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▪ why should we solve classical differential equations on quantum computers?

➢beneficial scaling?

➢ reduce computational cost?

▪ how can we solve classical partial differential equations on quantum computers?

?

Computational Fluid Dynamics on Quantum Computers
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Example: Diffusion Equation
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𝑑𝑓(𝑥, 𝑡)

𝑑𝑡
= 𝑐𝑑Δ𝑓(𝑥, 𝑡)

Δ = Laplace Operator

𝑐𝑑 = diffusion constant

∆𝑡 = time step size

∆𝑥 = spatial grid size

𝑓𝑗+1 = 𝑓𝑗 + ∆𝑡 ∙ 𝑐𝑑Δ𝑓
𝑗

explicit Euler time steps: spatial discretization (finite differences):

𝑓𝑗 →
𝑓0
⋮
𝑓𝑁

𝑗

, Δ →
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classical implementation:

𝑓0
⋮
𝑓𝑁

𝑗+1

=
𝑓0
⋮
𝑓𝑁

𝑗

+
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𝑗
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How to Port this on a Quantum Computer?
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classical implementation:

𝑓0
⋮
𝑓𝑁

𝑗+1

=
𝑓0
⋮
𝑓𝑁

𝑗

+ 𝑑𝑡

−2 1
1 −2

⋯
0 0
0 0

⋮ ⋱ ⋮
0 0
0 0

⋯
−2 1
1 −2

𝑓0
⋮
𝑓𝑁

𝑗

goal: port this operation on the quantum computer 

* run on simulator

[1]

[2]
[3]

[1] Termanova et al., Quantum Tensor Programming, New J. Phs. 26, 123019, 2024

[2] M. Lubasch et al., Variational quantum algorithms for nonlinear problems, Phys. Rev. A 101, 2020

[3] P. Siegl et al., Tensor-Programmable Quantum Circuits for differential equations, https://arxiv.org/abs/2502.04425, 2025

main steps:

1) encode vector 

2) apply operators

3) compute the new time-step
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Introduction: Bits and Qubits
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classical bit

quantum bit (qubit)
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Encoding Field into a Quantum Computer
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field: 
𝑓0
⋮
𝑓𝑁

= 𝜃0

𝑎0
⋮
𝑎𝑁

connecting both worlds

𝑓0
⋮
𝑓𝑁

classically
field: unnormalized vector

quantum computer
state: normalized vector

𝑎0
⋮
𝑎𝑁

recap: 𝑓𝑗+1 = 𝑓𝑗 + ∆𝑡 ∙ 𝑐𝑑Δ𝑓
𝑗
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Encoding Field into a Quantum Computer

quantum gate

here: 

encode field with classically 

parametrized ansatz

example:

classical parameters: 𝜃𝑗

some gates are parametrized
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quantum circuit



probabilistic application of Δ:
- success probability

- using extra qubits + measurements

- tensor networks

Porting Operators on Quantum Computers
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classically
operator: non-unitary

quantum computer
gates: always unitary

Δ

goal: matrix vector multiplication on quantum computer

but: gates are always unitary 

(norm-conserving + reversible) 

connecting both worlds

[1] Termanova et al., New J. Phs. 26, 123019, 2024

?
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Computing the New Time Step

recap: explicit Euler time stepping
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state read out is expensive!

[2] M. Lubasch et al., Variational quantum algorithms for nonlinear problems, Phys. Rev. A 101, 2020

𝑓𝑗+1 = 𝑓𝑗 + ∆𝑡 ∙ 𝑐𝑑 Δ𝑓
𝑗 = (𝐼𝑛 + 𝑐 Δ) 𝑓𝑗

quantum measurements

෠𝑂

𝑎0
⋮
𝑎𝑁

𝑗+1

ۧ|0 ۧor |1 ?

𝑎0
⋮
𝑎𝑁

𝑗

𝑐 = ∆𝑡 ∙ 𝑐𝑑

෠𝑂

compare with

[2] we do:

create a variational ansatz 

෠𝑂
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Full Quantum Circuit

Pia Siegl, DLR-SP, 2025/02/24 [3] P. Siegl et al. (2025), https://arxiv.org/abs/2502.04425

𝝈: measure of closeness

combining tensor network based operator encoding           with variational time stepping  

Cost Function

Classical 

Optimizer

old time step

new time step

operator

𝛼𝑠𝑢𝑐𝑐

𝜎
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quantum circuit

https://arxiv.org/abs/2502.04425


Necessary Correction

problem: solution has wrong norm 
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field:

𝑓0
⋮
𝑓𝑁

𝑗

= 𝜃0

𝑎0
⋮

𝑎𝑁

𝑗

→
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=

…
…
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=
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…
…
…

= 𝒇෡𝑶

…
…
…

,

can be computed

from 𝜶𝒔𝒖𝒄𝒄

𝒇෡𝑶

𝜃0 = 𝜃0
𝑗
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𝜎

Cost Function

Classical 

Optimizer

old time step

new time step

operator

𝛼𝑠𝑢𝑐𝑐

𝜎

reason: 



Beneficial Correction
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increased errortune

[3] P. Siegl et al. (2025), https://arxiv.org/abs/2502.04425

problem: extra measurements           increase measurement error of  

𝛼𝑠𝑢𝑐𝑐
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𝜎

Cost Function

Classical 

Optimizer

𝜎

https://arxiv.org/abs/2502.04425


Example: Euler Equation

➢ 4th order Runge Kutta

➢ run on quantum simulator
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1D linear incompressible Euler equation

spongesource

[3] P. Siegl et al. (2025), https://arxiv.org/abs/2502.04425
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Scaling with System Size

classically

matrix – vector multiplication: 𝑁2

sparse matrix-vector multiplication: >𝑁

Pia Siegl, DLR-SP, 2025/02/24
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quantum computer       expected:

dependence on amount of randomness expected

:  log2𝑁

: poly(log2𝑁)

tensor network algorithms can help to estimate scaling

how does the training scale with #𝜃𝑗 ?

expected: #𝜃𝑗 increases poly(log2𝑁)

trainability can be assured for larger circuit sizes

advantage expected for large scale simulations

N

(log2𝑁)
3

log2𝑁
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Advantages of Approach 

▪ very easy incorporation of various operators with little additional cost:

➢different boundary conditions, higher order accuracies

➢ flexible incorporation of non-derivative operators.

▪ possible reduction of computational cost

big advantage identified: in-the loop quantification of quality of solution.

➢currently working on quantifying this and increasing the accuracy of this.

Pia Siegl, DLR-SP, 2025/02/24
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Summary

▪ why should we solve partial differential equations on quantum computers?

➢ promising scaling: advantages for large scale simulations?

▪ can we solve classical partial differential equations on quantum computers?

➢ implementation of broad range of differential equations possible

➢ in-the loop quantification of quality of solution possible

Pia Siegl, DLR-SP, 2025/02/24
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Questions?
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