
Original Article

A Systematic Literature Review and
Classification of Approaches for
Keyword Search Over Graph-Shaped
Data

Semantic Web
Vol. 16(5) 1–34

© The Author(s) 2025
Article reuse guidelines:

sagepub.com/journals-permissions
DOI: 10.1177/22104968251377243

journals.sagepub.com/home/swj

Leila Feddoul1 , Frank Löffler1,2 and Sirko Schindler3

Abstract
Knowledge graphs provide machine-interpretable data that allow automatic data understanding and deduction of new
facts. However, machines are not the only consumers of such semantic data. Human users could also benefit from graph-
structured data by browsing and exploring it to detect interesting associations and draw conclusions. To achieve that,
methods that allow for search over knowledge graphs are highly sought after. Keyword search is an intuitive and common
way to retrieve relevant data (e.g., documents) and can also be leveraged to search over knowledge graphs. In this survey
paper, we derive the typical architecture of a system for keyword search over graph-shaped data, we formally define the
problem, we highlight related challenges, and we compare with existing relevant surveys to identify the gaps. We conduct
a comprehensive review of studies dealing with the topic of keyword search over graph-shaped data (e.g., knowledge
graphs) following a systematic method. Based on that, we derive and define different aspects for classifying existing works.
We also give an overview of how those systems are evaluated and highlight possible future research directions.

Keywords
keyword search, knowledge graph, survey

Received: July 21, 2023; accepted: May 21, 2025

Editor: Mehwish Alam, Associate Professor of Language, Knowledge, and Artificial Intelligence, Télécom Paris, Institut Polytechnique de Paris, France
Solicited reviews: Stefano De Giorgis, Adjunct professor, Department of Modern Languages, Literatures, and Cultures, Università di Bologna,
Bologna; Four anonymous reviews

1 Introduction
Knowledge graphs (KGs) have shown their importance in many application areas (e.g., search, question answering, or
recommendations). Thus, the data represented as KGs is continuously increasing—a fact also evidenced by the continu-
ous growth of KGs such as Wikidata (Cantallops et al., 2019). While their semantic data representation can be directly
leveraged by machines to accomplish a specific task (e.g., inference), end users and domain experts should also be able
to access and explore the KGs. This is a first step in allowing us to go beyond simple information lookup and enable
the discovery of new facts and correlations given by the graph structure. We can distinguish between two scenarios: (1)

1Heinz Nixdorf Chair for Distributed Information Systems, Friedrich Schiller University Jena, Jena, Germany
2Competence Center for Digital Research, Michael Stifel Center, Jena, Germany
3Institute of Data Science, German Aerospace Center (DLR), Jena, Germany

Corresponding Author:
Leila Feddoul, Heinz Nixdorf Chair for Distributed Information Systems, Friedrich Schiller University Jena, Jena, Germany.
Email: leila.feddoul@uni-jena.de

Creative Commons CC BY: This article is distributed under the terms of the Creative Commons Attribution 4.0 License
(https://creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further

permission provided the original work is attributed as specified on the SAGE and Open Access page
(https://us.sagepub.com/en-us/nam/open-access-at-sage).

https://uk.sagepub.com/en-gb/eur/journals-permissions
https://doi.org/10.1177/22104968251377243
https://journals.sagepub.com/home/swj
https://orcid.org/0000-0001-8896-8208
https://orcid.org/0000-0001-6643-6323
https://orcid.org/0000-0002-0964-4457
https://creativecommons.org/licenses/by/4.0/
https://us.sagepub.com/en-us/nam/open-access-at-sage
http://crossmark.crossref.org/dialog/?doi=10.1177%2F22104968251377243&domain=pdf&date_stamp=2025-10-15

2 Semantic Web 16(5)

Figure 1. Typical Generic Components of a System for Keyword Search Over Graph-Shaped Data.

KG querying and search includes the usage of structured queries, interactive query builders, keyword search, or question
answering. (2) KG exploration comprises visualization and browsing, faceted search, graph analytics, and summarization.

While structured queries allow the formulation of the information need in a precise way, the most familiar and intuitive
method to search over data collections is keyword search (Agarwal et al., 2010). This reduces the time to learn new
technologies and does not require an intricate knowledge of the underlying domain and the data schema. Therefore,
keyword search is also used and adapted to work over KGs.

The typical generic components of a system for keyword search over graph-shaped data are depicted in Figure 1:

– Graph preprocessing: refers to the operations applied to prepare and index the data graph for efficient query
processing (e.g., keyword-node index) and answer retrieval (e.g., shortest paths index or summary graph).

– Keyword mapping: this step consists of mapping words or a group of words in the query to a graph’s nodes and
edges.

– Answer retrieval: this step consists of finding results relevant to the query (e.g., using graph traversal). The retrieval
unit varies depending on the used technique (e.g., tree or entity).

– Answer ranking: this step ranks results in the order of relevance and is also dependent on the specific results nature.
– Answer presentation: refers to the way the results are provided to the user and the different features that are provided

to support the search experience.

Implementing these common system components poses the following main challenges:

– Finding accurate mappings between keyword terms and graph elements: this includes a correct interpretation and
disambiguation of the query keywords. This is a crucial step since it directly affects the efficiency and effectiveness
of the subsequent answer retrieval phase.

– Scaling to large graphs: this includes the development of techniques to accelerate the retrieval of answers (e.g.,
suitable indexing solutions or greedy algorithms).

– Ranking retrieved answers: this includes the development of ranking functions that leverage different aspects
depending on the type of the answer.

Those challenges lead to increasing research efforts in this area. To the best of our knowledge, there are four surveys
that give an overview of the state of research on keyword search over graph-shaped data, focusing on different aspects.
However, they show some shortcomings (e.g., outdated), which are discussed in Section 2. Therefore, we close this gap
by performing a systematic review with the following contributions:

– We perform a systematic literature review to identify and classify relevant research on keyword search over
graph-shaped data.

– We propose a taxonomy for classifying existing works based on different aspects: search space, answer type,
answer ranking, and answer scoring.

– We provide a comprehensive review of evaluation methodologies used in the fields.
– We identify remaining research gaps and propose potential future research directions.

Feddoul et al. 3

Table 1. Summary Table Comparing Existing Surveys With This One.

Survey Date Data Classification Evaluation Methods

Yu et al. (2010) 2010 Relational database Answer type and scoring �
Wang and Aggarwal (2010) 2010 Graph Data type �
Ghanbarpour and Naderi (2019) 2019 Graph Answer ranking �
Yang et al. (2021) 2021 Graph Answer type and scoring �
This survey 2025 Graph Four distinct aspects ✓

With this survey, we aim at enabling academic researchers who deal with the same topic to understand the state-of-the-
art and use it to identify research gaps, providing a comprehensive introduction and summary for newcomers, and helping
tool developers and engineers by selecting systems that are suitable for integration into their applications.

The remainder of this survey is organized as follows: In Section 2, we position our work with respect to existing
surveys. In Section 3, we define the task of keyword search over graph-shaped data as used within this survey. In Section
4, we describe the methodology for the systematic literature review, and in Section 5, we outline the different aspects used
for the classification of relevant works. In Section 6, we present the different methods used to evaluate relevant systems,
and in Section 7, we give a summary overview of them. In Section 8, we cluster relevant works and provide a detailed
description for each one. Section 9 concludes the review and discusses future research directions.

2 Related Work
We identified four surveys focusing on keyword search over graph-shaped data, as shown in Table 1. However, two of
them (Wang & Aggarwal, 2010; Yu et al., 2010) are quite outdated (2010), and one (Ghanbarpour & Naderi, 2019), dating
from 2019, reports only on one aspect (answer ranking). One survey (Yu et al., 2010) considers only relational databases.
However, this is still relevant as well since relational databases can also be modeled as graphs by considering the tuples
as nodes and foreign key relations as edges (Feddoul, 2020). The most recent survey (Yang et al., 2021) classifies existing
works based on the type of returned answer as already proposed in an earlier survey (Yu et al., 2010). While the latter also
includes an overview of methods depending on the schema of relational databases, (Yang et al., 2021) concentrates on
schema-free approaches. Both works use a classification that mixes two aspects in one concept, namely the answer type
and the way of scoring the final answer. In Wang and Aggarwal (2010), works are classified in a rather generic manner
based on the underlying data type, namely Keyword Search on XML Data and Keyword Search over Relational Databases,
which are both considered schema-dependent, whereas Keyword Search on Graphs refers to schema-free approaches.
In Ghanbarpour and Naderi (2019), the authors concentrate on the answer ranking aspect. The proposed factors for the
answer ranking slightly overlap with the ones proposed in Section 5, but we adjust and add other ranking types while
preserving the distinction between the important aspects. Similar to Yang et al. (2021), they also mix the two factors of
answer scoring and ranking. In addition, we also notice the inconsistent use of category names (e.g., “centralized ranking
function” to refer to the distinct-root semantics as in Yang et al., 2021).

In addition to the previously mentioned shortcomings, none of the existing surveys report on methodologies used
for evaluating the systems, including, for example, the used ground truth, datasets, common benchmarks, and metrics.
Furthermore, only one work considered the ranking (Ghanbarpour & Naderi, 2019). Overall, for a certain consistency
and simplicity of definitions, it is beneficial to consider each classification aspect separately, as suggested and extended
in our proposed categorization (cf. Section 5). In addition, our literature review demonstrates that this area of research is
constantly evolving, resulting in new publications that were not included in previous surveys and more works considering
KGs.

3 Preliminaries
We consider the task of using keywords to search over graph-shaped data where, given a graph G and a keyword query
Q, the goal is to find proper answer(s) A1, A2,… , An that satisfy the information need expressed in Q. The response might
either be an unranked list of relevant answers, a ranked list by order of relevancy, or just the single-best answer. The
relevant inputs and outputs are formally described as follows:

Graph Model. We consider the graph G = (N, E, LN , LE), where N is a finite nonempty set of nodes, E ⊆ N × N is
a finite set of edges connecting two nodes, LN and LE are finite sets of textual information (e.g., labels) describing nodes
and edges, respectively. Depending on the situation, the graph can be directed or undirected, and its nodes and/or edges
may have weights assigned.

4 Semantic Web 16(5)

Figure 2. Example KG With Some Possible Answers to the Query Q={german, city}. Boxes Represent the Concepts/Classes on the
Schema Level, Dotted Circles are Individuals (Instance Level), and Dotted Arrows State That an Individual is an Instance of a Class.
Ger is the Abbreviation of the Label German.
Note. KG= knowledge graph.

Keyword Query and Node. A keyword query Q consists of a nonempty list of terms Q = k1, k2,… , kn. The set of
nodes Ki with a textual content matching ki for i = 1,… , n is called keyword nodes. A keyword node can be associated
with multiple keywords, and the same keyword can be mapped to various nodes. This matching can be extended to include
edges as well, for example, by also considering them as nodes in the graph (Cheng et al., 2020; Tran et al., 2009). The
mapping between keywords and nodes can be provided externally or be included as an additional task that is either a mere
string matching or an entity linking (Balog, 2018), where multiple keywords could correspond to a single entity in the case
of KGs.

Query Answer. A relevant answer Ai to the query Q is a connected subgraph S = (NS, ES) (for every pair of nodes
n1, n2 ∈ NS there is a path that connects them Valiente, 2021) that covers all the keywords (the subgraph contains for each
keyword at least one corresponding keyword node). A relaxed variant will also allow for answers covering only a subset
of keywords. This is a general description, without imposing any further restrictions on the characteristics of the answer.
In Section 5, we give a detailed overview of possible answer types mentioned in the literature.

Figure 2 shows an example graph1 with nodes and edges on both schema and instance levels. For the sake of brevity,
we illustrate only the relations between concepts/classes and link them to their instances. This implies that each relation
on the schema level has also its counterpart on the instance level (e.g., H1 place of birth Ci1). All nodes and edges have
labels. The graph is directed, and the distance between a pair of nodes is given by the number of edges on the path between
them (e.g., distance between H1 and Ci1 is one). The considered keyword query consists of two terms german and city.
Each term has its corresponding keyword node either on the schema (city) or instance level (german). Three example
answers that connect the keywords are provided. For the sake of simplicity, we omit the instance-class relations in the
answer representation (e.g., Ci1-City). In the example, Ci1, Ci2, and Ci3 are considered valid answer entities for the given
query.

4 Survey Methodology
To collect relevant works in the area of keyword search over graph-shaped data, we performed a systematic literature
review inspired by the guidelines provided by Brereton et al. (2007) and Kitchenham and Charters (2007). This allowed
us to summarize and classify existing related work as well as determine remaining research gaps. The general process
consists of three phases:

1. Plan review: includes the identification of the need for the review and the development of the review protocol,
which describes the steps that will be followed while conducting the review.

2. Conduct review: includes the concrete steps of performing the review, starting from the identification of relevant
publications.

3. Document review: includes writing a report about the review and publishing it.

Feddoul et al. 5

The identification of the need for the review was already addressed in Section 2 and the review protocol will be clarified
while describing the second phase. Furthermore, the last phase is addressed by this survey. For those reasons, we only
describe the conduct review phase in more detail in the following:

A. Identify Relevant Research. In this step, potentially relevant candidate papers that match specific predefined key-
words are collected. In practice, we first searched the DBLP2 bibliographic database using the following queries3 : keyword
search graph, keyword search RDF, keyword quer RDF, keyword quer graph, quer generation graph, quer generation
RDF, keyword exploration graph, and keyword exploration RDF. Then, duplicates are automatically detected and removed
after saving the original search results for each query. Publication collection and deduplication were performed using the
web search functionality of the reference management software JabRef 5.74 and resulted in 206 candidates.

B. Select Primary Studies. In this step, a primary selection of relevant papers is performed based on predefined
inclusion and exclusion criteria and a first reading of the title and abstract. In our case, this selection resulted in 68 papers.
The applied criteria were as follows:

– Inclusion criteria.
* Publication year starting from 2013 (last 10 years).
* Open/institutional access.
* English language.
* Paper type: conference, journal, or workshop paper.
* Content fits to the topic of keyword search over graph-shaped data5.

– Exclusion criteria.
* Paper type: PhD symposium, Demo/poster, or extended abstract.
* Not peer reviewed (e.g., only published on an open access archive).
* Newer paper of the same approach or system exists (keep the newest).

C. Assess Study Quality and Extract/Synthesize Data. In this step, a more detailed reading of the papers takes place
to allow their classification based on the criteria defined in Section 5. During this process, we may also decide against
including some specific type of works as part of the works overview (cf. Section 8)6. The data extraction and synthesis
are also done in parallel for each paper by: (1) collecting information (e.g., classification criteria and evaluation method)
which allows further analysis, and (2) drafting a short descriptive summary.

At the end, we selected and classified 35 works.
We also included a subset of works that were published before 2013. This includes popular first works dealing with the

keyword search problem over relational data (Bhalotia et al., 2002; He et al., 2007; Kacholia et al., 2005), in addition to
one of the very first works operating over KGs (Tran et al., 2009), and three other papers (Dalvi et al., 2008; Golenberg
et al., 2008; Kimelfeld & Sagiv, 2008) that also seemed relevant and cited one of the pioneer works in this field (Bhalotia
et al., 2002).

5 Taxonomy Overview
The literature review allowed us to derive four important aspects for categorizing related works as shown in Figure 3,
namely the search space, answer type, answer ranking, and answer scoring.

Search Space. Represents the nature of the underlying data searched to find relevant answers. We distinguish between
four types:

– Graph-based. Search for answers over the whole graph.
– Schema-based. Operate on a provided data schema to find answers.
– Summary-based. Operate on a summarized version (e.g., replace a collection of instances with their corresponding

class) of the data graph without relying on a predefined schema.
– Virtual document-based. Build documents from the textual content of the graph elements and retrieve relevant ones

using information retrieval techniques.

Answer Type. Represents the nature of the final answer to be returned by the system. According to the analyzed works,
we can distinguish between the following answer types:

6 Semantic Web 16(5)

Figure 3. Dimensions for Classifying Approaches for Keyword Search Over Graph-Shaped Data.

– Subgraph. The answer is a set of connected keyword nodes. A special case is the r-clique, where the answer is a
subgraph connecting keywords and the shortest distance between any pair of keyword nodes is equal to or lower
than r (Ghanbarpour et al., 2020).

– Tree. The answer is a graph that has no cycles (tree) and that connects all keyword nodes (Valiente, 2021). A tree
can be either directed or undirected and further characterized using the following properties:
* Rooted directed: a rooted directed tree is a tree in which a specific node is distinguished and called root, and

there exist directed paths (pointing away from the root) from the root to each keyword node (Bhalotia et al.,
2002).

* Distinct rooted: a distinct rooted tree is a tree with a distinct root with respect to a collection of top-k answers
(He et al., 2007).

* Minimal: the minimality is defined here with respect to the keywords and states that all the leaves of the tree
are keyword nodes (in other words, there are no leaf nodes not containing keywords (Lu et al., 2019), or the
answer has no other subtree containing the keywords).

– Structured query. The answer is a query equivalent to a previously found intermediate answer (subgraph or tree).
When executed, the query returns relevant concrete results (e.g., triples or entities in case of RDF graphs).

– Other types. There are also specific cases, where relevant answers are triples or entities of an RDF graph. Those are
directly retrieved without having an intermediate step where a subgraph/tree/query is formed. This is usually the
case when a graph’s textual content is indexed (e.g., triple index), and the answers are retrieved using traditional
ranking functions as used in document retrieval. Another specific answer type, introduced by just a single work, is
the Key-core (Zhang et al., 2022), which represents a subgraph that is formed by connecting two minimal rooted
directed trees containing all keywords. Furthermore, for each tree, the distance between each keyword node and
the root, and the sum of keyword-node distances are smaller than two specific thresholds.

Figure 4 depicts some example answers of the query Q={german, city} over the KG of Figure 2. The first three answers
are distinct rooted trees with respect to the five examples. Moreover, all four first answers are rooted directed trees that are
also minimal. The last answer contains a cycle and thus is not a tree but a subgraph. The provided SPARQL query is also a
possible answer type, which is equivalent to the tree Language—Human—City on the schema level. It returns the entities
Ci1 and Ci2 that represent the cities where the German native speaker humans H1 and H2 were born.

Answer Ranking. In the case where more than one relevant result is retrieved, answers are ranked based on different
criteria. In general, we distinguish between six ranking categories, which are either individually applied or combined to
rank answers:

– Compactness-based. Use the size (e.g., tree height or number of nodes) of the retrieved structure as a quality
criterion.

– Importance-based. Use specific criteria (e.g., node in-degree) that may reflect the popularity and importance of the
answer elements.

Feddoul et al. 7

Figure 4. Different Example Answers of the Query Q={german, city} Over the KG of Figure 2 Together With Their Types. ns: Is an
Example Namespace.
Note. KG= knowledge graph.

– Textual-based. Use matches between query keywords and the textual content of the answer as a ranking factor (e.g.,
TF/IDF; Leskovec et al., 2020).

– Diversity-based. Include criteria that aim at penalizing results showing a certain aspect of redundancy.
– Semantics-based. Use semantic characteristics of KGs to rank answers (e.g., semantic distance).
– Profile-based. Use user profiles7 to provide answers closer to the user intent.

Answer Scoring. This aspect applies to the cases where the final or intermediate answers are graph-shaped (e.g., tree,
subgraph, or structured query). In general, a weight is assigned to each element in the answer (node or edge) based on one
of the previously mentioned answer ranking categories. However, a score for the whole answer is needed to be able to rank
them. Thus, the final score of a graph-shaped answer is usually calculated by aggregating node and edge weights (answer
scoring). Since the usual aim is to find answers with minimum weights (or cost) (e.g., Steiner tree Dreyfus and Wagner
1971), the score of an answer is, in general, inversely proportional to its weight. Thus, answers with higher scores (lower
weights) are considered more relevant and thus ranked higher. We distinguish between three answer scoring schemes that
can be used to calculate total weights for both nodes and edges (graph elements):

– Distinct scoring. The total weight is calculated as the sum of individual weights:
∑

x∈S weight(x), where x is a graph
element and S is either the set of edges or the set of nodes. Here, each included graph element is counted a single
time.

– Root-keyword scoring. The total weight is calculated as follows:
∑

keyN∈NS

∑
x∈path(r,keyN) weight(x), where keyN is a

keyword node, NS is the set of answer’s nodes, r is the root, x is a graph element, and path(r, keyN) is the set of the
specific elements between the root and a specific keyword node. In summary, the answer weight is the sum of the
graph element weights belonging to the path between the root8 and each keyword node. In this case, graph elements
could be counted multiple times, for example, in the case of having keyword nodes that are not tree leaves. This
considers the distribution of each keyword node with respect to the root.

– Keyword-pair scoring. The total weight of an answer is calculated as follows
∑|Q|

i=1

∑|Q|
j=i+1 weight(keyNi, keyNj),

given a query Q. In other words, it is the sum of the weights between each pair of keyword nodes. It is worth
mentioning that in specific cases, such as in Bryson et al. (2020), the weight used in the keyword-pair scoring is
replaced with a value reflecting the connectivity between two nodes. Thus, it is interpreted as directly proportional
to the total score.

