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Angular Divergent Component of Motion: A step towards planning
Spatial DCM Objectives for Legged Robots

Connor W. Herron1, Robert Schuller2, Benjamin C. Beiter1, Robert J. Griffin3, Alexander Leonessa1,
and Johannes Englsberger2

Abstract— In this work, the Divergent Component of Motion
(DCM) method is expanded to include angular coordinates
for the first time. This work introduces the idea of spatial
DCM, which adds an angular objective to the existing linear
DCM theory. To incorporate the angular component into the
framework, a discussion is provided on extending beyond the
linear motion of the Linear Inverted Pendulum model (LIPM)
towards the Single Rigid Body model (SRBM) for DCM. This
work presents the angular DCM theory for a 1D rotation,
simplifying the SRBM rotational dynamics to a flywheel to
satisfy necessary linearity constraints. The 1D angular DCM is
mathematically identical to the linear DCM and defined as an
angle which is ahead of the current body rotation based on the
angular velocity. This theory is combined into a 3D linear and
1D angular DCM framework, with discussion on the feasibility
of simultaneously achieving both sets of objectives. A simulation
in MATLAB and hardware results on the TORO humanoid are
presented to validate the framework’s performance.

I. INTRODUCTION

Over the past few decades, humanoid robot locomotion
remains a challenging topic due to the high number of de-
grees of freedom (DoF), nonlinear dynamics, and reliance on
ground contact to execute stable motion. For achieving real-
time implementation, full-order robot models were remapped
to “reduced-order” or template models such as the LIPM
[1], [2], [3] and SRBM [4], [5]. These template models
were bridged with “stability criteria” to analytically embed
feasibility constraints on the external forces applied to the
center of mass (CoM) by the feet to achieve walking motions
[6], [7], [8]. One of the most popular approaches of these
“stability criteria” is Divergent Component of Motion (DCM)
[1], [9], [8].

Similar to the LIPM, the DCM framework often only
considers linear dynamics and conveniently handles CoM
tracking by separating it into stable and unstable components
[1]. By introducing various coordinates, DCM manages to
indirectly stabilize the CoM while guaranteeing the resulting
external force vectors are within the base of support [9], [2],
[10]. A useful assumption for most legged walking behaviors
is that the rate of change of the centroidal angular momentum
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(CAM) remains small and oscillating about zero [11], [12].
For DCM, this assumption is true if the robot’s Center
of Pressure (CoP) coincides with the enhanced Centroidal
Momentum Pivot (eCMP) point, a position coordinate that
encodes the external force vector [1]. However, as high-
lighted in [11], [12], this assumption does not hold during
walking where the swing legs produce non-neglible CAM.
While humans and humanoid robots share the capacity to
swing their arms to compensate the resulting CAM gener-
ated by the legs [13], [14], certain circumstances such as
locomanipulation prevent the ability to execute arm swinging
behaviors. Research suggests that the CAM trajectory can be
learned online using prior motion sequences [11] and pre-
dicted by using the known leg trajectories [12] to correct the
eCMP trajectory for reducing contact torques and therefore
achieving CoP tracking. The drawback of these approaches
is that they are not designed for planning angular motion
trajectories. Instead, our work presents an angular component
for DCM which can allow for direct rotation planning and
CoP tracking.

Alternatively, Model Predictive Control (MPC) has be-
come a popular approach for real-time planning of
quadrupedal robots often utilizing the SRBM [15], [4], [5].
The SRBM includes linear and rotational dynamics and has
produced highly agile results on quadrupedal robots, capable
of dealing with unmodelled effects using methods such as
regularization heuristics [4] and deep reinforcement learning
[16]. However, the SRBM presents coupling challenges for
humanoid robots due to inertial distribution and reliance on
a singular orientation coordinate [5], [17], [18]. Recently,
these challenges are being overcome using methods such as
Whole-Body MPC [19] and variable inertia modelling [20].
However, while MPC frameworks are simple and offer a
variety of implementations, they suffer from local minima
and a strong reliance on precomputed behaviors.

This work focuses on extending the DCM framework
to include an angular component, allowing for more direct
control of the CAM for dynamic behaviors without needing
any prior training. The main contributions of this work
are: 1) a description of combining linear and rotational
motion into a spatial DCM framework; 2) an extension of
the DCM theory to include a 1D orientation objective for
legged robot planning, presented here as “angular DCM”;
3) derivations which combine 3D linear and 1D angular
DCM dynamics into a single framework; 4) a discussion
on the CoP constraint and how this impacts the feasibility
of simultaneously achieving linear and angular objectives;
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Fig. 1. Spatial DCM is a framework allowing for linear and angular rotation planning for complex behaviors such as traversing rubble, climbing through
a window, and compensating a linear and angular load.

