GENERATIVE AI FOR INTRA-HOUR DNI FORECASTS

Yann Fabel, Dominik Schnaus, Bijan Nouri, <u>Stefan Wilbert</u>, Niklas Blum, Luis F. Zarzalejo, Julia Kowalski, Robert Pitz-Paal

SolarPACES 2025

September 2025, Almería, Spain

Agenda

- Introduction
- Generative Forecasting Approach with All Sky Images
- Ramp Event Prediction
- Conclusion & Outlook

Motivation

Why forecasting solar irradiance?

- Predict expected energy yield of solar plants
- Anticipate local short-term fluctuations caused by cloud passages (ramp events)

Challenges by ramp events

- Local heat/power output variability
- Potential risk of supply instabilities

Benefits of intra-hour forecasting

- Better situational awareness for plant and grid operators
- Reduced storage utilization
- Improved market trading strategies
- More efficient operation of CST plants

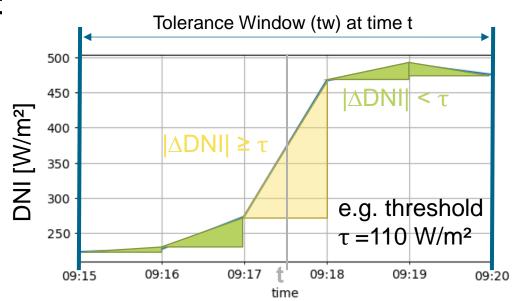
Requirements

High-resolution cloud information in space and time
→ All-Sky-Imagers

Motivation Ramp Events

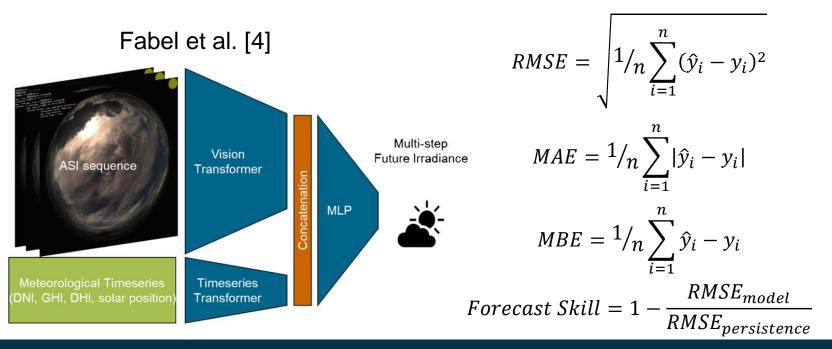
- Common forecasting metrics (e.g., RMSE, MAE, MBE) of the target quantity (e.g, DNI)
 - are a good measure to assess expected energy yield (integration of irradiance over time)
 - provide no information on variability within the forecast
- Definition ramp event and ramp metrics [1]:

$$\frac{|\Delta DNI|}{\Delta t} > threshold \ \tau \Longrightarrow Ramp$$
 t: if $\exists Ramp \ in \ [t - tw/2, t + tw/2] \Longrightarrow Ramp \ Event \ at \ t$

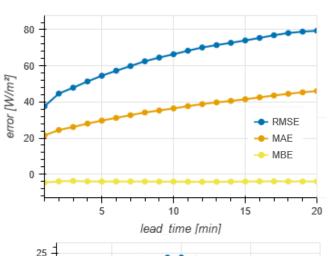


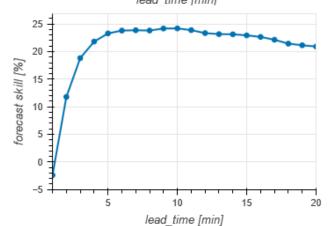
Limitations of State-of-the-Art Data-Driven Models

State-of-the-Art direct data-driven models are often optimized on RMSE [2, 3, 4]



- Strong performance on standard error metrics, but ramp events undetected due to smoothed forecast curves
- How can we circumvent smoothing of the forecast curve?





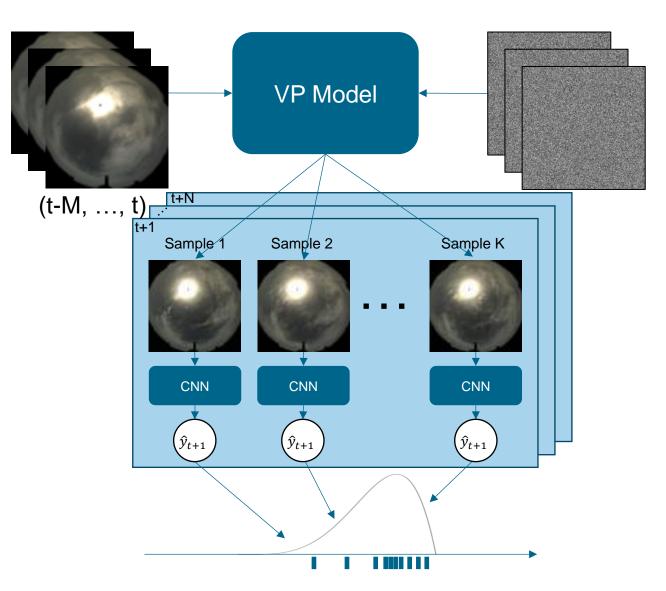
Generative Forecasting Model Architecture