In the same final score, two different scoring schemes can be combined, one for edges and the other for nodes. Fur-
thermore, some of the works have restricted the nodes incorporated while calculating the edge weight and consider only
specific ones (e.g., roots and leaves containing keywords).

During the literature review, we also came across several specific groups of works that deal with the following aspects:
parallel processing (Guan et al., 2018; Hao et al., 2015; Liu et al., 2016; Virgilio & Maccioni, 2014; Yang et al., 2019),

8 Semantic Web 16(5)

probabilistic/uncertain RDF graphs (Lian et al., 2015), temporal graphs (Gkirtzou et al., 2015; Liu et al., 2018b), dis-
tributed graphs (Yuan et al., 2017), incomplete graphs (Hao et al., 2021), or search results diversification9 (Bikakis et al.,
2013; Park, 2018; Wang et al., 2017b; Zhong et al., 2018). We considered them as special use cases, and thus decided to
only shortly report them here without further analysis and refrain from including them in the overview tables (cf. Section
7).

6 System Evaluation Methods
In general, two aspects are evaluated: effectiveness and efficiency. While the latter deals with the execution time and
memory usage, effectiveness judges the ability of the system to retrieve results that are relevant to the query and requires
an underlying dataset that is searched through using keywords, a set of user queries, and corresponding results together
with their relevance judgments. We also notice that some systems have used approach-specific aspects and metrics for the
evaluation: #nodes explored/touched (Kacholia et al., 2005), index performance (He et al., 2007; Tran et al., 2009), cache
misses (Dalvi et al., 2008), repetition rate (Zhang et al., 2014), answer compactness (diameter) (Kargar & An, 2015), or
#intermediate results (Lu et al., 2019).

Table 2 gives an overview of the data10 and metrics used for evaluating the effectiveness of the surveyed systems
(sorted in ascending chronological order). All the systems evaluate efficiency (e.g., execution time), except for Kharrat
et al. (2016) and Sitthisarn (2014) that only assess effectiveness.

Furthermore, for one system (Kimelfeld & Sagiv, 2008), no evaluation was conducted, and the other works with no
entries did not evaluate effectiveness.

Queries and datasets. We observe that the number of queries used for evaluation varies between 5 and 467. The number
of queries is larger when they are randomly generated or an existing benchmark is used, while we notice only dozens of
queries by manual creation, since it is a time and personnel-consuming task. Furthermore, the most used datasets are:
DBLP, IMDb,11 and DBpedia (Lehmann et al., 2015).

Ground truth. For each query, a list of potentially relevant results is needed. This is either manually created by
result rating from users or by manually creating a corresponding structured query, or automatically generated (other
system, structured query, or a tool for benchmark construction). In general, we observe that only 10 systems evaluated
their approaches using existing test collections (Coffman Coffman & Weaver, 2014), DBpedia-Entity v1/v2 (Balog &
Neumayer, 2013; Hasibi et al., 2017), and QALD12 that provide both queries and relevant results.

Metrics. Most of the metrics used to measure the effectiveness are: precision, recall, F1-measure, precision at k (P@k),
discounted cumulative gain (DCG) and its variants, average precision (AP), mean AP (MAP), and mean reciprocal rank
(MRR). However, we notice that some single systems used other metrics that are shortly mentioned while summarizing the
works in Section 8 (e.g., rank difference, the fraction of queries with results, Kendall-Tau, or the mean of the user scores).
In the following, we briefly define the most popular metrics:

Precision, Recall, and F-measure. In general, the precision is defined as the ratio between the number of retrieved
elements that are relevant to a specific query and the total number of retrieved elements (Cleverdon, 1967):

P = |relevant ∩ retrieved|
|retrieved| . (1)

Recall is defined as the ratio between the number of retrieved elements that are relevant and the total number of all
existing relevant elements (Cleverdon, 1967):

R = |relevant ∩ retrieved|
|relevant| . (2)

These definitions may be slightly adapted by some works depending on the nature of the retrieved answer. For example,
Dosso and Silvello (2020) define a triple-based variant of precision and recall to compare a generated and a ground truth
subgraph, by defining recall as the ratio between the relevant triples and the total number of triples in the ground truth.
Another adaptation is given by Navarro et al. (2021), where precision and recall are calculated for each generated SPARQL
answer. Here, recall is a function of the intersection between the generated and ground truth query.

The F1-measure is calculated by combining both precision and recall as follows (Zhang & Zhang, 2009):

F1 = 2 ⋅
P ⋅ R
P + R

. (3)

Feddoul et al. 9

Table 2. Overview of the Data and Metrics Used for Evaluating the Effectiveness of Surveyed Systems.

System #Queries Query Creation Ground Truth Dataset Metrics

Bhalotia et al. (2002) 7 M M DBLP, IIT Bombay
dataset

Rank difference

Kacholia et al. (2005) 5 M G (SQL) DBLP, IMDB, US
patent database

Precision, recall

He et al. (2007) – – – – –
Kimelfeld and Sagiv (2008)* – – – – –
Dalvi et al. (2008) 12 M M DBLP, IMDB Recall
Golenberg et al. (2008) ? ? ? ? Ranking correlation
Tran et al. (2009) 39 M M DBLP, TAP MRR
Zhong and Liu (2009) 12 M ? DBLP Minimum/avg. scores

of top-10, 25, and
50

Sitthisarn (2014) 20 M M OntoLife,
RDFResume,
DBLP, FOAF,
Researcher

MRR

Zhang et al. (2014) 10 R M DBLP, IMDb DCG
Bae et al. (2014) – – – – –
Kargar and An (2015) 19 M,R M DBLP, IMDb, Mondial P@10, P@2,

%ground truth
answers

Wang et al. (2015) 20 M,R M DBpedia 1 match (top-10)
Park and Lim (2015) 30 M M DBLP, IMDb, Mondial P@10, P@20
Mass and Sagiv (2016) 50 Coffman Coffman Mondial, Wikipedia,

IMDb
MAP (top-1000)

Zheng et al. (2016) 10 M ? DBLP P@5, AP@5, MRR
Kharrat et al. (2016) 50 M ? ? Fuzzy precision,

fraction queries
with result, F1

Han et al. (2017) 180 QALD-6, Free917 QALD-6, Free917 DBpedia, Freebase Precision, recall, F1
Ouksili et al. (2017) 10 R M AIFB, the conference

dataset
P@k, nDCG@k

(k=10,20,5)
García et al. (2017) 50 Coffman Coffman Mondial, IMDb –
Sinha et al. (2018) 20 M M Jamendo, DBpedia Kendall-Tau, P@5,

Rank-DCG
Rihany et al. (2018) 20 M M AIFB, DBpedia

(subset)
P@10, P@5

Menendez et al. (2019) 75 Coffman, QALD-2 Coffman, QALD-2 IMDb, MusicBrainz MAP
Lu et al. (2019) – – – – –
Dosso and Silvello (2020) 177 M, DBpedia-Entity v1

(QALD-2)
M, DBpedia-Entity v1

(QALD-2)
LinkedMDB, IMDB,

DBpedia, BSBM,
LUBM

Recall, P@1, P@5,
tb-DCG

Bryson et al. (2020) 200 R – DBLP, IntAct PPI Expression level,
h-index

Ghanbarpour et al. (2020) 10
Kargar and An (2015)

G (system) IMDb, DBLP Average answer
weight

Kadilierakis et al. (2020) 467 DBpedia-Entity v2 DBpedia-Entity v2 DBpedia nDCG@100,
nDCG@10

Cheng et al. (2020) 438 DBpedia-Entity v2 DBpedia-Entity v2 Dbpedia P@1
Jiang et al. (2021) – – – – –
Izquierdo et al. (2021) 191 Coffman, (Dosso &

Silvello, 2020)
Coffman, (Dosso &

Silvello, 2020)
LUBM, BSBM, IMDb,

Mondial, DBpedia
MAP, MRR, top-1

Navarro et al. (2021) 136 QALD-7 QALD-7 DBpedia Precision, recall, F1
Zhang et al. (2021) 10 ? G (system) DBLP, KMap Relationship

completeness
Shi et al. (2021) 281 DBpedia-Entity v2 DBpedia-Entity v2 DBpedia Mean of user scores
Zhang et al. (2022) 5 R M DBPedia, DBLP –

Note. ?= not mentioned in the paper; *= no evaluation; -= does not apply; M=manual; R= random; G= generated. Dataset refers to the underlying
data queried using keywords.

The previous metrics are set-based measures. Next, we define rank-based metrics that also consider the order in which
the documents are retrieved.

P@k. A good fraction of works used the precision at a specific rank position k as metric (Schütze et al., 2008). This is
more practical since it does not evaluate all retrieved results, but only the top-k:

P@k = |relevant ∩ retrieved@k|
k

. (4)

10 Semantic Web 16(5)

AP. The AP is given by the following formula (Liu, 2009), where n is the number of retrieved elements and relk is the
relevance of the element at position k (1 or 0):

AP = 1
|relevant|

n∑
k=1

P@k ⋅ relk. (5)

MAP. The MAP is calculated as the ratio between the sum of AP scores for each query and the total number of queries
(Q) (Katerenchuk & Rosenberg, 2016):

MAP =
∑Q

q=1 AP(q)
Q

. (6)

DCG. This measure also takes into account the case where the relevance judgments are given by a graded scale (instead
of a binary one) and considers both the relevance and position (Järvelin & Kekäläinen, 2002; Katerenchuk & Rosenberg,
2016). The DCG at a rank position n is defined as follows:

DCGn =
n∑

i=1

reli
log2(i + 1)

, (7)

where reli is the relevance of the retrieved element at the position i.
However, the DCG is not normalized, which makes it difficult to compare different queries with varying result sizes. To

deal with this, the normalized DCG (nDCG) is introduced. The normalization (nDCGn) is performed by dividing the DCG
by an ideal DCG (IDCGn). The latter is derived by taking the top-n relevance judgments ranked in decreasing order of
relevance and calculating the DCGn of this ideal order. The nDCGn measures could be averaged over all queries to obtain
an average nDCGn of the system.

One work (Sinha et al., 2018) used an improved variant of the DCG, called Rank-DCG (Katerenchuk & Rosenberg,
2016). Dosso and Silvello (2020) propose a triple-based DCG (tp-DCG) based on a new notion of relevance (graph-based)
that is calculated as the fraction of relevant triples in a subgraph-shaped answer.

MRR. The reciprocal rank aims at evaluating the system with respect to its capability of rapidly finding the first relevant
result. The MRR is the average of reciprocal ranks over all queries Q, where posi is the position of the very first relevant
result to the query i (Craswell, 2009):

MRR = 1
Q

Q∑
i=1

1
posi

. (8)

7 System Summary Overview
Tables 3 and 4 provide an overview of all systems described in detail in Section 8 sorted in ascending chronological order.
In addition to the aspects introduced in Section 5, the following criteria are also reported: the underlying data, the goal in
terms of returned results, the availability of an index, the search algorithm used, the type of the intermediate result, and
the specific ranking. Most of the approaches either work over any graph-structured data or over KGs (RDF). Furthermore,
some of the works also require the existence of a data schema (ontology) to answer the query, and only one work operates
on attributed graphs. The majority of works are graph-based (22), followed by summary-based (5), schema-based (4), and
virtual document-based (4) approaches. Overall, the aim is to retrieve the top-k relevant answers, mostly ranked in the
order of relevance to the query. However, a fraction of works only seek to return one relevant result or deal with the naive
scenario of retrieving all relevant answers.

Even if we notice an inconsistency in the naming of the search algorithms used, works that aim at extracting tree or
subgraph-shaped results usually rely on graph traversal algorithms (e.g., backward, breadth-first, depth-first, or random
walk). The latter are either adapted to work with a specific index structure (Dalvi et al., 2008; Kacholia et al., 2005; Zhong
& Liu, 2009), or a specific result (Ghanbarpour et al., 2020; Lu et al., 2019; Zhang et al., 2022), or data graph shape (Han
et al., 2017; Zheng et al., 2016). Some works also exploit approximation algorithms that aim at computing the top-k best
solutions of a specific optimization problem (Kargar & An, 2015; Park & Lim, 2015) or optimized enumeration algorithms
(Golenberg et al., 2008; Kimelfeld & Sagiv, 2008). Most of the systems that aim at generating SPARQL queries construct
a graph-shaped intermediate result that is translated to a structured query. The final answer type is, in most cases, a tree
(15), followed by structured queries (9), and subgraphs (7). Only two works return triples and one retrieves entities in
addition to triples. A newly defined answer type (key-core) is used by a single system.

Feddoul et al. 11

Ta
bl

e
3.

O
ve

rv
ie

w
of

Su
rv

ey
ed

M
et

ho
ds

fo
r

K
ey

w
or

d
Se

ar
ch

ov
er

G
ra

ph
-S

ha
pe

d
D

at
a.

Sy
st

em
D

at
a

Se
ar

ch
Sp

ac
e

G
oa

l
Se

ar
ch

A
lg

or
ith

m
In

te
rm

ed
ia

te
R

es
ul

t
Fi

na
lA

ns
w

er
Ty

pe
A

ns
w

er
R

an
ki

ng
A

ns
w

er
Sc

or
in

g

Bh
al

ot
ia

et
al

.(
20

02
)

G
ra

ph
G

ra
ph

-b
as

ed
To

p-
k

Ba
ck

w
ar

d
–

R
oo

te
d

di
re

ct
ed

tr
ee

IM
P

D
is

tin
ct

(E
,N

)
K

ac
ho

lia
et

al
.(

20
05

)
G

ra
ph

G
ra

ph
-b

as
ed

To
p-

k
Bi

di
re

ct
io

na
l

–
R

oo
te

d
di

re
ct

ed
tr

ee
IM

P
R

oo
t-

ke
yw

or
d

(E
),

di
st

in
ct

(N
)

H
e

et
al

.(
20

07
)

G
ra

ph
G

ra
ph

-b
as

ed
To

p-
k

In
de

x-
ba

se
d

bi
di

re
ct

io
na

l
–

D
is

tin
ct

ro
ot

ed
di

re
ct

ed
tr

ee
C

O
M

P,
IM

P,
T

X
T

R
oo

t-
ke

yw
or

d
(E

),
di

st
in

ct
(N

)
K

im
el

fe
ld

an
d

Sa
gi

v
(2

00
8)

G
ra

ph
G

ra
ph

-b
as

ed
A

ll
T

hr
ea

de
d

en
um

er
at

io
n

–
M

in
im

al
tr

ee
–

–
D

al
vi

et
al

.(
20

08
)

G
ra

ph
Su

m
m

ar
y-

ba
se

d
To

p-
k

M
ul

ti-
gr

an
ul

ar
gr

ap
h-

ba
se

d
–

M
in

im
al

ro
ot

ed
di

re
ct

ed
tr

ee
IM

P
R

oo
t-

ke
yw

or
d

(E
),

di
st

in
ct

(N
)

G
ol

en
be

rg
et

al
.(

20
08

)
G

ra
ph

G
ra

ph
-b

as
ed

To
p-

k,
A

ll
En

um
er

at
io

n
(p

ol
yn

om
ia

ld
el

ay
)

–
M

in
im

al
ro

ot
ed

di
re

ct
ed

tr
ee

C
O

M
P,

IM
P,

D
IV

D
is

tin
ct

(E
,N

)
Tr

an
et

al
.(

20
09

)
R

D
F

Su
m

m
ar

y-
ba

se
d

To
p-

k
Ba

ck
w

ar
d

Su
bg

ra
ph

St
ru

ct
ur

ed
qu

er
y

C
O

M
P,

IM
P,

T
X

T
R

oo
t-

ke
yw

or
d

(E
,N

)
Z

ho
ng

an
d

Li
u

(2
00

9)
G

ra
ph

Su
m

m
ar

y-
ba

se
d

To
p-

k
C

om
po

se
d

su
bg

ra
ph

–
D

is
tin

ct
ro

ot
ed

tr
ee

C
O

M
P

R
oo

t-
ke

yw
or

d
(E

)
Si

tt
hi

sa
rn

(2
01

4)
R

D
F
+

O
nt

o
Sc

he
m

a-
ba

se
d

To
p-

1
N

od
e

m
er

gi
ng

/e
xp

an
si

on
R

oo
te

d
tr

ee
St

ru
ct

ur
ed

qu
er

y
C

O
M

P,
IM

P,
T

X
T

–
Z

ha
ng

et
al

.(
20

14
)

G
ra

ph
G

ra
ph

-b
as

ed
To

p-
k

Sh
or

te
st

pa
th

–
R

-c
liq

ue
C

O
M

P,
IM

P,
T

X
T

D
is

tin
ct

(E
,N

)
Ba

e
et

al
.(

20
14

)
R

D
F

G
ra

ph
-b

as
ed

To
p-

k
D

ep
th

-fi
rs

t
–

Tr
ip

le
C

O
M

P,
SE

M
–

K
ar

ga
r

an
d

A
n

(2
01

5)
G

ra
ph

G
ra

ph
-b

as
ed

To
p-

k
La

w
le

r’
s

pr
oc

ed
ur

e
R

-c
liq

ue
Tr

ee
C

O
M

P,
IM

P
K

ey
w

or
d-

pa
ir

(N
)

W
an

g
et

al
.(

20
15

)
R

D
F

G
ra

ph
-b

as
ed

To
p-

k
D

ep
th

-fi
rs

t
M

in
im

al
tr

ee
St

ru
ct

ur
ed

qu
er

y
C

O
M

P
–

Pa
rk

an
d

Li
m

(2
01

5)
G

ra
ph

G
ra

ph
-b

as
ed

To
p-

k
T

hr
es

ho
ld

al
go

ri
th

m
–

D
is

tin
ct

ro
ot

ed
tr

ee
C

O
M

P,
T

X
T

R
oo

t-
ke

yw
or

d
(N

)
M

as
s

an
d

Sa
gi

v
(2

01
6)

G
ra

ph
V

D
-b

as
ed

To
p-

k
?

–
M

in
im

al
tr

ee
C

O
M

P,
IM

P,
T

X
T

–
Z

he
ng

et
al

.(
20

16
)

R
D

F
G

ra
ph

-b
as

ed
To

p-
k

Bi
pa

rt
ite

gr
ap

h-
ba

se
d

–
Su

bg
ra

ph
T

X
T

–
K

ha
rr

at
et

al
.(

20
16

)
R

D
F
+

O
nt

o
G

ra
ph

-b
as

ed
To

p-
1

–
Su

bg
ra

ph
St

ru
ct

ur
ed

qu
er

y
C

O
M

P
K

ey
w

or
d-

pa
ir

(E
,N

)
H

an
et

al
.(

20
17

)
R

D
F

G
ra

ph
-b

as
ed

To
p-

1
Be

st
-fi

rs
t

Su
bg

ra
ph

St
ru

ct
ur

ed
qu

er
y

SE
M

D
is

tin
ct

(E
)

O
uk

si
li

et
al

.(
20

17
)

R
D

F
+

O
nt

o
G

ra
ph

-b
as

ed
To

p-
k

Sh
or

te
st

pa
th

–
M

in
im

al
su

bg
ra

ph
C

O
M

P,
T

X
T

–
G

ar
cí

a
et

al
.(

20
17

)
R

D
F

Sc
he

m
a-

ba
se

d
To

p-
1

?
M

in
im

al
tr

ee
St

ru
ct

ur
ed

qu
er

y
–

–
Si

nh
a

et
al

.(
20

18
)

R
D

F
Su

m
m

ar
y-

ba
se

d
To

p-
k

?
–

M
in

im
al

su
bg

ra
ph

C
O

M
P,

PR
O

F
–

R
ih

an
y

et
al

.(
20

18
)

R
D

F
G

ra
ph

-b
as

ed
To

p-
k

D
ijk

st
ra

-
M

in
im

al
su

bg
ra

ph
C

O
M

P,
T

X
T

–
M

en
en

de
z

et
al

.(
20

19
)

R
D

F
Sc

he
m

a-
ba

se
d

To
p-

1
?

M
in

im
al

tr
ee

St
ru

ct
ur

ed
qu

er
y

IM
P

–
Lu

et
al

.(
20

19
)

G
ra

ph
G

ra
ph

-b
as

ed
To

p-
k

C
an

on
ic

al
fo

rm
-b

as
ed

–
M

in
im

al
ro

ot
ed

un
di

re
ct

ed
tr

ee
–

–
D

os
so

an
d

Si
lv

el
lo

(2
02

0)
R

D
F

V
D

-b
as

ed
To

p-
k

Br
ea

dt
h-

fir
st

–
M

in
im

al
tr

ee
C

O
M

P,
T

X
T

–
Br

ys
on

et
al

.(
20

20
)

A
tt

r.
gr

ap
h

G
ra

ph
-b

as
ed

To
p-

k
R

an
do

m
w

al
k

w
ith

re
st

ar
t

–
Su

bg
ra

ph
IM

P
K

ey
w

or
d-

pa
ir

(N
)

G
ha

nb
ar

po
ur

et
al

.(
20

20
)

G
ra

ph
G

ra
ph

-b
as

ed
To

p-
k,

A
ll

R
-c

liq
ue

fin
di

ng
–

M
in

im
al

co
ve

re
d

r-
cl

iq
ue

C
O

M
P,

IM
P

K
ey

w
or

d-
pa

ir
(E

)
K

ad
ili

er
ak

is
et

al
.(

20
20

)
R

D
F

V
D

-b
as

ed
A

ll
–

–
Tr

ip
le

,e
nt

ity
T

X
T

–
C

he
ng

et
al

.(
20

20
)

R
D

F
G

ra
ph

-b
as

ed
To

p-
1

Be
st

-F
ir

st
–

M
in

im
al

tr
ee

–
–

Jia
ng

et
al

.(
20

21
)

R
D

F
+

O
nt

o
Su

m
m

ar
y-

ba
se

d
To

p-
k

Te
st

di
ffe

re
nt

al
go

rit
hm

s
–

–
–

–
Iz

qu
ie

rd
o

et
al

.(
20

21
)

R
D

F
G

ra
ph

-b
as

ed
To

p-
k

–
Tr

ee
St

ru
ct

ur
ed

qu
er

y
IM

P,
T

X
T

–
N

av
ar

ro
et

al
.(

20
21

)
R

D
F
+

O
nt

o
Sc

he
m

a-
ba

se
d

To
p-

k
Br

ea
dt

h-
fir

st
Su

bg
ra

ph
St

ru
ct

ur
ed

qu
er

y
–

–
Z

ha
ng

et
al

.(
20

21
)

R
D

F
V

D
-b

as
ed

To
p-

k
?

