

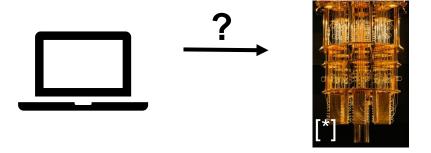
High Performance Computing Workshop – Leogang, 2025/02/24

Pia Siegl, Greta Reese, Nis van Hülst, Tomohiro Hashizume, Dieter Jaksch

Computational Fluid Dynamics on Quantum Computers

- why should we solve classical differential equations on quantum computers?
 - ➤ beneficial scaling?
 - ➤ reduce computational cost?

• how can we solve classical partial differential equations on quantum computers?



Example: Diffusion Equation

$$\frac{df(x,t)}{dt} = c_d \Delta f(x,t)$$

explicit Euler time steps:

$$f^{j+1} = f^j + \Delta t \cdot c_d \Delta f^j$$

classical implementation:

$$fj+1 - fj \perp \Lambda t \cdot c \cdot \Lambda fj$$

$$f^{j} \rightarrow \begin{pmatrix} f_{0} \\ \vdots \\ f_{N} \end{pmatrix}^{j}, \Delta \rightarrow \frac{1}{\Delta x^{2}} \begin{pmatrix} -2 & 1 & \dots & 0 & 0 \\ 1 & -2 & \dots & 0 & 0 \\ & \vdots & & \ddots & & \vdots \\ 0 & 0 & \dots & -2 & 1 \\ 0 & 0 & & 1 & -2 \end{pmatrix}$$

$$\begin{pmatrix} f_0 \\ \vdots \\ f_N \end{pmatrix}^{j+1} = \begin{pmatrix} f_0 \\ \vdots \\ f_N \end{pmatrix}^j + \frac{\Delta t \cdot c_d}{\Delta x^2} \begin{pmatrix} -2 & 1 & \dots & 0 & 0 \\ 1 & -2 & \dots & 0 & 0 \\ \vdots & \ddots & & \vdots & \\ 0 & 0 & \dots & -2 & 1 \\ 0 & 0 & \dots & 1 & -2 \end{pmatrix} \begin{pmatrix} f_0 \\ \vdots \\ f_N \end{pmatrix}^j$$

 Δ = Laplace Operator

 c_d = diffusion constant

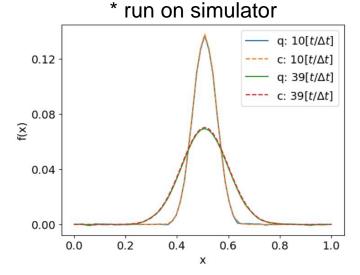
 Δt = time step size

 Δx = spatial grid size

How to Port this on a Quantum Computer?

classical implementation:

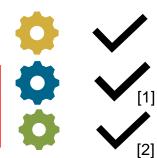
$$\begin{pmatrix} f_0 \\ \vdots \\ f_N \end{pmatrix}^{j+1} = \begin{pmatrix} f_0 \\ \vdots \\ f_N \end{pmatrix}^j + dt \begin{pmatrix} -2 & 1 & \dots & 0 & 0 \\ 1 & -2 & \dots & 0 & 0 \\ \vdots & \ddots & & \vdots \\ 0 & 0 & \dots & -2 & 1 \\ 0 & 0 & \dots & 1 & -2 \end{pmatrix} \begin{pmatrix} f_0 \\ \vdots \\ f_N \end{pmatrix}^j$$



goal: port this operation on the quantum computer

main steps:

- 1) encode vector
- 2) apply operators
- 3) compute the new time-step

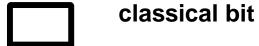


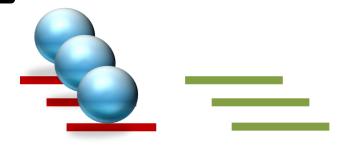
^[1] Termanova et al., Quantum Tensor Programming, New J. Phs. 26, 123019, 2024

^[2] M. Lubasch et al., Variational guantum algorithms for nonlinear problems, Phys. Rev. A 101, 2020

^[3] P. Siegl et al., Tensor-Programmable Quantum Circuits for differential equations, https://arxiv.org/abs/2502.04425, 2025

