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Motivation
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Why forecasting solar irradiance?

• Predict expected energy yield of solar plants

• Anticipate local short-term fluctuations caused by cloud 
passages (ramp events)

Challenges by ramp events

• Local heat/power output variability

• Potential risk of supply instabilities

Benefits of intra-hour forecasting

• Better situational awareness for plant and grid operators

• Reduced storage utilization

• Improved market trading strategies

• More efficient operation of CST plants

Requirements

• High-resolution cloud information in space and time
→ All-Sky-Imagers
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Motivation
Ramp Events

▪ Common forecasting metrics (e.g., RMSE, MAE, MBE) of the target quantity 

(e.g, DNI)

▪ are a good measure to assess expected energy yield (integration of irradiance over 

time)

▪ provide no information on variability within the forecast

▪ Definition ramp event and ramp metrics [1]:
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|∆DNI| ≥ τ

|∆DNI| < τ

Tolerance Window (tw) at time t

∆𝐷𝑁𝐼

∆𝑡
> 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 τ ⟹ 𝑅𝑎𝑚𝑝

𝑡:  𝑖𝑓 ∃ 𝑅𝑎𝑚𝑝 𝑖𝑛 𝑡 − 𝑡𝑤/2, 𝑡 + 𝑡𝑤/2 ⟹ 𝑅𝑎𝑚𝑝 𝐸𝑣𝑒𝑛𝑡 𝑎𝑡 𝑡

t

e.g. threshold 

τ =110 W/m²
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Limitations of State-of-the-Art Data-Driven Models

▪ State-of-the-Art direct data-driven models are often optimized on RMSE [2, 3, 4]

▪ Strong performance on standard error metrics, but ramp events 

undetected due to smoothed forecast curves

▪ How can we circumvent smoothing of the forecast curve?
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Fabel et al. [4]

𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡 𝑆𝑘𝑖𝑙𝑙 = 1 −
𝑅𝑀𝑆𝐸𝑚𝑜𝑑𝑒𝑙

𝑅𝑀𝑆𝐸𝑝𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑒

𝑅𝑀𝑆𝐸 = ൗ1
𝑛 ෍

𝑖=1

𝑛

ො𝑦𝑖 − 𝑦𝑖
2

𝑀𝐴𝐸 = ൗ1
𝑛 ෍

𝑖=1

𝑛

ො𝑦𝑖 − 𝑦𝑖

𝑀𝐵𝐸 = ൗ1
𝑛 ෍

𝑖=1

𝑛

ො𝑦𝑖 − 𝑦𝑖

6



GENERATIVE FORECASTING 
APPROACH
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Generative Forecasting
Model Architecture

▪ Video Prediction (VP): 
▪ Given sequence of M past images 

next images for N lead times are 
predicted

▪ K future scenarios are generated 
from the same input sequence by 
sampling from Gaussian noise
→ Measure for uncertainty

▪ Classifier:
▪ Given individual predicted future 

frames, a second model (e.g. CNN) 
is used to derive target quantity

▪ E.g., classifier predicts directly 
ramp events based on predicted 
sky images

▪ Trained separately on real images
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VP Model

CNN

…

CNN CNN

(t-M, …, t)
t+1

t+N

Sample 1 Sample 2 Sample K

ො𝑦𝑡+1 ො𝑦𝑡+1 ො𝑦𝑡+1
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Video Prediction Models
Model options / Train and Test setup

▪ Two different generative models were tested

▪ SkyGPT [5]: Adaptation of the VideoGPT [6] model 
combined with PhyCells [7] 

▪ DiT: Adaptation of the diffusion-based transformer model [8] 

▪ Training

▪ Both models were trained on selected camera data from 
CIEMAT‘s PSA 

▪ SkyGPT model trained with the same hyperparameter 
configuration as in the original publication

▪ Testing

▪ Evaluation on separate benchmark dataset defined in All-
Sky Imager-based forecasting study [9]

▪ 28 selected days from a single camera at PSA representing 
diverse sky conditions

▪ 4 image samples per model were generated for each lead 
time
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SkyGPT DiT

Image res. 64x64 128x128

Temporal res. 2min 1min

Forecast horizon 15min 30min

Variational Auto 

Encoder

VQ-VAE 

[6]

Pretrained 

VAE [9]
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Video Prediction Evaluation
Exemplary Results – Single Sample, Selected Lead Times
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→ A lot of „hallucinations“ even for clear sky conditions

DiT
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Video Prediction Evaluation
Exemplary Results – Single Sample, Selected Lead Times
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→ Strong deviations in terms of cloud coverage for larger lead times

DiT
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Video Prediction Evaluation
Quantitative Evaluation of Images

▪ Evaluation of predicted sky image frames
▪ Image pixel value data range: [0, 255]

▪ Lead-time specific calculation averaged over 
all generated future scenarios

▪ Image-wise pixel metrics
▪ Mean Absolute Error (MAE)↓:

▪ Average error per pixel

▪ Peak Signal-to-Noise Ratio (PSNR)↑:

▪ Ratio of maximum possible signal to error in 
decibels (measure of fidelity)

▪ Structural Similarity Index (SSIM)↑:

▪ Measure for perceptual similarity (capturing 
sharpness and structure)
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→ Better performance of DiT model in terms of 

image quality

DiT
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RAMP EVENT PREDICTION

Stefan Wilbert, DLR, SolarPACES 2025
13



Ramp Event Prediction
▪ Ramp Classifier

▪ CNN predicting probability of ramp event based on 
corresponding image ( ෝ𝑦𝑡 = P(RE|Xt))

▪ Ground truth labels based on GHI measurements

yt = ቊ
1 𝑖𝑓 ∃ 𝑟𝑎𝑚𝑝 𝑖𝑛 [𝑡 − 3, 𝑡 + 3]

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

▪ Trained on real sky images

▪ Evaluated on synthetic images from generative model to 
obtain ramp event prediction

▪ Video prediction models generate K=4 samples (images) 
for all lead times for each forecast -> 4 probabilities

▪ Ramp is predicted if average probability > threshold 

▪ Low classifier threshold TH=0.3 chosen to prioritize recall 

▪ Baseline model: Ramp Persistence

▪ If a ramp was observed in the measured irradiance curve in the 
last T=30min a ramp is expected in the next T minutes too

▪ Independent of sky images
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Ramp Event Prediction 
Evaluation
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▪ Reference ramp data from pyranometer 

with tolerance window (tw=10min)

▪ Evaluation of classification metrics over 

lead times

f1 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁
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Conclusion

▪ Low RMSE of forecasts does not guarantee realistic 

representation of irradiance variability & ramp events

▪Generative, image-based modeling is promising alternative to 

capture short-term variability

▪ Current video prediction models for ASI still struggle for higher lead times 

(inconsistencies & physically unrealistic cloud scenes)

▪ Generated images remain useful for detecting ramp events also for 

higher lead times

▪Outlook

▪ Enhance ASI-based video prediction

▪ Focus training on highly variable cloud conditions

▪ Combine multiple perspectives to learn better cloud representations
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