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Abstract

This thesis explores non-equilibrium phenomena in strongly correlated quantum systems, focusing on
the half-filled one-dimensional Hubbard model at zero temperature in the thermodynamic limit. Using
tensor network methods, particularly infinite matrix product states (iMPS), we simulate the real-time
dynamics induced by optical pump pulses. A laser pulse is modeled by a time-dependent vector po-
tential applied via the Peierls substitution, with dynamics computed using the infinite time-evolving
block decimation (iTEBD) algorithm. We investigate the emergence of a superconducting-like n-pairing
state with off-diagonal long-range order (ODLRO) and confirm that 7-pairing correlations are signif-
icantly enhanced for certain pulse parameters. Additionally, signatures of dynamical quantum phase
transitions (DQPTs) are observed in the Loschmidt echo rate function. Finite-entanglement scaling is
employed to extract the central charge and analyze criticality of the ground state.

Zusammenfassung

In dieser Arbeit werden Nichtgleichgewichtsphdnomene in stark korrelierten Quantensystemen unter-
sucht, mit Schwerpunkt auf dem halbgefillten eindimensionalen Hubbard-Modell bei T = 0 im ther-
modynamischen Limes. Mithilfe von Tensornetzwerk-Methoden, insbesondere unendlichen Matrixpro-
duktzustanden (iMPS), simulieren wir die Echtzeitdynamik, die durch Laserpulse ausgelost wird. Ein
Laserpuls wird durch ein zeitabhéngiges Vektorpotential modelliert, das iiber die Peierls-Substitution
angewendet wird, wobei die Zeitentwicklung mit dem iTEBD Algorithmus berechnet wird. Wir unter-
suchen das Auftreten eines supraleitungsédhnlichen n-Paar-Zustands mit nicht-diagonaler langreichweit-
iger Ordnung (ODLRO) und bestétigen, dass die n-Paarungskorrelationen fiir bestimmte Pulsparame-
ter signifikant verstirkt werden. Aufserdem werden Anzeichen dynamischer Quantenphaseniibergénge
(DQPTs) in der Ratenfunktion des Loschmidt-Echos beobachtet. Es wird finite-entanglement scaling
eingesetzt, um die Zentralladung des Grundzustands zu berechnen.
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1. Introduction

In recent years, the study of non-equilibrium dynamics in quantum many-body systems has become
an active area of research [1, 2| in condensed matter physics and quantum information. Exploring
systems far from equilibrium promises access to new and interesting phenomena beyond the constraints
of equilibrium statistical physics. Experimental advances [1, 3-6], particularly in cold atoms in optical
lattices and trapped ions, have made it possible to probe strongly correlated systems under non-
equilibrium conditions and call for a better theoretical understanding of how complex quantum systems
evolve over time.

Alongside analytical theory and experiment, numerical simulations have become an essential third
pillar in understanding strongly correlated quantum many-body systems. Yet the exponential growth
of the Hilbert space with system size quickly renders many numerical approaches, such as exact di-
agonalization, intractable even for modestly sized systems. To address this challenge, tensor network
techniques [7, 8] exploit the typically low entanglement of ground and low-lying excited states, en-
abling an efficient encoding of one-dimensional quantum many-body systems. In this thesis, we use
the infinite matrix product state (iMPS) formalism [9, 10| to simulate quantum dynamics directly in
the thermodynamic limit, i.e., for infinite systems, avoiding finite-size effects. We use an existing im-
plementation of the variational uniform matrix product state (VUMPS) ground state search algorithm
[11], alongside custom implementations for real-time evolution using the infinite time-evolving block
decimation (iTEBD) algorithm [9], as well as for the computation of relevant observables.

A paradigmatic model to describe a system of strongly correlated electrons is the one-dimensional
Hubbard model [12], which captures the essential competition between kinetic energy and on-site
Coulomb repulsion. Despite its apparent simplicity, the model exhibits a rich variety of phenomena
and, crucially, is analytically integrable. This makes it an ideal benchmark for numerical approaches
and an excellent framework for studying quantum dynamics. At half-filling and zero temperature, the
model describes a Mott insulator with a gapless spin sector and power-law decaying spin correlations,
providing a setting to study quantum criticality. In addition, the Hubbard model possesses an n-pairing
symmetry, which is central to the study of unconventional superconducting states.

