SPLISS — LINEAR ALGEBRA
FOR IMPLICIT CEFD METHODS

A Sparse Linear System Solver for Transparent Integration of Emerging HPC

Technologies into CFD Solvers

October 15th, 2025, 40th WSSP, Tohoku University, Sendai, Japan

Arne Rempke, Olaf Krzikalla, Jasmin Mohnke, Johannes Wendler, Michael Wagner,

Marco Cristofaro

Institute of Software Methods for Product Virtualization, High Performance Computing,

German Aerospace Center (DLR) DLR

WHAT'S THE CONTEXT

Arne Rempke, German Aerospace Center (DLR), Institute of Software
Methods for Product Virtualization, 40th WSSP, October 15th, 2025

What we (DLR aerospace) do

DLR

Wind tunnel experiments
Flight tests

Computational Fluid Dynamics
= Numerically solving nonlinear partial differential equations

= For implicit schemes the most expensive part is solving
linear equation systems

» |ndustrial relevant cases require efficient use of HPC
(turbulence is difficult)

Our challenges/chances:

* Try to make use of current (and be ready for future) hardware technology, but codes are
often complex, large, calibrated to physical measurements and quality assured, so it is not
SO0 easy to adopt fast

» Due to recent changes in hardware technology (Many-core, SIMD, GPU, ...), we have
worked on new implementations

Arne Rempke, German Aerospace Center (DLR), Institute of Software
Methods for Product Virtualization, 40th WSSP, October 15th, 2025

Software Approach to tackle these challenges ‘#7
DLR

= Different CFD solvers for specific flow characteristics
» TRACE for turbomachinery
= CODA for aerodynamics

= Contain physical modeling, handling of boundary conditions, nonlinear relations,
wind-tunnel calibration, transsonic/hypersonic/... flow regime, ...

= Common library for (approximatively) solving a linear D‘ Spl ISS

equation system with characteristics from aeronautical CFD
= More focus on low-level performance and hardware technologies

= May adapt to specific technologies more easily due to its comparably limited
functional range

Arne Rempke, German Aerospace Center (DLR), Institute of Software
Methods for Product Virtualization, 40th WSSP, October 15th, 2025

Key features of a linear solver for aeronautical CFD

DLR

Sparse matrices
= Dense blocks with a fixed block size or variable block sizes

= Mixed data types: e.g. some entries are complex, others real, some
multiscalars

Solver
= Different components should be combinable (as preconditioner)

» Robust methods for stiff CFD problems:
= Direct inversion of (generalized) diagonal blocks (LU/Thomas-Algorithm)
= Jacobi, Gauss-Seidel, GMRES, linear multigrid, ...

Efficient parallelization for HPC
= Distributed memory (GASPI, MPI)
» Shared memory (Threading)

= GPU support

= Vector instructions (SIMD)

Arne Rempke, German Aerospace Center (DLR), Institute of Software
Methods for Product Virtualization, 40th WSSP, October 15th, 2025

Matrix Structure
DLR

Sparse matrices with dense blocks

= Blocks of fixed size (e.g. 5x5, 7x7, 12x12 for all blocks within a single sparse matrix) (finite-volume Euler or RANS
method)

= Blocks of variable sizes within one sparse matrix (e.g. 12x12, 48x48, 120x120 and 240x240 in one sparse matrix)
(mixed-order Discontinuous-Galerkin method)

= Mixed data types: e.g. some entries are complex, others real (time-spectral/harmonic balance method)

|

Arne Rempke, German Aerospace Center (DLR), Institute of Software

Methods for Product Virtualization, 40th WSSP, October 15th, 2025

Solver Structure

DLR
direct block solution
. Example 1 Elcjsclos,?)l B-LU
Robust methods for stiff CFD problems:
/t iterative /t direct
= Block- and line-implicit methods relying on a direct solution of preconditioned direct block solution
diagonal blocks (LU) or tridiagonal blocks (=lines, Thomas- s GVIRES m L
. xample o
Algorithm) Ucb 2nd)
. /h iterative /t iterative /t direct
= Jacobi, Gauss-Seidel, GMRES, linear multigrid, - o _
preconditioned direct line-block solution
Examole 3 Line B-GS Line B-LU
. . P (fuIIJcb) (Th -Alg.)
iterative iterative direct
preconditioned precond. direct line-block solution
Examole 4 GMRES Line B-GS Line B-LU
pe (Jcb 2nd) (Jcb 1st) (Th “Alg.)

