# GEOMETRIC CALIBRATION OF ALL-SKY CAMERAS USING SUN AND MOON POSITIONS: ACHIEVING SUB-DEGREE-ACCURACY WITHOUT ANY HANDWORK

<u>Niklas Blum, Paul Matteschk, Yann Fabel, Bijan Nouri, Roberto Roman, Juan Carlos Antuña-Sanchez, Luis F. Zarzalejo, Stefan Wilbert</u>

**EMS Annual meeting** 

11 September 2025, Ljubljana



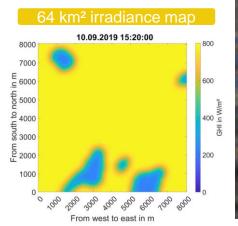
# Agenda



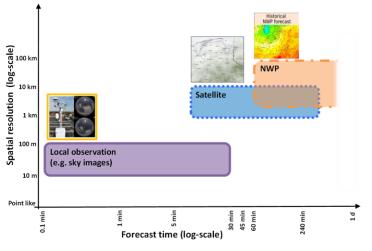
Introduction: Sky imaging and camera calibration

Our novel approach: SuMo

- Experimental validation
  - Nominal accuracy
  - Influences on the method's accuracy
- Conclusion


# **Motivation all-sky imaging**




Why do we need sky imagers?

# Motivation all-sky imaging Applications

- Irradiance forecasts with highest resolution, e.g.:
  - 15-s update frequency and timestep
  - 10 m x 10 m spatial resolution
- Monitoring various parameters
  - Cloud cover and cloud location
  - Aerosol optical thickness
  - Radiance and irradiance measurement
- Applications:
  - Solar energy (e.g. management of PV-battery storage)
  - Automatic weather stations
  - Assimilation into weather models
  - **-**



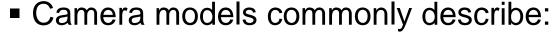




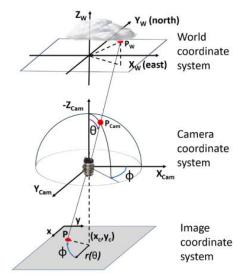
#### Cloud detection

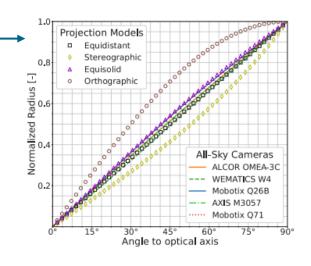
Kontas: 10.09.2019 15:20:00 Metas: 10.09.2019 15:20:00

# **Motivation all-sky imaging**




Why do we need geometric calibration?


# Motivation all-sky imaging Need for geometric calibration

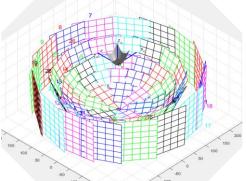


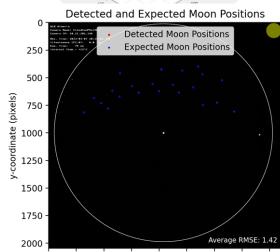

- Accurate mapping:
  - Image (pixel) coordinates ↔ 3D- "world" coordinates of clouds, stars, ...
  - → camera model



- Lens center coordinates (in pixels)
- Radial lens distortion
- External orientation (rotation of the camera around X, Y, Z)







#### Contribution of this work

- Geometrical calibration increases workload when installing all-sky imagers:
  - Intrinsic calibration via specific setup (e.g. using checkerboards)
  - External orientation via separate procedure
- Calibration should be enhanced:
  - No manual work on site
  - No overhead to plan calibration tasks
  - Retrospective creation should be possible
  - Automated as far as possible
- More details in our journal article:

Blum, N., et al. (2025). "Geometric calibration of all-sky cameras using sun and moon positions: A comprehensive analysis." Solar Energy **295**: **113476**.



