. Example 1 Elcjsclos,?)l B-LU
Robust methods for stiff CFD problems:
/t iterative /t direct
= Block- and line-implicit methods relying on a direct solution of preconditioned direct block solution
diagonal blocks (LU) or tridiagonal blocks (=lines, Thomas- s GVIRES m L
. xample o
Algorithm) Ucb 2nd)
. . . .. /h iterative /t iterative /t direct
= Jacobi, Gauss-Seidel, GMRES, linear multigrid, - o _
preconditioned direct line-block solution
Examole 3 Line B-GS Line B-LU
. . P (fuIIJcb) (Th -Alg.)
iterative iterative direct
preconditioned precond. direct line-block solution
Examole 4 GMRES Line B-GS Line B-LU
pe (Jcb 2nd) (Jcb 1st) (Th “Alg.)

iterative iterative iterative direct

n o n
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Flexible solver components ‘#7
DLR
» Standard linear algebra packages provide solver/preconditioner combination:

preconditioned

» Spliss supports to chain multiple solver components, even with different
linear operators:

iti i i irect line-bl
preconditioned direct block solution preconditioned precond. direct line-block

solution
GMRES MUIti'CO-IOr Block LU FGMRES Line Inversion
(DS ) Gauss-Seidel decomposition (matrix-free) (Block-Th.-Alg.)

/L iterative /L iterative /L direct /h iterative /L iterative /L iterative /L direct
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Solver chaining

right preconditioned direct diagonal DLR
l_ solution
Jacobi(4) I-U(“lDiagonal)
X = GMRes(A).Apply(b): x = Jacobi(A).Apply(b): x = LU(D).Apply(b):
Vo=b—Ax if (A- AoffDiagonal = Successorpatrix) x=D"1h
for i =0, ..., maxlts: for i =0,..., maxlts:
w = A(Successor(v;)) r = b — AQfDiagonal X
V;4+1 = Orthonormalize(w) x=(1—Dx +7%
Update(H, y) —
Solve Hy =y SESe
7 = e for i =0,.., maxlts: Note that in case the
o e Sluécéssor(w) r=b-—Ax matrices for different
X +=A solver components

match really well, an
optimized version is
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Featured Solver Components A#y
? E;'l DLR
351

o

Matrix-free

+

operator

Linear Operator Matrix A A0ffDiagonal ADjagonal

Block-
LU Inversion

BiCGStab

Linear Multigrid
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Multigrid Solver Component A#y
DLR

Lj Multigrid LU

Flexible integration m mearJ o % W
Linear Multigrid Level :

. 61 inear Multigrid Leve - LU
= Each level can use its own smoother 10 L * DD

» Transfer operators can be user- 10¢ By
provided \

Linear multigrid
Jacobi

) GMRes) Jacobi JMIY
RAE2822 65k elements, CODA

AVAY
» Reduction of time to solution by 1/3 \ \
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Algebraic agglomerations visualized

» Agglomerations are computed simply by inspecting

the matrix connectivity, not the values

* When the matrix blocks correspond to geometrical
elements/vertices, the agglomerates can be

visualized in the original mesh
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a vertex-based discretization



Algebraic agglomerations visualized

DLR
» First level agglomerates for a volume-based discretization (CODA FV)
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Lines Inversion / Thomas Algorithm ‘#7
DLR

» Jacobi-method uses a diagonal inversion:
xD = xO + p=1(p — AxD)

where

» D := diag(4) (point-implicit) or » D := tridiag(4) (lines-implicit)
L

» Especially favourable/needed when mesh has very
anisotropic cells, aspect ratios >5000:1
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Improvements in line detection algorithm

DLR
Improvements especially for

= high proportion of elements in lines

= vertex-based discretizations

WA
N
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Efficiency of the tailored solver components ‘#7
DLR

= Red solid curve is a ,standard ) CRM 29M nodes, Linear Elasticity, 512 processes
linear solver* ok | - [Cowmesmesaw
| (100) MG(8V01) GS(2) LU :
. . . 102 h —— GMRES(100) GS(2) LI g
» Multigrid gives speedup of 2-3 "l - GMRES(100) MG(BVO1) GS@2) LU f
L 1 —— GMRES(100) GS(2) Li(new)
(daShed) 10" B - - - GMRES(100) MG(8V01) GS(2) LI(new)/LU |
. . . .. 10%
= LineslInversion gives additional o |
speedup of 3-4 (black/blue) ERT
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INCREASING PERFORMANCE:
MIXED PRECISION
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Mixed precision ‘#7
DLR

direct line-block

» |dea: Reduce memory footprint of inner hot preconditioned u precond. solution
loops since performance is memory bound w W