iterative iterative iterative direct

n o n

Arne Rempke, German Aerospace Center (DLR), Institute of Software
Methods for Product Virtualization, 40th WSSP, October 15th, 2025

KR

‘ NS

:) e -
3 AL ; >
. ' b Yo 4
S S
- '\vrf. E\‘v}_:‘. ‘i ‘4 ‘ﬁ‘;\% =
{ S il& A
g TS

== & yg,‘ RIS %
- ” 1 % Mu]g‘&'
RIS
s AN s AV,

ALGORITH AL FEAT

Ay B g s S S A A

A AV A A A R s i

DAY 0 Ny S A S o S A S
I e S N P A A A AP

%"-‘-’3 X% ".A'!.ﬁ'ﬁ'l"éeg' AT IAVE S A7

Flexible solver components ‘#7
DLR
» Standard linear algebra packages provide solver/preconditioner combination:

preconditioned

» Spliss supports to chain multiple solver components, even with different
linear operators:

iti i i irect line-bl
preconditioned direct block solution preconditioned precond. direct line-block

solution
GMRES MUIti'CO-IOr Block LU FGMRES Line Inversion
(DS) Gauss-Seidel decomposition (matrix-free) (Block-Th.-Alg.)

/L iterative /L iterative /L direct /h iterative /L iterative /L iterative /L direct

Arne Rempke, German Aerospace Center (DLR), Institute of Software
Methods for Product Virtualization, 40th WSSP, October 15th, 2025

Solver chaining

right preconditioned direct diagonal DLR
l_ solution
Jacobi(4) I-U(“lDiagonal)
X = GMRes(A).Apply(b): x = Jacobi(A).Apply(b): x = LU(D).Apply(b):
Vo=b—Ax if (A- AoffDiagonal = Successorpatrix) x=D"1h
for i =0, ..., maxlts: for i =0,..., maxlts:
w = A(Successor(v;)) r = b — AQfDiagonal X
V;4+1 = Orthonormalize(w) x=(1—Dx +7%
Update(H, y) —
Solve Hy =y SESe
7 = e for i =0,.., maxlts: Note that in case the
o e Sluécéssor(w) r=b-—Ax matrices for different
X +=A solver components

match really well, an
optimized version is

Arne Rempke, German Aerospace Center (DLR), Institute of Software applled
Methods for Product Virtualization, 40th WSSP, October 15th, 2025

Featured Solver Components A#y
? E;'l DLR
351

o

Matrix-free

+

operator

Linear Operator Matrix A A0ffDiagonal ADjagonal

Block-
LU Inversion

BiCGStab

Linear Multigrid

Arne Rempke, German Aerospace Center (DLR), Institute of Software
Methods for Product Virtualization, 40th WSSP, October 15th, 2025

ILU

Gauss-
: Lines-
Seldel Inversion

Applicable off-diagonal Invertible diagonal
.I .l' u

i | n

SITRY

p o Y

Multigrid Solver Component A#y
DLR

Lj Multigrid LU

Flexible integration m mearJ o % W
Linear Multigrid Level :

. 61 inear Multigrid Leve - LU
= Each level can use its own smoother 10 L * DD

» Transfer operators can be user- 10¢ By
provided \

Linear multigrid
Jacobi

) GMRes) Jacobi JMIY
RAE2822 65k elements, CODA

AVAY
» Reduction of time to solution by 1/3 \ \

already for very small test case \
0.8 1

0"‘0.2"'0.4 0.6
TotalWallClockTime

—

o
n

/|
/

IS

DensityResidual
=

—
<
n

—
Q
=

Arne Rempke, German Aerospace Center (DLR), Institute of Software
Methods for Product Virtualization, 40th WSSP, October 15th, 2025