5) MATLAB simulations and hardware experiments on the
humanoid robot, TORO, which validate the performance of
the proposed framework.

This paper is organized as follows: Section II discusses
the idea of Spatial DCM objectives, Section III describes
the angular DCM theory for a 1 DoF orientation objective,
Section IV combines the linear and angular DCM approaches
into a compact control framework, Section V presents sim-
ulation and hardware results which validate the planner’s
performance, and Section VI is the conclusion.

II. SPATIAL DCM

As studied in several prior works such as [1], [2], the DCM
framework often only considers the linear CoM motion to
plan trajectories for legged systems while constraining the
external force vectors to remain within the base of support.
As displayed in Fig. 1, this work introduces an extension
of the DCM framework to include an angular component
for planning spatial DCM objectives. For achieving spatial
objectives, the SRBM is proposed where its dynamics can
be defined as

ẍ =
1

m

n∑

i=1

fi − g, (1)

d

dt
(Iωωω) =

n∑

i=1

ri × fi + τττ i, (2)

Ṙ = ⌊ωωω⌋R, (3)

where x ∈ R3 is the CoM position, m is the mass, g =
[0, 0, g]T is the gravity vector, n is the number of feet,
fi ∈ R3 and τττ i ∈ R3 are, respectively, the contact force and
torque vectors of the ith foot, ri ∈ R3 is the foot position
of the ith foot, I ∈ R3×3 is the inertia tensor in the world
frame, ωωω ∈ R3 is the angular velocity of the body, and R is
the rotation matrix from body to world frame.

This framework would track spatial DCM objectives,
ξ = [ξTl , ξ

T
a ]

T , where ξl ∈ R3 is the already-known 3
DoF linear DCM [1], [2], [9] and ξa is the angular DCM

introduced in this work. As discussed in [1], [9], [3], [2],
the linear DCM encodes velocity, acceleration, and force
vectors as 3D points. Correspondingly, the angular DCM
encodes rotational velocities, rotational accelerations, and
torques as orientations. While the linear DCM is ahead of
CoM position based on the velocity vector, the angular DCM
is an orientation coordinate which is ahead of the body’s
rotation based on the angular velocity vector. As displayed
in Fig. 1, these motions would allow for planning complex
behaviors such as traversing rubble, climbing through a
narrow window, and compensating for linear and angular
loads.

III. ANGULAR DCM THEORY

As discussed in Section II, the angular DCM, ξa, can be
defined as an orientation which is ahead of and moving in
the same direction as the body orientation. Due to challenges
with nonlinearities resulting from 3D orientation dynamics,
this work takes the first step by extending the DCM theory
to include 1D orientation dynamics. The theory presented in
this section uses a position-fixed body model, which rotates
about a single axis at the centroid. In this case, the SRBM
angular dynamics from (2) and (3) can be simplified to

Iθ̈ = τext, (4)

where τext ∈ R is the torque, I ∈ R is the moment of inertia
about the pivot point, and θ ∈ R is the angular rotation of
the body. Because the rotation dynamics are simplified and
linear in (4), the angular DCM, ξa ∈ R, can be defined as

ξa = θ + ηθ̇, (5)

where η ∈ R is a constant defined later on. Using (5), the
angular DCM time derivative can be expressed as

ξ̇a =
1

η
(ξa − θ) + ηθ̈. (6)

Thus, we can substitute in (4) to find

ξ̇a =
1

η
ξa −

1

η
θ +

η

I
τext. (7)



Fig. 2. The VRO set-points, ϕvro, define the desired angular DCM, ξda ,
which drives the motion of the angular DCM, ξa, and body orientation, θ.

