CUTTING-EDGE GENERATIVE AI FOR INTRA-HOUR SOLAR FORECASTING

<u>Yann Fabel</u>, Dominik Schnaus, Bijan Nouri, Stefan Wilbert, Niklas Blum, Luis F. Zarzalejo, Julia Kowalski, Robert Pitz-Paal

EUPVSEC 2025

22th of September 2025, Bilbao, Spain

Agenda

- Introduction
- Generative Forecasting Approach
- Ramp Event Prediction
- Conclusion & Outlook

Motivation

Why forecasting solar irradiance?

- Predict expected energy yield of PV power plants
- Anticipate local short-term fluctuations caused by cloud passages (ramp events)

Challenges by ramp events

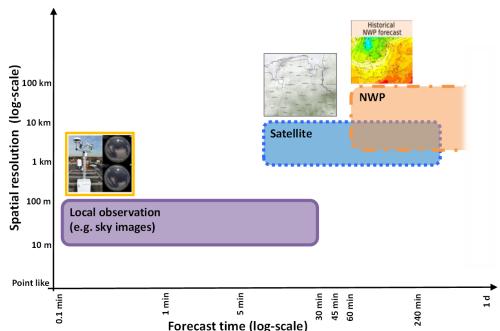
- Local power output variability
- Potential risk of grid instabilities at high solar penetration

Benefits of intra-hour forecasting

- Better situational awareness for plant and grid operators
- Reduced storage requirements
- Improved market trading strategies
- More efficient operation of CST plants

Requirements

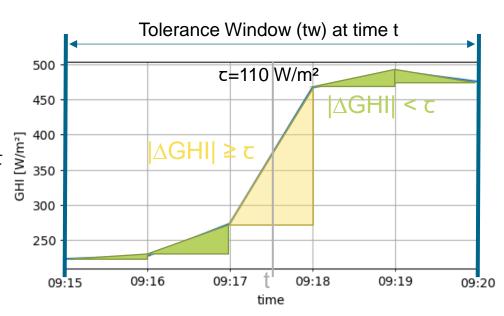
High-resolution cloud information in space and time
→ All-Sky-Imagers



Motivation Ramp Events

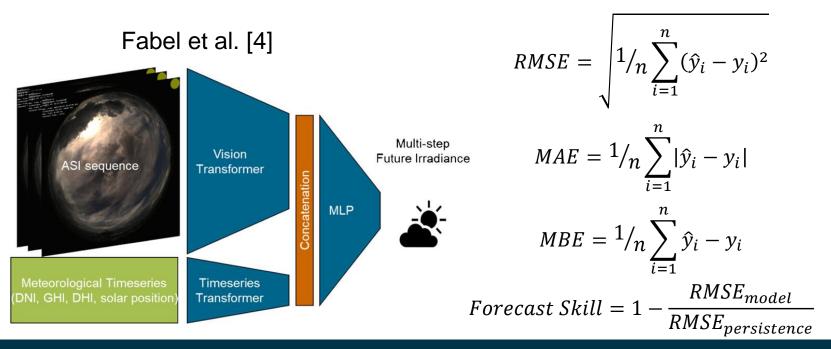
- Typically no evaluation of predicting the variability of solar irradiance
- Common forecasting metrics (e.g., RMSE, MAE, MBE) represent an average error of the target quantity (e.g., GHI)
 - Good measure to assess expected energy yield (integration of irradiance over time)
 - No information on variability within the forecast
- Definition Ramp Event [1]:

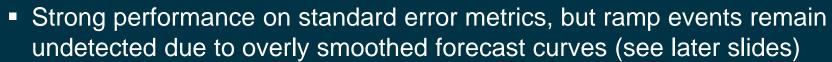
$$\frac{|\Delta GHI|}{\Delta t} > \tau \Longrightarrow Ramp$$
 t: if $\exists \ Ramp \ in \ [t-tw/2,t+tw/2] \Longrightarrow Ramp \ Event \ at \ t$



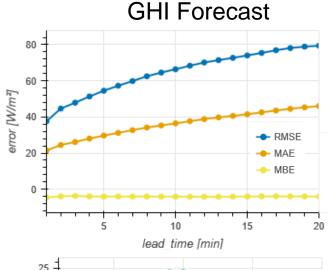
Limitations of State-of-the-Art Models

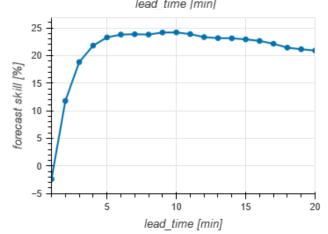
State-of-the-Art direct data-driven models are often optimized on RMSE [2, 3, 4]





How can we circumvent smoothing of the forecast curve?