Video Prediction (VP):

- Given sequence of M past images next images for N lead times are predicted
- K future scenarios are generated from the same input sequence by sampling from Gaussian noise
 → Measure for uncertainty

Classifier:

- Given individual predicted future frames, a second model (e.g. CNN) is used to derive target quantity
- E.g., classifier predicts directly ramp events based on predicted sky images
- Trained separately on real images



Video Prediction Models Model options / Train and Test setup

- Two different generative models were tested
 - SkyGPT [5]: Adaptation of the VideoGPT [6] model combined with PhyCells [7]
 - DiT: Adaptation of the diffusion-based transformer model [8]

Training

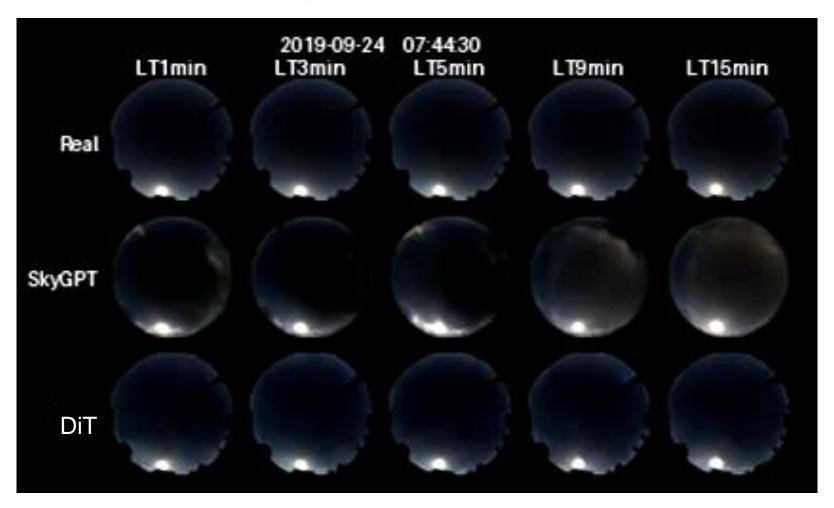
- Both models were trained on selected camera data from CIEMAT's PSA
- SkyGPT model trained with the same hyperparameter configuration as in the original publication

Testing

- Evaluation on separate benchmark dataset defined in All-Sky Imager-based forecasting study [9]
- 28 selected days from a single camera at PSA representing diverse sky conditions
- 4 image samples per model were generated for each lead time

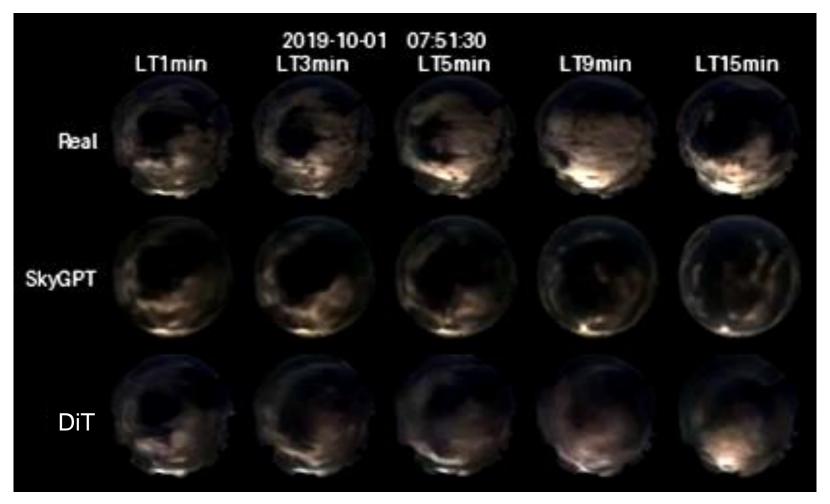
	SkyGPT	DiT
Image res.	64x64	128x128
Temporal res.	2min	1min
Forecast horizon	15min	30min
Variational Auto Encoder	VQ-VAE [6]	Pretrained VAE [9]

Video Prediction Evaluation Exemplary Results – Single Sample, Selected Lead Times