The primary focus of this thesis is the real-time dynamics of the half-filled one-dimensional Hubbard
model under time-dependent external driving, specifically in the form of optical pump pulses. We are
particularly interested in the possibility of dynamically inducing unconventional superconducting-like
states, containing so-called n-pairs [13-16], which exhibit off-diagonal long-range order (ODLRO) [17]
and provide a conceptual framework for understanding non-equilibrium superconductivity.

We also explore the occurrence of dynamical quantum phase transitions (DQPTs) [18, 19], which
generalize the concept of quantum phase transitions to the time domain. These transitions manifest
as non-analyticities in the Loschmidt echo, a measure of the return probability to the initial state, and
offer an interesting perspective on the dynamics in quantum many-body systems beyond equilibrium.
To characterize the nature of the system after photoexcitation, we also use finite-entanglement scaling
[20, 21| to gain insight into criticality and the possibility of extracting a central charge.

Thesis outline. Chapter 2 presents the theoretical background, including second quantization, the
Hubbard model and its n-pairing symmetry, as well as the concept of DQPTs. Chapter 3 introduces the
numerical methods used, focusing on tensor networks, iMPS, and the iTEBD algorithm. Chapter 4
discusses the main results, including correlation functions, entanglement, and post-pulse dynamics.
Finally, Chapter 5 summarizes the findings and outlines possible directions for future research.



2. Theoretical Backround

2.1. Many-Particle Systems

In this section, we give an overview of the formalism of quantum-many-body systems by introducing
the notion of second quantization. The introduction is based on Ref. [22, Chapter XIV| and Ref. 23,
Chapter XV].

2.1.1. First Quantization

We start with the well known single-particle quantum mechanics. The state of a system is given by a
wavefunction [¢), which lies in the Hilbert space H;. This state space is spanned by a complete set of
eigenfunctions {|u;)} generated by a complete set of commuting observables.

To describe multiple identical particles, we set up a new state space as the tensor product

iy =H" o HP 0 - @ HM (2.1)
of single-particle state spaces ’ng ). The index (j) indicates that the identical particles are, at this
stage, still mathematically distinguishable. A basis of H can be constructed from the single-particle

bases {|uz(j))} of ng):
{|u§11)> @) @@ [N i1, iv =1, ,dim?—tl} . (2.2)
)

can also be extended to Hy as
(1) A () (N)
17—[ ®...®01J ®...®1H1

1

where 1%)1 is the identity operator on Hg] ). With that we can now represent any state vector in Hy
using the basis (2.2) and any operator on Hy as a linear combination of (2.3).
For a correct description, we must also take into account that identical quantum-mechanical particles
are indistinguishable. Since the physical state does not change (i.e. there is no measurement that can
distinguish) when two identical particles of a multi-particle state are exchanged, we currently have
several basis vectors that all correspond to the same physical state. Furthermore, it can be shown (see
example A-3-b in Ref. |22, Chapter XIV]) that the choice of the specific basis vector can incorrectly
affect the probability of measurements, which should not be the case. In order to resolve this so-called
exchange degeneracy, we map all linearly independent vectors that represent the same physical state
to one distinct vector. This can be done in two different ways using the two different projectors

N 1 . N 1 ~
Sn =17 Y B, Ay= i > sgn(o) P, (2.4)

oESN oceSN

Any single-particle operator OAEJ
) (2.3)

which project onto Hg(N) and H4(N), respectively. B, isa permutation operator and the sum runs
over all permutations o of the first /N natural numbers.

Because Hg(N) and H4(N) are orthogonal but for N > 2 not complementary subspaces of H y, we have
restricted the state space for systems of identical particles and obtained two kinds of states. Physical
states lie either in Hg(N) and are totally symmetric or in H 4(/N) and are totally anti-symmetric with
respect to particle exchange. In the case of totally symmetric states, the particles are called bosons.
In the case of totally anti-symmetric states, the particles are called fermions.
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2.1.2. Second Quantization

Using the introduced formalism for systems with more than just a few particles quickly gets very
complicated due to the (anti-)symmetrization of wavefunctions (and operators). To simplify the nota-
tion and calculations, we will use the formalism of second quantization, which refers to an alternative
method of labelling the states by eliminating the unphysical numbering of particles. It also introduces
creation and annihilation operators, which change the particle number and thus act on a larger state
space.