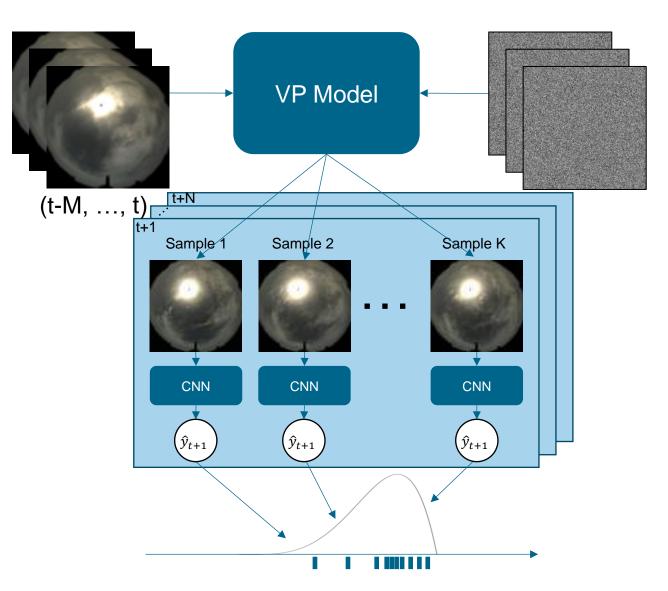
Generative Forecasting Model Architecture

Video Prediction (VP):

- Given a sequence of M past images the next N images are predicted
- Multiple future scenarios can be generated from the same input sequence by sampling from Gaussian noise
 - → Measure for uncertainty

Regressor/Classifier:

- Given individual predicted future frames a second model (e.g. CNN) is used to derive the desired target quantity
- Trained separately on real images
- E.g., a model predicts ramp events or GHI corresponding to the predicted sky image



Video Prediction Models Train and Test setup

- Two different generative models were tested
 - SkyGPT [5]: Adaptation of the VideoGPT [6] model combined with PhyCells [7]
 - Ours: Adaptation of the DiT model [8] (diffusion-based transformer)

Training

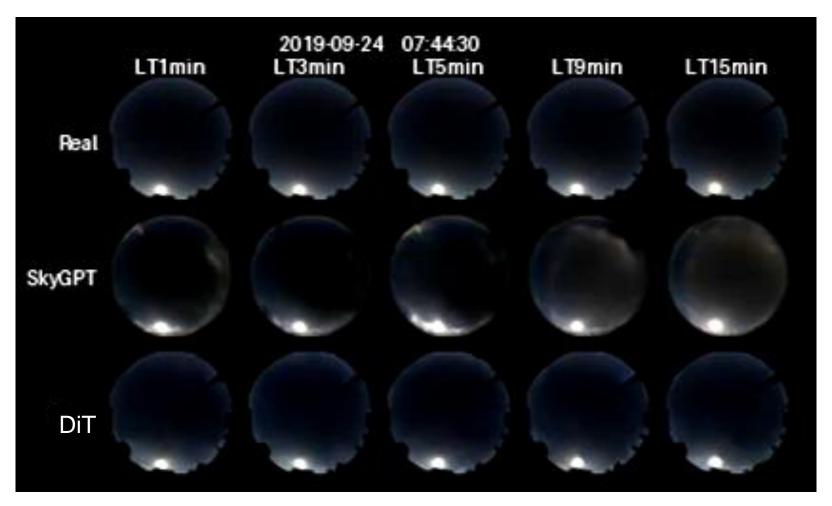
- Both models were trained on selected camera data from CIEMAT's PSA (Almería, Spain)
- SkyGPT model trained with the same hyperparameter configuration as in the original publication