→ A lot of "hallucinations" even for clear sky conditions

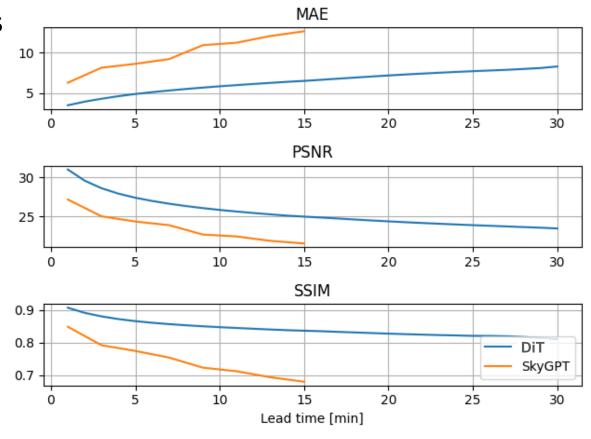
Video Prediction Evaluation Exemplary Results – Single Sample, Selected Lead Times



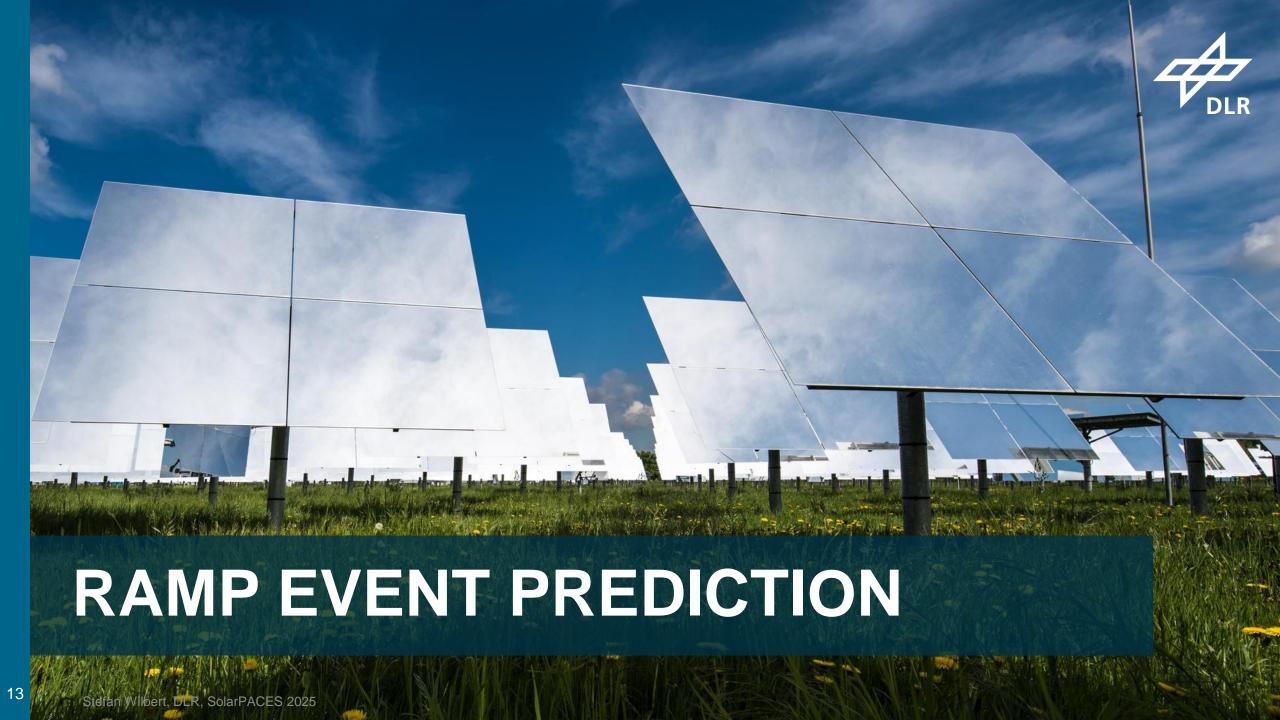
→ Strong deviations in terms of cloud coverage for larger lead times

Video Prediction Evaluation Quantitative Evaluation of Images

- Evaluation of predicted sky image frames
 - Image pixel value data range: [0, 255]
 - Lead-time specific calculation averaged over all generated future scenarios
- Image-wise pixel metrics
 - Mean Absolute Error (MAE)↓:
 - Average error per pixel
 - Peak Signal-to-Noise Ratio (PSNR)↑:
 - Ratio of maximum possible signal to error in decibels (measure of fidelity)
 - Structural Similarity Index (SSIM) :
 - Measure for perceptual similarity (capturing sharpness and structure)