Occupation Number Representation

Since the particles are indistinguishable, we cannot assign a specific single-particle state to a specific
particle, and it therefore makes no sense to number the particles. Instead, all the physical states
contained in H,/g(N) are uniquely characterized by the occupation numbers {n1,na, ..., Ndim#, }
where n; is the occupation of the single-particle eigenstate |u;) and ) ,n; = N. For fermions, n; is
either one or zero because Ay applied to a state containing two or more particles in the same single-
particle state yields zero (Pauli exclusion principle). A fermionic basis state can therefore be written
as

iy gty ) = VNUAN [ @ [l @ - @ [u) @ .. (2.5)

N different states

From the definition of Ay (2.4), it follows that the sign of |u;, ug,...,u;,...) changes when two parti-
cles are exchanged. Since any measurement only depends on the absolute value, the physical meaning
does not change.

The following summary of second quantization will focus on fermionic systems, because these are
the ones relevant to this work. For bosonic systems, please refer to Ref. [23, Chapter XV]|.

Fock Space

Dropping the constraint ), n; = N generalizes the description of many-particle states and results in
the extended Hilbert space

F =P Ha(N), (2.6)
N=0

called Fock space. Notice that the direct sum includes a state space with N = 0 particles. The space
H4(0) is defined to be one-dimensional and consists of a single state, denoted as |0), which is referred
to as the vacuum.

Creation and Annihilation Operators

In this bigger space, we now define the creation operator éj and its hermitian conjugate, the annihilation
operator ¢;. As the name suggests, the creation operator creates a new particle

gy gy = g g, ) (2.7)
and the annihilation operator annihilates a particle
éi]ui,uk,...,ul,...):\uk,...,ul,...>. (28)

Applying éj to a state in which |u;) is already occupied (i.e. n; = 1) gives zero. The same is true for

the application of ¢; to a state with n; = 0. This behaviour enforces the Pauli exclusion principle.
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From these definitions and the fact that |u;, ug, ..., u,...) = —|uk, i, ..., u,...), we can deduce the
relations

{eney ={el ey =0, fa.el} =0y (2.9)
with the anticommutator {A, B} = AB + BA.

The occupation number operator n; = éTéZ whose eigenvalue is n; can also be defined.

2.1.3. Operators in Second Quantization

The complex (anti-)symmetrization of the first quantization has now been greatly simplified with the
help of a new notation (2.5) and the commutation relations (2.9). However, to fully leverage the
advantages of second quantization, operators should also have a simple representation in terms of
creation and annihilation operators. Otherwise the new formalism would not be very useful.

There are two types of operators that need to be 'second-quantized’: Single-particle operators such as

the kinetic energy
N
7= ip Z
=1 =1

(2.10)

and two-particle operators such as the coulomb interaction

7= 2.11
v Zu(r ) 47750 Z |rZ — 7| ( )

1<j

Single-Particle Operators

Using a single-particle orthonormal bases {|u£]] )>} of ”H(J )it is easy to see that

Sy | = éhes. (2.12)

Expanding T with the completeness relation then leads to representation through creation and anni-
hilation operators:

N N dimH; dim H1
f .

B > July )

i=1 i=1 a=1 B=1

= > (walf(B)lug) Y- [ul) () (2.13)

with t, 3 = <ua|7§(f))\uB>

Two-Particle Operators
The same principle can be applied to two-particle operators, resulting in

dim H1

Z uazﬂv’%(s 62626'}/657 (214)
a,B,7,6

-1
U=z
2
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with wa g6 = (ul|(ugla(F,#')|u,)|uf) and the factor 3 to correct the double counting.

In this way, every operator can be expressed as a linear combination of products of creation and
annihilation operators with matrix elements as coefficients. Thus, in general, the application of any
operator—whether single-particle or two-particle—ultimately reduces to successive applications of cre-
ation and annihilation operators.

2.2. Hubbard Model

The Hubbard model is a fundamental model for interacting electrons in a lattice. It captures the es-
sential competition between kinetic energy and onsite Coulomb repulsion, and has been widely studied
as a minimal model for strong correlation effects. In this thesis, we focus on the properties of the
one-dimensional, half-filled Hubbard model at zero temperature (7' = 0). The following introduction
to the model is based on Refs. [12, Chapter 1] and [24, Chapter 6].

To analyze the interaction of electrons in a solid, we begin by making two simplifying approximations.
First, we only consider the outer (valence/conduction) band and treat the inner electrons as part of a
rigid ion core. This is justified if the Fermi surface lies inside or close to the conduction band and all
other bands are far away. Second, the Born-Oppenheimer approximation can be used. Due to their
much greater mass compared to the electrons, the ions can be viewed as stationary, resulting in a static
lattice with up to two electrons per site (| 1J)).