At this point, we can reencode the external torque into a
torsional repelling law

τext = γ(θ − ϕvro), (8)

where ϕvro ∈ R is the Virtual Repellent Orientation (VRO)
and γ ∈ R is a constant. The VRO encodes the external
torques into an orientation that acts as a “torsional repellant”
to rotate the body away from the VRO and towards an
angular objective. By substituting (8) into (7), we find

ξ̇a =
1

η
ξa + (

ηγ

I
− 1

η
)θ − ηγ

I
ϕvro. (9)

Therefore, if we choose γ = I
η2 , we can decouple the angular

body and DCM dynamics and are left with

ξ̇a =
1

η
ξa −

1

η
ϕvro. (10)

Now, we can write the decoupled dynamics in state space
form as

[
θ̇

ξ̇a

]
=

[− 1
η

1
η

0 1
η

]
·
[
θ
ξa

]
+

[
0
− 1

η

]
ϕvro. (11)

Notice that the open-loop angular DCM dynamics in (11)
has an unstable root. Thus, the following feedback law can
be proposed for stabilizing the system and tracking a desired
angular DCM trajectory

ϕvro = ξa + kaη(ξa − ξda )− ηξ̇da , (12)

where ξda ∈ R is the desired angular DCM trajectory and
ka ∈ R is a proportional gain. We can stabilize the closed-
loop dynamics by substituting the feedback law from (12)
into (11) to get

[
θ̇

ξ̇a

]
=

[− 1
η

1
η

0 −ka

]
·
[
θ
ξa

]
+

[
0 0
ka 1

]
·
[
ξda
ξ̇da

]
. (13)

In this case, η becomes our time constant of the angular
DCM dynamics occurring between the VRO setpoints. No-
tice that this theory is nearly identical to the definitions of
linear DCM in [1], [2], [9], which is possible because of the
linearity of the orientation dynamics in (4). In Fig. 2, a nu-
merical simulation of the closed-loop tracking performance

Fig. 3. The angular DCM, ξa, is ahead of orientation, θ, which is repelled
by the VRO, ϕvro.

is shown from (13). It can be seen that the body angle, θ,
is following the angular DCM, ξa, while repelled by the
VRO setpoints, ϕvro. This behavior is reflected in Fig. 3.
Note that the angular DCM definition in (5) would need to
be updated for dealing with 3D rotations because, in those
cases d

dtθ ̸= ω.

IV. CONTROL FRAMEWORK

A. Dynamics Derivation

This control framework combines the 3D linear and 1D
angular DCM dynamics into a coherent system. In Section
III, the dynamics are simplified such that the body rotates
about a pivot point at the centroid. For this section, the
constrained SRBM can only rotate about a single axis,
chosen as the pitch (y) axis, and is free to move linearly
in 3D. The constrained SRBM dynamics can be simplified
to

ẍ =
1

m
fext − g, (14)

Iθ̈ = S[r× fext] + τext, (15)

where fext ∈ R3 is the applied external force, r ∈ R3 is
the footstep position in the body frame, and τext ∈ R is
the 1D external torque applied on the ground. Lastly, S is a
selection matrix for the rotational component which matches
the θ direction. For this work, θ is simply chosen as the pitch
(y) angle, but in general is not restricted to a specific axis.
While the cross product term seems difficult to deal with, we
will show that the linear DCM dynamics are intentionally
designed such that this term is cancelled. The linear DCM
is defined as

ξξξl = x+ bẋ, (16)

where ξξξl ∈ R3 is the linear DCM and x ∈ R3 is the CoM [1].
The angular DCM is presented in (5) where θ ∈ R is robot’s
base pitch angle, and θ̇ ∈ R is the robot’s pitch angular
velocity. We can define b =

√
h/g as the DCM time constant

[1] where h is the robot’s height and g is the gravitational
constant. These DCM dynamics can be differentiated with



respect to time, substituting in (14) and (15) to get

ξ̇ξξl =
1

b
(ξξξl − x) +

b

m
(fext −mg), (17)

ξ̇a =
1

η
(ξa − θ) +

η

I
(S[r× fext] + τext). (18)

Now, the external force, fext, is encoded using the eCMP
from [1] defined as

fext = s(x− recmp), (19)

where s ∈ R is an auxiliary constant defined later. Therefore,
the external forces and torques can be encoded using (19)
and (8), respectively, where

ξ̇ξξl =
1

b
(ξξξl − x) +

b

m
(s(x− recmp)−mg), (20)

ξ̇a =
1

η
(ξa − θ) +

η

I
(S[r× s(x− recmp)]

+ γ(θ − ϕvro)).
(21)

The general idea of DCM is to intentionally design the
external force vectors such that the CoP remains within
the base of support. Therefore, based on (19), we assume
the cross term r × s(x − recmp) = 0 since the recmp

positions are chosen to be the footstep positions, r. As
displayed in Fig. 4 however, the external torque, τext, on the
physical robot is achieved via offsetting of the CoP using
fext. This assumption allows us to separate the control of
linear and angular motion to the force and torque inputs,
respectively, and is discussed further in Section IV-B. Using
this assumption, the linear and angular dynamics can be
simplified to

