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Motivation The problem of solving ditferential equations is foundational to our understanding of the natural and engineered world. From the turbulence
in aerodynamics and biochemical diffusion processes to market dynamics in quantitative finance, many complex phenomena can be described by partial
differential equations (PDEs). Yet, classical solvers face steep computational costs, especially for nonlinear or high-dimensional problems. Quantum
computing, with its intrinsic parallelism and vast state space, offers a promising new route toward more efficient PDE solutions. This study investigates
two promising quantum methods for solving partial differential equations (PDEs), Variational Time Stepping (VTS) and Imaginary Time Evolution (ITE).
This work is focused on their foundational principles, algorithmic performance, and suitability for near-term guantum architectures.

Theory
Methode 1: Variational Time Stepping (VTS) [1]

1.Encode finite-difference operators on a QNPU [1]
Map spatial derivatives to quantum nonlinear processing unit (QNPU)

2.Apply the Variational Time-Stepping (VTS) method
Learn time stepping by minimizing residuals of the PDE variationally.

3. Hybrid quantum-classical training
Classical optimizer updates guantum parameters iteratively.

Time Evolution: argmin,C'(\) with C'. .. cost function
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Method 2: Quantum Imaginary Time Evolution (QITE) [2], [3]

The Simulated Quantum Imaginary Time evolution uses the Hamiltonian

to encode the differential operators, leading to the ground state being

the normalized solution of the PDE. The approach applies Trotter steps

to approximate the imaginary time evolution operator in small intervals.
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7.Hamilton encoding of the differential operator

2. Imaginary time propagation
For each time step A7, apply the non-unitary update e~
mated via Trotterization.
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3. Reconstruct norm
After every step approximate norm and correct resulting error after k

steps

Benchmarking Metrics
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Problem Setup

One Dimensional Diffusion Equation

Ou/0t = Ou/0x + v

model for fundamental transport phenomena (e.g. tluid dynamics, envi-
ronmental sciences, biochemistry, ...) and an analytical solution available
for benchmarking

Initial Condition: Gaussian profile
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Implementation Details

Simulation Parameters | |
Quantum simulations were per-

formed using Pennylane (v0.36)

Zaursiir;e(;e)rs \/alue6Range with JAX-based optimization, em-
VTS Layers . ploying the default.qubit back-

- end. Adam and LBFGS op-
[TE Trotter Steps [40, 100, 200 timizers ensured stable hybrid
Time Step (A?) 0.01 quantum-classical convergence

for VTS.
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Figure 2. QITE with diffrent Trotter steps [40, 100, 200] fort =1

Method Comparison

When to Use VTS When to Use ITE

Linear PDES
with Hamiltonian structure

Nonlinear PDEs
(Burgers, Navier-Stokes)

Higher accuracy
requirements

Flexible boundary conditions
via penalty terms

Theoretical guarantees
for convergence

Shallower circuits through
tensor networks (better for NISQ)

Disadvantages:

Sensitive to variational brick,
parameters, and optimizer choice

Deeper circuits
(Trotterization overheaq)

Ongoing Work

1. Extend the comparison framework

2. Testing robustness of simulation in the presence of noise
3.5cale to 8-12 qubits (N=256-4096 grid points) on HPC with GPU
4. Extend to 2D and other PDEs (e.g. heat equation)
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