The general Hamiltonian for N electrons using these two approximations reads

N ~9 N
2 P; o N N a A NPT
H = Z <2m + Vz(ri)> + ZVC(H — rj) = Zt(ri,pi) + Z“(ri’rj)’ (2.15)

i=1 i<j i=1 i<j

with the periodic potential of the ions Vi(¥) and the Coulomb repulsion Vo (¥; — ;) between the
electrons.

Using the rules (2.13) and (2.14) from the previous section, the Hamiltonian can now be mapped from
first to second quantization:

dim H dim H;
H'= 3} taptlis+ 3 Y Uapns ehéheyds . (2.16)
a?IBZ]‘ O‘:ﬁ7’Y76
Since electrons have a two-valued spin as an intrinsic property, the one-particle Hilbert spaces are
composed of two parts: Hy = ’H?ngular ® H?pm. The quantum numbers «, 3,7, d are therefore made
up of spin ¢ and lattice site indices ¢, j, . . ., where, for simplicity, we set the lattice spacing to one.

The Hubbard model is obtained if only the most important matrix elements are taken into account.
Screening shortens the Coulomb interaction range, so we consider only the diagonal elements represent-
ing the large on-site (intra-atomic) repulsion, neglecting weaker inter-atomic terms. This is believed
to be a good approximation for transition and rare earth metals. For the first term in (2.16), we use
the tight-binding approximation by only considering nearest-neighbour (i, j) matrix elements. The
diagonal elements ¢,  are set to zero, as they only add a constant energy-shift. In one dimension, this
leaves us with the (one-band) Hubbard Hamiltonian:

. U
1" ~ ~ A~ A~ ~ ~
H" =ty Y e b0+ 5 Y 0,0 b0t
(i7j>70- j,O',O'/
_ it o 4 s Ao ot
= —tn 3 (o0 + o) +U D Ea808
= J

g1 gl

(2.17)
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The hopping amplitude t; determines the delocalization of electrons by lowering the kinetic energy
if an electron is able to hop to a neighbouring site. The on-site Coulomb repulsion U increases the
energy for every pair of electrons located at the same site.

Using an explicit basis, such as the Wannier functions, and employing density functional theory, the
matrix elements can also be calculated. However, since the Hubbard model is the simplest description
for an interacting electronic system, it is primarily used for the qualitative description of certain
phenomena. Despite its simplicity, the model exhibits many interesting behaviours such as metallic
conductivity, insulating states, a metal-insulator transition, antiferromagnetism, and more.

There are, however, real materials [25, 26| that are described by 'Hubbard-like’” Hamiltonians, such
as the multiband and extended Hubbard models as well as ongoing research to discover materials
described by the one-band Hubbard model [27].

Hamiltonian at Half-Filling

Since the Hamiltonian (2.17) contains creation and annihilation operators only as pairs, the number
of spin up- and down electrons is conserved. We can therefore add the term —% > j (njg+nj5,)+ %L
with the number of lattice sites L to the Hamiltonian (2.17) without changing its eigenfunctions:

- - U R . U
H=H"-3 Z(nm )+ oL

J

- L NN/ 1 2.18

= (c},acjﬂ,o + c}H’ch,g) +U> (nm - 2) (nm - 2) (2.18)
j?o. j

= ﬁth + ﬁU .

In a canonical ensemble (constant N), this is simply a constant energy shift. In a grand canonical
ensemble, this corresponds to introducing a chemical potential g = U/2 (plus a constant term), which
leads to half-filling (N = L) |28, Chapter 8.7.1]. This formulation is also useful because of its higher
symmetry than (2.17). For example, the Hamiltonian is now particle-hole symmetric, which means
that it doesn’t change under the transformation

Gjo — (—1)ch . (2.19)

2.2.1. Half-Filled Hubbard Chain

From now on, we focus on the half-filled case (2.18), where, on average, each lattice site is occupied
by one electron, i.e., (n) = 1. We also assume U > 0 to model a repulsive Coulomb potential. At
half-filling, it is physically intuitive that for sufficiently large U, each lattice site hosts exactly one
electron, with no double occupancy or holes. According to band theory, this would imply metallic
behaviour. However, it turns out that the ground state of the Hubbard model is always insulating
for finite values of U at half-filling [12, 29]|. Thus, the model describes a Mott insulator that remains
insulating for all U > 0, without undergoing a Mott transition.