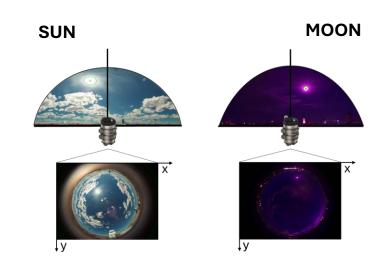


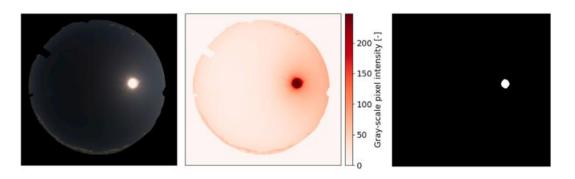




# Our approach

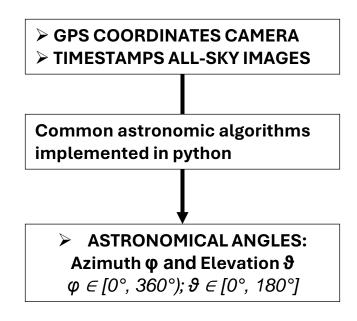
# DLR


#### 1. IMAGE-BASED ORB DETECTION

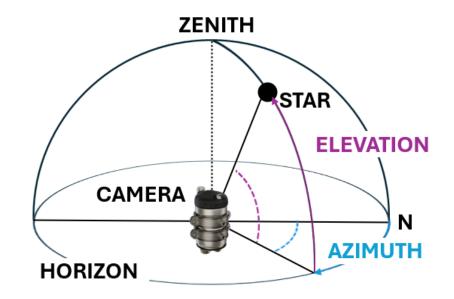

Observations of Sun and Moon selected for the calibration:

- Are the brightest celestial bodies (orbs) during day/night time
  - → Simple criterion which avoids confusion
- Are easy to detect also using standard fisheye cameras

Detect largest circular bright dot as Sun / Moon via thresholding:


- ➤ Pixel Intensity
- ➤ Circularity
- ➤ Aspect ratio
- > Contour area








#### 2. ASTRONOMIC CALCULATION ORB POSITIONS



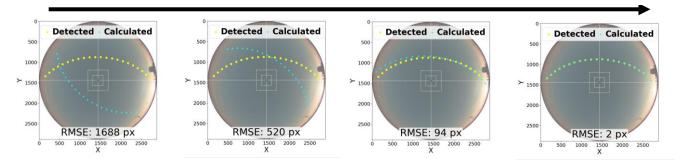
#### World Coordinate System



#### 3. OPTIMIZATION MODEL PARAMETERS

Loss function computes root mean square average of cross product between "observed" (obs) and astronomically expected (exp) orb positions in world coordinates (3D):

$$loss = \sqrt{\sum_{i=1}^{N} \frac{1}{N} (\|\underline{obs}_{3D,i} \times \underline{exp}_{3D,i}\|_{2})^{2}}$$


Observed positions are calculated by applying the camera model to orb positions identified via image processing ( $obs_{pixels,i}$ ): Based on Scaramuzza et al. (2006)

$$obs_{3D,i} = rotation(e_x, e_y, e_z, intrinsic_cam_model(x_c, y_c, a_0, a_2, a_3, obs_{pixels,i}))$$

Rotation angles

Lens center coords. Lens distortion coefficients

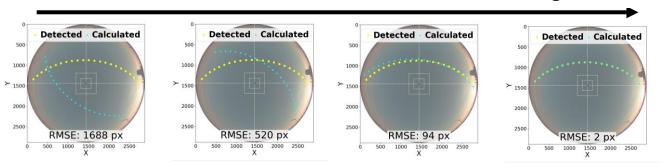
#### **Solver: Loss Minimization for Pixel Position Matching**





#### 3. OPTIMIZATION MODEL PARAMETERS

Loss function computes root mean square average of cross product between "observed" (obs) and astronomically expected (exp) orb positions in world coordinates (3D):

