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Abstract—Over the last decade, connected vehicle research
has extended from ground transportation into the airspace,
with drones anticipated to play a central role in shaping the
urban airspace ecosystem. Larger number of flights however
also increase the risk of collisions proportionally. While some
threats can be mitigated through Unmanned aeronautical vehicle
Traffic Managment methods, such as conflict-free flight plans, an
independent last line of defense is essential.

DroneCast aims to address this need by providing a collabo-
rative collision avoidance system based on broadcasted position
reports of all drones. However, to prevent malicious actors from
disrupting orderly traffic flow by injecting ghost targets that
cause unnecessary avoidance maneuvers, robust cybersecurity
measures are required.

This paper recaps strategies for securing DroneCast’s broad-
cast messages given its resource-constrained environment. Beyond
establishing robust cybersecurity measures, it further explores
approaches for handling messages which can not be verified at
the time and highlights their feasibility to deploy in real-world
environments, laying the groundwork for future research.

Index Terms—UAV, Drone, Collision Avoidance, Broadcast
Authentication, Digital Signatures, TESLA, MAC

I. INTRODUCTION

In recent years, advances in technology have made drones
an affordable and accessible mode of transport, primarily for
goods but eventually also passengers in the near future. Use
cases can be found in various industries, including defense or
parcel delivery with companies like Amazon actively exploring
ways to integrate drones into ’last-mile’ delivery operations
[1]. If these ambitious plans take shape, the number of drones
over major cities could increase tremendously, and thus the
risk of collision [2].

Current manned air travel relies primarily on Air Traffic
Control (ATC), visual separation and the Traffic Collision
Avoidance System to prevent mid-air collisions. While it is
expected that Unmanned aeronautical vehicle traffic manage-
ment will mainly avoid conflicts by pre-planning collision free
trajectories and monitoring such throughout the system, the
lack of redundancy would compromise the safety requirements
common in any transportation domain. Existing systems from
modern airliners could be repurposed for drones, but may
introduce their inherited vulnerabilities [3], [4]. With the
increasing ease with which potential attackers can acquire the
necessary capabilities [5], using inherently insecure technolo-
gies for massive drone deployment is not advisable.

To minimize the risk of in-flight collisions, the German
Aerospace Center (DLR) is developing a drone-to-drone com-

Fig. 1: The figure illustrates a DroneCast scenario where
green drones transmit verifiable messages, enabling collision
prevention through timely avoidance maneuvers (red track).
In contrast, the purple drone’s messages are not verifiable,
representing a potential malicious actor. Additional strategies
are therefore required to ensure safe interaction with such non-
verifiable or adversarial participants (red circle).

munication and surveillance system within the DroneCast
project, addressing the need for a last-line of defense. The
technology is envisioned as a drone collision avoidance system
in urban airspace, similar to existing systems used in conven-
tional aviation [6]. It is based on periodical beacon messages
broadcasted by every drone, consisting of position, speed and
identifying information. Any other drone in reception range
can then calculate a potential point of collision on their flight
paths which in turn can be circumnavigated to avoid the
collision from happening.

Despite the fact that any of the cooperative anti-collision
technologies in road, rail and air is meant to protect the safety
of its users, there exist malicious forces trying to compromise
those approaches for their very own benefit. For instance, one
could try to keep drones from overflying their own properties
by injecting position reports from artificial, non-existent ghost
targets. Without sound cybersecurity measures, any drone
would circumvent the area as no possibilities to distinguish
such messages from authentic ones exist.

In the following, we introduce the DroneCast system shortly
in Chapter II, and introduce the results of previous work on
efficiently protecting its broadcast communication in Chapter
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III. The paper then focuses on strategies to deal with messages,
which are currently not verifiable, and highlights difficulties
for real world implementations before giving an outlook on
future work necessary in this domain.

II. BACKGROUND

DroneCast is a communication system under development
that provides collaborative detect-and-avoid functionality for
collision prevention through broadcasts at regular intervals. It
is designed as an independent system with the characteristics
of urban mobility in mind and supports a minimum of 100
drones per surface square kilometer. Transmission is foreseen
in a 5 MHz channel of the C-band between 5030 MHz and
5091 MHz, which has been allocated for drone communication
in many countries. While the minimum reception range re-
quired for collision avoidance varies and depends on multiple
factors, authors in [6] assume that a minimum system range
of 1 km is sufficient for the urban environment.