Introduction: Bits and Qubits





000

quantum bit (qubit)



$$\sqrt{0.2} |0\rangle + \sqrt{0.8} |1\rangle$$

$$\begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \\ a_6 \\ a_7 \end{pmatrix} \begin{vmatrix} \mathbf{000} \\ |\mathbf{001} \rangle \\ |\mathbf{010} \rangle \\ |\mathbf{011} \rangle \\ |\mathbf{100} \rangle \\ |\mathbf{101} \rangle \\ |\mathbf{110} \rangle \\ |\mathbf{111} \rangle \\ |\mathbf{111} \rangle$$

$$a_i \in \mathbb{C}, \ \sum_{i=0}^N {a_i}^2 = 1$$
 normalized vector

Encoding Field into a Quantum Computer

recap:
$$f^{j+1} = f^j + \Delta t \cdot c_d \Delta f^j$$

$$\rightarrow \begin{pmatrix} f_0 \\ \vdots \\ f_N \end{pmatrix}^{j+1} = \begin{pmatrix} f_0 \\ \vdots \\ f_N \end{pmatrix}^j + dt \begin{pmatrix} -2 & 1 & \dots & 0 & 0 \\ 1 & -2 & \dots & 0 & 0 \\ \vdots & \ddots & & \vdots \\ 0 & 0 & \dots & -2 & 1 \\ 0 & 0 & \dots & 1 & -2 \end{pmatrix} \begin{pmatrix} f_0 \\ \vdots \\ f_N \end{pmatrix}^j$$

field: unnormalized vector $\begin{pmatrix} f_0 \\ \vdots \\ f_N \end{pmatrix}$

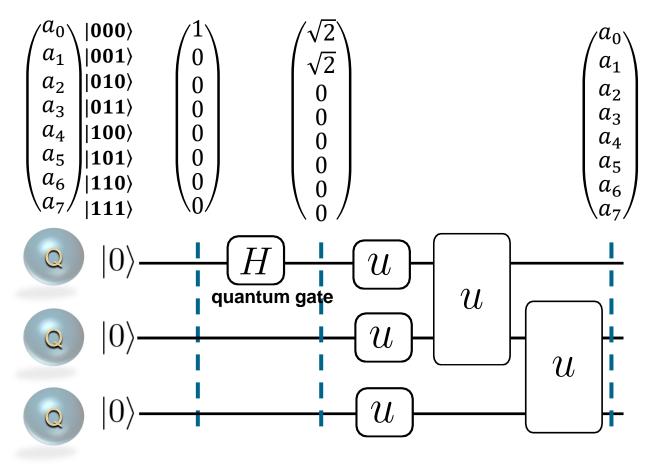
state: normalized vector $\begin{pmatrix} a_0 \\ \vdots \\ a_N \end{pmatrix}$

$$\begin{pmatrix} a_0 \\ \vdots \\ a_N \end{pmatrix}$$

connecting both worlds

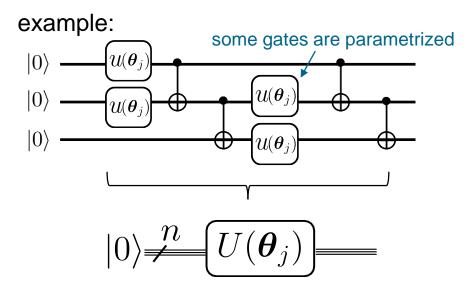
field:
$$\begin{pmatrix} f_0 \\ \vdots \\ f_N \end{pmatrix} = \theta_0 \begin{pmatrix} a_0 \\ \vdots \\ a_N \end{pmatrix}$$

Encoding Field into a Quantum Computer



quantum circuit

here: encode field with classically parametrized ansatz



classical parameters: θ_i

Porting Operators on Quantum Computers

goal: matrix vector multiplication on quantum computer

$$|0\rangle \stackrel{n}{=} U(\boldsymbol{\theta}_j)$$

but: gates are always unitary
(norm-conserving + reversible)

classically

operator: non-unitary

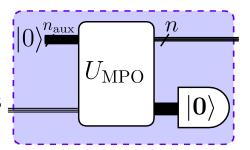
quantum computer

gates: always unitary

connecting both worlds

probabilistic application of Δ :

- success probability α_{succ}
- using extra qubits + measurements
- tensor networks



Computing the New Time Step

recap: explicit Euler time stepping $f^{j+1} = f^j + \Delta t \cdot c_d \Delta f^j = (I_n + c \Delta) f^j$

 $c = \Delta t \cdot c_d$

$$\begin{vmatrix} a_0 \\ \vdots \\ a_N \end{vmatrix}^j \qquad \begin{vmatrix} a_0 \\ \vdots \\ a_N \end{vmatrix}^{j+1} \qquad \widehat{0}$$
 quantum measurements
$$|0\rangle \stackrel{n}{=} U(\boldsymbol{\theta}_j) \qquad \widehat{0} \qquad |0\rangle \text{ or } |1\rangle?$$

state read out is expensive!