Testing

- Evaluation on separate benchmark dataset defined in All-Sky Imager-based forecasting study [9]
- 28 selected days from a single camera at PSA representing diverse sky conditions
- 4 image samples per model were generated for each lead time

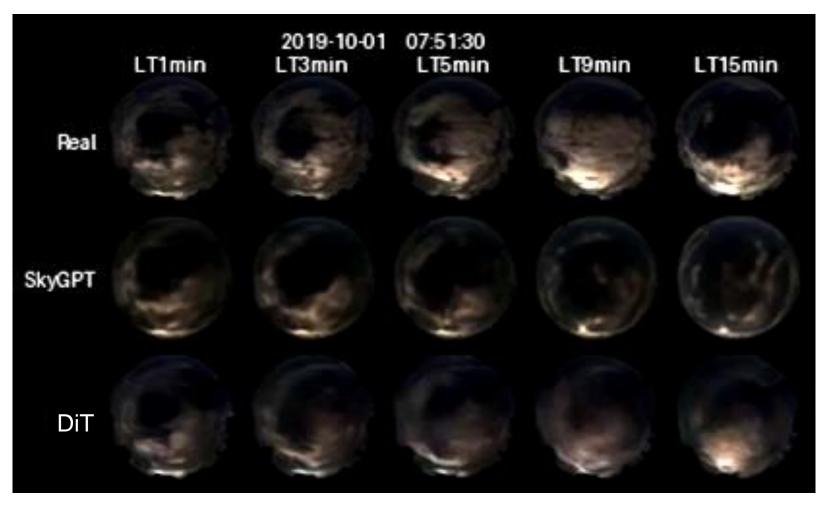
	SkyGPT	DiT
Image res	64x64	128x128
Temporal res.	2min	1min
Forecast horizon	15min	30min
Auto-Encoder	VQ-VAE [6]	Pretrained VAE [9]

Video Prediction Evaluation Examplary Results – Single Sample, Selected Lead Times



→ A lot of "halluzinations" even for clear sky conditions

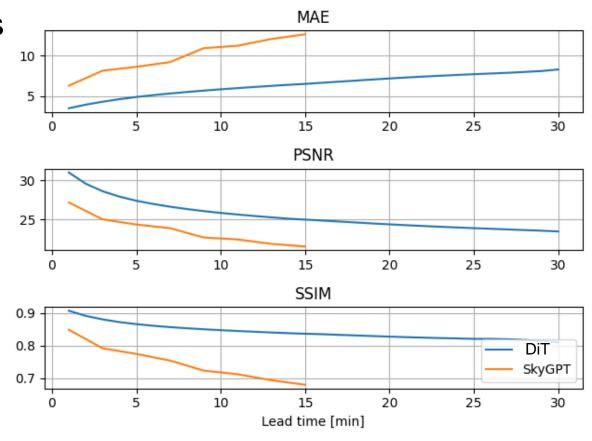
Video Prediction Evaluation Examplary Results – Single Sample, Selected Lead Times