–
Tr

ee
C

O
M

P
D

is
tin

ct
(E

)
Sh

ie
t

al
.(

20
21

)
R

D
F

G
ra

ph
-b

as
ed

To
p-

1
Sh

or
te

st
pa

th
–

M
in

im
al

tr
ee

IM
P,

SE
M

D
is

tin
ct

(E
,N

)
Z

ha
ng

et
al

.(
20

22
)

G
ra

ph
G

ra
ph

-b
as

ed
To

p-
1

K
ey

-c
or

e
co

m
pu

ta
tio

n
–

K
ey

-c
or

e
–

–

N
ot

e.
?=

no
t

m
en

tio
ne

d
in

th
e

pa
pe

r;
-=

do
es

no
t

ap
pl

y;
O

nt
o
=

on
to

lo
gy

;A
tt

r
=

at
tr

ib
ut

ed
;E

=
ed

ge
;N

=
no

de
;V

D
=

vi
rt

ua
ld

oc
um

en
t;

C
O

M
P
=

co
m

pa
ct

ne
ss

;I
M

P
=

im
po

rt
an

ce
;T

X
T
=

te
xt

ua
l;

D
IV

=
di

ve
rs

ity
;S

E
M

=
se

m
an

tic
s;

P
R

O
F
=

pr
ofi

le
.

12 Semantic Web 16(5)

Ta
bl

e
4.

O
ve

rv
ie

w
of

Su
rv

ey
ed

M
et

ho
ds

fo
r

K
ey

w
or

d
Se

ar
ch

O
ve

r
G

ra
ph

-S
ha

pe
d

D
at

a
(In

de
xi

ng
an

d
R

an
ki

ng
).

Sy
st

em
In

de
x

R
an

ki
ng

Bh
al

ot
ia

et
al

.(
20

02
)

K
ey

w
or

d-
el

em
en

t
N

od
e

pr
es

tig
e

(in
-d

eg
re

e)
,E

dg
e

pr
ox

im
ity

(in
-d

eg
re

e)
K

ac
ho

lia
et

al
.(

20
05

)
K

ey
w

or
d-

el
em

en
t

N
od

e
pr

es
tig

e
(P

ag
eR

an
k)

,e
dg

e
pr

ox
im

ity
(in

-d
eg

re
e)

H
e

et
al

.(
20

07
)

Sh
or

te
st

pa
th

s
D

is
ta

nc
e,

Pa
ge

R
an

k*
,a

nd
T

F/
ID

F*
K

im
el

fe
ld

an
d

Sa
gi

v
(2

00
8)

?
no

D
al

vi
et

al
.(

20
08

)
K

ey
w

or
d-

el
em

en
t

N
od

e
pr

es
tig

e
(P

ag
eR

an
k)

,e
dg

e
pr

ox
im

ity
(in

-d
eg

re
e)

G
ol

en
be

rg
et

al
.(

20
08

)
?

Tr
ee

he
ig

ht
,N

od
e

in
-d

eg
re

e/
ou

t-
de

gr
ee

,r
ed

un
da

nc
y

pe
na

lty
Tr

an
et

al
.(

20
09

)
K

ey
w

or
d-

el
em

en
t,

su
m

m
ar

y
gr

ap
h

Pa
th

le
ng

th
,p

op
ul

ar
ity

,k
ey

w
or

d
m

at
ch

in
g

(T
F/

ID
F*

)
Z

ho
ng

an
d

Li
u

(2
00

9)
K

ey
w

or
d-

su
bg

ra
ph

,k
ey

w
or

d-
el

em
en

t,
el

em
en

t-
su

bg
ra

ph
D

is
ta

nc
e

Si
tt

hi
sa

rn
(2

01
4)

Sh
or

te
st

pa
th

s
(B

LI
N

K
S)

w
ith

di
st

an
ce

,
ke

yw
or

d-
el

em
en

t
Sh

or
te

st
pa

th
be

tw
ee

n
ro

ot
an

d
ke

yw
or

d,
te

rm
fr

eq
ue

nc
y,

pr
op

er
ty

fr
eq

ue
nc

y
Z

ha
ng

et
al

.(
20

14
)

N
o

Te
rm

fr
eq

ue
nc

y,
Pa

ge
R

an
k,

no
de

de
gr

ee
,a

ns
w

er
si

ze
Ba

e
et

al
.(

20
14

)
Pr

ed
ic

at
es

,s
ub

je
ct

/o
bj

ec
t,

lit
er

al
,i

nc
om

in
g/

ou
tg

oi
ng

re
la

tio
ns

,s
im

ila
ri

ty
sc

or
e

D
is

ta
nc

e
(n

um
be

r
of

su
bj

ec
ts

in
th

e
pa

th
),

se
m

an
tic

si
m

ila
ri

ty
(W

or
dN

et
)

K
ar

ga
r

an
d

A
n

(2
01

5)
Sh

or
te

st
pa

th
s,

ke
yw

or
d-

el
em

en
t

N
od

e
de

gr
ee

,s
ho

rt
es

t
pa

th
W

an
g

et
al

.(
20

15
)

K
ey

w
or

d-
el

em
en

t,
sh

or
te

st
pa

th
s

Tr
ee

di
am

et
er

Pa
rk

an
d

Li
m

(2
01

5)
K

ey
w

or
d-

el
em

en
t,

sh
or

te
st

pa
th

s
w

ith
no

de
re

le
va

nc
e

N
od

e
re

le
va

nc
e,

sh
or

te
st

pa
th

M
as

s
an

d
Sa

gi
v

(2
01

6)
G

ra
ph

no
de

s/
ed

ge
s,

no
de

-t
ex

t
,v

ir
tu

al
do

cu
m

en
ts

Te
rm

fr
eq

ue
nc

y,
di

st
an

ce
,n

od
e

de
gr

ee
Z

he
ng

et
al

.(
20

16
)

N
o

Te
rm

fr
eq

ue
nc

y
K

ha
rr

at
et

al
.(

20
16

)
?

Sh
or

te
st

pa
th

H
an

et
al

.(
20

17
)

N
o

Tr
ip

le
as

se
m

bl
y

co
st

O
uk

si
li

et
al

.(
20

17
)

K
ey

w
or

d-
el

em
en

t
Te

rm
fr

eq
ue

nc
y,

an
sw

er
si

ze
G

ar
cí

a
et

al
.(

20
17

)
K

ey
w

or
d-

el
em

en
t

–
Si

nh
a

et
al

.(
20

18
)

N
o

D
is

ta
nc

e
R

ih
an

y
et

al
.(

20
18

)
N

o
D

is
ta

nc
e,

ke
yw

or
d

m
at

ch
in

g
sc

or
e

M
en

en
de

z
et

al
.(

20
19

)
N

o
In

fo
R

an
k

Lu
et

al
.(

20
19

)
N

o
N

o
D

os
so

an
d

Si
lv

el
lo

(2
02

0)
Su

bg
ra

ph
-t

ex
t,

su
bj

ec
t

BM
25

,M
ar

ko
v

ra
nd

om
fie

ld
m

od
el

Br
ys

on
et

al
.(

20
20

)
N

o
N

od
e

sc
or

e
G

ha
nb

ar
po

ur
et

al
.(

20
20

)
N

o
N

od
e

de
gr

ee
,d

is
ta

nc
e

K
ad

ili
er

ak
is

et
al

.(
20

20
)

Tr
ip

le
-t

ex
t

BM
25

,D
FR

,L
M

-D
ir

ic
hl

et
,L

M
Je

lin
ek

-M
er

ce
r

C
he

ng
et

al
.(

20
20

)
N

o
N

o
Jia

ng
et

al
.(

20
21

)
H

ie
ra

rc
hy

of
su

m
m

ar
y

gr
ap

hs
–

Iz
qu

ie
rd

o
et

al
.(

20
21

)
K

ey
w

or
d-

el
em

en
t

K
ey

w
or

d
m

at
ch

in
g,

In
fo

R
an

k
N

av
ar

ro
et

al
.(

20
21

)
K

ey
w

or
d-

el
em

en
t

no
Z

ha
ng

et
al

.(
20

21
)

K
ey

w
or

d-
el

em
en

t,
co

m
m

un
ity

St
ru

ct
ur

al
co

m
pa

ct
ne

ss
Sh

ie
t

al
.(

20
21

)
?

Se
m

an
tic

di
st

an
ce

,P
ag

eR
an

k
Z

ha
ng

et
al

.(
20

22
)

N
o

N
o

N
ot

e.
?=

no
t

m
en

tio
ne

d
in

th
e

pa
pe

r;
-=

do
es

no
t

ap
pl

y;
*
=

re
co

m
m

en
de

d
bu

t
no

t
us

ed
;B

LI
N

K
S
=

Bi
-L

ev
el

IN
de

xi
ng

fo
r

K
ey

w
or

d
Se

ar
ch

.

Feddoul et al. 13

Most of the works use a compactness-based ranking (18), followed by importance-based (15) and textual-based (12)
ones. However, semantics-based (3), diversity-based (1), and profile-based (1) rankings are only rarely used. Almost half
(16) of the works combine at least two ranking methods. The distinct answer scoring is mostly used (7), followed by the
root-keyword (6) and the keyword-pair (4) scoring. Here also, we notice that two scoring types may be combined when,
for each graph element, a different scoring is used. In addition, the specific answer scoring type may be applied only for
either nodes or edges. Furthermore, for each system, we also document the type of index used and the specific rankings (cf.
Table 4). An index is usually used to support keyword to graph element matching, or to accelerate the graph traversal by
storing a specific set of shortest paths between two nodes. Almost half of the works (14) use a keyword to graph element
index (keyword-element).

In general, we observe that most works have focused on traversing the whole graph to find tree-shaped answers for
now. This shows that the overall trend is to enhance efficiency. However, answer ranking is not sufficiently investigated,
which is demonstrated by the fact that in most cases, the most intuitive ranking type is used (e.g., compactness-based).

8 Detailed Overview and Classification of Existing Works
In the following, we give detailed descriptions of the collected relevant works. We structure them into subsections based
on the search space aspect, since it appeared to best cluster relevant works into distinct groups. Other aspects will be
clearly mentioned for each work in the short summary, together with the method of evaluation used. In total, we report on
22 graph-based, four schema-based, five summary-based, and four virtual document-based methods.

8.1 Graph-based Methods
Graph-based methods do not aim at reducing the size of the graph but directly search for answers over it. Since most of the
works are graph-based, we further categorize them with respect to the answer type to improve readability. We also notice
that all the answer types are covered in this case.

8.1.1 Tree. Bhalotia et al. (2002) presented Browsing ANd Keyword Searching (BANKS), a system enabling keyword
search over relational databases.

Method. The database is modeled as a directed graph by considering the tuples as nodes and the foreign key relations
as edges. The query answer is defined as a rooted directed tree. BANKS models each relation between two nodes using
two types of edges: forward (initial edges pointing from foreign key to primary key) and backward (additional edges in the
opposite direction). This ensures finding a rooted tree directed away from the root. BANKS aims at finding an approximate
set of top-k minimum Steiner trees (hard problem: NP-complete). It starts by mapping query terms to nodes using an
index (text contained in graph elements), then the backward expanding search algorithm concurrently starts a shortest path
finding algorithm from each keyword node with the aim of finding a node connecting all keywords (information node).
To avoid waiting for all answer trees to be generated to sort them, an approximate solution is proposed. Generated trees
are incrementally added (after duplicate detection13) to a small fixed-size heap (ordered by relevance score). When the
latter is full and there are more candidate answers, the highest-ranked tree is returned and replaced in the heap. While the
proposed heuristic does not necessarily ensure the retrieval of trees in decreasing order, the authors state that it works well
even using small heaps.

Ranking. An importance-based ranking was used where each node is assigned a weight based on its importance (node
prestige). The node weight is calculated as the fraction of the number of incoming edges and the maximum node weight,
giving a higher score to nodes with more incoming edges. For the edges, a weighting based on the edges’ importance
(proximity) is proposed. Each forward edge is given a weight of 1, whereas a backward link (v, u) is given a weight that
is directly proportional to the number of links to v coming from nodes having the same type as u. The edge weight is
normalized using the minimum edge weight. The total score of an answer is then calculated by combining both node and
edge scores by addition (distinct scoring for nodes and edges) or multiplication using a factor 𝜆 to control the effect of
edge and node scores (𝜆 = 0.2 performed best). The edge score gives higher relevance to smaller trees. Only root and
keyword nodes are considered while calculating the total score of the nodes, and a node containing multiple search terms
is counted multiple times.

Evaluation. Evaluation of performance, effectiveness, together with parameters effect were conducted using a part
of the DBLP dataset (paper titles, their authors, and citations) and a dataset about the master/PhD dissertations in the
IIT Bombay. The authors used an internally created gold standard with seven queries and their corresponding relevant
answers. The rank difference between the ground truth answers and the actual answers was used as an evaluation metric.

14 Semantic Web 16(5)

Kacholia et al. (2005) state that the backward search in BANKS may not efficiently perform in the cases where: (1) a
query keyword has many matching nodes in the graph, or (2) some of the visited nodes have a large in-degree, since it
prevents exploring other directions until all incoming edges are visited.

Method. To overcome the previous shortcoming, this work proposes a bidirectional search paradigm to retrieve rooted
directed trees which does not traverse the graph only backwards but also forwards, starting from potential answer roots in
the direction of keyword nodes. For this purpose, the authors propose a node prioritization heuristic (spreading activation)
that regulates the traversal. Keyword nodes are assigned an initial score given by an,i = nodePrestige(u)∕|Ki|,∀n ∈ Ki,
where Ki is the set of nodes matching a keyword ki. This prioritizes keyword nodes having a higher prestige and penalizes
those matching a large number of nodes. Each node propagates an attenuated activation to its neighbors 𝜇 = 0.5 and keeps
the remaining 1 − 𝜇. In case a node receives activation from different edges starting from a keyword ki, the maximum
activation a(u,i) is considered. The overall activation of a node is calculated as the sum of the activation scores originating
from each keyword, to prioritize nodes that are close to a larger number of keywords.

Ranking. Since the focus was on the search algorithm, and not on the ranking of answers, the same importance-based
scoring as proposed by BANKS was used with the multiplication-based relevance score. The only difference is the used
final answer scoring for edges, which is root-keyword based, in contrast to BANKS.

Evaluation. The evaluation focuses on the efficiency aspect and compares the bidirectional search with BANKS and the
Sparse algorithm (Hristidis et al., 2003) using the following metrics and five manually created queries: number of nodes
explored and the nodes touched, as well as the time taken. Results show that the bidirectional search is faster than both
baseline algorithms. A very small effectiveness analysis (precision and recall (cf. Section 6)) was conducted using the
same queries and their corresponding results generated using an SQL query. Both backward and bidirectional performed
equally with respect to effectiveness.

He et al. (2007) propose Bi-Level INdexing for Keyword Search (BLINKS) and aim at exploiting indexes to precompute
and store possible shortest paths. This is to deal with the fact that both backward and bidirectional search algorithms’
performance relies more or less on the graph structure and the position of the different keywords in the graph, which
makes the performance unpredictable.

Method. The index is filled using backward search and consists of two kinds of lists: (1) a keyword-node list that stores
for each keyword the list of nodes that can reach it ordered by distance, and (2) a node-keyword map which stores the
shortest distance between nodes and keywords, to optimize forward expansions.

BLINKS does not aim at indexing all possible paths (single-level index) since it will result in very large indexes
for large-scale graphs. However, it proposes a bi-level index by dividing the whole graph into blocks (subgraphs): the
top-level block index maps keyword/nodes to blocks, and the intra-block index stores detailed information within each
block (e.g., intra-block keyword-node lists). The backward search strategy is also enhanced using equi-distance and cost-
balanced expansions. BLINKS answers are distinct rooted directed trees to avoid answers that deliver only a few additional
information compared to the rest, and technically allow more effective indexing.

Ranking. Again, the focus was not on the ranking, but on the query processing and indexing strategy. The authors
propose a scoring function for the answer that combines three aspects (compactness-based, importance-based, and textual-
based): sum of the shortest path distances from the root for each keyword node, sum of the matching score for each
keyword with its corresponding node (e.g., TF/IDF), and the score of the answer root (e.g., PageRank; Page et al., 1999).
However, for convenience, only the sum of the shortest path distances from the root for each keyword node is considered.
The same aggregation is used for edge weights (root-keyword scoring).

Evaluation. Only efficiency experiments (comparison with the bidirectional algorithm Kacholia et al., 2005) were
conducted, including execution time with different parameters (e.g., graph partitioning method) and index performance
using 10 queries over the DBLP XML14 and IMDb15 datasets. Results reveal that BLINKS is overall faster than the
baseline.

Kimelfeld and Sagiv (2008) use a different family of algorithms to efficiently retrieve all answers.
Method. The authors use threaded enumerators, which enable one enumeration algorithm to directly use elements

produced by another one (or itself) instead of waiting until the latter finishes. The desired answers are minimal trees,
which means that there exists no other subtree in the answer that connects the respective keyword nodes. Three types
of answers are considered: directed, undirected, and strong (undirected with all keywords as leaves). The work focuses
on the efficiency aspect and aims at proposing answer enumeration algorithms that solve the problem with polynomial
delay between two output answers, except for the first answer, where the delay is exponential. For that, algorithms for
each answer type are investigated, with the following different purposes with respect to how the answers are presented:
sorted, heuristically sorted, and unsorted. The authors consider the sorted variant as the most wanted one and propose an
algorithm with polynomial delay given an acyclic data graph and a directed answer. Algorithms for the unsorted scenario
for all types of answers with polynomial delay are also proposed. Furthermore, a proposition is given about how the latter

Feddoul et al. 15

can be enhanced to output the answers in a heuristic order. Answer ranking was not addressed, and there is no practical
evaluation of the proposed approaches; instead, theoretical proofs are elaborated.

Golenberg et al. (2008) combine the methods proposed by Bhalotia et al. (2002); Kacholia et al. (2005) by using
shortest-path iterators to find the first answer, and includes the work done in Kimelfeld and Sagiv (2008) to generate the
rest of the nonredundant answers using a more practical and faster approach.

Method. Kimelfeld and Sagiv (2008) retrieve answers (minimal rooted directed trees) with a polynomial delay (ranking
them by order of increasing weights) and is based on heuristics for generating Steiner trees. To simplify the problem,
Golenberg et al. (2008) propose the usage of two rankings, a simple one while exploring the graph, and another one after
generating candidate answers. A condition for this to work is that the primary ranking should be highly correlated with
the final one. The problem is further simplified to increase efficiency and restricted to the enumeration of answers in a
two-approximate order (“if one answer precedes another, then the first is worse than the second by at most a factor of 2”).

Ranking. In general, the authors combine compactness-based, importance-based, and diversity-based rankings. The
primary ranking weight used during the exploration is the height of a subtree (“maximum length of any path from the
root to a leaf”). The final ranking of generated answers is calculated as a combination of: an absolute relevance score
based on the in-degree/out-degree of the nodes belonging to an edge, and the redundancy penalty which aims at producing
diversified answers by “penalizing answers based on their degree of similarity to the ones that have already been given a
final rank.” The total score of an answer is inversely proportional to its total weight using a distinct scoring for nodes and
edges.

Evaluation. The efficiency of the algorithm was evaluated with an increasing number of query keywords. The correla-
tion between the primary and final ranking, together with the effect of the redundancy penalty on ranking quality, isalso
evaluated. No information was provided on the used evaluation dataset/queries.

Kargar and An (2015) aim to find a practical algorithm to solve the hard problem of retrieving top-k answers using an
approximation with polynomial delay. In contrast to the previous works, it does not directly retrieve trees but r-cliques that
are transformed to tree answers at the end.