Another important property is the separation of spin and charge degrees of freedom, which at half-
filling occurs not only for low-energy states, but also extends to higher-energy excited states with any
finite energy in the thermodynamic limit [12, 29]. The excitation spectrum consists of two types of
elementary excitations: Charge excitations (holons and antiholons) carry charge but no spin, whereas
spin excitations (spinons) carry spin but no charge. While the charge sector is gapped for any finite U,
leading to the Mott insulating behaviour, the spin sector is massless [30], resulting in gapless modes
[12]. Moreover, the spin correlations decay as power laws due to scale invariance [12, 30|, indicating
criticality. The model can indeed be described as a spin—% Luttinger Liquid [29-31]. The dominant spin
correlations exhibit quasi-long-range antiferromagnetic order at the wave vector 2kr = m, characteristic
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of a spin density wave (SDW) [30, 32]. In the strong coupling limit U >> t; the half-filled Hubbard
chain maps onto the antiferromagnetic Heisenberg chain with exchange constant J ~ 4t2 /U [30, 33|.
For low-lying excitations it is therefore an effective spin system due to the finite charge gap. Notably,
it has been shown that the critical behaviour of the half-filled Hubbard chain matches that of the
antiferromagnetic Heisenberg chain for all U > 0, and not just in the strong coupling limit [34].

At U = 0, the Hubbard model corresponds to a spin-degenerate tight-binding band [33], which is
metallic. In this work, the U = 0 case is only considered briefly.

2.2.2. n-Pairing and Off-Diagonal Long-Range Order

In addition to the particle-hole symmetry already mentioned, the Hamiltonian (2.18) also has two
SU(2) symmetries [12]. Apart from rotational invariance in spin space, there is another hidden sym-
metry called n-pairing symmetry. This symmetry is especially interesting because it yields a potential
mechanism of superconductivity [35, 36].

In order to reveal this symmetry, we must first introduce the n-operators

P gat f A= (AT Jo.ne
N = (=1)7¢k !y, n-=n") = (—1)¢j+cy, (2.20)
Zj: 34591 ZJ:\_M
iy j
. 1, . ) 1, .. )
W= g+ ag =1), =@ )+ (07)% (2.21)
J

which satisfy the SU(2) commutation relations [12]

Tl =2, [t = 0 (2:22)
Using these definitions and the fermion anticommutation relations (2.9) we can directly obtain the
relations
(o, ) = Oign s [Riafag, 2] = dign; (2.23)
This allows us to calculate
—u > (g + )it | =—p > (g + 050,07 = —p ) [(ﬁm + 5,0), nf] = —2ui", (2.24)
J J J
U g it | =0 (i, at] =0 [ﬁj,Tﬁj,u ﬁﬂ =Un", (2.25)
J J J
U
[4L7ﬁ+} =0. (2.26)

Since we have set ;1 = U/2 to achieve half-filling, the coulomb term Hy of (2.18) commutes with 7.
With the help of the fermion anticommutation relations (2.9), we also find:

] = 05 (o +ehasisn) i 35
7,0
, , (2.27)
= —tn Z((_l)J + (D@ e 7 =0,
J

where we assume L to be even.



8 Chapter 2. Theoretical Backround

This leads us to the essential property of the n-operators:

[ﬁ,ﬁﬂ - [I:I,fﬁ*ﬁ_] —0. (2.28)
Since the number of spin up- and down electrons in H is conserved, we also get

{Hn} — 0, [Hnﬂ ~0. (2.29)

Consequently, any eigenstate of the Hubbard Hamiltonian H is also an eigenstate |n,n,) of both 7?
and 72, with corresponding eigenvalues n(n + 1) and 7. The #* operator creates a so-called n-pair
or doublon quasiparticle. i~ is the corresponding annihilation operator. From the momentum space
representation 77 =Y, éjr_ k. @w it is easy to see that n-pairs carry a momentum of .

