TEMPUS – A microgravity electromagnetic levitation facility for parabolic flights

G. Lohöfer, M. Beckers, D. Bräuer, B. Reiplinger, S. Schneider, T. Volkmann,


German Aerospace Center (DLR), Cologne, Germany

EUROMAT 2025, Granada, 18.09.2025

TEMPUS in A310 parabolic flight aircraft

1. "Control-rack"

- Experiment control PC
- Data acquisition PC

2. "Generator-rack"

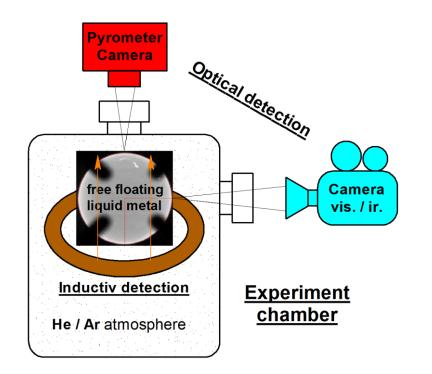
- Power supply
- RF generator
- Gas, vacuum controller
- Sample transfer control

3. "Experiment-rack"

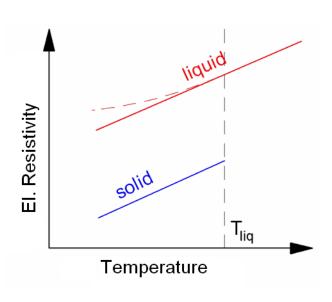
- Experiment chamber
- Measurement devices

4. "Supply-rack"

- Gas bottles
- Cooling system


Purpose of TEMPUS

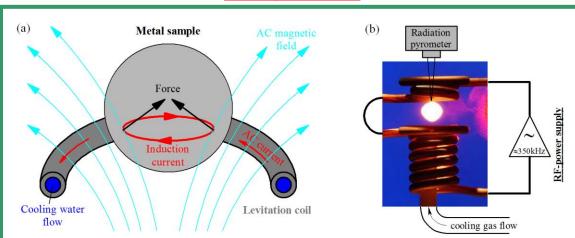
Non-invasive processing of high temperature liquid metals and semiconductors


TEMPUS provides:

- Containerless handling of spherical droplets
- > Contactless measurement methods
- Clean experimental environment (He / Ar)

Benefit

- Minimal external impact on liquid
- ➤ **No** external **nucleation** triggered solidification
 - ⇒ **Undercooled** temp.-range accessible
 - ⇒ **Enlarged** temperature-range
 - ⇒ Structure formation in liquids



Containerless handling and melting of metallic liquids by

"Electromagnetic Levitation"

On ground

Principle

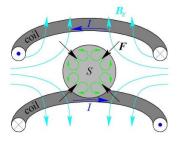
Hf-magnetic field ⇒ Induction of **eddy currents**

- \Rightarrow Lorentz force $\alpha B \cdot \nabla B$
- \Rightarrow Ohmic heating $\propto B^2$

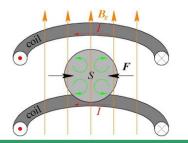
Problem (strong levitation force)

- ⇒ **Deformed** droplet shape
- ⇒ **Strong** fluid flows
- ⇒ **Poor** heat control

Under weightlessness (TEMPUS)


Advantage (weak levitation force)

- ⇒ Well def. spherical droplet shape
- ⇒ Weak fluid flow
- ⇒ **Independent** heat control

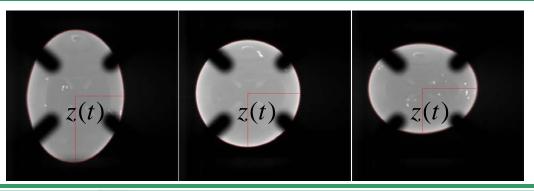

Principle

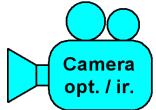
2 separate superposed HF magnetic fields

Quadrupole field

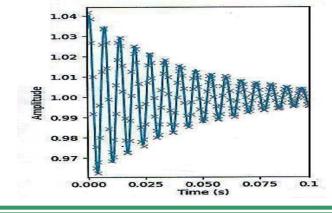
- **Strong** pos. force $\propto -B \cdot \nabla B$
- **Weak** heating power $\propto B^2$

Heating field


- Weak pos. force $\propto -B \cdot \nabla B$
- Strong heat. power $\propto B^2$


Noninvasive experimental methods

A. Measurement of surface tension and viscosity



1. Excitation of droplet oscillations

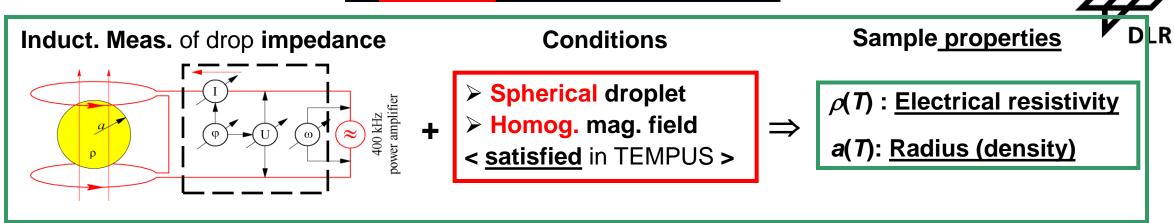
2. <u>Contactless</u> edge <u>detection</u> (optical, inductive)