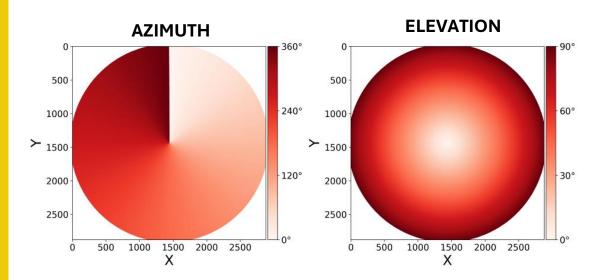

$$loss = \sqrt{\sum_{i=1}^{N} \frac{1}{N} (\|\underline{obs}_{3D,i} \times \underline{exp}_{3D,i}\|_{2})^{2}}$$

Observed positions are calculated by applying the camera model to orb positions identified via image processing ( $obs_{pixels,i}$ ):

$$obs_{3D,i} = rotation(e_x, e_y, e_z, intrinsic_cam_model(x_c, y_c, a_0, a_2, a_3, obs_{pixels,i}))$$

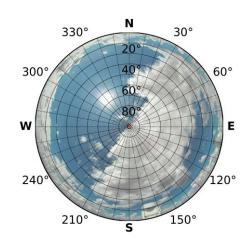
Solver minimizes loss

#### **Solver: Loss Minimization for Pixel Position Matching**






#### 4. RESULT


Calibration results enable mapping image pixels to world coordinates alternatively via ...

#### **MATRICES**



azimuth and elevation angle  $(\phi, \theta)$  stored for every sky pixel (x, y)

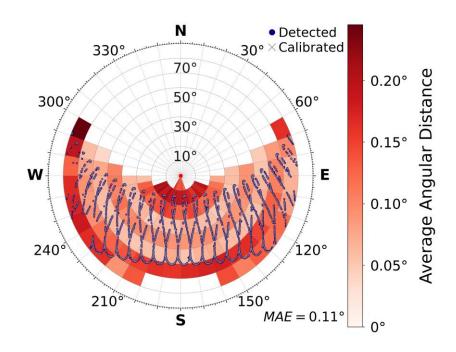
#### **CONVERSION FUNCTION**



sky pixel  $(x, y) \rightarrow$  azimuth and elevation angle  $(\phi, \theta)$ 



# Nominal accuracy


| Purpose     | Period                    | Description         |
|-------------|---------------------------|---------------------|
| Calibration | 03.02.2023-<br>02.02.2024 | Daytime images      |
| Validation  | 04.03.2023-<br>02.02.2024 | 12 full moon phases |

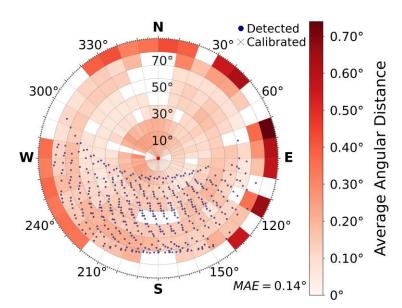


- Calibration with sun positions (grey vs. blue)
- Validation with moon positions (color coded)
- Camera model reproduces astronomically expected moon positions well:

| Calibrated with | #orbs | RMSE  | MAE   | Max. MAE in a grid cell |
|-----------------|-------|-------|-------|-------------------------|
| Sun             | 3168  | 0.13° | 0.11° | 0.25°                   |

 Calibration determined from sun positions is transferable to predict moon positions




#### Cross-validation with a state-of-the-art method

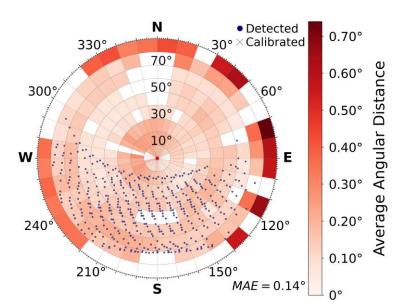


- Semi-automatic star-based calibration method 'ORION' used as reference
  - Orion includes star positions in entire sky dome
- Calibrated with SuMo → validated with ORION and vice versa
- Accuracy of SuMo confirmed
  - MAE = 0.14° on ORION star positions
  - Higher accuracy than ORION (MAE = 0.16°)
- Shortcomings of SuMo (and ORION) near horizon
  - $\theta$  < 10° not included in SuMo calibration
  - Low quality of observations in this sky area

| Calibrated with | MAE [°] (Validated on ORION star positions) |
|-----------------|---------------------------------------------|
| ORION           | 0.16°                                       |
| SuMo            | 0.14°                                       |