This n-pairing mechanism in the Hubbard model was first proposed by Yang [13], who recognized
that it can be used to construct exact eigenstates. Since the vacuum state |0) is a known eigenstate,
many more can be generated by applying spin raising and lowering as well as n-pair creation and
annihilation operators. Yang originally proposed the eigenstate |¢n) oc (77)V|0), containing 2N
electrons and N n-pairs and showed that it has the exceptional property of possessing off-diagonal
long-range order (ODLRO). The concept of ODLRO, also developed by Yang [17], is accepted as one
possible definition of superconductivity since it implies the Meissner effect and flux quantization [17,
37, 38]. In contrast to conventional s-wave superconductivity, characterized by isotropic Cooper pairs
with no phase difference, n-pairing features singlet pairs with a staggered phase of .

For the Yang n-pairing states, ODLRO exists in the form of long-ranged pairing correlations [13]

(@i1cilp2lejriy) = Tr(eiaeiy pel el )
2.30)
) o ON(L-N) .. (

with p = |[¢)n)(¢n| and for i # j.
However, Yang also proved that such n-pairing states cannot be ground states but are excited states

of the Hubbard model. The ground state therefore has |n = 0,7, = 0).

Pair Correlation Function

For our numerical investigation, we use the real-space pair correlation function

1 " .
P(rt) = 7 > WOIA],A; +H.c)l). (2.31)
J
with the on-site singlet pair creation operator A; = é; ié;r'T’ which is the same as the ﬁ;r operators
except for the phase factor. A time dependency has been added here as this will be required later on.

Note that at » = 0, the pair correlation corresponds to twice the double occupancy:

2 A
P(0,1) = 2nq(t) = - D (W@)lAgan (D). (2.32)
J
Most important in the context of n-pairing, however, is the Fourier transform P(q,t) = >, € P(r,t)
of the pair correlation function. Because n-pairs carry momentum g = 7, the value P(7,t) serves as
a key observable. For periodic boundary conditions or in the iMPS formalism, it satisfies the relation
[14, 15]

Plm, 1) = 2 (@) [0 (23)
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For |n,n.), P(m,t) is therefore 21n(n+1) —n-(n: — 1)], which makes the so-called pair structure factor
ideal for detecting n-pairing in the system. Thus, P(mw,t = 0) = 0 for the ground state |n = 0,7, = 0).

2.3. Entropy of Entanglement

Entanglement is one of the main distinctions between quantum and classical systems. Being able to
measure the degree of entanglement in a system is therefore very useful, especially in strongly correlated
systems. Von-Neumann entanglement entropy is one possible measure of the quantum entanglement
between two subsystems of a pure bipartite quantum state [39, 40]. Given a system in a pure state
|1}, we divide it into two parts, A and B with Hilbert spaces H4 and Hp, so that |[¢) € Hy @ Hp.
We then define the reduced density matrix for subsystem A as the partial trace of pap = |1) ()| over

B, given by
Np

pa=2_ (1a® (ulp) (19)(W]) (14 ® [ui)p) = Trn(pan) (2.34)

with Np = dim Hp. Now the entanglement entropy is just the von-Neumann entropy of pa:
Sa=S5(pa) = —Tr(palogpa) = —Tr(pplogpp) = S(pB) = SB. (2.35)

Although other measures of entanglement exist, the von-Neumann entanglement entropy is the most
widely used measure in the context of iMPS. This is due to its direct link to the Schmidt decomposition
and its applicability in finite-entanglement scaling. Many other measures also reduce to the von-
Neumann entanglement entropy for pure states.

Schmidt Decomposition

Using the Schmidt decomposition, any pure state can be written as [¢) = Y /" 5 |v;) 4 ® |u;) g where
m = min{Na, Ng} and {|vi)a,...,|vm)a} C Ha, {|v1)B,...,|vm)B} C Hp orthonormal sets. In this
representation, the reduced density matrices p4 and pp are diagonal and the entanglement entropy is:

SA/B:—Za?logaf. (2.36)
i=1

Written in this form, it is easy to see that S,,p becomes zero for a product state and is bounded by
the maximum value logm.
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2.4. Dynamics and Non-Equilibrium

Due to the rapid progress of quantum simulators over the last two decades, the real-time dynamics of
closed quantum many-body systems are now accessible experimentally [1, 3-6] . The active field of
non-equilibrium dynamics promises to reveal new and interesting phenomena that do not exist within
the constraints of equilibrium statistics.

Non-equilibrium dynamics is an expansive field, as there are many different ways to take a system
out of equilibrium. In this work, we numerically investigate two possibilities within the context of the
half-filled Hubbard model: a pump-probe approach, which we discuss in detail, and, more briefly, the
dynamics following so-called quantum quenches.