→ Better performance of DiT model in terms of image quality



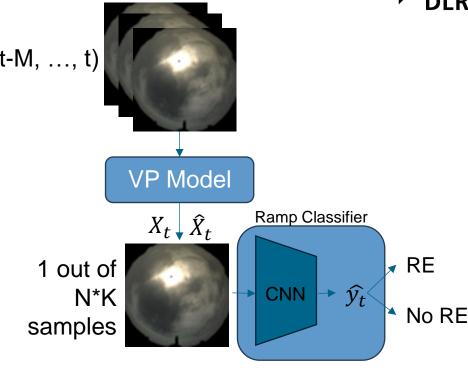
Ramp Event Prediction

DLR

- Ramp Classifier
 - CNN predicting probability of ramp event based on corresponding image ($\hat{y_t} = P(RE|X_t)$)
 - Ground truth labels based on GHI measurements

$$y_{t} = \begin{cases} 1 & if \exists ramp \ in \ [t-3, t+3] \\ 0 & otherwise \end{cases}$$

- Trained on real sky images
- Evaluated on synthetic images from generative model to obtain ramp event prediction
- Video prediction models generate K=4 samples (images) for all lead times for each forecast -> 4 probabilities
- Ramp is predicted if average probability > threshold
 - Low classifier threshold TH=0.3 chosen to prioritize recall
- Baseline model: Ramp Persistence
 - If a ramp was observed in the measured irradiance curve in the last T=30min a ramp is expected in the next T minutes too
 - Independent of sky images



Ramp Event Prediction Evaluation

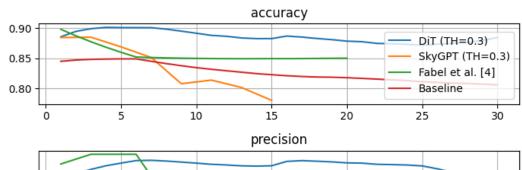
- Reference ramp data from pyranometer with tolerance window (tw=10min)
- Evaluation of classification metrics over lead times

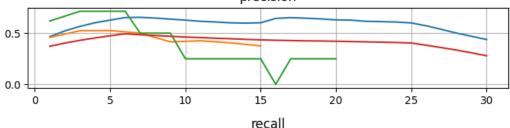
$$accuracy = \frac{TP + TN}{TP + FN + FP + TN}$$

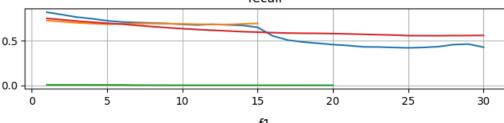
$$f1 = 2 \times \frac{precision \times recall}{precision + recall}$$

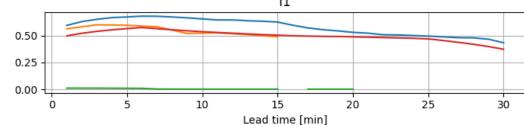
$$precision = \frac{TP}{TP + FP}$$

$$recall = \frac{TP}{TP + FN}$$









Conclusion

- Low RMSE of forecasts does not guarantee realistic representation of irradiance variability & ramp events
- Generative, image-based modeling is promising alternative to capture short-term variability
 - Current video prediction models for ASI still struggle for higher lead times (inconsistencies & physically unrealistic cloud scenes)
 - Generated images remain useful for detecting ramp events also for higher lead times

Outlook

- Enhance ASI-based video prediction
 - Focus training on highly variable cloud conditions
- Combine multiple perspectives to learn better cloud representations

References

- 1. Nouri et al. 2024, Ramp Rate Metric Suitable for Solar Forecasting, DOI: 10.1002/solr.202400468
- 2. Sun et al., Solar PV output prediction from video streams using convolutional neural networks, DOI: 10.1039/c7ee03420b
- 3. Paletta et al. 2021, **Benchmarking of deep learning irradiance forecasting models from sky images An in-depth analysis**, DOI: 10.1016/j.solener.2021.05.056
- 4. Fabel et al. 2023, Combining deep learning and physical models: a benchmark study on all-sky imagerbased solar nowcasting systems
- 5. Nie et al. 2024, **SkyGPT: Probabilistic ultra-short-term solar forecasting using synthetic sky images from physics-constrained VideoGPT,** DOI: 10.1016/j.adapen.2024.100172
- 6. Yan et al. 2021, VideoGPT: Video Generation using VQ-VAE and Transformers, DOI: 10.48550/ARXIV.2104.10157
- 7. LeGuen et al. 2020, **Disentangling Physical Dynamics From Unknown Factors for Unsupervised Video Prediction**, DOI: 10.1109/cvpr42600.2020.01149
- 8. Pebbles et al. 2022, **Scalable Diffusion Models with Transformers**, DOI: 10.48550/ARXIV.2212.09748
- 9. Blattmann et. al 2023, **Stable video diffusion: Scaling latent video diffusion models to large datasets**, DOI: 10.48550/ARXIV.2311.15127

Acknowledgements

Funded by the Federal Ministry for the Environment, Climate Action, Nature Conservation and Nuclear Safety (BMUKN) on the basis of a resolution of the German Bundestag (Ausesol AI, grant number 67KI21007A).