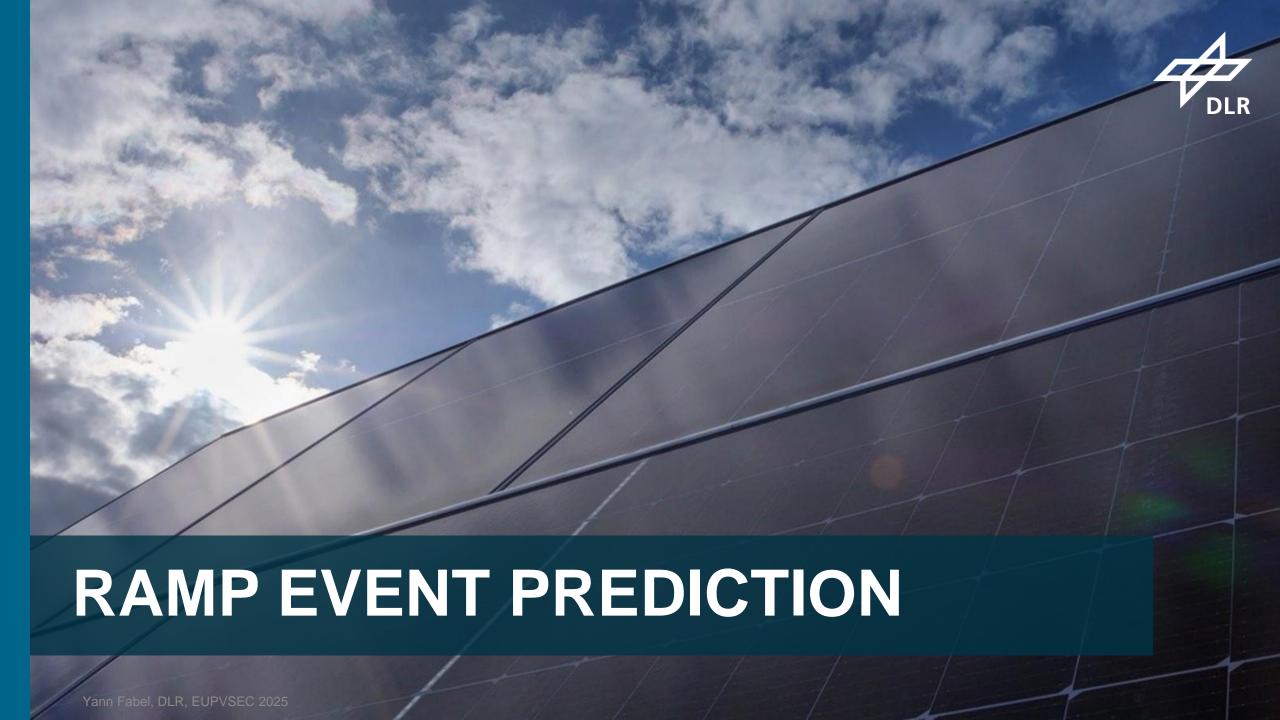
→ Strong deviations in terms of cloud coverage for larger lead times

Video Prediction Evaluation Quantitative Results

- Evaluation of predicted sky image frames
 - Image data range: [0, 255]
 - Lead-time specific calculation averaged over all generated future scenarios
- Image-wise pixel metrics
 - Mean Absolute Error (MAE) ↓:
 - Average error per pixel
 - Peak Signal-to-Noise Ratio (PSNR)↑:
 - Ratio of maximum possible signal to error in decibels (measure of fidelity)
 - Structural Similarity Index (SSIM):
 - Measure for perceptual similarity (capturing sharpness and structure)



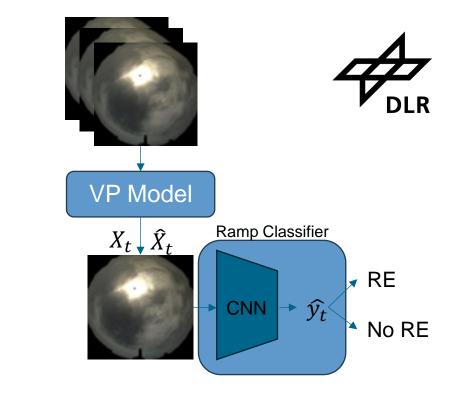
→ Better performance of DiT model in terms of image quality

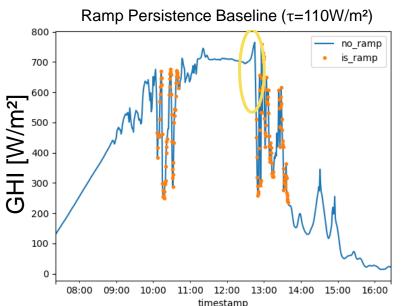


Ramp Event Prediction

Ramp Classifier

- CNN predicts likelihood of ramp event (RE) based on corresponding image
- Ground truth $y_t = \begin{cases} 1 & if \exists ramp \ in \ [t-3,t+3] \\ 0 & otherwise \end{cases}$
- Trained on real sky images
- Evaluated on synthetic images from generative model to obtain ramp event prediction
- Baseline model: Ramp Persistence
 - If a ramp was observed in the measured irradiance curve in the last T=30min a ramp is expected in the next T minutes too
 - Independent of sky images