To enable operation with a large density of drones, broadcast
message duration is restricted to approximately 1 ms in length
and a nominal rate of 1 Hz on average [7]. With providing
situational awareness for all drones as the major goal, message
content primarily focuses on speed and location information,
but also contains operational information. Current drafts spec-
ify a 32-bit Cyclic Redundancy Check for error correction
and reserve an additional 256 bits per message for security,
resulting in a total broadcast size of 484 bits [6], [7].

Drones utilize the received position and speed vector data
to determine the current proximity to the sender and an-
ticipate any potential flight-path conflicts, allowing them to
take corrective action if necessary. This, however, depends on
successful reception and valid content of broadcast messages.
To minimize message collisions, time is divided into frames
which are further divided into slots. Each drone is assumed to
transmit once per frame, but can only randomly select from a
group of slots which is determined based on its own current
position. Closely located drones therefore transmit on different
slots which in turn reduces multiple-access interference [8].
While transmission through selected slots still results in broad-
cast messages at a 1 Hz rate on average, they are not evenly
spaced over time. Previous work [9] identified authenticity and
integrity as paramount to preventing insertion of malicious
messages such as ghost targets. With the system’s constraints
in mind, the following chapter summarizes the results to ensure
these properties.

III. BROADCAST SECURITY

In DroneCast, the security design is shaped by three central
constraints: limited bandwidth, strict transmission intervals,
and a large number of potential recipients. These factors
restrict the applicability of otherwise common cryptographic
primitives and necessitate tailored solutions. Prior work [9] has
shown that symmetric Message Authentication Codes (MACs)
provide efficient authenticity and integrity checks, but scale
poorly in broadcast environments due to the need for shared
keys between all communication partners [10]. Asymmetric

digital signatures overcome this scalability issue, as each
message can be verified using a publicly known key, but
their larger size and higher computational cost make real-
time authentication of frequent broadcasts challenging [11],
[12]. A third option, Timed Efficient Stream Loss-tolerant Au-
thentication (TESLA), leverages the efficiency of MACs while
guaranteeing authenticity through delayed key disclosure, but
it requires pre-computed key chains and introduces verification
delays [13], [14].

To assess practical implications, we compared digital sig-
natures and TESLA across storage, computation, transmis-
sion, and latency. Digital signatures require minimal stor-
age—mainly keys and certificates—but impose high verifi-
cation costs when processing thousands of broadcasts per
second. Their signatures often exceed DroneCast’s 256-bit
limit, forcing multi-packet transmissions or excluding some
algorithms. This makes them vulnerable to packet loss, since
a missing fragment blocks verification until the next full
signature. TESLA, by contrast, needs upfront storage of key
chains (e.g., 113 KB for a two-hour flight at 1 Hz [9])
and careful expiration handling, but per-message computation
remains lightweight. Verification delay equals the disclosure
interval, typically one broadcast period, and resilience to loss
is higher since later packets can reconstruct missing data.

Table I summarizes these trade-offs. Digital signatures in-
tegrate easily with PKI but strain DroneCast’s bandwidth and
real-time constraints. TESLA adds chain management com-
plexity yet performs better under loss and remains compatible
with future post-quantum schemes, where signature sizes will
grow.

Property Digital Signatures TESLA
Latency - -
Computation - - +
Storage + -
Complexity + -
Packet Loss Resilience - ++
Per-message Verification - +

TABLE I: Comparison of digital signatures and TESLA across
key system properties.

The practical effect of these differences is further illustrated
in Figure 2, which shows the average interval between two
verifiable messages under different packet loss models. Digital
signatures suffer sharp increases in verification delay whenever
message fragments are lost, whereas TESLA maintains more
consistent performance by leveraging key disclosure in subse-
quent transmissions. This resilience is particularly valuable in
broadcast environments where overlapping transmissions and
interference cannot be fully avoided.