Algebraic agglomerations visualized

» Agglomerations are computed simply by inspecting

the matrix connectivity, not the values

* When the matrix blocks correspond to geometrical
elements/vertices, the agglomerates can be

visualized in the original mesh
AV R R .’i!i'" L] E

| -. . “'\‘ ,"4 \ ’f P Py T 4‘,

rme Remke, German Aerospacé Center (DLR), Institute ‘of Softwar& -
Methods for Product Virtualization, 40th WSSP, October 15th, 2025

/
>
\
"
N \ N
. AN
-
\ .
‘\
A - g
\
\ N T
N

First level agglomerates for
a vertex-based discretization

Algebraic agglomerations visualized

DLR
» First level agglomerates for a volume-based discretization (CODA FV)
ll
\ |
Q oY \\'tiT :
- - ,_,_X/_: S KL // f T
Arne Rempke, German Aerospace Center (DLR), Institute of Software CODA integration and images by WOjCieCh Laskowski

Methods for Product Virtualization, 40th WSSP, October 15th, 2025

Lines Inversion / Thomas Algorithm ‘#7
DLR

» Jacobi-method uses a diagonal inversion:
xD = xO + p=1(p — AxD)

where

» D := diag(4) (point-implicit) or » D := tridiag(4) (lines-implicit)
L

» Especially favourable/needed when mesh has very
anisotropic cells, aspect ratios >5000:1

Arne Rempke, German Aerospace Center (DLR), Institute of Software
Methods for Product Virtualization, 40th WSSP, October 15th, 2025

Improvements in line detection algorithm

DLR
Improvements especially for

= high proportion of elements in lines

= vertex-based discretizations

WA
N

Arne Rempke, German Aerospace Center (DLR), Institute of Software
Methods for Product Virtualization, 40th WSSP, October 15th, 2025

Efficiency of the tailored solver components ‘#7
DLR

= Red solid curve is a ,standard) CRM 29M nodes, Linear Elasticity, 512 processes
linear solver* ok | - [Cowmesmesaw
| (100) MG(8V01) GS(2) LU :
. . . 102 h —— GMRES(100) GS(2) LI g
» Multigrid gives speedup of 2-3 "l - GMRES(100) MG(BVO1) GS@2) LU f
L 1 —— GMRES(100) GS(2) Li(new)
(daShed) 10" B - - - GMRES(100) MG(8V01) GS(2) LI(new)/LU |
. 10%
= LineslInversion gives additional o |
speedup of 3-4 (black/blue) ERT

Lines: 4x

10% F ¥

02 .
10 %
10"
10% ‘ -
10-01 1 e 1

0 200 400 600 800 1000

Wall clock time [s]

Arne Rempke, German Aerospace Center (DLR), Institute of Software
Methods for Product Virtualization, 40th WSSP, October 15th, 2025

N AN -

-

INCREASING PERFORMANCE:
MIXED PRECISION

Arne Rempke, Germ

Methods for Product VirtC

Mixed precision ‘#7
DLR

direct line-block

» |dea: Reduce memory footprint of inner hot preconditioned u precond. solution
loops since performance is memory bound w W

Decomposition

/t iterative /L converter /L iterative /L direct

CRM testcase on CARO: time to solution

\ Y)\ Y)
400 double precision single precision
g = User still provides matrix / input vectors
and receives solution vector in double
" precision
. = Inner Spliss solver components operate

P2 s 4 s s 7 s in float precision

#nodes

==@=inner mixed precision =@=full double precision

Arne Rempke, German Aerospace Center (DLR), Institute of Software
Methods for Product Virtualization, 40th WSSP, October 15th, 2025

Investigations on numerical influence of mixed precision

* When the reduced precision Is
used too much, numerical errors
can occur:

» Obvious for updates below single
precision accuracy

= But: also relevant for right-
preconditioned GMRES (operating
In high precision!) since the final
update within the Krylov subspace
IS only computed in low precision

Relative residuum

dashed

Linear Multigrid Level

LOOE+00 |
|
1.00E-03 \
L)
1.00E-06
1.00E-09
1.00E-12

1.00E-15

. . . Gauss
Linear Multigrid BI
Gauss
B

Gauss B
Linear Multigrid Level Seidel
Arne Rempke, German Aerospace Center (DLR), Institu Software