Method. First, needed indexes are prepared, which include a keyword-node index and a shortest path index between
each pair of nodes within a certain distance. After finding keyword nodes in the graph, top-k r-cliques are calculated by
adapting Lawler’s procedure (Lawler, 1972). First, a polynomial algorithm is called to retrieve the best one answer over
the whole search space. Then, the latter is divided into subspaces according to the best answer, and the locally best answers
in each subspace are found using the same polynomial algorithm. The subspace from which the best answer originates is
further divided to find locally best answers. This process continues until all top-k answers are retrieved. Finally, a Steiner
tree is produced over each r-clique.

Ranking. The edge weight used during the evaluation is based on the in-degree of the two edge nodes. The final answer
score is calculated using a keyword-pair scoring considering the edge weight as pairwise node weight.

Evaluation. The efficiency evaluation is done using 15 queries over three datasets (DBLP XML, IMDb (MovieLens16),
and Mondial17), where two approach versions (original and another one starting from nodes containing rarest keywords)
were compared with BANKS, Dynamic (Ding et al., 2007), and an algorithm that produces communities as answers (Qin
et al., 2009). In addition to the runtime also answer compactness was reported. Both proposed versions are faster than the
other systems. The effectiveness was evaluated by first calculating the percentage of produced ground truth (generated
using a naive algorithm that produces all r-cliques) answers using their approximate approach. In addition, a small user
study was conducted with four manually created user queries over DBLP, and eight users were asked to rate the answers.
The proposed system, BANKS, and dynamic achieve better precision than the community algorithm over all queries using
the P@k with k is equal to 10 and 2 (cf. Section 6).

Park and Lim (2015) propose an index-based approach for answering keyword queries over graphs that can be modified
to also accept answers that have more than one node corresponding to a specific keyword.

Method. Similar to Wang et al. (2015), the approach starts by constructing an inverted index that stores for each keyword
in the graph corresponding nodes (containing the keyword or connected to other nodes containing the keyword) together
with their relevance score to the keyword. This index is used to find top-k distinct rooted trees using the threshold algorithm
(Fagin et al., 2003; Güntzer et al., 2001).

Ranking. Each node is assigned a textual-based and compactness-based score that is calculated as the multiplication
between two elements: a matching score calculated based on the number of occurrences of the keyword in the node, and a
distance score calculated as the shortest path between the considered node and the one containing the keyword. The total
relevance score of an answer tree is the sum of the relevance scores between the root and the keyword nodes (root-keyword
scoring).

Evaluation. The system was compared (shortest distance set to 4) with BLINKS using 30 queries manually constructed
over three datasets (Mondial, IMDb, and DBLP XML). The answer trees of the different approaches were rated by five

16 Semantic Web 16(5)

adjudicators, and the P@10 and P@20 were calculated. The proposed approach outperforms BLINKS for 73% of the
queries, but the latter is still faster.

Lu et al. (2019) address the efficiency issue by ignoring some redundant intermediate results during graph expansion.
Method. The authors consider directed graphs and define a query answer as a minimal rooted undirected tree with

a fixed size (number of nodes). The rationale behind their algorithm (canonical form-based search) is to consider only
intermediate result trees that have a canonical form Zaki (2005) while searching the graph. Answer ranking was not
addressed.

Evaluation. Experiments are run to evaluate the efficiency of the algorithm using the TPC-H benchmark18 (decision
support database) and the IMDb19 database and 10 randomly generated queries. The work is compared with the other two
systems that generate all answers without redundancy checking (Hristidis & Papakonstantinou, 2002; Kargar et al., 2015).
Results reveal that the proposed approach is faster than the baseline for retrieving trees of size six. Furthermore, their
algorithm always produces less number of intermediate results compared to the baselines.

Cheng et al. (2020) tackle the case where subtrees connecting all the keywords may not exist, or they exist, but they are
far away from each other, resulting in a noncompact answer. While previous works retrieve top-k answers, here, only the
best top-1 answer is found.

Method. A method is proposed that still ensures the compactness of the answers by not requiring that all keywords
should be connected (relaxed answer). The authors formulate an optimization problem that aims at finding an optimal
answer with a tradeoff between compactness (the smallest answer diameter) and the degree of relaxation (covering more
keywords). For traversing the graph, a best-first strategy (CORE) is used, where the best search direction that may yield
a better answer (minimal relaxed) compared to the current one is followed. The exploration terminates if the remaining
possible answers cannot be better than the current best answer. The algorithm requires determining a specific desired
answer diameter. Answer ranking was not addressed.

Evaluation. The evaluation was conducted over the RDF versions of Mondial (40 queries from Coffman’s benchmark;
Coffman & Weaver, 2014), LinkedMDB20 (200 random natural language questions transformed to keywords), and DBpe-
dia (438 queries from DBpedia-Entity v2; Hasibi et al., 2017). The baselines used are: a previous algorithm version of
the same authors (CertQR+), and another algorithm for calculating Group Steiner Trees (GST) (Li et al., 2016) with edge
weights assigned with one. By calculating the compactness of GST answers, it is shown that it fails to find answers in a lot
of cases and also finds noncompact answers. In a second step, it is shown that their relaxed method finds complete answers
in the case of a number of keywords lower than 10 and 100. The runtime of their approach outperforms CertQR+. Since
CORE only computes the top-1 optimal answer, P@1 was used for calculating effectiveness over the DBpedia benchmark
(“P@1= 1 if a computed answer contained a gold-standard answer entity, otherwise P@1= 0”) and compare CORE with
CertQR+ and the GST algorithm. Results show that both CORE and CertQR+ have comparable results, and the GST-based
approach slightly outperforms both approaches with respect to the mean P@1.

Shi et al. (2021) aim at improving the performance of algorithms that calculate semantically cohesive minimal trees.
The latter should consist of entities with minimal pairwise semantic distance. Similar to (Cheng et al., 2020), the top-1
answer is retrieved.

Method. The authors state that using the semantic distance as an additional factor increases the difficulty of the Steiner
tree problem and thus propose two approximation algorithms: quality-oriented and efficiency-oriented. The answer is
defined as a minimal tree following the same definitions by some of the previous works, and the aim is to find the single
best answer. Each vertex is assigned a weight and each pair of vertices is assigned a semantic distance function. The
problem of computing an optimum answer is approximated by first computing a set of relevant paths that lead to each
keyword from a specific root node. After that, the candidate paths are transformed into an answer by merging the paths and
removing unnecessary edges and vertices to make it a minimal tree. This tree is not necessarily optimal, but it is shown that
it has a guaranteed approximation ratio. The quality-oriented algorithm finds a minimum cost path for each root, whereas
the efficiency-oriented algorithm relaxes this definition by computing the path only for roots that are keywords.

Ranking. The total cost of an answer is calculated using a weighted additive function that aggregates the total
PageRank-based vertices weights (importance-based) with the total pairwise semantic distance (semantics-based) of ver-
tices following a distinct scoring. A concrete implementation of the semantic distance is out of scope, but it should be
independent of the graph structure.

Evaluation. An evaluation was conducted using three synthetic KGs generated by the LUBM benchmark and three
DBpedia subgraphs, including the whole graph. For each LUBM dataset, 250 queries were generated by varying two
parameters: the number of keywords and the average number of vertices matched with each keyword. For DBpedia,
queries from DBpedia-Entity v2 were filtered by removing keywords without matches. For the evaluation, existing metrics
were reused: (1) a PageRank-based vertex scoring and (2) a semantic distance function calculated as the Jaccard distance
between the sets of types of entities (Cheng et al., 2017). The latter requires entities having multiple types, which is not

Feddoul et al. 17

available for LUBM. For that, the angular distance between entity embedding vectors using RDF2Vec (Ristoski et al.,
2019) is calculated (structural semantics). The metrics used are: the runtime compared to BANKS-II (Kacholia et al.,
2005) and DPBF (Ding et al., 2007), the ratio between the cost of the approximate and optimum answers (only on small
graphs, using an exact version from their algorithm) and the cohesiveness ratio between a baseline answer (BANKS-II and
DPBF) and their answer, where cohesiveness is defined as the sum of the pairwise semantic distance. The runtime of the
efficiency-oriented algorithm was comparable to BANKS-II. The quality-oriented algorithm showed poor performance
by reaching timeouts (200 s) most of the time. The effectiveness was evaluated by conducting a user study using 14–20
queries from the DBpedia-Entity v2 dataset with 16 participants (281 queries). Each participant was presented with the
query and corresponding answers retrieved by different methods (DPBF, efficiency-oriented approach) and was asked to
rate each answer on a scale (1–4).

8.1.2 Subgraph. Zhang et al. (2014) aim at retrieving r-cliques that are ranked based on the combination of various
aspects.

Method. The first step is the weights’ assignment to nodes and edges in the graph. After that, the search space is
narrowed down by selecting only the top-k nodes that match the keywords using the node weights. Then, for each pair of
selected nodes, the shortest path between them is calculated, and the top-k r-cliques are generated.

Ranking. The node weights are calculated as a function of the keyword frequency and PageRank, and the edge weights
are calculated as a function of the degree of their respective nodes. The total score of an answer is a linear combination of
the sum of the node weights and edge weights (distinct scoring), multiplied by other factors (answer size, keywords count
in the query). The ranking is a combination of compactness-based, textual-based, and importance-based factors.

Evaluation. The evaluation was performed using five randomly generated queries from each of the DBLP and IMDb
datasets. Relevance judgments were carried out by five users that were asked to score the nodes in the results based on the
relevance to the query. Results show that the proposed approach is faster and more effective compared to the Dup-Free
algorithm (Kargar et al., 2013).

Zheng et al. (2016) propose a method that transforms the RDF graph to a bipartite graph.
Method. The method aims at optimizing the efficiency of the keyword search task by taking advantage of the nature of

the adjacency matrix of a bipartite graph. First, the RDF graph is transformed to a bipartite graph that consists of two sets
represented as nodes with labels: one set with entities/classes and another one with properties. First, the keyword query
is expanded using synonyms from WordNet. The result is then matched to graph elements and a connecting subgraph is
extracted.

Ranking. The list of possible subgraphs is ranked using a textual-based score based on the number of keywords
contained in a specific subgraph.

Evaluation The evaluation is performed by comparing with three other systems (KREAG: Li & Qu, 2011; BLINKS
and EASE: Li et al., 2008) using DBLP with 10 manually created queries. Both the execution time and effectiveness are
reported using P@5, AP at 5 (AP@5), and the MRR as metrics (cf. Section 6). Results show that the proposed approach
is faster and more accurate.

Ouksili et al. (2017) focus on the problem where keywords cannot be mapped to the underlying graph elements because
of missing information (e.g., relation). In contrast to Zheng et al. (2016), the existence of a data schema (ontology) is
required.

Method. The main idea is to leverage external knowledge defined in the form of patterns, which will add new missing
triples. The pattern defines an equivalence between a property and a property path (e.g., two authors are collaborators if
they have written the same paper). Those patterns are manually defined and are either domain-specific or generic by using
standard properties (e.g., owl:sameAs). The approach starts with a fragment extraction step that extracts matching graph
elements, and next, the set of elements is expanded using a pattern store. Possible fragment combinations are constructed
by applying a Cartesian product. For each possible combination, the smallest minimal subgraph is retrieved.

Ranking. The used ranking is both textual-based using a term-frequency based matching score, and compactness-based
using the size of the subgraph (sum of nodes and edges). Patterns are considered when computing the size of a subgraph
by reducing the size by 1 if the subgraph contains a path from a pattern.

Evaluation. Two datasets were used: AIFB21 and a dataset about conferences. The actual approach using patterns was
compared with two other configurations without external knowledge. The effectiveness is evaluated with P@k and the
normalized DCG at k (NDCG@k) with k is equal to 5, 10, and 20 (cf. Section 6) using 10 randomly generated queries and
the ratings of four users. The usage of patterns outperforms the other configurations. The effect of the query size on the
execution time is also evaluated.

Rihany et al. (2018) have the same motivation as Ouksili et al. (2017) and focus on enhancing the keyword to graph
element matching by using WordNet as an external knowledge base.

18 Semantic Web 16(5)

Method. The approach starts with keyword matching, where the first graph elements with exact matching labels are
retrieved. If this step fails, related terms are retrieved from WordNet using different relations (e.g., synonyms). Since for
each keyword a list of matching elements is retrieved, possible combinations are derived using the Cartesian product. For
each possible combination, the smallest minimal subgraph is retrieved using the Dijkstra algorithm (Dijkstra, 1959).

Ranking. The result subgraphs are ranked based on a function that depends on the number of matching elements and
the number of connecting nodes. This function favors small answers with more exact matching nodes (textual-based and
compactness-based).

Evaluation. The evaluation was done using 10 queries from each of AIFB and a subset of DBpedia about movies. It
is shown that the approach without external knowledge usage is faster and evaluates effectiveness using a subset of 10
queries and three users. Results reveal that P@10 and P@5 are always above 0.92 for both datasets.

Bryson et al. (2020) are motivated by the fact that shortest path-based methods will assign the same score to connecting
subgraphs having the same length.

Method. The authors propose a function for assigning scores to nodes based on a random walk with restart. Different
from previously mentioned works, they define attributed graphs as underlying data and aim at finding a top-1 or top-k
subgraphs that cover all keywords. Since this is a rather hard problem, an approximation is proposed. The algorithm starts
from the nodes with the so-called rarest keyword (appearing in the fewest nodes in the whole graph) and constructs its
surrounding subgraph. This is a greedy approach that reduces the search space from the beginning and thus increases
performance. Afterwards, a random walk with restart is run, which will assign a score to each neighbor node, and the
best node is selected until the best answer is found. The entire process is repeated to retrieve the top-k answers. Since
the random walks are the bottleneck of the algorithm, it is approximated using the Monte Carlo method (Bahmani et al.,
2010), which does not require knowing the whole graph at each iteration. A parallel version of the same algorithm is also
designed since each walk is independent of the other.

Ranking. The used ranking is importance-based and assigns scores to nodes relative to others by taking the whole
graph into consideration. In contrast to PageRank, the proposed approach is query-dependent. The total answer score is
calculated using the keyword-pair scoring considering node weights.

Evaluation. The method is evaluated using DBLP XML and IntAct PPI22 (molecular interaction data) datasets and
compared with six systems (shortest-path-based, embedding-based, and PageRank-based). The quality of the answers
is evaluated using different dataset-dependent metrics and the runtime of their distributed version. For IntAct PPI, the
expression level of each protein is calculated, where “a cost value is assigned to each protein; the lower the cost, the higher
the expression level” using 100 randomly generated queries with 2 to 6 genes. For the DBLP dataset, the h-index is used
as a metric of quality with 100 randomly generated skill sets (2 to 6 skills). For the discovered subgraph, the average h-
index of the members is calculated. Their approach results in answers with a higher expression level and a higher average
h-index compared to the others.

Ghanbarpour et al. (2020) aim at retrieving minimal r-cliques called minimal covered r-clique. The motivation behind
that is to overcome the limitations of finding Steiner trees, distinct root trees (losing results having the same root, consid-
ering the distance to the root not between each two keyword nodes), r-cliques, and r-radius Steiner graphs (Kargar & An,
2015; Kargar et al., 2014; Li et al., 2008) (not minimal) based on previous definitions.

Method. The work uses adapted versions (BKS and its improvement called BKSR) of the Bron-Kerbosch (Bron &
Kerbosch, 1973) and Tomita (Tomita et al., 2006) algorithms that originally aimed at finding maximal cliques (with the
largest possible number of vertices). The algorithms are also improved to return nonduplicate minimal covered r-cliques.
Furthermore, the authors propose algorithm versions (BKSM and BKSRM) that are dedicated to also work on parallel
configurations. This is possible since the answers are constructed independently of each other. An approximate version to
generate top-k results with a polynomial delay is also proposed using an adapted version of Kargar and An (2015).

Ranking. The authors use an importance-based edge weight that is a function of the in-degree of its nodes as defined
by Kacholia et al. (2005). Tests are performed using a uniform compactness-based scoring, by assigning one to all edges.
The final answer score is calculated using a keyword-pair scoring considering the edge weight as pairwise node weight.

Evaluation. The different approximate versions of the proposed approach are evaluated against the r-clique and r-clique-
rare algorithms (Kargar & An, 2015) over IMDb (MovieLens) and DBLP XML data using the same fove queries for each
dataset. Results show that BKS and BKSR are faster than r-clique and close to r-clique-rare, but still do not outperform
it for both datasets. However, the parallel setting outperforms all the other algorithms. The other evaluated aspect is the
compactness using the average percentage of cliques with the maximum r. In contrast to the proposed approach, for r-
clique and r-clique-rare, not all retrieved results have a maximum distance r. To evaluate the quality of the retrieved results,
the ground-truth weight is built by selecting the top-50 minimum weight answers generated by the nonapproximate version
of BKSR and calculating their average weight. Results reveal that BKS and BKSR retrieve results with average uniform
weights equal to the ground truth average, in contrast to r-clique and r-clique-rare.

Feddoul et al. 19

8.1.3 Structured Query. Wang et al. (2015) propose an index-based approach that decreases memory consumption while
performing keyword search over graphs.

Method. First, the RDF graph is transformed to an attributed graph that consists of interlinked subject nodes with text
information (predicate, class, and predicate linking to another entity). The approach starts with an offline phase where the
index is constructed. The index stores for each keyword in the data graph the corresponding list of pairs of nodes (node1
containing the keyword, node2 reachable from node1), and the shortest distance between the pair of nodes over 2 hops.
The index is leveraged in an online phase to extract the top-k minimal trees using a depth-first search algorithm and then
transform them to a corresponding SPARQL query.

Ranking. The ranking is compactness-based using the tree diameter, which is calculated as the maximum distance
among the shortest distances of all pairs of nodes.

Evaluation. The evaluation mainly concentrated on the efficiency aspect, comparing the indexing time, memory usage,
and the runtime with two other index-based approaches (Rclique Kargar & An, 2011, Gdensity Li et al., 2012). Results
show that the proposed system is faster and requires less memory usage over the two datasets DBLP XML and DBLP223.
The effectiveness was manually checked and compared with Rclique. The keyword queries were manually created by first
randomly selecting 20 subgraphs with diameter four over DBpedia, constructing corresponding SPARQL queries, and
formulating keyword queries by selecting one or two keywords from each node. Afterwards, it is manually checked if any
of the top-k SPARQL queries generated by the systems match the ground truth.

Kharrat et al. (2016) propose a SPARQL query generation method specific to DBpedia. In contrast to Wang et al.
(2015), it aims at retrieving only the top-1 answer and requires the existence of a data schema (ontology).

Method. The first step is query preprocessing using WordNet, followed by the keyword matching of query terms to
DBpedia concepts/properties/instances. The next step is a query expansion with semantically related concepts using some
properties (e.g., rdfs:seeAlso or owl:sameAs). Afterwards, ambiguous terms are filtered by calculating the pairwise relat-
edness between keywords. The latter is based on the intersection between the set of matching terms (DBpedia IRIs, text
in this case) for each keyword. Then, all possible combinations are generated from the matching elements, candidate sub-
graphs for each combination are constructed using predefined graph patterns, ranked, and the top-1 result is translated to
a SPARQL query.

Ranking. The subgraphs are ranked based on a compactness-based measure, which is calculated as the sum of the
shortest paths between each pair of matching elements (keyword-pair scoring).

Evaluation. The effectiveness of the system is evaluated using 50 queries, and the following metrics: The fuzzy preci-
sion, which is calculated as the sum of the average correctness rate for each query divided by the queries returning results.
The correctness rate of an answer is calculated as the set of correct terms that match the user’s intention (subject, predicate,
and object) divided by the set of all terms. The other used metrics are recall (queries returning results divided by the total
number of queries) and the F1-measure (cf. Section 6) as a combination of the fuzzy precision and recall. No information
was provided about the origin of the queries, the used ground truth, and the dataset. The reached results are as follows:
0.52 (F1), 0.43 (recall), and 0.5 (fuzzy precision).

Han et al. (2017) propose an efficient and accurate keyword search system over RDF data by leveraging bipartite graphs
together with translation-based graph embeddings. Similar to Kharrat et al. (2016), the goal is to find just the top-1 result.

Method. The method starts with a segmentation and annotation phase where the user query is first tokenized, annotated
using types (entity, class, and relation), and then matched to a specific graph element. The result is a ranked list of possible
query annotations. The second step is the query graph assembly, where the detected graph elements need to be linked with
each other. For that, the found possible matches are modeled as a bipartite graph where each pair of entities/classes and
each set of possible matching relations is represented as a node, and there is a crossing weighted edge between the set of
entities/classes and the set of edges. The algorithm tries to find the optimal connection (subset of crossing edges) called
assembly query graph with the minimum cost and transforms it to a SPARQL query. The constraint here is that the query
should ideally contain classes, entities, and as many needed relations, which are not always present given the nature of
keyword queries, and in this case, the graph elements cannot be connected. The authors point to this issue and shortly state
that, in this case, the missing relation should be first determined using a suitable algorithm for minimum spanning tree
finding.

Ranking. Since the goal is to find just one best answer, the algorithm does not output a list of top-k possible answers.
However, to know the optimal answer, a certain function should be used to score the possible subgraphs. The authors use
a semantics-based scoring where edge weights are calculated using TransE24 (Bordes et al., 2013), a translation-based
graph embedding model. The total cost of a candidate subgraph is the sum of its edge costs.