Overall, we therefore recommend TESLA as the preferred
solution for DroneCast authentication. In particular, its robust-
ness to losses in non-deterministic broadcast channels and its
suitability under stricter cryptographic regimes make it the
most future-proof option, ensuring that broadcast integrity and
authenticity can be maintained without fundamentally altering



Fig. 2: Average interval between two verifiable messages
using TESLA and digital signatures under different packet loss
models. TESLA requires three packets to reach verifiability
(1s), while signatures require four (1.5s). The Gilbert-Elliott
(GE) model represents bursty losses by alternating between
a low-loss and high-loss state, while the clustered model
simulates loss bursts using random-length clusters.

system characteristics. Regardless of the chosen method, cer-
tain cryptographic information - such as a public key or the
initial value of the TESLA hash chain, have to be available
to all receiving drones. How to distribute such information
efficiently is still to be defined.

IV. HANDLING OF UNVERIFIABLE MESSAGES

Even with robust broadcast authentication in place, message
verification might not always be available immediately. This
can be caused by system design (such as key-disclosure
delays), packet losses or absence of required authentication
information. The latter may result from delayed distribution
of cryptographic material or from drones operating at airspace
borders and receiving nearby traffic. Therefore, it should be
considered how the system treats (temporarily) unverifiable
messages so that safety is maintained while keeping an at-
tackers possibilities to trigger needless avoidance maneuvers
to a minimum. At the same time, the set of measures shall
not be easily circumnavigated by any malicious actor. In
the following, two complementary approaches - rule based
filtering and lightweight machine learning detection - are
introduced and the feasibility for real-world implementation
discussed.

1) Rule-based Filtering: A simple approach is to apply
domain-specific rules to filter incoming messages that vio-
late expected protocol, kinematic or consistency checks. The
latter exploits the fact, that ghost messages might include
implausible or inconsistent state reports, which can be cross
checked against physical limitations. Therefore, sudden large
jumps in velocity or location, frequent jitter or unrealistic
flight patterns such as hovering over the same location for

extended period of times (”blocking” ghost example over
private properties as indicated in the introduction) will raise
red flags. If directional receiving antennas are available, signal
direction or strength could be compared with the drone’s
claimed position, with mismatches indicating spoofed sources.
Such independent physical measurements have proven to
be highly effective in spotting falsified location broadcasts
[15]. Rule-based filtering have the advantage of causing only
lightweight computational overhead due to basic arithmetic or
logic checks and can therefore be implemented onboard within
high dynamic broadcast environments.

If an incoming message fails a rule, it could be discarded
immediately or flagged as suspicious pending further veri-
fication. Rather than a simple per package accept or drop
decision, a more nuanced approach could be implemented
using a trust score per sender. With each rule violation, points
are added, causing the sender to be marked as malicious
and disregarded if a certain threshold is exceeded. This way,
sporadic anomalies or packet losses do not cause automatic
distrust, but frequent anomalous broadcasts can be excluded
from further processing. While being computational efficient,
the main limitation of rule-based filtering is that an attacker
might carefully craft messages within the defined limits and
therefore evades detection.

2) Lightweight Machine Learning Detection: While rule-
based filtering is an essential first layer, it may be insufficient
to handle subtle attacks. Machine learning based models can
be trained to detect such anomalies indicating spoofing or
misbehavior. Due to the resource restricted environment of a
drone, a lightweight online anomaly detector or small neural
network needs to be chosen. This model could continuously
predict either the next state of a drone or the probability that
received messages can be trusted. Prior research in this domain
has shown the efficacy of such techniques in, e.g., Long Short-
Term Memory based spoofing detection for the Automatic
Dependent Surveillance - Broadcast system without adding
significant complexity to the system [16]. Other lightweight
models such as one-class Support Vector Machines or small
decision trees could perform binary classification in form of
”legitimate” vs ”malicious” decisions based on the available
data, which could also include logical indicators. For example,
if a drone claims to be nearby but the signal has just now
been first received, the reported position is likely spoofed.
The utilized models can be deployed in an online fashion,
meaning the detector adapts to evolving operational patterns
or environmental changes.

By analyzing a richer set of sequence patterns, machine
learning-based detection benefits can identify potential sub-
tle attacks mimicking, e.g., physical laws and subsequently
fooling basic filtering. While already used in commercial
drone detection systems, its application in safety-critical ap-
plications requires great caution. Model tuning is important
to reduce false positives, while a precautionary approach
to avoid ignoring real drones is beneficial. Further, models
require representative training data and expertise to deploy and
should be regularly validated. Any chosen approach must be



lightweight enough to run on the drone’s onboard hardware, as
offloading to a more powerful ground station is not envisioned
within the DroneCast environment. However, only inference
has to run locally, while model update and training could
be conducted centrally for all drones after landing, using the
collected message traces.