Camera model calibrated via SuMo applied to predict star positions detected via ORION:




#### Cross-validation with a state-of-the-art method



- → Accuracy of the SuMo calibration confirmed in comparison to completely independent method and implementation
- → Restriction of SuMo to observations from equator-pointing half of the hemisphere not problematic
- → Handwork of ORION avoided, applicable to standard (nonastronomy) sky imagers

| Calibrated with | MAE [°] (Validated on ORION star positions) |
|-----------------|---------------------------------------------|
| ORION           | 0.16°                                       |
| SuMo            | 0.14°                                       |

Camera model calibrated via SuMo applied to predict star positions detected via ORION:





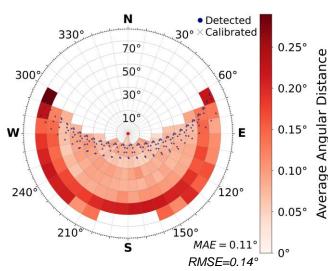
# Influences on accuracy

# Results – influences on accuracy Calibration period

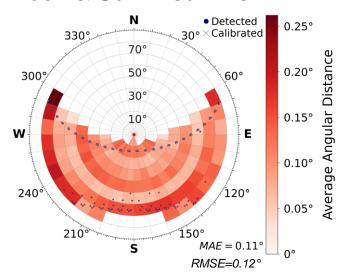


- Observed sun and moon elevation angles depend on season and latitude
- Shorter periods can lead to smaller variation in sun/ moon positions
- Calibration with single months of sun/moon observations

 Validation with an entire year of moon positions


| Dataset ID        | Period                            | Description                        |
|-------------------|-----------------------------------|------------------------------------|
| Moon              | 04.03.2023-<br>02.02.2024         | 12 full-moon phases                |
| Sun               | 03.02.2023-<br>02.02.2024         | 12 months, daytime                 |
| Sun, winter       | 01.12.–<br>31.12.2023             | Winter month, daytime              |
| Sun, summer       | 01.06. <del>-</del><br>30.06.2023 | Summer month, daytime              |
| Moon, winter      | 22.12. <del>-</del><br>31.12.2023 | Full moon phase in winter          |
| Moon, summer      | 29.06. <del>-</del><br>07.07.2023 | Full moon phase in summer          |
| Moon, Sun, Summer | 08.06<br>07.07.2023               | Summer month daytime and nighttime |

# Results – influences on accuracy Calibration period


- A single moon phase in winter or a single month of sun and moon in summer yields accurate results!
- Own estimation: Combination of sun and moon positions will yield accurate calibration in any season and at latitudes between arctic circles



#### Moon in winter



#### Moon & Sun in summer



## Application to different sky conditions









- Dataset classified into sky conditions by manually inspecting daily keograms
- Predicted and observed sun positions compared per subset

# Application to different sky conditions



|        | #days | #orbs/day | RMSE  | Max. MAE in a grid cell |
|--------|-------|-----------|-------|-------------------------|
| All    | 363   | 8.7       | 0.16° | 0.56°                   |
| Clear  | 93    | 17.1      | 0.12° | 0.59°                   |
| Turbid | 19    | 0.6       | 0.32° | 1.05°                   |
| Cloudy | 85    | 2.1       | 0.38° | 2.57°                   |

- Filters effectively reject images from turbid or cloudy conditions
  On remaining turbid/ cloudy subsets RMSE increases around x3
  Timestamps from clear conditions will dominate calibration
- Only at extremely cloudy or turbid sites, these conditions will influence the calibration result
   → In these cases pre-filtering with automatic segmentation suggested