Evaluation. The system is compared in terms of efficiency and effectiveness with two approaches: PBF (Ding et al.,
2007), a graph-based approach, and SUMG (Tran et al., 2009), a summary graph-based approach. Two datasets were
used: 6th Open Challenge on Question Answering over Linked Data (QALD-6; Unger et al., 2016) with 100 queries, and

20 Semantic Web 16(5)

Free917 (Cai & Yates, 2013) with 80 selected queries converted to keywords. Their approach using graph embeddings is
also compared with two traditional link prediction methods. The system performed better than both other approaches and
ranked the third place in QALD-6, competing with question answering systems. The most time-consuming part was the
keyword-graph element mapping, but on average, the system was faster than the two baselines.

Izquierdo et al. (2021) propose a different method that does not rely on traversing the graph.
Method. The very first preprocessing step is to calculate offline the so-called K-minimum value (KMV)-synopses over

the whole graph, where “A KMV-synopsis of a set defines a random sample of size k.” They are calculated because they can
be used later to estimate the Jaccard similarity of sets. First, keywords are matched to the literals’ content of the RDF graph.
If for one keyword several matches are possible, the one with the highest score, consisting of the combination of literal
and node matching (InfoRank; Menendez et al., 2019) scores, is selected. Then, a so-called initial query forest (collection
of disconnected trees) is built, consisting of keywords and the list of domains and ranges of the properties represented as
nodes related to the keyword literals. The goal is to connect it to form a query tree (Steiner tree) by applying three types of
operations: node fusion, edge addition, and tree expansion, before translating it to a SPARQL query. The node fusion step
tries to combine the forest nodes that link to a basically similar set of entities. The similarity of those sets is calculated
using the Jaccard similarity. If the latter is high, the nodes are combined, which indicates that in the next step, the goal is to
find entities that have both merged properties that match the initial corresponding keywords. Next, edge addition is applied
by identifying object properties that could relate two entities using an estimated set similarity that is computed using the
KMV-synopses. The last step is the tree expansion which is a relaxed version of the edge addition, which requires having
either domain or range, not necessarily both, to be similar to the other sets. The two last steps are repeated until more
connected trees are formed. A cleaning step removes unnecessary edges so that only leaves corresponding to matching
nodes are left. Only one tree having the larger score is selected and translated into a structured query (SPARQL).

Ranking. The used ranking is both textual-based using keyword matching scores and importance-based using InfoRank.
Evaluation. The evaluation compares the approach with: (1) a schema-based RDF keyword search tool (García et al.,

2017; previous work of some of the same authors), and (2) a virtual document-based approach (Dosso & Silvello, 2020).
For (1), an adapted version of Coffman’s benchmark using Mondial and IMDb databases with a total of 64 queries is used.
The ground-truth answers were generated using a tool for automatic benchmark construction for keyword search (Neves
et al., 2021). The effectiveness is measured using the following metrics: MAP (cf. Section 6), Top-1, and the MRR. The
reached scores are as follows for Mondial and IMDb, respectively: MAP of 0.96 and 0.76, Top-1 of 0.96 and 0.76, and
an MRR of 0.79 and 0.72, and thus also outperforms the baseline. The average execution time was 11.4 s and 0.60 s for
IMDb and Mondial, with no big differences compared to the baseline. For (2), the same benchmark was used as in the
virtual document-based baseline, including the following datasets: LUBM,25 BSBM,26 IMDb,27 and DBpedia28 and also
using the same metrics. The proposed approach outperforms the baseline for all metrics.

8.1.4 Other. Bae et al. (2014) propose a system that exploits indexing and semantic similarity scores to find the triples
relevant to a specific keyword (not query).

Method. The first step is the offline preparation of five indexes: predicates, subject/object, incoming/outgoing vertices,
literals, and similarity scores between two literals. The approach starts by finding the literal vertex corresponding to a
certain keyword, filters candidate nodes without a common predicate with the input keyword node, traverses the graph in
a depth-first manner, and considers only nodes (literals) with a semantic score greater than a specific threshold. The list of
relevant triples is presented to the user.

Ranking. The ranking of target nodes (or triples) is performed based on the similarity score, which is calculated as
a combination of a distance score (number of subjects relating source and target), and a semantic similarity depending
on the most specific class subsuming the classes of the pair of nodes (Lin & Sandkuhl, 2008), calculated over WordNet
(Fellbaum & George, 1998). The ranking is a combination of compactness-based and semantics-based factors.

Evaluation. Only an efficiency evaluation was performed using 10 manually created keywords over three subsets of
DBpedia (Lehmann et al., 2015). The approach was compared with the RDF management system Jena (McBride, 2001)
by retrieving the first two results (using SPARQL queries for Jena). Results show that the proposed system is faster.

Zhang et al. (2022) do not focus on finding top-k answers but aim at presenting the user with a view that better shows
how the answers are correlated and how they may overlap. Furthermore, authors also aim at extending the way a user can
interact with the retrieved answers by allowing answer manipulation, for example, intersection or union.

Method. To achieve the previous purpose, a specific answer type is defined. The authors represent a so-called key-core,
which is a subgraph containing highly related answers. Answer ranking was not addressed.

Evaluation. The evaluation is performed using two datasets, DBpedia and DBLP, using 500 randomly selected queries
from the datasets’ vocabularies. The effectiveness is manually evaluated on five example queries. For testing efficiency,
their approach based on graph traversal is compared against a defined naive baseline (retrieve all key-components and then

Feddoul et al. 21

compute the key-core by union of all key-components) while also varying the graph size, the number of keywords, and
other used thresholds such as the distance maximal to the keywords.

8.2 Schema-based Methods
In contrast to graph-based methods, schema-based ones require the existence of a data schema and thus work on a very
small graph. We notice that the answer type produced by this method is always a structured query.

Sitthisarn (2014) propose a bidirectional approach for keyword search with defined answer types over RDF graphs with
an available data schema (ontology).

Method. The proposed system constructs two indexes: the keyword-element index, and an extended version of the
single-level index by BLINKS that stores for each node the distance to the other node and the direction. The algorithm
takes as input a set of nodes corresponding to keywords and a desired answer type (root of interest). The first step is the
node merging, where it is checked whether each pair of keyword nodes can be directly connected, have the same class,
or one is a subclass of the other. In the latter cases, the nodes are marked as nonactive. The remaining active nodes are
bidirectionally expanded to connecting nodes in a round-robin manner until finding a connection with a root. The results
are ranked and the best rooted tree is transformed to a SPARQL query.

Ranking. The results are ranked by combining compactness-based, textual-based, and importance-based factors based
on a previous version of the same authors (Sitthisarn et al., 2011). The overall tree score is given by the multiplication of
three scores, each is a function of: the shortest path between the root and keywords, keyword frequency, and the predicate
frequency.

Evaluation. The effectiveness is evaluated with 20 manually created queries and five ontologies. The result of the
current approach and its previous version (not bidirectional) are compared with a manually created SPARQL query using
the MRR as metric. Results show that the new approach outperforms the old one.

García et al. (2017) propose a tool to simplify access to specific data from an industry use case. Similar to Sitthisarn
(2014), it first retrieves a tree-shaped intermediate result before generating the top-1 structured query. However, it does
not require a data schema (ontology).

Method. The overall aim is to construct one SPARQL query to answer a keyword query. The algorithm operated on the
data schema where keywords are matched to literals after removing stop words. The matched structure is called nucleus
and consists of a class, a list of properties, and property values. Each nucleus is assigned a matching score that is used to
construct a minimal tree that covers all keywords. While a prototypical user interface was proposed, answer ranking was
not addressed.

Evaluation. The evaluation was conducted over an industrial database (hydrocarbon exploration) and using Coffman’s
benchmark (Mondial and IMDb (IMDb-MO)29). The relational databases were first converted to triples, and the retrieved
results using the proposed approach were compared with the ground truth. Results were only analyzed without using any
evaluation metric, where 64% (Mondial), 75% (IMDb) of the 50 queries were correctly answered. Using six queries for
the industrial database, it is shown that the execution time is reasonable.

Menendez et al. (2019) focus on improving the ranking of results by proposing a new definition of node importance in
RDF graphs.

Method. The method aims at generating one structured query (SPARQL) as in García et al. (2017); Sitthisarn (2014)
to produce a list of ranked entities. First, the system finds nodes (instances and classes) whose labels match the keywords.
Next, for each query keyword, the node with a higher accum score is selected (number of keywords that appear in the
label). In the case of equal accum scores, the disambiguation is performed using another specific node scoring function
(info_score). The next step is the linking of the classes corresponding to the selected nodes over the graph schema. This
consists of finding the minimal Steiner tree, but no details are given about how this tree can be found. The authors only
claim that this step will give the information that, for example, two selected nodes are connected through one specific
property. This connected tree is transformed to a SPARQL query and the results are ranked based on the sum of the
info_score of the tree nodes.

Ranking. An importance-based ranking of entities is used by proposing a new metric InfoRank for scoring instances,
classes, and object properties that is based on the informativeness of an instance, which is defined as the number of its
data properties (literals). Each object property is assigned a score that is the maximum of the sum of the InfoRank of
the subject and object (over all triples involving the property), divided by the sum of the InfoRank of all other existing
properties. Next, the PageRank of each instance is calculated using the object property score as edge weight. The final
score assigned to an instance (info_score) is the PageRank after x iterations multiplied by the InfoRank of the instance. No
ranking of answer trees is proposed.

22 Semantic Web 16(5)

Evaluation. The proposed ranking score was evaluated by comparing it with the PageRank of some classes, instances,
and properties over two datasets30 : IMDb (IMDb-MO) and MusicBrainz31 (enriched with DBpedia). This has shown
that the info_score gives higher scores to the most important classes in both considered domains compared to PageRank.
Other experiments were conducted using Coffman’s IMDb (50 queries adapted to RDF) and QALD-232 MusicBrainz (25
queries) with different ranking measures (e.g., PageRank or HITS; Kleinberg, 1999). InfoRank-based ranking achieved
the highest MAP.

Navarro et al. (2021) aim at generating the set of structured queries (SPARQL) that answer a keyword query. As in
Sitthisarn (2014), the data schema is also required.

Method. Their approach starts with an entity identification module based on the Stanford Regexner Annotator (Manning
et al., 2014), which annotates keywords with candidate classes/individuals from the underlying ontology/RDF repositories.
Filter expressions are also detected using a gazetteer. Afterwards, entity combinations are generated, since a keyword can
be associated with multiple entities. Less specific annotations (ontology hierarchy) are considered as redundant and thus
removed. The answer search algorithm operates on the ontology of the target KG, extended with the detected individuals
and filters. For each different candidate entity of a specific keyword, such an ontology-based graph model will be built. The
graph exploration is done by starting Breadth-First Search from a specific keyword node, and the neighbors exploration
continues until all candidate keyword elements are included. No cost function is used during the graph exploration. The
result is a rooted tree that is further cleaned by removing unwanted edges and leaves. Each keyword interpretation results
in a corresponding tree. Finally, each tree is translated to a SPARQL query. Only one representative is selected in case of
redundant SPARQL queries. Answer scoring is not addressed.

Evaluation. The evaluation was conducted using the QALD-7 dataset for question answering over DBpedia, where
each question is associated with a set of keywords. Some types of questions were discarded (e.g., boolean) and the key-
words were manually reviewed and adapted. The final test set contained 136 queries. Precision, recall, and F1-score are
used as metrics to evaluate the generated SPARQL queries against the provided ones. In this case, different cases (e.g.,
correct/imprecise/partial answer) are defined. The evaluation reveals a precision of 0.52 and a recall of 0.60, considering
the best answer for each query. The runtime was also reported with an average time of ≈57 ms over all queries (without
including synonyms from WordNet in the index).

8.3 Summary-based Methods
Summary-based methods also aim at searching over a reduced-size graph but without relying on the existence of a data
schema. The works under this category aim at retrieving trees (Dalvi et al., 2008; Zhong & Liu, 2009), subgraphs (Sinha
et al., 2018), or structured queries (Tran et al., 2009).

Dalvi et al. (2008) propose an approach to deal with large graphs that may not fit into memory.
Method. This work represents the graph in a hybrid manner (multi-granular) and aims at retrieving minimal rooted

directed trees: (1) an in-memory summary graph, where nodes are clustered to create supernodes, and (2) a disk-resident
part that contains the nodes appertaining to each cluster, together with their adjacency information.

Furthermore, two alternative algorithms that adapt existing exploration algorithms are suggested to work over
multigranular graphs, with the goal of reducing input output calls.

Ranking. The same importance-based ranking as in Kacholia et al. (2005) was used.
Evaluation. The authors implemented their approaches by extending BANKS. DBLP (8 queries) and IMDb (4 queries)

were used as evaluation datasets and compared different configurations of the proposed algorithm with a schema-based
approach (the Sparse algorithm; (Hristidis et al., 2003)) with respect to the execution time, recall, and cache misses per
query.

Zhong and Liu (2009) concentrate on improving the efficiency for complex queries where the keywords have a lot of
matching nodes in the graph (frontier).

Method. This paper proposes a solution to reduce the frontier that aims at performing search only on parts where
actually the candidate answers are more likely to reside. The rationale behind their approach is the fact that if we have
multiple matching nodes for each keyword, only a few of the different keyword nodes will be tightly related to each
other. A graph index that maps keywords to a set of subgraphs from the whole graph is used, together with additional
indexes such as keyword-vertex and vertex-subgraph indexes. While creating the subgraph index, a bound for the size of
the extracted subgraphs is set. In this way, answering a query would mean searching only subgraphs that actually contain
all keywords. The data graph is considered as undirected and defines possible answers as distinct rooted trees. A so-called
composed subgraph search that it performed over a combination of matched subgraphs is used. The graph exploration
algorithm is similar to the backward search (Bhalotia et al., 2002).

Feddoul et al. 23

Ranking. A compactness-based ranking is used with the distance as a ranking factor, and the total score of an answer
is defined as the sum of the shortest distances between the root and each keyword node (root-keyword scoring) without
scoring the nodes.

Evaluation. This work evaluated effectiveness and efficiency and compared with BLINKS using the DBLP XML
datasets with 12 queries. As a metric for calculating effectiveness, the minimum scores and average scores of the top
10, 25, and 50 answers found by the baseline and their approach are compared, which shows comparable results. The
analysis of the execution time shows that their method is overall faster compared to the baseline.

Tran et al. (2009) propose another paradigm for keyword search over graphs (RDF).
Method. Instead of presenting the user with the top-k final answers that may originate from various queries, top-k pos-

sible structured queries are returned. Furthermore, the returned answers are not trees, but subgraphs, and user keywords
could also be mapped to edges. A backward-based search algorithm that operates on a summary graph instead of the whole
graph is used to improve efficiency. There is no distinction between incoming and outgoing edges during the exploration,
and when reaching a node, all its neighbors are taken into consideration, preventing cyclic expansion. However, the direc-
tion of the edges is important while generating the SPARQL queries corresponding to the subgraphs. The summary graph
is derived from the data graph by representing each collection of entities by their corresponding class and aggregating all
entities without types using a class called Thing. The edges between the summary graph nodes mirror the edges between
their corresponding instances.

Ranking. The score of an answer subgraph is calculated as the sum of its path scores following the root-keyword scoring
while aggregating both edge and node weights. The cost of a path is computed as the aggregation of its element costs.
Three different ranking functions are introduced: (1) a compactness-based ranking using the path length that is defined
as the number of elements in a path, (2) an importance-based ranking using the popularity of path elements (nodes and
edges), where node/edge popularity is given as a function of the number of original instances/edges that were clustered
into the corresponding class/edge divided by the number of nodes/edges in the summary graph. The latter is defined in a
way that elements with higher popularity should have lower cost and thus contribute to answers with higher scores, and (3)
textual-based ranking using the keyword matching score which is incorporated by dividing one of the previously defined
cost functions by a matching score that is either ranging between 0 and 1 if the element is corresponding to a keyword or
is set to one otherwise.

This should reflect the fact that higher matching scores reduce the path cost. The authors use a matching score (between
keywords and labels in the graph) that combines both syntactic and semantic similarity (e.g., WordNet) and recommend
TF–IDF in case of labels with a sufficient number of terms.

Evaluation. The approach was evaluated using 30 queries together with information needs for DBLP and nine queries
for TAP (KG describing sports, geography, music, and other domains). Twelve participants rated the returned structured
queries (query is correct if it matches the information need), and the MRR was used as a metric for the assessment of effec-
tiveness. Results reveal that the textual-based ranking function using keyword matching performed best compared to the
other two previously proposed functions. The authors also perform an evaluation of the query processing time, comparing
it with other approaches (e.g., Kacholia et al., 2005 and other indexing-based methods) together with an investigation of
the impact (on the time) of the number of queries to retrieve, and index performance (also using LUBM). Results show
that overall, the proposed approach is faster than the other baselines.

Sinha et al. (2018) propose a method that takes advantage of the user profile information. This is so far the only work
that exploits profiles to rank answers.

Method. The proposed approach starts by extracting a structural summary graph from the data that consists of classes,
relations between them derived from the relations of corresponding entities, and the union of entity labels. First, keywords
are matched to corresponding labels in the graph, and for each possible matching, a minimal subgraph that connects
corresponding classes is constructed. For each possible matching, only the smallest connecting subgraph is considered.
Subgraphs producing empty results are discarded.

Ranking. The returned subgraphs are ranked based on their similarity with available profile graphs. The latter are either
added explicitly or implicitly after a search activity. The similarity is a combination of four metrics: concept similarity,
relation similarity, entity property similarity, and entity connection similarity.

Evaluation. The evaluation was conducted using 10 queries for each of the Jamendo33 (music) and DBpedia34 datasets.
The ground truth was constructed by two users who rated every pattern graph based on its relevance to the result subgraph.
The metrics used for evaluation are Kendall-Tau (Agresti, 2010), P@k and Rank-DCG (cf. Section 6). Results reveal a
Kendall-Tau above 0.5 and a Rank-DCG above 0.6 for most queries. The average P@5 is at least 0.5 for both datasets. In
addition, efficiency experiments show that the system responds in a reasonable time that allows user interaction.

Jiang et al. (2021) propose an index (BiG-Index) to speed up finding answers for keywords over KGs and test the
efficiency of some existing works (He et al., 2007; Kargar & An, 2011) using it.

24 Semantic Web 16(5)

Method. The rationale behind the approach is first to replace the labels of instances with their corresponding gener-
alized ontology labels. Afterwards, this generalized graph version is summarized by merging similar subgraphs into one
representative. The last two steps are recursively repeated to build a hierarchy of graphs (indexes). Furthermore, details on
how to answer a query using the proposed index are provided. Answer ranking was not addressed.

Evaluation. The performance of some algorithms (BLINKS and r-clique; Kargar & An, 2011) for keyword search over
graphs is compared both with and without using the index. The evaluation is performed using both real and synthetic
datasets (YAGO335, DBpedia, and IMDb with a total of 18 synthetic queries). Since the methodology requires the usage
of an ontology, both DBpedia and IMDb were used with an ontology generated from YAGO3. Results reveal a decrease
of the runtime by 50.5% and 29.5% for BLINKS and r-clique, respectively.

8.4 Virtual Document-based Methods
Virtual-based methods transform the graph content into text documents and apply techniques for full-text search. In the
following existing works, the retrieved answers are either trees (Dosso & Silvello, 2020; Mass & Sagiv, 2016; Zhang et al.,
2021) or triples and entities (Kadilierakis et al., 2020).

Mass and Sagiv (2016) propose a virtual document-based method that tries to deal with efficiency by reducing the search
space and enhancing effectiveness by using a scoring function that combines both query-dependent and -independent
scores.

Method. The method starts by preparing a virtual document representation for the whole graph. For each node, a virtual
document is created by concatenating the textual information (title and attributes) of the node itself and its neighbors
within a specific distance. First, a two-level node filtering is performed to reduce the search space. Nodes whose virtual
document contains every query keyword are ranked based on a specific score, and the top-k are selected (selected roots). Or
each keyword, the same filtering is performed over the virtual documents of the roots to end up with a list of top-k selected
keyword nodes. Next, minimal trees connecting the selected roots and keyword nodes and constructed, and duplicate trees
are removed. The answer trees are then transformed to virtual documents by grouping the textual information for each
node and then ranking.

Ranking. The ranking used by the selection of nodes and ranking final answers is calculated using a Markov random
field model (Metzler & Croft, 2005) by combining query-dependent and -independent features. Those features are func-
tions of the frequency of a query term in a virtual document, the node importance, which is proportional to its degree, and
the edge weights that are set to one to favor smaller answers.

Evaluation. The evaluation was performed using Coffman’s benchmark, where the MAP (top-1000) was compared
with four other systems (e.g., BANKS). Their approach outperforms all the baselines and shows a good trade-off between
effectiveness and efficiency.

Dosso and Silvello (2020) propose an approach based on virtual documents, since the authors claim that this is a
promising method in terms of efficiency. As in Mass and Sagiv (2016), the retrieved answer type is minimal tree.