ξ̇ξξl =
1

b
(ξξξl − x) +

bs

m
(x− recmp)− bg, (22)

ξ̇a =
1

η
(ξa − θ) +

ηγ

I
(θ − ϕvro). (23)

Finally, we can decouple the linear and angular dynamics
from their DCM components by defining s = m

b2 and γ = I
η2

to get

ξ̇ξξl =
1

b
ξξξl −

1

b
recmp − bg, (24)

ξ̇a =
1

η
ξa −

1

η
ϕvro. (25)

We can also simplify the dynamics further using the Virtual
Repellent Point (VRP) from [1], defined as

rvrp = recmp + b2g. (26)

The open-loop DCM dynamics can be written in state space
form as[

ξ̇ξξl
ξ̇a

]
=

[ 1
b 0
0 1

η

]
·
[
ξξξl
ξa

]
+

[− 1
b · I3 0
0 − 1

η

]
·
[
rvrp
ϕvro

]
, (27)

where I3 is the 3 × 3 identity matrix. For stabilizing the
open-loop dynamics, the linear and angular DCM dynamics
require stabilizing feedback control laws. The linear DCM
tracking control law presented in [1] is of the following form

rvrp = ξξξl + klb(ξξξl − ξξξdl )− bξ̇ξξ
d

l , (28)

Fig. 4. Image of SRBM, angular DCM, ξa, linear DCM, ξl, force vector,
fext, which gets projected from the CoP, rcop, on the physical robot.

where kl ∈ R is the linear tuning constant and must be kl > 0
for stability purposes. In addition, the angular DCM tracking
law was previously introduced in (12). Using (28) and (12),
the stable closed loop can be written as

[
ξ̇ξξl
ξ̇a

]
=

[
−kl 0
0 −ka

]
·
[
ξξξl
ξa

]
+

[
kl · I3 I3 0 0
0 0 ka 1

]
·




ξξξdl

ξ̇ξξ
d

l

ξda
ξ̇da


 .

(29)

The relationship between the various linear and angular
DCM components can be seen in Fig. 4.

B. CoP Constraint

This design approach intentionally decouples the linear
and rotational references from the external force and torque
commands, respectively. On the physical robot, these linear
and rotational references are feasible if the CoP stays within
the support polygon. If the CoP exceeds the support polygon
boundary, the external force or torque commands are no
longer both feasible and would need to be modified. So if
we exceed the CoP threshold (i.e. | τextmg | > rthrescop ), we can
redefine the external torque to

τext = τmax
ext + τ̄ , (30)

where τmax
ext ∈ R is the maximum external torque that

can be applied to the ground to remain within the support
polygon, and τ̄ ∈ R is torque which can be generated
through adjustment of the external force vector. Using a
slightly modified version of (14) from [3], we can augment
the desired eCMP definition to

r∗ecmp = recmp +
1

mg
[τ̄y, −τ̄x, 0]

T , (31)

where recmp ∈ R3 is the nominal eCMP from (19), and
τ̄x, τ̄y ∈ R are the remaining external torque in the x
and y directions, respectively, meant to be compensated by
modifying the external force, f∗ext. Note that τ̄ = τ̄x or
τ̄y depending on the rotation axis. For implementation, the
angular dynamics are solved in closed-form to determine



Fig. 5. Simulation results of the 3D linear and 1D angular DCM framework simultaneously completing walking and rotating behaviors. The 3D linear
motion has been projected to the ground plane.

the external torque trajectory. If the resulting CoP would
exceed the support polygon, then the eCMP modification in
(31) can be utilized to compensate for the additional torque
requirement. While this keeps the CoP within the support
polygon, the linear motion may be compromised depending
on the additional torque requirement. A side effect of this
approach is that the angular DCM dynamics in (23) is no
longer valid, since r× s(x− r∗ecmp) ̸= 0.

V. RESULTS AND DISCUSSION

For validation of the DCM framework, a simulation and
hardware experiment have been performed. The simulation
is of a constrained SRBM which can move in 3-DoF with
a 1-D rotation about its pitch (y) axis. The footsteps are
predetermined at a constant forward walking speed with a
constantly changing angular objective at each footstep. The
experiment has been performed on the TORO humanoid
robot with a switching angular objective (±π/8 rad) about
the pitch (y) axis while standing in place.