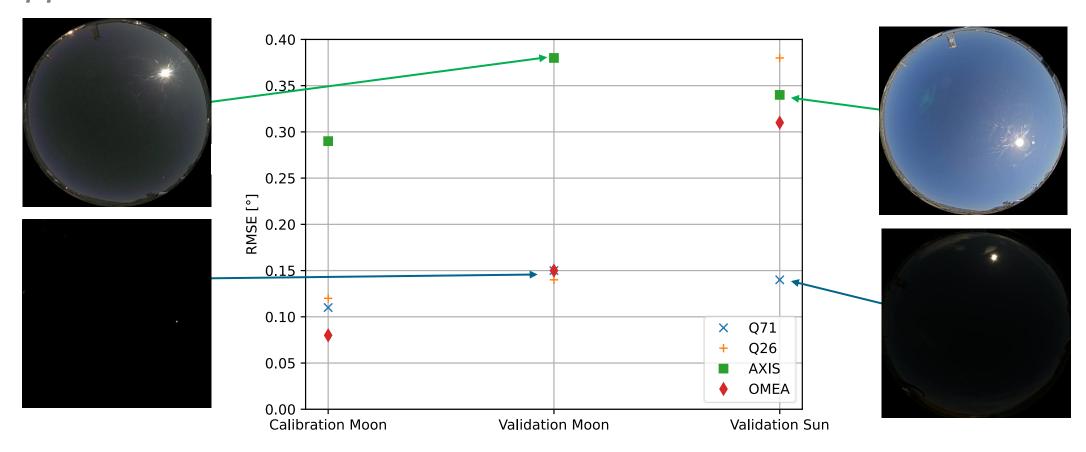
# Application to different camera hardware



- Calibration applied to image datasets from different camera hardware / models
- Calibrated using moon positions
- Validated on separate period using
  - Moon positions
  - 2. Sun positions










| Camera | Calibration             | Validation              |
|--------|-------------------------|-------------------------|
| Q26    | 24.06. – 21.12.2023     | 24.12.2023 – 20.06.2024 |
| Q71    | 03.02 03.08.2023        | 07.08.2023 - 02.02.2024 |
| AXIS   | 22.09.2022 - 21.03.2023 | 27.03. – 22.09.2023     |
| OMEA   | 31.12.2023 - 31.03.2024 | 01.04. – 22.06.2024     |

# **Results** *Application to different camera hardware*





- RMSE < 0.4° for all cameras
- Optical artifacts are the main cause of the calibration's deviations → protective dome, "high-dynamic-range" 8-bit images disadvantageous
- Under-exposed images beneficial

#### Conclusion

#### Thank you for your attention! Questions? Niklas.blum@dlr.de

- New self-calibration method brings practical benefits:
  - Only inputs from regular operation
  - No manual work & planning overhead
  - Retrospectively applicable
  - Compatible with common camera model (Scaramuzza, Euler rotations)
- Accuracy of the method confirmed experimentally:
  - Accuracy equal/higher than state-of-the-art ORION method
  - Calibration feasible with ≤ 1 month of images
  - Cloudy/hazy conditions mostly sorted out automatically
  - Works robustly at 2 sites, on 4 camera types,
    - accuracy depends to some degree on image quality of the camera type
- Open-source Python package provided
  - Calibration tool
  - Image transformations etc.
- Datasets from PSA provided



Blum, N., et al. (2025). "Geometric calibra all-sky cameras using sun and moon positions: A comprehensive analysis." Solar Energy 295: 113476.



https://github.com/DLR-SF/sky\_imaging



## **Impressum**



Topic: Geometric Calibration of All-Sky Cameras Using Sun and Moon

Positions: Achieving Sub-Degree-Accuracy without any

Handwork

Date: 11.09.2025

Author: Niklas Blum

Institute: Solar Research

Image credits: All images "DLR (CC BY-NC-ND 3.0)"