Methods for Product Virtualization, 40th WSSP, October 15th, 2025

GMRes - (MixPrec) - MG - GS - BI

40

A

A

y

100

A

Single
precision
eps: le-7
60 80
Tter .
solid

= = =FullPrec -
- - = FullPrec -
- = =FullPrec -
- Restart 100
- Restart 50
- Restart 20

—— MixPrec
MixPrec
MixPrec

='='-'===-=._-

120

Linear Multigrid Level

Gauss B
Linear Multigrid Level Seidel

DLR

Restart 100
Restart 50
Restart 20

140 160

. P Gauss
Linear Multigrid BI
Gauss
B

GMRES(m) — variation of m

DP-GMRES(mn)

N - =+ MP-GMRES(m)
--------- MP-FGMRES(m)
= |
<0}
=
g 5.
~
3_
0 T I ! ' i I
0 20 40 60 80 100 120

Restart length m

Total number of iterations

DP-GMRES(m)

160 -
== MP-GMRES(m)
--------- MP-FGMRES(m)
140 A N
e
¢ 1
L4
Py |
L4 1
1204 % ‘ '
.‘. |
% .- :
B :
.............................. [T
100 -
0 20 40 60 0 100 120

Restart length m

Almost entire MP runtime benefit lost due to more iterations

Arne Rempke, German Aerospace Center (DLR), Institute of Software
Methods for Product Virtualization, 40th WSSP, October 15th, 2025

GMRES - algorithm

Algorithm 1 GMRES with Right Preconditioner

Require: Matrix A, single precision right preconditioner inverse P, right-hand side

—
@

11:
12:
13:
14:

15:
16:

vector b, initial guess x

r+b— Az > Initial residual

vo 1/||r|| > Normalize residual

while ||r|| > tol do > Main iteration loop
for 7=0,1,2,...,n do

Z; {—ﬁvj) > Apply right preconditioner

w; +— Az; > Matrix-vector product

Perform Arnoldi process (classical Gram-Schmidt) to orthogonalize w;
Update Hessenberg matrix H

Vi1 wj/||w;| > Normalize new Krylov vector
end for
Solve Hy = > Least-squares solve for coefficients
T T+w > Update solution
r+«b— Ax > Recompute residual
end while
return =

Arne Rempke, German Aerospace Center (DLR), Institute of Software
Methods for Product Virtualization, 40th WSSP, October 15th, 2025

DLR

GMRES - source of problem: solution update ‘#7
DLR

Classical MGS-GMRES update (error prone):

n n Applies preconditioner
w P>y | # Yy P (v;) ——{ to the sum of the weighted directions
7=0 7=0 to save computational cost

However casting to SP is not a linear operation, thus:

nonlinear nonlinear

P (yjvi) #vy; P (vj)

Possible solutions:

» Restart when single precision accuracy reached problem specific setting or
Implementation of a custom restart criterion

* F-GMRES stores preconditioned Krylov vectors
at the cost of additional memory

« Matrix only mixed precision vectors are kept in double precision
no full advantage from mixed precision

Arne Rempke, German Aerospace Center (DLR), INSUtuie ol sortware
Methods for Product Virtualization, 40th WSSP, October 15th, 2025

PARALLELIZATION AND SCALABILITY

-

.

ar

|

— mw
]
)
=R
= Oy
O N
M -
§ A
S
@ -
2'0
bk
o =0
3R
gy)

r fBL

R WSSP;

o

e

S
o ©
<E
c =
c >
€EB
e 3
O o
a1
ga
29
/e%
e
[0)
c o
< =

Main Operation during Solving: d =A-s

With:
S: Source Vector

d: Destination Vector
A: Matrix

Formula: d; = Y7o 4;; - s;

-> All rows can be computed independently.