A. Simulation

As displayed in Fig. 5, a simulation has been performed
in MATLAB of an SRBM which can move in 3-DoF, but
is constrained to only rotate about the pitch (y) axis. The
SRBM has a mass of 65.1 kg and an inertia about the pitch
axis of Iyy = 2.3 kg·m2, chosen to have a similar ratio
to the experiment parameters. The footstep positions are

predetermined based on a desired step length (tstep = 1 s)
and forward velocity (vx = 0.25m/s). The linear and
angular DCM objectives are set for every footstep, where
the linear objective is the footstep position and the angular
objective is switching at ϕvro = ±π/6. The model and
controller are designed to assume an instantaneous transition
between single stance phases without a double stance phase.
As seen in Fig. 5, the linear and angular objectives are
tracked as expected and display very similar behavior despite
their dynamic differences. As discussed in Section IV, the
linear motion is controlled by the applied forces whereas the
angular motion is controlled by the applied torque. Section
IV-B discussed how on a physical legged robot these applied
wrenches are constrained such that the CoP must remain
within the support polygon (denoted S.P. on the Fig. 5).
Considering the rotation is only about the pitch (y) axis,
the applied torque and CoP position (rcop) are only 1-
dimensional. The CoP (bottom right plot) achieves 4 cm at
maximum which is far below the support polygon boundary
at ± 12 cm.

The top image displays snapshots of the SRBM during the
walking with the linear and angular DCM components dis-
played. The angular DCM components are the VRO (ϕvro),
angular DCM (ξa), and pitch angle (θ) shown as orientations
at each of the snapshots as blue, purple, and gold coordinate
axes, respectively. The linear DCM components shown are



Fig. 6. TORO accurately tracks the orientation objective from the angular DCM algorithm while standing in place.

the VRP (rvrp), linear DCM (ξl), and the CoM position
(xcom) denoted as light blue, green, and red respectively.
Despite being 3D coordinates, the linear DCM components
are projected to the 2D foot plane for better clarity. Finally,
the GRF and CoP are denoted in orange and move along the
x-axis within the foot polygon in grey.

B. Hardware

As displayed in Fig. 6, the angular DCM framework is
tested on the DLR humanoid robot, TORO, whose mass is
79.2 kg. Without leaving double stance, the angular DCM
objective switches between ϕvro = ±π/8 rad every 1 s
for 5 set points before returning to the origin. The plots on
the left side directly compare the hardware response with
the simulated response, denoted as r and s, respectively.
In addition, snapshots of TORO are featured on the right
side, with the current orientations of the pitch angle (gold),
angular DCM (purple), and VRO setpoint (blue). The de-
sired orientation, angular velocity, and angular acceleration
trajectories from the angular DCM framework are provided
as the desired motion of the pelvis pitch orientation task
for the Whole-Body Controller [21]. After identifying an
inertia parameter of Iyy = 3.96 kgm2 in post-processing, the
simulation response closely resembles the hardware response
on TORO. Not only does the orientation and angular velocity
show excellent tracking, but the angular momentum, ground
reaction wrenches, and CoP position are extremely similar
between the simulation and hardware responses. Upon close
inspection, small ground reaction forces in the x-direction,
fr
ext, are unplanned forces measured on TORO, caused by

the robot nearly breaking contact due to the desired angular
trajectory. The CoP trajectories reflect this behavior because
they nearly cross the support polygon boundary. In addition,
TORO can counteract the generated angular momentum
using upper body motion [22], but this regulation was turned
off to better reflect the expected model behavior.

For expanding this work towards walking behaviors, the
SRBM will encounter challenges coupling to the heavier
legs of bipedal robots [18], [17]. Future work will focus on
developing a 3D angular DCM, possibly using the Whole-
Body Orientation (WBO) [17] and a variable inertia [20] for
better model coupling.

VI. CONCLUSION

This work proposed the idea of spatial DCM, defining
angular DCM theory for a 1D rotation, presenting a 3D linear
and 1D angular DCM framework, and providing simulation
and hardware results which validate the framework’s per-
formance. The angular DCM is defined to be ahead of the
orientation coordinate based on the angular velocity, identical
to the linear DCM definition. The hardware performance
suggests that this model and control approach can directly
capture and predict the dynamics of the robot. Future work
will focus on expanding the angular DCM to 3 DoF and
utilizing the WBO and a variable inertia for better dynamic
coupling to walking bipedal robots.
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