Method. This work introduces Topological Syntactical Aggregator+BM25 (TSA+BM25; Robertson & Zaragoza, 2009)
and Topological Syntactical Aggregator+Virtual Documents Pruning (TSA+VDP). TSA is a very first offline phase where
the virtual documents are created by clustering triples with related concepts. In practice, it first builds subgraphs having
a specific distance around single topics (classes) together with their corresponding text documents (literals, IRIs, and
predicate strings). Only predicates with a frequency higher than a threshold are taken into account. In the online phase, an
initial list of ranked documents relevant to the user query is retrieved. The next step aims at merging overlapping subgraphs
corresponding to the top-k candidate documents. If the intersection of the subgraphs’ triples is greater than a threshold,
they are merged. Next, virtual documents corresponding to the merged graphs are created, a second BM25 ranking is
performed, and the relevant subgraphs are returned to the user (TSA+BM25). The next step is VDP, which considers the
union of the top-k subgraphs of the last step as a new graph. Minimal trees with a defined radius containing all keywords
are produced using Breadth-First Search, and nonrelevant triples (not containing any keyword) are pruned. The last step is
a final ranking of results.

Ranking. The initial and second rankings are both textual-based using BM25. The final ranking combines compactness-
based and textual-based factors using the Markov random field model that considers unigrams and bigrams within the
virtual document and the distance of the words from the root in the graph.

Evaluation. The evaluation was conducted using real (LinkedMDB and IMDb with 100 queries, and DBpedia-Entity v1
(Balog & Neumayer, 2013) with 50 queries) and synthetic databases (LUBM with 14 queries and BSBM (Bizer & Schultz,
2009) with 13 queries). Only one best answer is considered as ground-truth answer. The latter is the result of a manually
created SPARQL query corresponding to the keywords. The authors propose a new definition of precision, recall, and the
DCG based on a new metric signal-to-noise ratio that gives a score to a returned graph based on the intersection of its

Feddoul et al. 25

triples and the ones from the ground truth. Their approach is compared with other three (Elbassuoni & Blanco, 2011; Le
et al., 2014; Mass & Sagiv, 2016) virtual-document based baselines, using average tp-DCG (cf. Section 6), recall, P@1,
P@5, and runtime over all queries. Overall, TSA-based systems outperform the baselines, but all in general have low
precision. Considering the online runtime, the proposed approach was among the fastest systems.

Kadilierakis et al. (2020) aim at adapting an existing information retrieval system (Elasticsearch36) and thereby use tra-
ditional document indexing and retrieval instead of traversing the underlying graph (Dosso & Silvello, 2020) or generating
structured queries.

Method. The textual content of a triple is considered as a virtual document that is indexed and retrieved. Two index
versions are evaluated depending on the extent of the stored textual content: (1) a baseline index stores only textual content
of the considered triple, for example, text of the URI, and (2) an extended index considering also information on other
properties of the triple’s resources, for example, rdfs:label.

Ranking. The authors use the textual-based ranking functions provided by Elasticsearch to rank triples and derive a
ranking for the entities involved in a triple using the DCG formula.

Evaluation. The DBpedia-Entity v2 was used as a test collection using the nDCG@100 and nDCG@10 as metrics. Its
goal is to test the influence of different configurations of Elasticsearch (e.g., query type) together with the index content on
the effectiveness of the search. Their system (Elas4RDF) was compared to the unsupervised methods tested in the context
of DBpedia-Entity v2 and reached comparable results when used with the extended index and the BM25 ranking. The
average query time was also reported: ≈0.7 s and ≈1.6 s for the baseline and the extended index, respectively. A user
interface for the same system is proposed in Nikas et al. (2020) with a focus on functionality and usability evaluation.

Zhang et al. (2021) propose a pipeline consisting of an offline and online stage. The key contribution is the usage of
community detection techniques to create a group of entities (subgraphs) belonging to the same topic (e.g., computer
security in DBpedia). This is used as an index to accelerate answer retrieval.

Method. During the offline phase, the two indexes are created: (1) the entity index is built by transforming each entity
together with its data properties into a virtual document whose terms are indexed, and (2) the community index, which
maps each entity to its community of entities.

The online phase starts with mapping query keywords to candidate entities using the entity index. For each entity, the
common community containing all entities is constructed, which is, in the end, a subgraph of the whole RDF entity graph.
Finally, a ranked list of trees connecting all keywords (Steiner tree) is computed. No further details are given on the tree’s
construction algorithm or the specific structural compactness-based ranking.

Evaluation. Three aspects were compared with an index-based system (EASE) using five queries for each dataset
(DBLP and KMap37): index building (time and storage), runtime, and effectiveness. The latter is based on answer com-
pleteness with respect to the relations connecting keywords using the answer of a method that directly works over the
whole graph (not index-based) as a baseline. Both systems have comparable results.

9 Conclusion and Future Directions
In this survey, we have systematically selected, classified, and provided an overview of 35 research papers. We have
derived four overall aspects for classifying related works: (1) search space, (2) answer type, (3) answer ranking, and (4)
answer scoring. Each of those aspects is further specified by defining different possible aspect types (e.g., compactness-
based answer ranking). In the following, we highlight some potential directions for future research using a structure that
is based on the typical components of a system for keyword search over graph-shaped data.

9.1 Keyword Mapping
Enhancing Entity Linking. Most of the works attempt to map keywords with all possible graph elements that contain
one of the keywords in their textual description (string matching). This approach not only affects efficiency by inducing a
huge number of possible candidate nodes/edges (especially for big graphs) that should be connected in the next step, but
also induces a lot of nonrelevant results. Future research can focus on leveraging entity linking techniques that drastically
reduce the number of candidate graph elements in an early stage.
Handling Ambiguous Queries. Disambiguation is considered as a subtask in a typical entity linking pipeline (Balog,
2018), where a specific entity is selected based on the context. This is usually challenging, given the short nature of
keywords. The enhancement of entity disambiguation techniques would also help reducing the number of candidates and
thus indirectly improving efficiency and effectiveness.

26 Semantic Web 16(5)

Incorporating User Intent. Predicting the user intent can help to better understand the query and thus provide guidance
for an accurate mapping of keywords. Keyword search systems that work over KGs can, in addition, leverage the connected
nature of the graphs to support techniques for user intent prediction.
Query Rewriting. The usage of retrieval-augmented generation (RAG) (Lewis et al., 2020) techniques (e.g., GraphRAG;
Edge et al., 2024) can perform query rewriting to improve query understanding in case of ambiguous or incomplete
keyword queries. This can be achieved by first expanding the query with external context (e.g., relevant document corpus
or the KG itself) and then using large language models (LLMs) (Ozdemir, 2023) to rephrase the query in a more precise
way.

9.2 Answer Retrieval
Improving Efficiency. As KGs grow in size and complexity, current keyword search algorithms may not be able to scale.
To deal with that, the following directions could be investigated: distributed indexing, parallel processing, and graph
summarization. To deal with that, techniques for graph summarization (Liu et al., 2018a) can be used. The latter should
have the potential of reducing the size of the graph while preserving important information. However, only a few systems
(Dalvi et al., 2008; Jiang et al., 2021; Sinha et al., 2018; Tran et al., 2009; Zhong & Liu, 2009) follow a summary-based
approach, and this without evaluating the quality of the generated summaries. Therefore, there is still room for further
investigations to deal with some common summarization challenges, for example, information loss. Other directions are
the usage of distributed indexing and parallel processing. The latter is still also not sufficiently studied (Guan et al., 2018;
Hao et al., 2015; Liu et al., 2016; Virgilio & Maccioni, 2014; Yang et al., 2019).
Leveraging LLMs. With the recent emergence of LLMs, a potential research direction could investigate the ability to
automatically generate answers such as structured queries, for example, SPARQL given a keyword query and a target KG.

9.3 Answer Ranking
Incorporating Semantic Information. Existing surveys emphasize the general need of enabling semantic search over
graph data (Wang & Aggarwal, 2010), and propose to, for example, leverage ontologies to improve efficiency and effec-
tiveness (Yang et al., 2021). Furthermore, most of the existing techniques working over KGs still consider only structural
or textual metrics to judge the relevance of a result to a certain query. Future works can focus on leveraging the semantic
information encapsulated in KGs and propose ranking functions that go beyond structural properties of the graph using,
for example, semantic similarity or KG embeddings (Wang et al., 2017a).

9.4 Answer Presentation
Existing works usually focus on proposing functioning systems aiming at increasing efficiency and effectiveness. However,
one aspect is not sufficiently studied, namely, finding new and suitable ways to present the results to the end user and
improve the browsing experience.
Supporting Explainability. The aim is to make the search results more transparent by explaining why a specific relevant
result was generated. This will allow a better understanding of the relation between the different pieces of information cor-
responding to the different keywords. A potential future direction is to think about new functionalities to enable explainable
information retrieval over KGs.
Enabling Exploratory Search. Users are not always familiar with the domain in question, and they do not always have
a specific goal in mind (White & Roth, 2009). Therefore, they usually start with a tentative query and continue exploring
to better understand a topic or discover new interesting insights and relations. Future research can focus on providing a
range of features to support exploration and creative information-seeking behavior using simple keywords and KGs.
Generating Answers in Natural Language. Systems performing search over KGs typically retrieve entities or triples,
which may not be easy to interpret for end users. RAG techniques and specifically GraphRAG can transform the retrieved
graph elements into natural language responses that are also enriched using the KG as context.

9.5 Evaluating Search Performance
As already mentioned in Section 6, only a few systems were evaluated using existing test collections. On the other hand,
we also notice a lack of standardized benchmarks dedicated to keyword search over KGs (Feddoul et al., 2023; only
three38). Two of them should be adapted before usage since they were originally created to serve other tasks (question
answering) or to work with other data formats (relational databases). Future research can focus on developing established
evaluation datasets for keyword search over KGs.

Feddoul et al. 27

9.6 Other Specific Cases
The literature review also revealed the existence of some additional niche areas with very few contributions39, namely
probabilistic/uncertain graphs, distributed graphs, incomplete graphs, or temporal graph. Future research can further
investigate the application of keyword search over the previously mentioned special graphs.

Acknowledgements
We thank all members and partners of the involved projects: simpLEX, Canarėno, and KollOM-Fit. We would further like to thank
Birgitta König-Ries for the guidance and feedback.

Funding
The authors disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work
has been funded by the German Federal Ministry of the Interior and Community and the Thuringian Ministry of Finance.

Declaration of Conflicting Interests
The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

ORCID iDs
Leila Feddoul https://orcid.org/0000-0001-8896-8208
Frank Löffler https://orcid.org/0000-0001-6643-6323
Sirko Schindler https://orcid.org/0000-0002-0964-4457

Notes
1. The schema is inspired by Wikidata.
2. https://dblp.org/
3. The keyword quer is deliberately used to include both singular and plural forms in the following queries.
4. https://www.jabref.org/
5. We did not include works with very specific use cases (e.g., working over multiple data sources or dealing with spatial keywords) or

works performing keyword search over XML (Bray et al., 2008) or over text documents.
6. Those papers include works dealing with, for example, distributed graphs, incomplete graphs, or the usage of parallel processing.

They will be just shortly mentioned as possible other special aspects in Section 5.
7. User profile refers usually to a collection of data that reflects user interest. In Sinha et al. (2018), for example, the user profile is a

set of pattern graphs that were collected based on previous user interaction with the system (e.g., user selects a graph-shaped answer
as relevant to a specific query). This way, query answers are ranked based on their similarity with the profile graphs.

8. In the case of retrieving subgraphs, a specific node that connects all the keywords (e.g., connecting element in Tran et al. 2009), is
considered as equivalent to the tree root.

9. These approaches aim to diversify answers at the same time when searching the graphs and thus propose algorithms that are
directly geared toward producing diverse results. This is different from the diversity-based ranking, since the latter aims at reducing
redundancy of already generated answers using an algorithm that is not necessarily tuned to take this aspect into consideration.

10. All datasets are referenced in the corresponding paper summary in Section 8.
11. https://www.imdb.com/
12. https://qald.aksw.org/
13. Before adding a result to the heap, a duplicate tree detection (e.g., trees with the same undirected version) is conducted, and the tree

with the highest relevance is kept. If the duplicate of the new result have already been output it is discarded even if its relevance is
better.

14. https://dblp.uni-trier.de/xml/
15. https://www.imdb.com/
16. https://grouplens.org/datasets/movielens/
17. https://www.dbis.informatik.uni-goettingen.de/Mondial/
18. https://www.tpc.org/tpch/
19. https://relational.fit.cvut.cz/dataset/IMDb
20. https://www.cs.toronto.edu/∼oktie/linkedmdb/, linkedmdb-latest-dump.zip
21. http://km.aifb.uni-karlsruhe.de/ws/eon2006/ontoeval.zip
22. https://www.ebi.ac.uk/intact/home
23. https://snap.stanford.edu/data/com-DBLP.html

https://orcid.org/0000-0001-8896-8208
https://orcid.org/0000-0001-6643-6323
https://orcid.org/0000-0002-0964-4457
https://dblp.org/
https://www.jabref.org/
https://www.imdb.com/
https://qald.aksw.org/
https://dblp.uni-trier.de/xml/
https://www.imdb.com/
https://grouplens.org/datasets/movielens/
https://www.dbis.informatik.uni-goettingen.de/Mondial/
https://www.tpc.org/tpch/
https://relational.fit.cvut.cz/dataset/IMDb
https://www.cs.toronto.edu/~oktie/linkedmdb/
http://km.aifb.uni-karlsruhe.de/ws/eon2006/ontoeval.zip
https://www.ebi.ac.uk/intact/home
https://snap.stanford.edu/data/com-DBLP.html

28 Semantic Web 16(5)

24. https://github.com/thunlp/Fast-TransX
25. http://swat.cse.lehigh.edu/projects/lubm/
26. http://wbsg.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/
27. https://datasets.imdbws.com/
28. http://downloads.dbpedia.org/wiki-archive/data-set-37.html
29. https://sites.google.com/site/ontopiswc13/home/imdb-mo
30. https://sites.google.com/view/quira/
31. http://musicbrainz.org
32. https://github.com/ag-sc/QALD
33. http://dbtune.org/jamendo/
34. http://downloads.dbpedia.org/wiki-archive/dbpedia-dataset-version-2015-10.html
35. http://www.mpi-inf.mpg.de/yago
36. https://www.elastic.co/guide/en/elasticsearch/reference/current/index.html
37. https://old.datahub.io/dataset/knowledge-map
38. Coffman, DBpedia-Entity v1/v2, and QALD
39. This claim is based on our findings while performing the literature review as stated in the last paragraph of Section 5.

References
Agarwal, G., Kabra, G., & Chang, K. C. C. (2010). Towards rich query interpretation: Walking back and forth for mining query

templates. In WWW’10: Proceedings of the 19th international conference on world wide web (pp. 1–10). Association for Computing
Machinery. https://doi.org/10.1145/1772690.1772692.

Agresti, A. (2010). Analysis of ordinal categorical data (vol. 656). John Wiley & Sons. https://doi.org/10.1002/9780470594001
Bae, M., Kang, S., & Oh, S. (2014). Semantic similarity method for keyword query system on RDF. Neurocomputing, 146, 264–275.

https://doi.org/10.1016/j.neucom.2014.04.062
Bahmani, B., Chowdhury, A., & Goel, A. (2010). Fast incremental and personalized pagerank. Proceedings of the VLDB Endowment,

4(3), 173–184. https://doi.org/10.14778/1929861.1929864
Balog, K. (2018). Entity linking. In Entity-oriented search. The information retrieval series (vol 39, pp. 147–188). Springer International

Publishing. https://doi.org/10.1007/978-3-319-93935-3_5
Balog, K., & Neumayer, R. (2013). A test collection for entity search in DBpedia. In G. J. F. Jones, P. Sheridan, D. Kelly, M. de Rijke,

& T. Sakai (Eds.), The 36th international ACM SIGIR conference on research and development in information retrieval, SIGIR’13,
Dublin, Ireland—July 28–August 01, 2013 (pp. 737–740). ACM. https://doi.org/10.1145/2484028.2484165

Bhalotia, G., Hulgeri, A., Nakhe, C., Chakrabarti, S., & Sudarshan, S. (2002). Keyword searching and browsing
in databases using banks. In Proceedings 18th international conference on data engineering (pp. 431–440). IEEE.
https://doi.org/10.1109/ICDE.2002.994756

Bikakis, N., Giannopoulos, G., Liagouris, J., Skoutas, D., Dalamagas, T., & Sellis, T. K. (2013). RDivF: Diversifying keyword
search on RDF graphs. In T. Aalberg, C. Papatheodorou, M. Dobreva, G. Tsakonas, & C. J. Farrugia (Eds.), Research and
advanced technology for digital libraries—international conference on theory and practice of digital libraries, TPDL 2013,
Valletta, Malta, September 22–26, 2013. Proceedings, lecture notes in computer science (vol. 8092, pp. 413–416). Springer.
https://doi.org/10.1007/978-3-642-40501-3_49

Bizer, C., & Schultz, A. (2009). The Berlin SPARQL benchmark. International Journal on Semantic Web and Information Systems,
5(2), 1–24. https://doi.org/10.4018/jswis.2009040101

Bordes, A., Usunier, N., Garcıa-Durán, A., Weston, J., & Yakhnenko, O. (2013). Translating embeddings for modeling
multi-relational data. In C. J. C. Burges, L. Bottou, Z. Ghahramani, & K. Q. Weinberger (Eds.), Advances in neu-
ral information processing systems 26: 27th annual conference on neural information processing systems 2013. Proceed-
ings of a meeting held December 5–8, 2013, Lake Tahoe, Nevada, United States (pp. 2787–2795). Curran Associates Inc.
https://proceedings.neurips.cc/paper/2013/hash/1cecc7a77928ca8133fa24680a88d2f9-Abstract.html

Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E., & Yergeau, F. (2008). Extensible markup language (xml) 1.0 (5th ed.). W3C.
https://www.w3.org.TR/REC-xml

Brereton, P., Kitchenham, B. A., Budgen, D., Turner, M., & Khalil, M. (2007). Lessons from applying the system-
atic literature review process within the software engineering domain. Journal of Systems and Software, 80(4), 571–583.
https://doi.org/https://doi.org/10.1016/j.jss.2006.07.009

Bron, C., & Kerbosch, J. (1973). Algorithm 457: Finding all cliques of an undirected graph. Communications of the ACM, 16(9),
575–577. https://doi.org/10.1145/362342.362367

Bryson, S., Davoudi, H., Golab, L., Kargar, M., Lytvyn, Y., Mierzejewski, P., Szlichta, J., & Zihayat, M. (2020). Robust keyword search
in large attributed graphs. Information Retrieval Journal, 23(5), 502–524. https://doi.org/10.1007/s10791-020-09379-9

https://github.com/thunlp/Fast-TransX
http://swat.cse.lehigh.edu/projects/lubm/
http://wbsg.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/
https://datasets.imdbws.com/
http://downloads.dbpedia.org/wiki-archive/data-set-37.html
https://sites.google.com/site/ontopiswc13/home/imdb-mo
https://sites.google.com/view/quira/
http://musicbrainz.org
https://github.com/ag-sc/QALD
http://dbtune.org/jamendo/
http://downloads.dbpedia.org/wiki-archive/dbpedia-dataset-version-2015-10.html
http://www.mpi-inf.mpg.de/yago
https://www.elastic.co/guide/en/elasticsearch/reference/current/index.html
https://old.datahub.io/dataset/knowledge-map
https://doi.org/10.1145/1772690.1772692
https://doi.org/10.1002/9780470594001
https://doi.org/10.1016/j.neucom.2014.04.062
https://doi.org/10.14778/1929861.1929864
https://doi.org/10.1007/978-3-319-93935-3_5
https://doi.org/10.1145/2484028.2484165
https://doi.org/10.1109/ICDE.2002.994756
https://doi.org/10.1007/978-3-642-40501-3_49
https://doi.org/10.4018/jswis.2009040101
https://proceedings.neurips.cc/paper/2013/hash/1cecc7a77928ca8133fa24680a88d2f9-Abstract.html
https://www.w3.org.TR/REC-xml
https://doi.org/https://doi.org/10.1016/j.jss.2006.07.009
https://doi.org/10.1145/362342.362367
https://doi.org/10.1007/s10791-020-09379-9

Feddoul et al. 29

Cai, Q., & Yates, A. (2013). Large-scale semantic parsing via schema matching and lexicon extension. In Proceedings of the 51st annual
meeting of the association for computational linguistics, ACL 2013, 4–9 August 2013, Sofia, Bulgaria, Volume 1: Long papers (pp.
423–433). The Association for Computer Linguistics. https://aclanthology.org/P13-1042/

Cantallops, M. M., Sánchez-Alonso, S., & Garcıa-Barriocanal, E. (2019). A systematic literature review on wikidata. Data Technologies
and Applications, 53(3), 250–268. https://doi.org/10.1108/DTA-12-2018-0110

Cheng, G., Li, S., Zhang, K., & Li, C. (2020). Generating compact and relaxable answers to keyword queries over knowledge graphs.
In J. Z. Pan, V. A. M. Tamma, C. d’Amato, K. Janowicz, B. Fu, A. Polleres, O. Seneviratne, & L. Kagal (Eds.), The semantic
web—ISWC 2020–19th international semantic web conference, Athens, Greece, November 2–6, 2020, proceedings, part I, lecture
notes in computer science (vol. 12506, pp. 110–127). Springer. https://doi.org/10.1007/978-3-030-62419-4_7

Cheng, G., Shao, F., & Qu, Y. (2017). An empirical evaluation of techniques for ranking semantic associations. IEEE Transactions on
Knowledge and Data Engineering, 29(11), 2388–2401. https://doi.org/10.1109/TKDE.2017.2735970

Cleverdon, C. (1967). The Cranfield tests on index language devices. In ASLIB proceedings (vol. 19, pp. 173–194). MCB UP Ltd.
Coffman, J., & Weaver, A. C. (2014). An empirical performance evaluation of relational keyword search techniques. IEEE Transactions

on Knowledge and Data Engineering, 26(1), 30–42. https://doi.org/10.1109/TKDE.2012.228
Craswell, N. (2009). Mean reciprocal rank. In L. Liu & M.T. Özsu (Eds.), Encyclopedia of database systems (pp. 1703–1703). Springer.

https://doi.org/10.1007/978-0-387-39940-9_488
Dalvi, B. B., Kshirsagar, M., & Sudarshan, S. (2008). Keyword search on external memory data graphs. Proceedings of the Very Large

Data Bases Endowment (PVLDB), 1(1), 1189–1204. https://doi.org/10.14778/1453856.1453982
Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische Mathematik, 1(1), 269–271.

https://doi.org/10.1007/BF01386390
Ding, B., Yu, J. X., Wang, S., Qin, L., Zhang, X., & Lin, X. (2007). Finding top-k min-cost connected trees in databases.