Arne Rempke, German Aerospace Center (DLR), Institute of Software
Methods for Product Virtualization, 40th WSSP, October 15th, 2025

Distributed Memory Parallelization
DLR

é) Halo entries (originate

Prog ram run: from other processes)
Source vector

Start sending
halo data

Destination vector

Computation of
pure local parts

Pure local

T~

€son ¢ Entries on other processes

Local entries

Computation of
halo parts

Ny

alo-dependent

Arne Rempke, German Aerospace Center (DLR), Institute of Software
Methods for Product Virtualization, 40th WSSP, October 15th, 2025

Shared Memory Parallelization ‘#7
DLR

Straightforward derived from cluster level parallelization

= Every thread computes some rows
No synchronization

= Same strategy on CPU and GPU needed for write

Thread 1

Thread 2

Arne Rempke, German Aerospace Center (DLR), Institute of Software
Methods for Product Virtualization, 40th WSSP, October 15th, 2025

Threading model ‘#7
DLR

= Typical design of a library = Spliss design
= Single threaded Thiaads
entry/exit points
Application
Fork at Enter: .
Start Barrier A 4
Library
JoinatRetun: ¥ vy vy
Stop Barrier —
=
Application
» Unnecessary burden ¥
If the user code also uses
threads = Allows to enter/exit with all threads

Arne Rempke, German Aerospace Center (DLR), Institute of Software
Methods for Product Virtualization, 40th WSSP, October 15th, 2025

GPU Parallelization ‘#7
DLR

= Similar as for Multithreading

» Using alpaka* allows us to write a single Kernel to be executed a I{(‘)a ka
on CPU or GPU

= Spliss hides the CUDA backend/compiler/... from user code:

= Explicit template instantiations of CUDA-dependent classes on Spliss compilation
= No necessity to use nvcc for user code

» Since Spliss is a C++ template library, user calls to small functions, e.g.
A[row][col] += myContribution;

can still be inlined, allowing a seamless integration while capsulating
the actual memory layout

* https://github.com/alpaka-group/alpaka

Arne Rempke, German Aerospace Center (DLR), Institute of Software
Methods for Product Virtualization, 40th WSSP, October 15th, 2025

Efficiency: Scalability on Current Systems (CARA)

DLR

Runtime | strong scaling 24M elements

Scalability assessment on DLR’s production system CARA R T
» Strong scaling (CRM, fixed problem size, 24M elements): %100
= Scaling from 1 — 512 nodes (largest available partition) 2
» Reduce runtime from 1.2 days to 4.2 minutes 2 5
= Small mesh: just 730 elements/core @ 32,768 cores] - © - CODA2024.06,Spliss 3.3 109%%
= Scaling 64 — 32,768 cores: 85% strong scaling efficiency N 12:63[h soas 8199 3278

Runtime | weak scaling 3M-192M elements

»
88% _ - “72%

» Small super-linear speedup

» Weak scaling (CRM, fixed workload per core, 3M — 192M elements): 9%

W
o
{(e]
]
\
é
|
[
i
]
A

» Scaling 512 — 32,768 cores: 96% weak scaling efficiency

time to solution (min)
]
o

=
o

— ® — CODA 2022.10, Spliss 2.1
— # — CODA 2024.06, Spliss 3.3
Ideal

0 o L
512 2048 8192 32768

Arne Rempke, German Aerospace Center (DLR), Institute of Software number of cores
Methods for Product Virtualization, 40th WSSP, October 15th, 2025

Scalability of the Entire Workflow (FlowSimulator) ‘#7
DLR

Runtime | strong scaling
CRM-HL: 723M elements

Scalability assessment on DLR’s production system CARO

= The entire workflow needs to ... e
= support large meshes (>1B elements) E f “202*3
§10 b ull syste
= support large core counts (>1M cores) gl" i
-:GEE LE L, t """" Ne
Achievements (so far) e 2024 2022 limit
i Ideal
= Several improvements in FlowSimulator to scale to full system T e s ame 1mom

number of cores

= Improved hierarchical graph partitioning
= Support for meshes >1 bhillion elements tested
= Efficient scaling to 131,072 cores (full system CARO@DLR)

Arne Rempke, German Aerospace Center (DLR), Institute of Software
Methods for Product Virtualization, 40th WSSP, October 15th, 2025