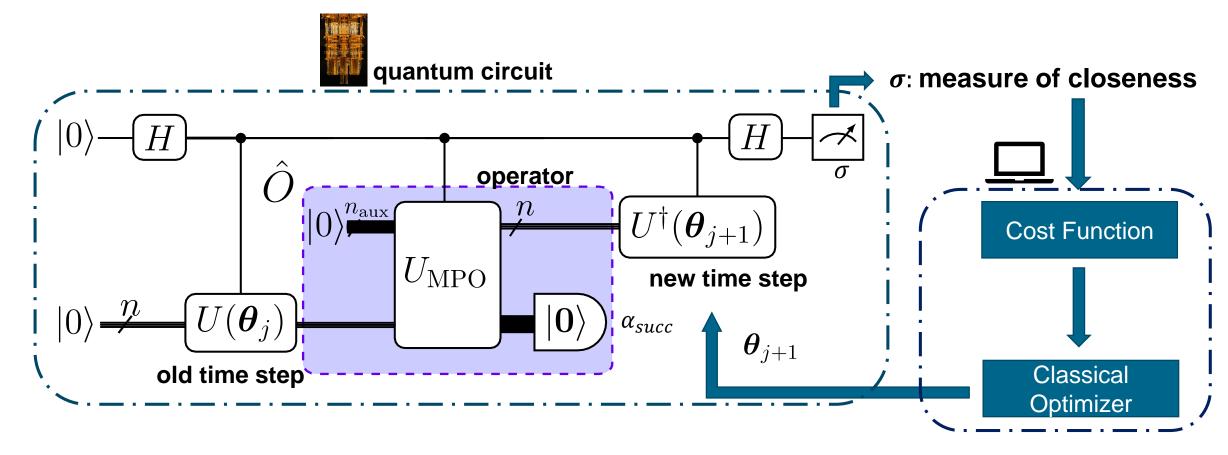
[2] we do:

create a variational ansatz $U^{\dagger}(oldsymbol{ heta}_{j+1})$

compare with

$$|0\rangle \stackrel{n}{=} U(\boldsymbol{\theta}_j)$$

combining tensor network based operator encoding ____with variational time stepping ____



Necessary Correction

problem: solution has wrong norm field: $\begin{pmatrix} f_0 \\ \vdots \\ f_N \end{pmatrix}^J = \theta_0 \begin{pmatrix} a_0 \\ \vdots \\ a_N \end{pmatrix}^j \rightarrow \theta_0 = \theta_0^J$

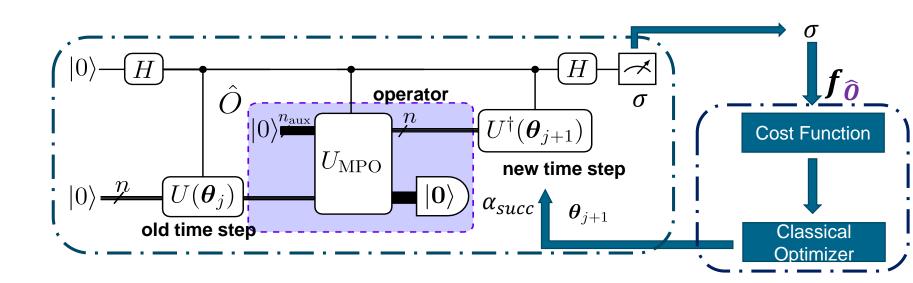
reason:

$$\widehat{O}_{classic}\begin{pmatrix} n_0 \\ \dots \\ n_N \end{pmatrix} = \begin{pmatrix} \dots \\ \dots \\ \dots \end{pmatrix}, \qquad \widehat{O}_{quantum}\begin{pmatrix} n_0 \\ \dots \\ n_N \end{pmatrix} = \begin{pmatrix} \dots \\ \dots \\ \dots \end{pmatrix},$$

$$\widehat{O}_{quantum} \begin{pmatrix} n_0 \\ \cdots \\ n_N \end{pmatrix} = \begin{pmatrix} \cdots \\ \cdots \\ \cdots \end{pmatrix},$$

$$\begin{pmatrix} \cdots \\ \cdots \\ \cdots \end{pmatrix} = f_{\widehat{o}} \begin{pmatrix} \cdots \\ \cdots \\ \cdots \end{pmatrix},$$

