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Motivation
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Why forecasting solar irradiance?

• Predict expected energy yield of PV power plants

• Anticipate local short-term fluctuations caused by cloud 
passages (ramp events)

Challenges by ramp events

• Local power output variability

• Potential risk of grid instabilities at high solar penetration

Benefits of intra-hour forecasting

• Better situational awareness for plant and grid operators

• Reduced storage requirements

• Improved market trading strategies

• More efficient operation of CST plants

Requirements

• High-resolution cloud information in space and time
→ All-Sky-Imagers



Motivation
Ramp Events

▪ Typically no evaluation of predicting the variability of solar irradiance

▪ Common forecasting metrics (e.g., RMSE, MAE, MBE) represent an average 

error of the target quantity (e.g., GHI)

▪ Good measure to assess expected energy yield (integration of irradiance over time)

▪ No information on variability within the forecast

▪ Definition Ramp Event [1]:
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|∆GHI| ≥ ꞇ

|∆GHI| < ꞇ

Tolerance Window (tw) at time t

ꞇ=110 W/m²
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𝑡:  𝑖𝑓 ∃ 𝑅𝑎𝑚𝑝 𝑖𝑛 𝑡 − 𝑡𝑤/2, 𝑡 + 𝑡𝑤/2 ⟹ 𝑅𝑎𝑚𝑝 𝐸𝑣𝑒𝑛𝑡 𝑎𝑡 𝑡
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Limitations of State-of-the-Art Models

▪ State-of-the-Art direct data-driven models are often optimized on RMSE [2, 3, 4]

▪ Strong performance on standard error metrics, but ramp events remain 

undetected due to overly smoothed forecast curves (see later slides)

▪ How can we circumvent smoothing of the forecast curve?

Yann Fabel, DLR, EUPVSEC 2025

Fabel et al. [4]
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GENERATIVE FORECASTING 
APPROACH
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Generative Forecasting
Model Architecture

▪ Video Prediction (VP): 
▪ Given a sequence of M past images 

the next N images are predicted

▪ Multiple future scenarios can be 
generated from the same input 
sequence by sampling from 
Gaussian noise
→ Measure for uncertainty

▪ Regressor/Classifier:
▪ Given individual predicted future 

frames a second model (e.g. CNN) 
is used to derive the desired target 
quantity

▪ Trained separately on real images

▪ E.g., a model predicts ramp events 
or GHI corresponding to the 
predicted sky image
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Video Prediction Models
Train and Test setup

▪ Two different generative models were tested

▪ SkyGPT [5]: Adaptation of the VideoGPT [6] model 
combined with PhyCells [7] 

▪ Ours: Adaptation of the DiT model [8] (diffusion-based 
transformer)

▪ Training

▪ Both models were trained on selected camera data from 
CIEMAT‘s PSA (Almería, Spain)

▪ SkyGPT model trained with the same hyperparameter 
configuration as in the original publication

▪ Testing

▪ Evaluation on separate benchmark dataset defined in All-
Sky Imager-based forecasting study [9]

▪ 28 selected days from a single camera at PSA 
representing diverse sky conditions

▪ 4 image samples per model were generated for each lead 
time
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SkyGPT DiT

Image res 64x64 128x128

Temporal res. 2min 1min

Forecast horizon 15min 30min

Auto-Encoder VQ-VAE 

[6]

Pretrained 

VAE [9]
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Video Prediction Evaluation
Examplary Results – Single Sample, Selected Lead Times
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→ A lot of „halluzinations“ even for clear sky conditions

DiT



Video Prediction Evaluation
Examplary Results – Single Sample, Selected Lead Times
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→ Strong deviations in terms of cloud coverage for larger lead times

DiT



Video Prediction Evaluation
Quantitative Results

▪ Evaluation of predicted sky image frames
▪ Image data range: [0, 255]

▪ Lead-time specific calculation averaged over 
all generated future scenarios

▪ Image-wise pixel metrics
▪ Mean Absolute Error (MAE)↓:

▪ Average error per pixel

▪ Peak Signal-to-Noise Ratio (PSNR)↑:

▪ Ratio of maximum possible signal to error in 
decibels (measure of fidelity)

▪ Structural Similarity Index (SSIM)↑:

▪ Measure for perceptual similarity (capturing 
sharpness and structure)
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→ Better performance of DiT model in terms of 

image quality

DiT



RAMP EVENT PREDICTION
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Ramp Event Prediction

▪ Ramp Classifier

▪ CNN predicts likelihood of ramp event (RE) based 
on corresponding image

▪ Ground truth yt = ቊ
1 𝑖𝑓 ∃ 𝑟𝑎𝑚𝑝 𝑖𝑛 [𝑡 − 3, 𝑡 + 3]

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

▪ Trained on real sky images 

▪ Evaluated on synthetic images from generative 
model to obtain ramp event prediction

▪ Baseline model: Ramp Persistence

▪ If a ramp was observed in the measured irradiance 
curve in the last T=30min a ramp is expected in the 
next T minutes too

▪ Independent of sky images
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Ramp Event Prediction 
Evaluation
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▪ Video prediction models generate K=4 samples 
(images) for all lead times for each forecast

▪ Predicted RE from average probability of ramp 
classifier over all samples

▪ Observed RE by measured ramp within 
tolerance window (tw=10min)

▪ Low classifier threshold (TH=0.3) chosen to 
prioritize recall 

▪ Evaluation of classification metrics over lead 
times

f1 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁



Conclusion

▪ Summary:

▪ Low RMSE does not guarantee realistic representation of irradiance variability (e.g., 

ramp events)

▪ Generative, image-based modeling of cloud dynamics offers a promising alternative to 

capture short-term variability

▪ Current video prediction models for ASI still struggle at longer horizons (inconsistencies 

and physically unrealistic cloud scenes)

▪ But generated images remain useful for detecting ramp events

▪ Outlook

▪ Enhance ASI-based video prediction

▪ Focus training on highly variable cloud conditions

▪ Leverage advances in generative video modeling (e.g., noise warping, motion conditioning)

▪ Combine multiple perspectives to learn better cloud representations
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