Heterogeneity: Support for Nvidia GPUs via Spliss

DLR
System - Juwels Boos(ter | ber nod Vi wing, 69,20 elements. mplioh Euler, Jacobi + Elock Inv
= AMD Epyc 7401 (2x 24 cores) per node 90 — : : -
= 4x Nvidia Tesla A100 per node so{ 4 ﬁ o J:lzﬁgiafooéﬁrr];fﬂwm)
'|. 1‘ —k - est. Booster w/ CARO CPU (~2000W/node)
System — CARO 14 ".\
= Nodes with 128 cores (AMD Rome, 2x CARA) £ 601 il
= 8 memory channels @3.2GHz (1.2x CARA) é 50 ?‘1 \-\
= no Ak
Observations £ 1:.\ N
= Node-wise comparison (“unfair”): 8-9x speedup 2 301 '\f:.\ S
» Energy-wise comparison (“fair”): 1.6-1.9 speedup 20 ‘\'.‘]al:;_":%'i_,hh' =i
= Performance limited by non-linear part on slow CPU ;| 32GPUS ™ Ty, AL | 128 GPUs
= Hypothetical Juwels Booster node with CARO CPU: | | saGPus | [T
1.8-2.3 speedup (energy-wise) 10 D werinkw » °0

J. Mohnke and M. Wagner: A Look at Performance and Scalability of
the GPU Accelerated Sparse Linear System Solver Spliss. In: Euro-
Par 2023: Parallel Processing. DOI 10.1007/978-3-031-39698-4 43

Arne Rempke, German Aerospace Center (DLR), Institute of Software
Methods for Product Virtualization, 40th WSSP, October 15th, 2025

GPU Development ‘#7
Impact of GPU support of Spliss on application wallclock time DLR

» For implicit methods in CODA, linear equation systems are solved via Spliss
» Thus, only the linear part of CODA benefits from GPUs

» For future system with more or more powerful GPUs the non-linear part may become bottleneck

96% EEE I
Juwels Booster with 1.4 Speedup for
0) 0)

Future system with 8
A100 per node

non-linear linear CPU / linear GPU

CARO 4%

Juwels Booster

55% 45%

Arne Rempke, German Aerospace Center (DLR), Institute of Software
Methods for Product Virtualization, 40th WSSP, October 15th, 2025

re

th, 2

P t09f

e Ce
n;

\ x A6
o J
— gy
.
-
o

	Folie 1: Spliss – Linear Algebra for implicit CFD methods
	Folie 2: What‘s the context
	Folie 3: What we (DLR aerospace) do
	Folie 4: Software Approach to tackle these challenges
	Folie 5: Spliss Overview
	Folie 6: Key features of a linear solver for aeronautical CFD
	Folie 7: Matrix Structure
	Folie 8: Solver Structure
	Folie 9: Algorithmical features
	Folie 10: Flexible solver components
	Folie 11: Solver chaining
	Folie 12: Featured Solver Components
	Folie 13: Multigrid Solver Component
	Folie 14: Algebraic agglomerations visualized
	Folie 15: Algebraic agglomerations visualized
	Folie 16: Lines Inversion / Thomas Algorithm
	Folie 17: Improvements in line detection algorithm
	Folie 18: Efficiency of the tailored solver components
	Folie 19: Increasing performance: Mixed precision
	Folie 20: Mixed precision
	Folie 21: Investigations on numerical influence of mixed precision
	Folie 22: GMRES(m) – variation of m
	Folie 23: GMRES – algorithm
	Folie 24: GMRES – source of problem: solution update
	Folie 25: ParalLelization And Scalability
	Folie 26: Main Operation during Solving: d = A Punkt s
	Folie 27: Distributed Memory Parallelization
	Folie 28: Shared Memory Parallelization
	Folie 29: Threading model
	Folie 30: GPU Parallelization
	Folie 31: Efficiency: Scalability on Current Systems (CARA)
	Folie 32: Scalability of the Entire Workflow (FlowSimulator)
	Folie 33: Heterogeneity: Support for Nvidia GPUs via Spliss
	Folie 34: GPU Development Impact of GPU support of Spliss on application wallclock time
	Folie 35: Questions?