can be computed from α_{succ}

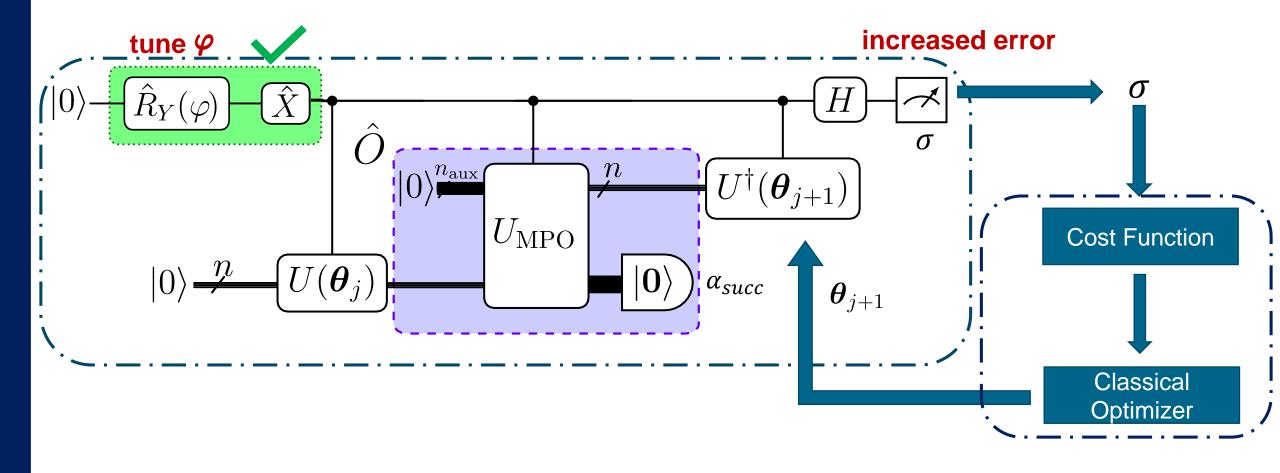


1

problem: extra measurements

 $|\mathbf{0}\rangle$

increase measurement error of



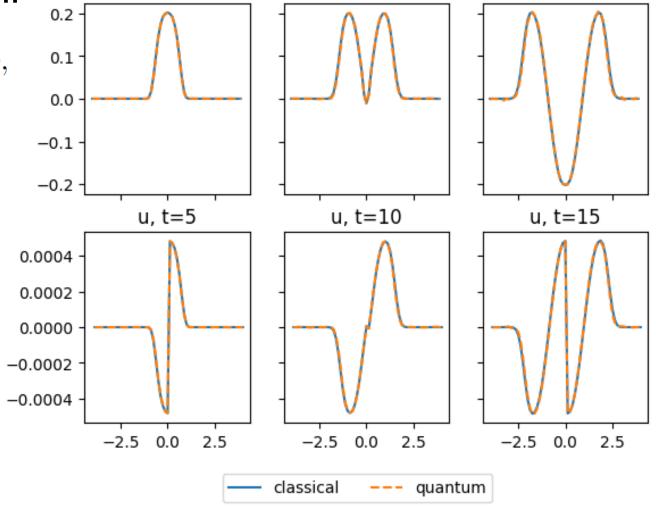
Example: Euler Equation

p, t = 15

1D linear incompressible Euler equation

$$\begin{split} \frac{\partial p}{\partial t} &= -\bar{\rho}c^2 \left(\frac{\partial u}{\partial x}\right) + f(x,t) - \gamma(x)p, \\ \frac{\partial u}{\partial t} &= -\frac{1}{\bar{\rho}}\frac{\partial p}{\partial x} - \gamma(x)u, \end{split}$$
 source sponge

> run on quantum simulator



p, t=10

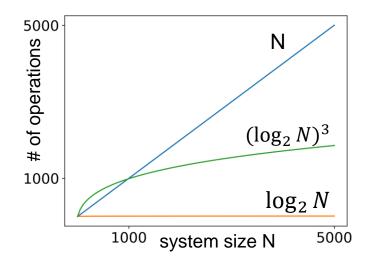
p, t=5

Scaling with System Size

advantage expected for large scale simulations

classically

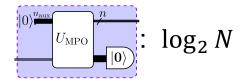
matrix – vector multiplication: N^2 sparse matrix-vector multiplication: >N



quantum computer → expected:

$$\overline{(U(oldsymbol{ heta}_j)}$$
: poly($\log_2 N$)

→ dependence on amount of randomness expected



tensor network algorithms can help to estimate scaling

how does the training scale with θ_i ?

- \rightarrow expected: # θ_j increases poly($\log_2 N$)
- → trainability can be assured for larger circuit sizes

- very easy incorporation of various operators with little additional cost:
 - ➤ different boundary conditions, higher order accuracies
 - flexible incorporation of non-derivative operators.
- possible reduction of computational cost

- big advantage identified: in-the loop quantification of quality of solution.
 - > currently working on quantifying this and increasing the accuracy of this.

Summary

- why should we solve partial differential equations on quantum computers?
 - > promising scaling: advantages for large scale simulations?
- can we solve classical partial differential equations on quantum computers?
 - > implementation of broad range of differential equations possible
 - > in-the loop quantification of quality of solution possible