In R. Chirkova, A. Dogac, M. T. Özsu, & T. K. Sellis (Eds.), Proceedings of the 23rd international conference on data
engineering, ICDE 2007, The Marmara Hotel, Istanbul, Turkey, April 15–20, 2007 (pp. 836–845). IEEE Computer Society.
https://doi.org/10.1109/ICDE.2007.367929

Dosso, D., & Silvello, G. (2020). Search text to retrieve graphs: A scalable RDF keyword-based search system. IEEE Access, 8,
14089–14111. https://doi.org/10.1109/ACCESS.2020.2966823

Dreyfus, S. E., & Wagner, R. A. (1971). The steiner problem in graphs. Networks, 1(3), 195–207.
https://doi.org/10.1002/net.3230010302

Edge, D., Trinh, H., Cheng, N., Bradley, J., Chao, A., Mody, A., Truitt, S., & Larson, J. (2024). From local to global: A graph RAG
approach to query-focused summarization. https://arxiv.org/abs/2404.16130

Elbassuoni, S., & Blanco, R. (2011). Keyword search over RDF graphs. In C. Macdonald, I. Ounis, & I. Ruthven (Eds.), Proceedings
of the 20th ACM conference on information and knowledge management, CIKM 2011, Glasgow, United Kingdom, October 24–28,
2011 (pp. 237–242). ACM. https://doi.org/10.1145/2063576.2063615

Fagin, R., Lotem, A., & Naor, M. (2003). Optimal aggregation algorithms for middleware. Journal of Computer and System Sciences,
66(4), 614–656. https://doi.org/10.1016/S0022-0000(03)00026-6

Feddoul, L. (2020). Semantics-driven keyword search over knowledge graphs. In H. Alani & E. Simperl (Eds.), Proceedings of the doc-
toral consortium at ISWC 2020 co-located with 19th international semantic web conference (ISWC 2020), Athens, Greece, November
3rd, 2020, CEUR workshop proceedings (vol. 2798, pp. 17–24). CEUR-WS.org. https://ceur-ws.org/Vol-2798/paper3.pdf

Feddoul, L., Löffler, F., & Schindler, S. (2023). Keysearchwiki: An automatically generated dataset for keyword search over Wikidata.
In L. Kaffee, S. Razniewski, K. Alghamdi, & H. Arnaout (Eds.), Proceedings of the Wikidata workshop 2023 co-located with 22nd
international semantic web conference (ISWC 2023), Athens, Greece, November 13, 2023, CEUR workshop proceedings (vol. 3640).
CEUR-WS.org. https://ceur-ws.org/Vol-3640/paper6.pdf

Fellbaum, C., & George, A. (1998). WordNet: An electronic lexical database. MIT Press.
García, G., Izquierdo, Y., Menendez, E., Dartayre, F., & Casanova, M. A. (2017). RDF keyword-based query technology meets a real-

world dataset. In V. Markl, S. Orlando, B. Mitschang, P. Andritsos, K. Sattler, & S. Breß (Eds.), Proceedings of the 20th international
conference on extending database technology, EDBT 2017, Venice, Italy, March 21–24, 2017 (pp. 656–667). OpenProceedings.org.
https://doi.org/10.5441/002/edbt.2017.86

Ghanbarpour, A., & Naderi, H. (2019). Survey on ranking functions in keyword search over graph-structured data. Journal of Universal
Computer Science, 25(4), 361–389. http://www.jucs.org/jucs_25_4/survey_on_ranking_functions

Ghanbarpour, A., Niknafs, K., & Naderi, H. (2020). Efficient keyword search over graph-structured data based on minimal covered
r-cliques. Frontiers of Information Technology & Electronic Engineering, 21(3), 448–464. https://doi.org/10.1631/FITEE.1800133

Gkirtzou, K., Karozos, K., Vassalos, V., & Dalamagas, T. (2015). Keywords-to-sparql translation for RDF data search and exploration. In
S. Kapidakis, C. Mazurek, & M. Werla (Eds.), Research and advanced technology for digital libraries—19th international conference
on theory and practice of digital libraries, TPDL 2015, Poznań, Poland, September 14–18, 2015. Proceedings, lecture notes in
computer science (vol. 9316, pp. 111–123). Springer. https://doi.org/10.1007/978-3-319-24592-8_9

https://aclanthology.org/P13-1042/
https://doi.org/10.1108/DTA-12-2018-0110
https://doi.org/10.1007/978-3-030-62419-4_7
https://doi.org/10.1109/TKDE.2017.2735970
https://doi.org/10.1109/TKDE.2012.228
https://doi.org/10.1007/978-0-387-39940-9_488
https://doi.org/10.14778/1453856.1453982
https://doi.org/10.1007/BF01386390
https://doi.org/10.1109/ICDE.2007.367929
https://doi.org/10.1109/ACCESS.2020.2966823
https://doi.org/10.1002/net.3230010302
https://arxiv.org/abs/2404.16130
https://doi.org/10.1145/2063576.2063615
https://doi.org/10.1016/S0022-0000(03)00026-6
https://ceur-ws.org/Vol-2798/paper3.pdf
https://ceur-ws.org/Vol-3640/paper6.pdf
https://doi.org/10.5441/002/edbt.2017.86
http://www.jucs.org/jucs_25_4/survey_on_ranking_functions
https://doi.org/10.1631/FITEE.1800133
https://doi.org/10.1007/978-3-319-24592-8_9

30 Semantic Web 16(5)

Golenberg, K., Kimelfeld, B., & Sagiv, Y. (2008). Keyword proximity search in complex data graphs. In J. T. Wang (Ed.), Proceedings
of the ACM SIGMOD international conference on management of data, SIGMOD 2008, Vancouver, BC, Canada, June 10–12, 2008
(pp. 927–940). ACM. https://doi.org/10.1145/1376616.1376708

Guan, J., Wang, J., & Yu, L. (2018). Multi-keyword parallel search algorithm for streaming RDF data. In Z. Xu, X. Gao, Q. Miao, Y.
Zhang, & J. Bu (Eds.), Big Data—6th CCF conference, Big Data 2018, Xi’an, China, October 11–13, 2018, proceedings, communi-
cations in computer and information science (vol. 945, pp. 494–511). Springer. https://doi.org/10.1007/978-981-13-2922-7_33

Güntzer, U., Balke, W., & Kießling, W. (2001). Towards efficient multi-feature queries in heterogeneous environments. In 2001 inter-
national symposium on information technology (ITCC 2001), 2–4 April 2001, Las Vegas, NV, USA (pp. 622–628). IEEE Computer
Society. https://doi.org/10.1109/ITCC.2001.918866

Han, S., Zou, L., Yu, J. X., & Zhao, D. (2017). Keyword search on RDF graphs—a query graph assembly approach. In E. Lim, M.
Winslett, M. Sanderson, A. W. Fu, J. Sun, J. S. Culpepper, E. Lo, J. C. Ho, D. Donato, R. Agrawal, Y. Zheng, C. Castillo, A. Sun,
V. S. Tseng, & C. Li (Eds.), Proceedings of the 2017 ACM on conference on information and knowledge management, CIKM 2017,
Singapore, November 6–10, 2017 (pp. 227–236). ACM. https://doi.org/10.1145/3132847.3132957

Hao, Y., Cao, H., Qi, Y., Hu, C., Brahma, S., & Han, J. (2015). Efficient keyword search on graphs using mapreduce. In 2015 IEEE
international conference on Big Data (IEEE BigData 2015), Santa Clara, CA, USA, October 29–November 1, 2015 (pp. 2871–2873).
IEEE Computer Society. https://doi.org/10.1109/BigData.2015.7364106

Hao, Y., Cao, X., Sheng, Y., Fang, Y., & Wang, W. (2021). KS-GNN: keywords search over incomplete graphs
via graphs neural network. In M. Ranzato, A. Beygelzimer, Y. N. Dauphin, P. Liang, & J. W. Vaughan
(Eds.), Advances in neural information processing systems 34: Annual conference on neural information pro-
cessing systems 2021, NeurIPS 2021, December 6–14, 2021, virtual (pp. 1700–1712). Curran Associates Inc.
https://proceedings.neurips.cc/paper/2021/hash/0d7363894acdee742caf7fe4e97c4d49-Abstract.html

Hasibi, F., Nikolaev, F., Xiong, C., Balog, K., Bratsberg, S. E., Kotov, A., & Callan, J. (2017). Dbpedia-entity v2: A test collection for
entity search. In N. Kando, T. Sakai, H. Joho, H. Li, A. P. de Vries, & R. W. White (Eds.), Proceedings of the 40th international
ACM SIGIR conference on research and development in information retrieval, Shinjuku, Tokyo, Japan, August 7–11, 2017 (pp.
1265–1268). ACM. https://doi.org/10.1145/3077136.3080751

He, H., Wang, H., Yang, J., & Yu, P. S. (2007). BLINKS: ranked keyword searches on graphs. In C. Y. Chan, B. C. Ooi, & A. Zhou
(Eds.), Proceedings of the ACM SIGMOD international conference on management of data, Beijing, China, June 12–14, 2007 (pp.
305–316). ACM. https://doi.org/10.1145/1247480.1247516

Hristidis, V., Gravano, L., & Papakonstantinou, Y. (2003). Efficient ir-style keyword search over relational databases. In J. C.
Freytag, P. C. Lockemann, S. Abiteboul, M. J. Carey, P. G. Selinger, & A. Heuer (Eds.), Proceedings of 29th international
conference on very large data bases, VLDB 2003, Berlin, Germany, September 9–12, 2003 (pp. 850–861). Morgan Kaufmann.
https://doi.org/10.1016/B978-012722442-8/50080-X

Hristidis, V., & Papakonstantinou, Y. (2002). DISCOVER: keyword search in relational databases. In Proceedings of 28th interna-
tional conference on very large data bases, VLDB 2002, Hong Kong, August 20–23, 2002 (pp. 670–681). Morgan Kaufmann.
https://doi.org/10.1016/B978-155860869-6/50065-2

Izquierdo, Y., Garcıa, G. M., Menendez, E., Leme, L. A. P. P., Neves, A. B., Lemos, M., Finamore, A. C., Oliveira, C., & Casanova,
M. A. (2021). Keyword search over schema-less RDF datasets by SPARQL query compilation. Information Systems, 102, 101814.
https://doi.org/10.1016/j.is.2021.101814

Järvelin, K., & Kekäläinen, J. (2002). Cumulated gain-based evaluation of ir techniques. ACM Transactions on Information Systems,
20(4), 422–446. https://doi.org/10.1145/582415.582418

Jiang, J., Choi, B., Xu, J., & Bhowmick, S. S. (2021). A generic ontology framework for indexing keyword search on massive graphs.
IEEE Transactions on Knowledge and Data Engineering, 33(6), 2322–2336. https://doi.org/10.1109/TKDE.2019.2956535

Kacholia, V., Pandit, S., Chakrabarti, S., Sudarshan, S., Desai, R., & Karambelkar, H. (2005). Bidirectional expansion for keyword
search on graph databases. In K. Böhm, C. S. Jensen, L. M. Haas, M. L. Kersten, P. Larson, & B. C. Ooi (Eds.), Proceedings of the
31st international conference on very large data bases, Trondheim, Norway, August 30–September 2, 2005 (pp. 505–516). ACM.
http://www.vldb.org/archives/website/2005/program/paper/wed/p505-kacholia.pdf

Kadilierakis, G., Fafalios, P., Papadakos, P., & Tzitzikas, Y. (2020). Keyword search over RDF using document-centric information
retrieval systems. In A. Harth, S. Kirrane, A. N. Ngomo, H. Paulheim, A. Rula, A. L. Gentile, P. Haase, & M. Cochez (Eds.), The
semantic web—17th international conference, ESWC 2020, Heraklion, Crete, Greece, May 31–June 4, 2020, proceedings, lecture
notes in computer science (vol. 12123, pp. 121–137). Springer. https://doi.org/10.1007/978-3-030-49461-2_8

Kargar, M., & An, A. (2011). Keyword search in graphs: Finding r-cliques. Proceedings of the VLDB Endowment, 4(10), 681–692.
https://doi.org/10.14778/2021017.2021025

Kargar, M., & An, A. (2015). Finding top-k, r-cliques for keyword search from graphs in polynomial delay. Knowledge and Information
Systems, 43(2), 249–280. https://doi.org/10.1007/s10115-014-0736-0

https://doi.org/10.1145/1376616.1376708
https://doi.org/10.1007/978-981-13-2922-7_33
https://doi.org/10.1109/ITCC.2001.918866
https://doi.org/10.1145/3132847.3132957
https://doi.org/10.1109/BigData.2015.7364106
https://proceedings.neurips.cc/paper/2021/hash/0d7363894acdee742caf7fe4e97c4d49-Abstract.html
https://doi.org/10.1145/3077136.3080751
https://doi.org/10.1145/1247480.1247516
https://doi.org/10.1016/B978-012722442-8/50080-X
https://doi.org/10.1016/B978-155860869-6/50065-2
https://doi.org/10.1016/j.is.2021.101814
https://doi.org/10.1145/582415.582418
https://doi.org/10.1109/TKDE.2019.2956535
http://www.vldb.org/archives/website/2005/program/paper/wed/p505-kacholia.pdf
https://doi.org/10.1007/978-3-030-49461-2_8
https://doi.org/10.14778/2021017.2021025
https://doi.org/10.1007/s10115-014-0736-0

Feddoul et al. 31

Kargar, M., An, A., Cercone, N., Godfrey, P., Szlichta, J., & Yu, X. (2015). Meaningful keyword search in relational databases
with large and complex schema. In J. Gehrke, W. Lehner, K. Shim, S. K. Cha, & G. M. Lohman (Eds.), 31st IEEE interna-
tional conference on data engineering, ICDE 2015, Seoul, South Korea, April 13–17, 2015 (pp. 411–422). IEEE Computer Society.
https://doi.org/10.1109/ICDE.2015.7113302

Kargar, M., An, A., & Yu, X. (2013). Duplication free and minimal keyword search in large graphs (Technical Report CSE-2013-02).
York University.

Kargar, M., An, A., & Yu, X. (2014). Efficient duplication free and minimal keyword search in graphs. IEEE Transactions on Knowledge
and Data Engineering, 26(7), 1657–1669. https://doi.org/10.1109/TKDE.2013.85

Katerenchuk, D., & Rosenberg, A. (2016). RankDCG: Rank-ordering evaluation measure. In N. Calzolari, K. Choukri, T. Declerck,
S. Goggi, M. Grobelnik, B. Maegaard, J. Mariani, H. Mazo, A. Moreno, J. Odijk, & S. Piperidis (Eds.), Proceedings of the tenth
international conference on language resources and evaluation LREC 2016, Portorož, Slovenia, May 23–28, 2016 (pp. 3675–3680).
European Language Resources Association (ELRA).

Kharrat, M., Jedidi, A., & Gargouri, F. (2016). SPARQL query generation based on RDF graph. In A. L. N. Fred, J. L. G. Dietz, D.
Aveiro, K. Liu, J. Bernardino, & J. Filipe (Eds.), Proceedings of the 8th international joint conference on knowledge discovery,
knowledge engineering and knowledge management (IC3K 2016)—volume 1: KDIR, Porto—Portugal, November 9–11, 2016 (pp.
450–455). SciTePress. https://doi.org/10.5220/0006091904500455

Kimelfeld, B., & Sagiv, Y. (2008). Efficiently enumerating results of keyword search over data graphs. Information Systems, 33(4–5),
335–359. https://doi.org/10.1016/j.is.2008.01.002

Kitchenham, B. A., & Charters, S. (2007). Guidelines for performing systematic literature reviews in soft-
ware engineering (Technical Report EBSE 2007-001). Keele University and Durham University Joint Report.
https://www.elsevier.com/__data/promis_misc/525444systematicreviewsguide.pdf

Kleinberg, J. M. (1999). Authoritative sources in a hyperlinked environment. Journal of the ACM, 46(5), 604–632.
https://doi.org/10.1145/324133.324140

Lawler, E. L. (1972). A procedure for computing the k best solutions to discrete optimization problems and its application to the shortest
path problem. Management Science, 18(7), 401–405. https://doi.org/10.1287/mnsc.18.7.401

Le, W., Li, F., Kementsietsidis, A., & Duan, S. (2014). Scalable keyword search on large RDF data. IEEE Transactions on Knowledge
and Data Engineering, 26(11), 2774–2788. https://doi.org/10.1109/TKDE.2014.2302294

Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P. N., Hellmann, S., Morsey, M., van Kleef, P., Auer, S., &
Bizer, C. (2015). DBpedia—A large-scale, multilingual knowledge base extracted from wikipedia. Semantic Web, 6(2), 167–195.
https://doi.org/10.3233/SW-140134

Leskovec, J., Rajaraman, A., & Ullman, J. D. (2020). Mining of massive datasets. 3rd ed. Cambridge University Press.
https://doi.org/10.1017/9781108684163

Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goyal, N., Küttler, H., Lewis, M., Yih, Wt., Rocktäschel, T., Riedel, S., &
Kiela, D. (2020). Retrieval-augmented generation for knowledge-intensive NLP tasks. In H. Larochelle, M. Ranzato, R. Hadsell,
M. Balcan, & H. Lin (Eds.), Advances in neural information processing systems (vol. 33, pp. 9459–9474). Curran Associates, Inc.
https://proceedings.neurips.cc/paper_files/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf

Li, G., Ooi, B. C., Feng, J., Wang, J., & Zhou, L. (2008). EASE: an effective 3-in-1 keyword search method for unstructured, semi-
structured and structured data. In J. T. Wang (Ed.), Proceedings of the ACM SIGMOD international conference on management of
data, SIGMOD 2008, Vancouver, BC, Canada, June 10–12, 2008 (pp. 903–914). ACM. https://doi.org/10.1145/1376616.1376706

Li, H. Y., & Qu, Y. Z. (2011). Kreag: Keyword query approach over RDF data based on entity-triple association graph. Jisuanji Xuebao
(Chinese Journal of Computers), 34(5), 825–835.