Training and evaluating such a model solely based on
simulated data is not feasible, as only predefined flight patterns
and attacker models would be represented. Since real-world
data from DroneCast is still limited, the vast data needed
for reliable training is unavailable. Future hybrid approaches
could be promising, such as layering rules with ML to refine
detection or using a majority-vote design where both must
agree, though careful integration is needed to avoid blind spots.
For now, we therefore focus on a purely rule-based strategy.

V. CONCLUSIONS

Within this paper, we have introduced DroneCast and
summarized different approaches for broadcast authentication
based on the system’s limitations. While each approach has its
merits, in environments where transmission loss is unavoid-
able, tolerance to loss becomes critical. TESLA emerged as
the optimal solution, primarily due to its robust performance
under such conditions. Regardless of the chosen method,
any communication system may encounter situations where
received messages cannot be verified immediately. Since colli-
sion avoidance is the primary goal, but unnecessary maneuvers
should be minimized, a clear strategy for handling such
cases is required. The paper presented two complementary
approaches—rule-based filtering and machine learning—and
compared their feasibility for real-world use. While machine
learning may outperform simple rules, obtaining training data
for a hypothetical system is difficult. We therefore provide
an example of rules usable for a real-world implementation,
aimed at handling messages that cannot yet be verified while
reducing unnecessary processing and mitigating malicious
attempts:

• Kinematic Plausibility: Discard messages that imply mo-
tion outside the limits for drones, i.e., speed and acceler-
ation exceeding thresholds or sudden jumps

• Stationary Hover Detection: Penalize drones that report
nearly identical positions in the air for extended periods
of time

• Signal Plausibility: If available, compare received signal
strength and direction with claimed broadcast position

• Temporal Consistency: Verify that broadcast rate (1 Hz)
is mostly available with drones claiming nearby positions

• Identity Consistency: Ensure each ID maps to a single
plausible trajectory, conflicting reports reduce trust.

A per-sender trust score should be maintained. Each viola-
tion adds penalty points, and drones exceeding a threshold are
treated as malicious. Scores should decay over time to forgive
transient errors, and once a message is successfully verified,
the score should be reset to zero.

Future research could address the exact specification of
rules, strategies for handling position uncertainties, and meth-

ods for collecting suitable datasets to enable machine learning-
based approaches.

ACRONYMS

TESLA Timed Efficient Stream Loss-tolerant
Authentication
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C. Schmitt, “A secure broadcast service for ldacs with application
to secure gbas,” in 40th AIAA/IEEE Digital Avionics Systems
Conference, DASC 2021, Oktober 2021, pp. 1–10. [Online]. Available:
https://elib.dlr.de/142726/

[14] S. Gewies and T. Strang, “Authentication of the medium frequency
r-mode navigation message,” in 4th European Workshop on Maritime
Systems, Resilience and Security 2024 (MARESEC 24), ser. Proceedings
of the MARESEC 2024. Zendoo, November 2024. [Online]. Available:
https://elib.dlr.de/210067/

[15] M. Keizer, S. Sciancalepore, and G. Oligeri, “Ghostbuster: Detecting
misbehaving remote id-enabled drones,” 01 2024.

[16] J. Wang, Y. Zou, and J. Ding, “Ads-b spoofing attack detection method
based on lstm,” EURASIP Journal on Wireless Communications and
Networking, vol. 2020, no. 1, p. 160, 2020. [Online]. Available:
https://doi.org/10.1186/s13638-020-01756-8

https://www.aboutamazon.com/news/operations/mk30-drone-amazon-delivery-packages
https://www.aboutamazon.com/news/operations/mk30-drone-amazon-delivery-packages
https://www.aboutamazon.com/news/operations/mk30-drone-amazon-delivery-packages
https://www.usenix.org/conference/usenixsecurity24/presentation/longo
https://www.usenix.org/conference/usenixsecurity24/presentation/longo
https://www.researchgate.net/publication/366530582
https://elib.dlr.de/142726/
https://elib.dlr.de/210067/
https://doi.org/10.1186/s13638-020-01756-8

	Introduction
	Background
	Broadcast Security
	Handling of unverifiable messages
	Rule-based Filtering
	Lightweight Machine Learning Detection


	Conclusions
	References

