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Motivation

Why forecasting solar irradiance?

* Predict expected energy yield of solar plants

« Anticipate local short-term fluctuations caused by cloud
passages (ramp events)

Challenges by ramp events

 Local heat/power output variability
 Potential risk of supply instabilities

Benefits of intra-hour forecasting

« Better situational awareness for plant and grid operators
* Reduced storage utilization

» Improved market trading strategies

» More efficient operation of CST plants

 High-resolution cloud information in space and time
- All-Sky-Imagers
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Motivation ‘#7
Ramp Events DLR

= Common forecasting metrics (e.g., RMSE, MAE, MBE) of the target quantity
(e.g, DNI)

» are a good measure to assess expected energy yield (integration of irradiance over
time)

= provide no information on variability within the forecast

= Definition ramp event and ramp metrics [1]:
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Limitations of State-of-the-Art Data-Driven Models ‘#7
DLR

» State-of-the-Art direct data-driven models are often optimized on RMSE [2, 3, 4]

Fabel et al. [4]
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Generative Forecasting
Model Architecture

= Video Prediction (VP):

= Given sequence of M past images
next images for N lead times are
predicted

» K future scenarios are generated
from the same input sequence by
sampling from Gaussian noise
- Measure for uncertainty

= Classifier:

» Given individual predicted future
frames, a second model (e.g. CNN)
IS used to derive target quantity

» E.g., classifier predicts directly
ramp events based on predicted
sky images

» Trained separately on real images
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Video Prediction Models
Model options / Train and Test setup

= Two different generative models were tested

= SkyGPT [5]: Adaptation of the VideoGPT [6] model
combined with PhyCells [7]

= DIiT: Adaptation of the diffusion-based transformer model [8]

» Training
= Both models were trained on selected camera data from
CIEMAT's PSA
» SkyGPT model trained with the same hyperparameter
configuration as in the original publication
= Testing

= Evaluation on separate benchmark dataset defined in All-
Sky Imager-based forecasting study [9]

= 28 selected days from a single camera at PSA representing
diverse sky conditions

» 4 image samples per model were generated for each lead
time
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Image res. 64x64 128x128
Temporal res. 2min 1min
Forecast horizon 15min 30min

Variational Auto VQ-VAE Pretrained
Encoder [6] VAE [9]

Image taken a;t CIEMAT's PSA



Video Prediction Evaluation 4#7
Exemplary Results — Single Sample, Selected Lead Times DLR
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- Alot of ,hallucinations” even for clear sky conditions




Video Prediction Evaluation 4#7
Exemplary Results — Single Sample, Selected Lead Times DLR
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—> Strong deviations in terms of cloud coverage for larger lead times




Video Prediction Evaluation ‘#7
Quantitative Evaluation of Images DLR

» Evaluation of predicted sky image frames MAE
= I[mage pixel value data range: [0, 255] 7 ]
" Lead-time specific calculation averaged over s{ —— | | | |
all generated future scenarios 0 5 10 15 20 25 30

PSNR

30
* Image-wise pixel metrics _ \

» Mean Absolute Error (MAE)|:
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= Average error per pixel cim
= Peak Signal-to-Noise Ratio (PSNR)1: 09 T
» Ratio of maximum possible signal to error in 081 — DIT
decibels (measure of fidelity) 0.7 1 SkyGPT
= Structural Similarity Index (SSIM)7?: 0 3 oo B - 20 25 30
- gﬂhil?;ﬂ;es?;ﬁf rscf[?up(t;ﬂ?rle?m”amy (capturing - Better performance of DIT model in terms of

image quality
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Ramp Event Prediction ‘#7
= Ramp Classifier DLR

= CNN predicting probability of ramp event based on
corresponding image (¥; = P(RE|X,)) (t-M, ...
» Ground truth labels based on GHI measurements
_Jlif3rampin|t—3,t+3]
Ve 0 otherwise

» Trained on real sky images

= Evaluated on synthetic images from generative model to Ramp Classifier
obtain ramp event prediction

* Video prediction models generate K=4 samples (images)
for all lead times for each forecast -> 4 probabillities

RE

| No RE
= Ramp is predicted if average probability > threshold Sampies

» Low classifier threshold TH=0.3 chosen to prioritize recall

» Baseline model: Ramp Persistence

= |f a ramp was observed in the measured irradiance curve in the
last T=30min a ramp is expected in the next T minutes too

» |[ndependent of sky images
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Ramp Event Prediction ‘#7
Evaluation DLR

aCcuracy
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Conclusion ‘#7
DLR

» Low RMSE of forecasts does not guarantee realistic
representation of irradiance variablility & ramp events

» Generative, image-based modeling is promising alternative to
capture short-term variability

= Current video prediction models for ASI still struggle for higher lead times
(inconsistencies & physically unrealistic cloud scenes)

» Generated images remain useful for detecting ramp events also for
higher lead times

= Qutlook

» Enhance ASI-based video prediction
» Focus training on highly variable cloud conditions

= Combine multiple perspectives to learn better cloud representations
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