Li, N., Yan, X., Wen, Z., & Khan, A. (2012). Density index and proximity search in large graphs. In X. Chen, G. Lebanon, H. Wang,
& M. J. Zaki (Eds.), 21st ACM international conference on information and knowledge management, CIKM’12, Maui, HI, USA,
October 29–November 2, 2012 (pp. 235–244). ACM. https://doi.org/10.1145/2396761.2396794

Li, R., Qin, L., Yu, J. X., & Mao, R. (2016). Efficient and progressive group steiner tree search. In F. Özcan, G. Koutrika, & S. Madden
(Eds.), Proceedings of the 2016 international conference on management of data, SIGMOD conference 2016, San Francisco, CA,
USA, June 26–July 1, 2016 (pp. 91–106). ACM. https://doi.org/10.1145/2882903.2915217

Lian, X., Chen, L., & Huang, Z. (2015). Keyword search over probabilistic RDF graphs. IEEE Transactions on Knowledge and Data
Engineering, 27(5), 1246–1260. https://doi.org/10.1109/TKDE.2014.2365791

Lin, F., & Sandkuhl, K. (2008). A survey of exploiting WordNet in ontology matching. In M. Bramer (Ed.), Artificial intelligence in
theory and practice II, IFIP 20th world computer congress, TC 12: IFIP AI 2008 Stream, September 7–10, 2008, Milano, Italy, IFIP
(vol. 276, pp. 341–350). Springer. https://doi.org/10.1007/978-0-387-09695-7_33

Liu, C., Yao, L., Li, J., Zhou, R., & He, Z. (2016). Finding smallest k-compact tree set for keyword queries on graphs using mapreduce.
World Wide Web, 19(3), 499–518. https://doi.org/10.1007/s11280-015-0337-1

https://doi.org/10.1109/ICDE.2015.7113302
https://doi.org/10.1109/TKDE.2013.85
https://doi.org/10.5220/0006091904500455
https://doi.org/10.1016/j.is.2008.01.002
https://www.elsevier.com/__data/promis_misc/525444systematicreviewsguide.pdf
https://doi.org/10.1145/324133.324140
https://doi.org/10.1287/mnsc.18.7.401
https://doi.org/10.1109/TKDE.2014.2302294
https://doi.org/10.3233/SW-140134
https://doi.org/10.1017/9781108684163
https://proceedings.neurips.cc/paper_files/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://doi.org/10.1145/1376616.1376706
https://doi.org/10.1145/2396761.2396794
https://doi.org/10.1145/2882903.2915217
https://doi.org/10.1109/TKDE.2014.2365791
https://doi.org/10.1007/978-0-387-09695-7_33
https://doi.org/10.1007/s11280-015-0337-1

32 Semantic Web 16(5)

Liu, T. Y. (2009). Learning to rank for information retrieval. Foundations and Trends®in Information Retrieval, 3(3), 225–331.
https://doi.org/10.1561/1500000016

Liu, Y., Safavi, T., Dighe, A., & Koutra, D. (2018a). Graph summarization methods and applications: A survey. ACM Computing Surveys
(CSUR), 51(3), 1–34. https://doi.org/10.1145/3186727

Liu, Z., Wang, C., & Chen, Y. (2018b). Keyword search on temporal graphs. In 34th IEEE international conference on data engineering,
ICDE 2018, Paris, France, April 16–19, 2018 (pp. 1807–1808). IEEE Computer Society. https://doi.org/10.1109/ICDE.2018.00261

Lu, X., Theodoratos, D., & Dimitriou, A. (2019). Leveraging pattern mining techniques for efficient keyword search on data graphs. In
L. H. U, J. Yang, Y. Cai, K. Karlapalem, A. Liu, & X. Huang (Eds.), Web information systems engineering—WISE 2019 workshop,
demo, and tutorial, Hong Kong and Macau, China, January 19–22, 2020, revised selected papers, communications in computer and
information science (vol. 1155, pp. 98–114). Springer. https://doi.org/10.1007/978-981-15-3281-8_10

Manning, C. D., Surdeanu, M., Bauer, J., Finkel, J. R., Bethard, S., & McClosky, D. (2014). The Stanford CoreNLP natural
language processing toolkit. In Proceedings of the 52nd annual meeting of the association for computational linguistics, ACL
2014, June 22–27, 2014, Baltimore, MD, USA, system demonstrations (pp. 55–60). The Association for Computer Linguistics.
https://doi.org/10.3115/v1/p14-5010

Mass, Y., & Sagiv, Y. (2016). Virtual documents and answer priors in keyword search over data graphs. In T. Palpanas & K. Stefanidis
(Eds.), Proceedings of the workshops of the EDBT/ICDT 2016 joint conference, EDBT/ICDT workshops 2016, Bordeaux, France,
March 15, 2016, CEUR workshop proceedings (vol. 1558). CEUR-WS.org. http://ceur-ws.org/Vol-1558/paper20.pdf

McBride, B. (2001). Jena: Implementing the RDF model and syntax specification. In S. Decker, D. A. Fensel, A. P. Sheth, & S. Staab
(Eds.), Proceedings of the second international workshop on the semantic web—SemWeb’2001, Hongkong, China, May 1, 2001,
CEUR workshop proceedings (vol. 40). CEUR-WS.org. http://CEUR-WS.org/Vol-40/mcbride.pdf

Menendez, E. S., Casanova, M. A., Leme, L. A. P. P., & Boughanem, M. (2019). Novel node importance measures to improve keyword
search over RDF graphs. In S. Hartmann, J. Küng, S. Chakravarthy, G. Anderst-Kotsis, A. M. Tjoa, & I. Khalil (Eds.), Database and
expert systems applications—30th international conference, DEXA 2019, Linz, Austria, August 26–29, 2019, proceedings, part II,
lecture notes in computer science (vol. 11707, pp. 143–158). Springer. https://doi.org/10.1007/978-3-030-27618-8_11

Metzler, D., & Croft, W. B. (2005). A Markov random field model for term dependencies. In R. A. Baeza-Yates, N. Ziviani,
G. Marchionini, A. Moffat, & J. Tait (Eds.), SIGIR 2005: Proceedings of the 28th annual international ACM SIGIR con-
ference on research and development in information retrieval, Salvador, Brazil, August 15–19, 2005 (pp. 472–479). ACM.
https://doi.org/10.1145/1076034.1076115

Navarro, F. A., Martınez-Costa, C., & Fernández-Breis, J. T. (2021). Semankey: A semantics-driven approach for querying RDF
repositories using keywords. IEEE Access, 9, 91282–91302. https://doi.org/10.1109/ACCESS.2021.3091413

Neves, A. B., Leme, L. A. P. P., Izquierdo, Y. T., & Casanova, M. A. (2021). Automatic construction of benchmarks for RDF keyword
search systems evaluation. In J. Filipe, M. Smialek, A. Brodsky, & S. Hammoudi (Eds.), Proceedings of the 23rd international con-
ference on enterprise information systems, ICEIS 2021, Online Streaming, April 26–28, 2021 (vol. 1, pp. 126–137). SCITEPRESS.
https://doi.org/10.5220/0010519401260137

Nikas, C., Kadilierakis, G., Fafalios, P., & Tzitzikas, Y. (2020). Keyword search over RDF: Is a single perspective enough?. Big Data
and Cognitive Computing, 4(3), 22. https://doi.org/10.3390/bdcc4030022

Ouksili, H., Kedad, Z., Lopes, S., & Nugier, S. (2017). Using patterns for keyword search in RDF graphs. In Y. E. Ioannidis, J. Stoy-
anovich, & G. Orsi (Eds.), Proceedings of the workshops of the EDBT/ICDT 2017 joint conference (EDBT/ICDT 2017), Venice, Italy,
March 21–24, 2017, CEUR workshop proceedings (vol. 1810). CEUR-WS.org. http://ceur-ws.org/Vol-1810/GraphQ_paper_08.pdf

Ozdemir, S. (2023). Quick start guide to large language models: Strategies and best practices for using ChatGPT and other LLMs.
Addison-Wesley data and analytics series. Pearson Education (US).

Page, L., Brin, S., Motwani, R., & Winograd, T. (1999). The pagerank citation ranking: Bringing order to the web (Technical Report
1999-66). Stanford InfoLab. http://ilpubs.stanford.edu:8090/422/ . Previous number = SIDL-WP-1999-0120.

Park, C. (2018). Effective keyword search on graph data using limited root redundancy of answer trees. International Journal of Web
Information Systems, 14(3), 299–316. https://doi.org/10.1108/IJWIS-10-2017-0070

Park, C., & Lim, S. (2015). Efficient processing of keyword queries over graph databases for finding effective answers. Information
Processing & Management, 51(1), 42–57. https://doi.org/10.1016/j.ipm.2014.08.002

Qin, L., Yu, J. X., Chang, L., & Tao, Y. (2009). Querying communities in relational databases. In Y. E. Ioannidis, D. L. Lee, & R. T. Ng
(Eds.), Proceedings of the 25th international conference on data engineering, ICDE 2009, March 29, 2009–April 2, 2009, Shanghai,
China (pp. 724–735). IEEE Computer Society. https://doi.org/10.1109/ICDE.2009.67

Rihany, M., Kedad, Z., & Lopes, S. (2018). Keyword search over RDF graphs using WordNet. In M. Hojeij, B. Finance, Y. Taher, K.
Zeitouni, R. Haque, & M. Dbouk (Eds.), Proceedings of the 1st international conference on Big Data and cyber-security intelligence,
BDCSIntell 2018, Hadath, Lebanon, December 13–15, 2018, CEUR workshop proceedings (vol. 2343, pp. 75–82). CEUR-WS.org.
http://ceur-ws.org/Vol-2343/paper15.pdf

https://doi.org/10.1561/1500000016
https://doi.org/10.1145/3186727
https://doi.org/10.1109/ICDE.2018.00261
https://doi.org/10.1007/978-981-15-3281-8_10
https://doi.org/10.3115/v1/p14-5010
http://ceur-ws.org/Vol-1558/paper20.pdf
http://CEUR-WS.org/Vol-40/mcbride.pdf
https://doi.org/10.1007/978-3-030-27618-8_11
https://doi.org/10.1145/1076034.1076115
https://doi.org/10.1109/ACCESS.2021.3091413
https://doi.org/10.5220/0010519401260137
https://doi.org/10.3390/bdcc4030022
http://ceur-ws.org/Vol-1810/GraphQ_paper_08.pdf
http://ilpubs.stanford.edu:8090/422/
https://doi.org/10.1108/IJWIS-10-2017-0070
https://doi.org/10.1016/j.ipm.2014.08.002
https://doi.org/10.1109/ICDE.2009.67
http://ceur-ws.org/Vol-2343/paper15.pdf

Feddoul et al. 33

Ristoski, P., Rosati, J., Noia, T. D., Leone, R. D., & Paulheim, H. (2019). RDF2Vec: RDF graph embeddings and their applications.
Semantic Web, 10(4), 721–752. https://doi.org/10.3233/SW-180317

Robertson, S., & Zaragoza, H. (2009). The probabilistic relevance framework: BM25 and beyond. Foundations and Trends in
Information Retrieval, 3(4), 333–389. https://doi.org/10.1561/1500000019

Schütze, H., Manning, C. D., & Raghavan, P. (2008). Introduction to information retrieval (vol. 39). Cambridge University Press.
Shi, Y., Cheng, G., Tran, T., Kharlamov, E., & Shen, Y. (2021). Efficient computation of semantically cohesive subgraphs

for keyword-based knowledge graph exploration. In J. Leskovec, M. Grobelnik, M. Najork, J. Tang, & L. Zia (Eds.),
WWW ’21: The web conference 2021, virtual event/Ljubljana, Slovenia, April 19–23, 2021 (pp. 1410–1421). ACM/IW3C2.
https://doi.org/10.1145/3442381.3449900

Sinha, S. B., Lu, X., & Theodoratos, D. (2018). Personalized keyword search on large RDF graphs based on pattern graph sim-
ilarity. In B. C. Desai, S. Flesca, E. Zumpano, E. Masciari, & L. Caroprese (Eds.), Proceedings of the 22nd international
database engineering & applications symposium, IDEAS 2018, Villa San Giovanni, Italy, June 18–20, 2018 (pp. 12–21). ACM.
https://doi.org/10.1145/3216122.3216167

Sitthisarn, S. (2014). A semantic keyword search based on the bidirectional fix root query graph construction algorithm. In T. Supnithi,
T. Yamaguchi, J. Z. Pan, V. Wuwongse, & M. Buranarach (Eds.), Semantic technology—4th joint international conference, JIST
2014, Chiang Mai, Thailand, November 9–11, 2014. Revised selected papers, lecture notes in computer science (vol. 8943, pp.
387–394). Springer. https://doi.org/10.1007/978-3-319-15615-6_29

Sitthisarn, S., Lau, L., & Dew, P. M. (2011). Semantic keyword search for expert witness discovery. In 2011 international conference
on semantic technology and information retrieval (pp. 18–25). IEEE. https://doi.org/10.1109/STAIR.2011.5995759

Tomita, E., Tanaka, A., & Takahashi, H. (2006). The worst-case time complexity for generating all maximal cliques and computational
experiments. Theoretical Computer Science, 363(1), 28–42. https://doi.org/https://doi.org/10.1016/j.tcs.2006.06.015

Tran, T., Wang, H., Rudolph, S., & Cimiano, P. (2009). Top-k exploration of query candidates for efficient keyword search on
graph-shaped (RDF) data. In Y. E. Ioannidis, D. L. Lee, & R. T. Ng (Eds.), Proceedings of the 25th international conference
on data engineering, ICDE 2009, March 29, 2009–April 2, 2009, Shanghai, China (pp. 405–416). IEEE Computer Society.
https://doi.org/10.1109/ICDE.2009.119

Unger, C., Ngomo, A. N., & Cabrio, E. (2016). 6th open challenge on question answering over linked data (QALD-6). In H. Sack,
S. Dietze, A. Tordai, & C. Lange (Eds.), Semantic web challenges—third SemWebEval challenge at ESWC 2016, Heraklion, Crete,
Greece, May 29–June 2, 2016, revised selected papers, communications in computer and information science (vol. 641, pp. 171–177).
Springer. https://doi.org/10.1007/978-3-319-46565-4_13

Valiente, G. (2021). Algorithms on trees and graphs: With Python code. Texts in computer science. Springer International Publishing.
Virgilio, R. D., & Maccioni, A. (2014). Distributed keyword search over RDF via mapreduce. In V. Presutti, C. d’Amato, F. Gandon,

M. d’Aquin, S. Staab, & A. Tordai (Eds.), The semantic web: Trends and challenges—11th international conference, ESWC 2014,
Anissaras, Crete, Greece, May 25–29, 2014. Proceedings, lecture notes in computer science (vol. 8465, pp. 208–223). Springer.
https://doi.org/10.1007/978-3-319-07443-6_15

Wang, H., & Aggarwal, C. C. (2010). A survey of algorithms for keyword search on graph data. In CC. Aggarwal &
H. Wang (Eds.), Managing and mining graph data, advances in database systems (vol. 40, pp. 249–273). Springer.
https://doi.org/10.1007/978-1-4419-6045-0_8

Wang, Q., Mao, Z., Wang, B., & Guo, L. (2017a). Knowledge graph embedding: A survey of approaches and applications. IEEE
Transactions on Knowledge and Data Engineering, 29(12), 2724–2743. https://doi.org/10.1109/TKDE.2017.2754499

Wang, Y., Wang, K., Fu, A. W., & Wong, R. C. (2015). Keylabel algorithms for keyword search in large graphs. In 2015 IEEE interna-
tional conference on Big Data (IEEE BigData 2015), Santa Clara, CA, USA, October 29–November 1, 2015 (pp. 857–864). IEEE
Computer Society. https://doi.org/10.1109/BigData.2015.7363833

Wang, Y., Zhong, M., Zhu, Y., Li, X., & Qian, T. (2017b). Diversified top-k keyword query interpretation on knowledge graphs. In L.
Chen, C. S. Jensen, C. Shahabi, X. Yang, & X. Lian (Eds.), Web and Big Data—first international joint conference, APWeb-WAIM
2017, Beijing, China, July 7–9, 2017, proceedings, part I, lecture notes in computer science (vol. 10366, pp. 541–555). Springer.
https://doi.org/10.1007/978-3-319-63579-8_41

White, R. W., & Roth, R. A. (2009). Exploratory search: Beyond the query-response paradigm. Synthesis lectures on information
concepts, retrieval, and services. Morgan & Claypool Publishers. https://doi.org/10.2200/S00174ED1V01Y200901ICR003

Yang, J., Yao, W., & Zhang, W. (2021). Keyword search on large graphs: A survey. Data Science and Engineering, 6(2), 142–162.
https://doi.org/10.1007/s41019-021-00154-4

Yang, Y., Agrawal, D., Jagadish, H. V., Tung, A. K. H., & Wu, S. (2019). An efficient parallel keyword search engine on knowledge
graphs. In 35th IEEE international conference on data engineering, ICDE 2019, Macao, China, April 8–11, 2019 (pp. 338–349).
IEEE. https://doi.org/10.1109/ICDE.2019.00038

Yu, J. X., Qin, L., & Chang, L. (2010). Keyword search in relational databases: A survey. IEEE Data Engineering Bulletin, 33(1),
67–78. http://sites.computer.org/debull/A10mar/yu-paper.pdf

https://doi.org/10.3233/SW-180317
https://doi.org/10.1561/1500000019
https://doi.org/10.1145/3442381.3449900
https://doi.org/10.1145/3216122.3216167
https://doi.org/10.1007/978-3-319-15615-6_29
https://doi.org/10.1109/STAIR.2011.5995759
https://doi.org/https://doi.org/10.1016/j.tcs.2006.06.015
https://doi.org/10.1109/ICDE.2009.119
https://doi.org/10.1007/978-3-319-46565-4_13
https://doi.org/10.1007/978-3-319-07443-6_15
https://doi.org/10.1007/978-1-4419-6045-0_8
https://doi.org/10.1109/TKDE.2017.2754499
https://doi.org/10.1109/BigData.2015.7363833
https://doi.org/10.1007/978-3-319-63579-8_41
https://doi.org/10.2200/S00174ED1V01Y200901ICR003
https://doi.org/10.1007/s41019-021-00154-4
https://doi.org/10.1109/ICDE.2019.00038
http://sites.computer.org/debull/A10mar/yu-paper.pdf

34 Semantic Web 16(5)

Yuan, Y., Lian, X., Chen, L., Yu, J. X., Wang, G., & Sun, Y. (2017). Keyword search over distributed graphs with compressed signature.
IEEE Transactions on Knowledge and Data Engineering, 29(6), 1212–1225. https://doi.org/10.1109/TKDE.2017.2656079

Zaki, M. J. (2005). Efficiently mining frequent embedded unordered trees. Fundamenta Informaticae, 66(1–2), 33–52.
http://content.iospress.com/articles/fundamenta-informaticae/fi66-1-2-03

Zhang, E., & Zhang, Y. (2009). F-measure. In Encyclopedia of database systems (pp. 1147–1147). Springer.
https://doi.org/10.1007/978-0-387-39940-9_483

Zhang, H., Dong, B., Feng, B., & Wei, B. (2021). A keyword query approach based on community structure of RDF entity graph.
In IEEE 45th annual computers, software, and applications conference, COMPSAC 2021, Madrid, Spain, July 12–16, 2021 (pp.
1143–1148). IEEE. https://doi.org/10.1109/COMPSAC51774.2021.00157

Zhang, Z., Xia, D., & Xie, X. (2014). Keyword search on graphs based on content and structure. In Z. Cai, C. Wang, S.
Cheng, H. Wang, & H. Gao (Eds.), Wireless algorithms, systems, and applications—9th international conference, WASA
2014, Harbin, China, June 23–25, 2014. Proceedings, lecture notes in computer science (vol. 8491, pp. 760–772). Springer.
https://doi.org/10.1007/978-3-319-07782-6_68

Zhang, Z., Yu, J. X., Wang, G., Yuan, Y., & Chen, L. (2022). Key-core: Cohesive keyword subgraph exploration in large graphs. World
Wide Web, 25(2), 831–856. https://doi.org/10.1007/s11280-021-00926-y

Zheng, Z., Ding, Y., Wang, Z., & Wang, Z. (2016). A novel method of keyword query for RDF data based on bipartite graph. In
22nd IEEE international conference on parallel and distributed systems, ICPADS 2016, Wuhan, China, December 13–16, 2016 (pp.
466–473). IEEE Computer Society. https://doi.org/10.1109/ICPADS.2016.0069

Zhong, M., & Liu, M. (2009). Efficient keyword proximity search using a frontier-reduce strategy based on d-distance graph
index. In B. C. Desai, D. Saccà, & S. Greco (Eds.), International database engineering and applications symposium (IDEAS
2009), September 16–18, 2009, Cetraro, Calabria, Italy, ACM international conference proceeding series (pp. 206–216). ACM.
https://doi.org/10.1145/1620432.1620453

Zhong, M., Wang, Y., & Zhu, Y. (2018). Coverage-oriented diversification of keyword search results on graphs. In J. Pei, Y. Manolopou-
los, S. W. Sadiq, & J. Li (Eds.), Database systems for advanced applications—23rd international conference, DASFAA 2018, Gold
Coast, QLD, Australia, May 21–24, 2018, proceedings, Part II, lecture notes in computer science (vol. 10828, pp. 166–183). Springer.
https://doi.org/10.1007/978-3-319-91458-9_10

https://doi.org/10.1109/TKDE.2017.2656079
http://content.iospress.com/articles/fundamenta-informaticae/fi66-1-2-03
https://doi.org/10.1007/978-0-387-39940-9_483
https://doi.org/10.1109/COMPSAC51774.2021.00157
https://doi.org/10.1007/978-3-319-07782-6_68
https://doi.org/10.1007/s11280-021-00926-y
https://doi.org/10.1109/ICPADS.2016.0069
https://doi.org/10.1145/1620432.1620453
https://doi.org/10.1007/978-3-319-91458-9_10

	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Survey Methodology
	5 Taxonomy Overview
	6 System Evaluation Methods
	7 System Summary Overview
	8 Detailed Overview and Classification of Existing Works
	8.1 Graph-based Methods
	8.1.1 Tree
	8.1.2 Subgraph
	8.1.3 Structured Query
	8.1.4 Other

	8.2 Schema-based Methods
	8.3 Summary-based Methods
	8.4 Virtual Document-based Methods

	9 Conclusion and Future Directions
	9.1 Keyword Mapping
	9.2 Answer Retrieval
	9.3 Answer Ranking
	9.4 Answer Presentation
	9.5 Evaluating Search Performance
	9.6 Other Specific Cases

	Acknowledgements
	Funding
	Declaration of Conflicting Interests
	ORCID iDs
	Notes
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile ()
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 5
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 33.84000
 33.84000
 33.84000
 33.84000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 9.00000
 9.00000
 9.00000
 9.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks true
 /IncludeHyperlinks true
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