tension

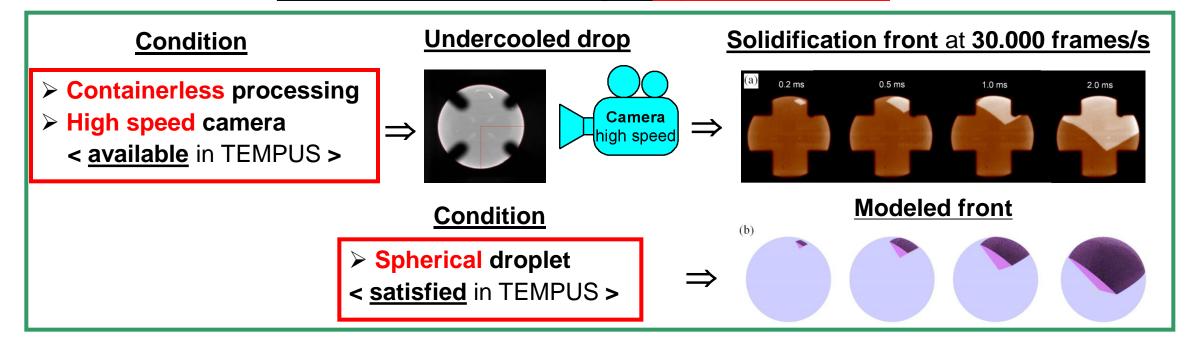
Fit with:

$$z(t) = R + \Delta z_0 \cos(\omega t) e^{-t/\tau}$$

 \Rightarrow damping time: τ

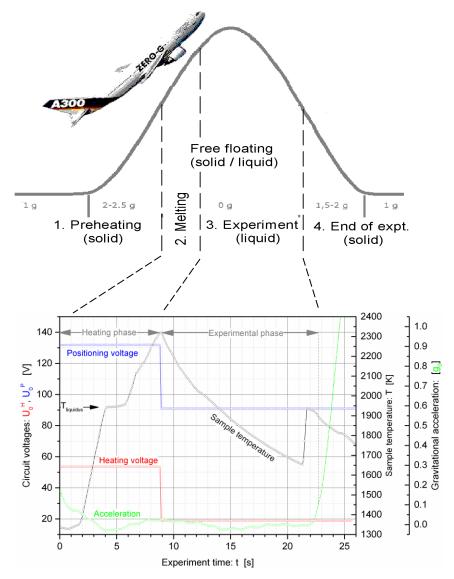

⇒ frequency:

3. Evaluation:
$$\eta = \frac{\rho_M R^2}{5} \frac{1}{\tau}$$
 Lamb equation viscosity damping time


Conditions

- > Spherical droplet
- ➤ **Negligible** fluid flow
- < satisfied in TEMPUS >

B. Inductive measurement method



C. Detection and modeling of rapid solidification

Experiment sequence

Temp.-Time diagram

- 1. Preheating phase (Start of sequence, ~1.8g)
 - Solid sample on pedestal
 - heated just below melting temperature
 - in Ar atmosphere (poor heat conducting)
- 2. <u>Heating phase</u> (Beginning of parabola, ~10⁻²g, ~8sec)
 - > Sample transfer to magnetic levitation field
 - Start of auto. process control and data acquisition
 - Heating, melting, overheating (strong fields)
- 3. Experimental phase (Parabola, ~10⁻²g, ~14sec)
 - ➤ Reduction of magnetic fields to min. level
 ⇒ Low external impact on liquid sample
 - > Experiment on cooling liquid sample
 - \triangleright Exchange: **Ar** \rightarrow **He** (to boost the cooling)
- **4. End** of experiment (End of sequence, 1.8g)
 - Solidified sample on pedestal
 - Stop of process control and data acquisition
 - ➤ Exchange: He → Ar

Parabolic flight issues

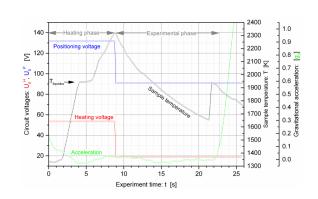
- > Parabolic flights (with TEMPUS on board) are operated by Novespace from airport Bordeaux
- > There is typically 1 TEMPUS parabolic flight campaign of 3 flight days each year
- > Each **TEMPUS campaign** comprises **12 15 experiments** with **15 20 samples**
- > Interested scientists (PI) can apply with an experiment at:
 - ESA
 - DLR, Space Administration,
 - Institute for Frontier Materials in Space, DLR Mitja.Beckers@dlr.de

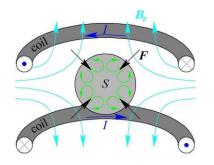
- ➤ If selected there is an extensive experiment preparation program together with the PI
 - Result: Experiment control file (temperature ranges, instrument settings, etc.)
 - Readjustment during the flight by the PI and the TEMPUS operators

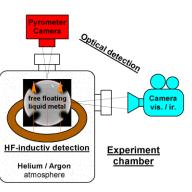
Summary

DLR

TEMPUS odds


- Free floating (levitated) spherical metal droplet
- > Contactless measurement methods
- Clean experimental environment (He / Ar)


Noninvasive experimental methods


- ➤ **Optical:** Meas. of temperature, surface tension, viscosity
- ➤ **Inductive:** Meas. of el. resistivity, thermal expansion (density)
- ➤ High speed video: Detection of rapid solidification

TEMPUS drawbacks

- ➤ **Short** eff. experiment time: ~14sec
- > Residual accelerations: >10⁻²g

TEMPUS team

Thank you!