Ramp Event Prediction Evaluation

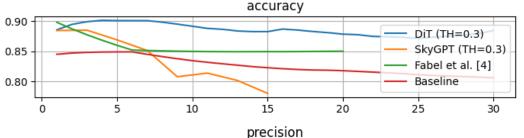
- Video prediction models generate K=4 samples (images) for all lead times for each forecast
- Predicted RE from average probability of ramp classifier over all samples
- Observed RE by measured ramp within tolerance window (tw=10min)
- Low classifier threshold (TH=0.3) chosen to prioritize recall
- Evaluation of classification metrics over lead times

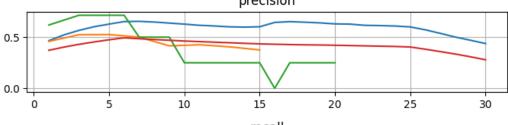
$$accuracy = \frac{TP + TN}{TP + FN + FP + TN}$$

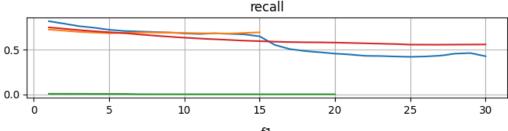
$$f1 = 2 \times \frac{precision \times recall}{precision + recall}$$

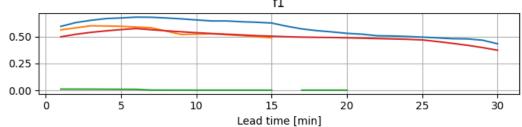
$$precision = \frac{TP}{TP + FP}$$

$$recall = \frac{TP}{TP + FN}$$









Conclusion

Summary:

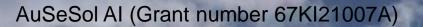
- Low RMSE does not guarantee realistic representation of irradiance variability (e.g., ramp events)
- Generative, image-based modeling of cloud dynamics offers a promising alternative to capture short-term variability
- Current video prediction models for ASI still struggle at longer horizons (inconsistencies and physically unrealistic cloud scenes)
- But generated images remain useful for detecting ramp events

Outlook

- Enhance ASI-based video prediction
 - Focus training on highly variable cloud conditions
 - Leverage advances in generative video modeling (e.g., noise warping, motion conditioning)
- Combine multiple perspectives to learn better cloud representations

References

- 1. Nouri et al. 2024, Ramp Rate Metric Suitable for Solar Forecasting, DOI: 10.1002/solr.202400468
- 2. Sun et al., Solar PV output prediction from video streams using convolutional neural networks, DOI: 10.1039/c7ee03420b
- 3. Paletta et al. 2021, **Benchmarking of deep learning irradiance forecasting models from sky images - An in-depth analysis**, DOI: 10.1016/j.solener.2021.05.056
- 4. Fabel et al. 2023, Combining deep learning and physical models: a benchmark study on all-sky imagerbased solar nowcasting systems
- 5. Nie et al. 2024, SkyGPT: Probabilistic ultra-short-term solar forecasting using synthetic sky images from physics-constrained VideoGPT, DOI: 10.1016/j.adapen.2024.100172
- Yan et al. 2021, VideoGPT: Video Generation using VQ-VAE and Transformers, DOI: 10.48550/ARXIV.2104.10157
- 7. LeGuen et al. 2020, **Disentangling Physical Dynamics From Unknown Factors for Unsupervised Video Prediction**, DOI: 10.1109/cvpr42600.2020.01149
- 8. Pebbles et al. 2022, **Scalable Diffusion Models with Transformers**, DOI: 10.48550/ARXIV.2212.09748
- Blattmann et. al 2023, Stable video diffusion: Scaling latent video diffusion models to large datasets, DOI: 10.48550/ARXIV.2311.15127



Gefördert durch:

Bundesministerium für Umwelt, Klimaschutz, Naturschutz und nukleare Sicherheit

aufgrund eines Beschlusses des Deutschen Bundestages

THANK YOU FOR YOUR ATTENTION! QUESTIONS? YANN.FABEL@DLR.DE

Yann Fabel, DLR, EUPVSEC 2025

