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Motivation The problemof solving differential equations is foundational to our understanding of the natural and engineeredworld. From the turbulence
in aerodynamics and biochemical diffusion processes tomarket dynamics in quantitative finance, many complex phenomena can be described by partial
differential equations (PDEs). Yet, classical solvers face steep computational costs, especially for nonlinear or high-dimensional problems. Quantum
computing, with its intrinsic parallelism and vast state space, offers a promising new route toward more efficient PDE solutions. This study investigates
two promising quantum methods for solving partial differential equations (PDEs), Variational Time Stepping (VTS) and Imaginary Time Evolution (ITE).
This work is focused on their foundational principles, algorithmic performance, and suitability for near-term quantum architectures.

Theory
Methode 1: Variational Time Stepping (VTS) [1]
1.Encode finite-difference operators on a QNPU [1]
Map spatial derivatives to quantum nonlinear processing unit (QNPU)

2.Apply the Variational Time-Stepping (VTS) method
Learn time stepping by minimizing residuals of the PDE variationally.

3.Hybrid quantum–classical training
Classical optimizer updates quantum parameters iteratively.

Time Evolution: argminλC(λ) with C . . . cost function
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Method 2: Quantum Imaginary Time Evolution (QITE) [2], [3]
The Simulated Quantum Imaginary Time evolution uses the Hamiltonian
to encode the differential operators, leading to the ground state being
the normalized solution of the PDE. The approach applies Trotter steps
to approximate the imaginary time evolution operator in small intervals.

QITE Trotter Step: e−iÂ∆τ |ψ(τ )⟩ ≈ e−ĥI∆τ |ψ(τ )⟩√
⟨ψ(τ )|e−2ĥI∆τ |ψ(τ )⟩

1.Hamilton encoding of the differential operator
2. Imaginary time propagation
For each time step ∆τ , apply the non-unitary update e−∆τĤ , approxi-
mated via Trotterization.

3.Reconstruct norm
After every step approximate norm and correct resulting error after k
steps

Benchmarking Metrics
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Problem Setup
One Dimensional Diffusion Equation
∂u/∂t = ∂u/∂x + v

model for fundamental transport phenomena (e.g. fluid dynamics, envi-
ronmental sciences, biochemistry, . . . ) and an analytical solution available
for benchmarking

Initial Condition: Gaussian profile

Encoding: |Ψ⟩ = 1√∑N−1
k=0 |uk|2

∑N−1
k=0 uk |k⟩

Implementation Details
Simulation Parameters

Parameters Value Range
Qubits (n) 6
VTS Layers 7
ITE Trotter Steps [40, 100, 200]
Time Step (∆t) 0.01

Quantum simulations were per-
formed using Pennylane (v0.36)
with JAX-based optimization, em-
ploying the default.qubit back-
end. Adam and LBFGS op-
timizers ensured stable hybrid
quantum-classical convergence
for VTS.

Results - Simulated Wavefunctions

Figure 1: VTS with different time steps [0.02, 0.10, 0.20]

Figure 2: QITE with diffrent Trotter steps [40, 100, 200] for t = 1

Method Comparison

When to Use VTS When to Use ITE

Nonlinear PDEs
(Burgers, Navier-Stokes)

Linear PDEs
with Hamiltonian structure

Flexible boundary conditions
via penalty terms

Higher accuracy
requirements

Shallower circuits through
tensor networks (better for NISQ)

Theoretical guarantees
for convergence

Disadvantages:
Sensitive to variational brick,
parameters, and optimizer choice

Deeper circuits
(Trotterization overhead)

Ongoing Work
1. Extend the comparison framework
2. Testing robustness of simulation in the presence of noise
3. Scale to 8-12 qubits (N=256-4096 grid points) on HPC with GPU
4. Extend to 2D and other PDEs (e.g. heat equation)
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