Decomposition

/t iterative /L converter /L iterative /L direct

CRM testcase on CARO: time to solution

\ Y )\ Y )
400 double precision single precision
g = User still provides matrix / input vectors
and receives solution vector in double
" precision
. = Inner Spliss solver components operate

P2 s 4 s s 7 s in float precision

#nodes

==@=inner mixed precision =@=full double precision
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Investigations on numerical influence of mixed precision

* When the reduced precision Is
used too much, numerical errors
can occur:

» Obvious for updates below single
precision accuracy

= But: also relevant for right-
preconditioned GMRES (operating
In high precision!) since the final
update within the Krylov subspace
IS only computed in low precision

Relative residuum
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GMRES(m) — variation of m

DP-GMRES(mn)
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= |
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Almost entire MP runtime benefit lost due to more iterations
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GMRES - algorithm

Algorithm 1 GMRES with Right Preconditioner

Require: Matrix A, single precision right preconditioner inverse P, right-hand side

—
@

11:
12:
13:
14:

15:
16:

vector b, initial guess x

r+b— Az > Initial residual

vo  1/||r|| > Normalize residual

while ||r|| > tol do > Main iteration loop
for 7=0,1,2,...,n do

Z; {—ﬁvj) > Apply right preconditioner

w; +— Az; > Matrix-vector product

Perform Arnoldi process (classical Gram-Schmidt) to orthogonalize w;
Update Hessenberg matrix H

Vi1 wj/||w;| > Normalize new Krylov vector
end for
Solve Hy = > Least-squares solve for coefficients
T T+w > Update solution
r+«b— Ax > Recompute residual
end while
return =

Arne Rempke, German Aerospace Center (DLR), Institute of Software
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GMRES - source of problem: solution update ‘#7
DLR

Classical MGS-GMRES update (error prone):

n n Applies preconditioner
w P>y | # Yy P (v;) ——{ to the sum of the weighted directions
7=0 7=0 to save computational cost

However casting to SP is not a linear operation, thus:

nonlinear nonlinear

P (yjvi) #vy; P (vj)

Possible solutions:

» Restart when single precision accuracy reached problem specific setting or
Implementation of a custom restart criterion

* F-GMRES stores preconditioned Krylov vectors
at the cost of additional memory

« Matrix only mixed precision vectors are kept in double precision
no full advantage from mixed precision

Arne Rempke, German Aerospace Center (DLR), INSUtuie ol sortware
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PARALLELIZATION AND SCALABILITY
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Main Operation during Solving: d =A-s

With:
S: Source Vector

d: Destination Vector
A: Matrix

Formula: d; = Y7o 4;; - s;

-> All rows can be computed independently.
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Distributed Memory Parallelization
DLR

é ) Halo entries (originate

Prog ram run: from other processes)
Source vector

Start sending
halo data

Destination vector

Computation of
pure local parts

Pure local

T~

€son ¢ Entries on other processes

Local entries

Computation of
halo parts

Ny

alo-dependent

Arne Rempke, German Aerospace Center (DLR), Institute of Software
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Shared Memory Parallelization ‘#7
DLR

Straightforward derived from cluster level parallelization

= Every thread computes some rows
No synchronization

= Same strategy on CPU and GPU needed for write

Thread 1

Thread 2

Arne Rempke, German Aerospace Center (DLR), Institute of Software
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Threading model ‘#7
DLR

= Typical design of a library = Spliss design
= Single threaded Thiaads
entry/exit points
Application
Fork at Enter: .
Start Barrier A 4
Library
JoinatRetun: ¥ vy vy
Stop Barrier —
=
Application
» Unnecessary burden ¥
If the user code also uses
threads = Allows to enter/exit with all threads

Arne Rempke, German Aerospace Center (DLR), Institute of Software
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GPU Parallelization ‘#7
DLR

= Similar as for Multithreading

» Using alpaka* allows us to write a single Kernel to be executed a I{(‘)a ka
on CPU or GPU

= Spliss hides the CUDA backend/compiler/... from user code:

= Explicit template instantiations of CUDA-dependent classes on Spliss compilation
= No necessity to use nvcc for user code

» Since Spliss is a C++ template library, user calls to small functions, e.g.
A[row][col] += myContribution;

can still be inlined, allowing a seamless integration while capsulating
the actual memory layout

* https://github.com/alpaka-group/alpaka
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Efficiency: Scalability on Current Systems (CARA)

DLR

Runtime | strong scaling 24M elements

Scalability assessment on DLR’s production system CARA R T
» Strong scaling (CRM, fixed problem size, 24M elements): %100
= Scaling from 1 — 512 nodes (largest available partition) 2
» Reduce runtime from 1.2 days to 4.2 minutes 2 5
= Small mesh: just 730 elements/core @ 32,768 cores ] - © - CODA2024.06,Spliss 3.3 109%%
= Scaling 64 — 32,768 cores: 85% strong scaling efficiency N 12:63[ h soas 8199 3278

Runtime | weak scaling 3M-192M elements

»
88% _ - “72%

» Small super-linear speedup

» Weak scaling (CRM, fixed workload per core, 3M — 192M elements): 9%

W
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» Scaling 512 — 32,768 cores: 96% weak scaling efficiency

time to solution (min)
]
o

=
o

— ® — CODA 2022.10, Spliss 2.1
— # — CODA 2024.06, Spliss 3.3
Ideal

0 o L
512 2048 8192 32768
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Scalability of the Entire Workflow (FlowSimulator) ‘#7
DLR

Runtime | strong scaling
CRM-HL: 723M elements

Scalability assessment on DLR’s production system CARO

= The entire workflow needs to ... e
= support large meshes (>1B elements) E f “202*3
§10 b ull syste
= support large core counts (>1M cores) gl" i
-:GEE LE L, t """" Ne
Achievements (so far) e 2024 2022 limit
i Ideal
= Several improvements in FlowSimulator to scale to full system T e s ame 1mom

number of cores

= Improved hierarchical graph partitioning
= Support for meshes >1 bhillion elements tested
= Efficient scaling to 131,072 cores (full system CARO@DLR)

Arne Rempke, German Aerospace Center (DLR), Institute of Software
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Heterogeneity: Support for Nvidia GPUs via Spliss

DLR
System - Juwels Boos(ter | ber nod Vi wing, 69,20 elements. mplioh Euler, Jacobi + Elock Inv
= AMD Epyc 7401 (2x 24 cores) per node 90 — : : -
= 4x Nvidia Tesla A100 per node so{ 4 ﬁ o J:lzﬁgiafooéﬁrr];fﬂwm)
'|. 1‘ —k - est. Booster w/ CARO CPU (~2000W/node)
System — CARO 14 ".\
= Nodes with 128 cores (AMD Rome, 2x CARA) £ 601 il
= 8 memory channels @3.2GHz (1.2x CARA) é 50 ?‘1 \-\
= no Ak
Observations £ 1:.\ N
= Node-wise comparison (“unfair”): 8-9x speedup 2 301 '\f:.\ S
» Energy-wise comparison (“fair”): 1.6-1.9 speedup 20 ‘\'.‘]al:;_":%'i_,hh' =i
= Performance limited by non-linear part on slow CPU ;| 32GPUS ™ Ty, AL | 128 GPUs
= Hypothetical Juwels Booster node with CARO CPU: | | saGPus | [T
1.8-2.3 speedup (energy-wise) 10 D werinkw » °0

J. Mohnke and M. Wagner: A Look at Performance and Scalability of
the GPU Accelerated Sparse Linear System Solver Spliss. In: Euro-
Par 2023: Parallel Processing. DOI 10.1007/978-3-031-39698-4 43
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GPU Development ‘#7
Impact of GPU support of Spliss on application wallclock time DLR

» For implicit methods in CODA, linear equation systems are solved via Spliss
» Thus, only the linear part of CODA benefits from GPUs

» For future system with more or more powerful GPUs the non-linear part may become bottleneck

96% EEE I
Juwels Booster with 1.4 Speedup for
0) 0)

Future system with 8
A100 per node

non-linear linear CPU / linear GPU

CARO 4%

Juwels Booster

55% 45%

Arne Rempke, German Aerospace Center (DLR), Institute of Software
Methods for Product Virtualization, 40th WSSP, October 15th, 2025
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