2.4.1. Photoinduced Hubbard Model

Optical pumping is a technique that has been experimentally demonstrated to create new phases of
quantum matter [41-45]. In particular, it was discovered that optical pulses can induce superconduct-
ing behaviour in high-T, cuprates [46-49|. This led to a number of theoretical studies describing this
phenomenon and showing that laser irradiation can give rise to nonequilibrium superconductivity in
models of these materials [50-53]. One concept, frequently used for that description, is the n-pairing
mechanism [14, 54-59].

Recent studies have specifically shown that pumping the Mott insulating phase of the half-filled Hub-
bard model can induce n-pairing-based superconductivity in the form of ODLRO |14, 15, 60]. This
is possible because the pulse irradiation breaks the n-pairing symmetry, which allows the creation of
n-pairs triggered by a nonlinear optical response. After the pulse, the symmetry is restored and the
system contains a finite number of n-pairs. This non-equilibrium protocol will be the main focus of
this thesis.

To model the laser pulse, the laser field must be added to the Hubbard Hamiltonian, making it time-
dependent H — H(t).

Pump Pulse

To add a time-dependent external field, the kinetic part of the Hamiltonian (2.15) has to be modified,
by adding the corresponding vector potential A(F,t):

~ 9 ~ 2
p: . 1 /. eA(t;,t) ~
Vi) | o s (Pt ———— Vi(E;). 2.
<2m + Vi (¢ )> 5 (p + . + Vi(;) (2.37)

In second quantization, this leads to the Peierls substitution [12, 61| in the hopping term

r;
thel yeio — the /O 6o with A(r,t) = / drA(r, ). (2.38)
r

J

We set the lattice spacing |r; — r;|, Plank constant h, elementary charge e and speed of light ¢ to
1. Additionally, since the wavelength is much larger than the lattice spacing, the vector potential is
approximated to be independent of r. Using A(t) = A(t)e, parallel to the one-dimensional chain
direction, this gives us the substitutions for (2.18):

theh ,ei 110 = the el 65, (2.39a)

—iA(t) At

thé}+l7aéj7g — the Cjy1.0C5.00 (2.39D)
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making the Hamiltonian time-dependent.
We use the vector potential

At) = Age~(t710)*/(293) o [wp(t — to)], (2.40)

to model a pump pulse with amplitude Ay and frequency wy,. It is centered at time ¢y (> 0) and has a
width 0,. An example of the pump pulse described above is illustrated in Fig. 2.1.

1
041 : —— Pump pulse
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g m
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1
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1
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1
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H
0.0 ‘ 5.0 10.0 15.0 20.0

t

Figure 2.1.: Tllustration of the pump pulse as modeled by (2.40). The pulse is centered at ¢ty = 10,
has a width of o, = 2, an amplitude of Ag = 0.37, and a frequency of wy/t;, = 7.1. The
black dashed line represents the center of the pulse, while the grey dashed lines denote the
width.
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2.4.2. Quantum Quenches

Quantum quenches are the simplest way to take a system out of equilibrium and refer to a change of
the system parameters. Although there are slow quenches, the term usually refers to a sudden change
in one of the system parameters. Starting from the ground state of a Hamiltonian Hy the system
dynamically evolves under a changed Hamiltonian H:

X Hy t<0,
HQuench = {}AIO £>0. (2.41)

Such a quench is a relatively generic concept, but there is currently particular interest in studying
quenches near or across an equilibrium quantum phase transition. This is because these quenches can
lead to what are known as dynamical quantum phase transitions (DQPTS).

2.4.3. Dynamical Quantum Phase Transitions

DQPTs are a relatively new concept that was first introduced in Ref. [19]. The term describes a non-
equilibrium phenomenon that generalizes equilibrium quantum phase transitions to real-time dynamics.
DQPTs typically arise in systems undergoing a (sudden) quantum quench, but have since been extended
to other non-equilibrium protocols [62-69]. The signature of a DQPT (although not yet under this
name) was actually first discovered during a slow quench in Ref. [70]. In this thesis, we will look for
DQPTs in the photoinduced Hubbard model. While the photo-pulse protocol is our focus, we begin
by introducing the concept of DQPTs through the simpler and well-studied quench protocol. This also
gives us a benchmark comparison for the more complex photo excitation protocol.

The key quantity of study is the Loschmidt (or return) amplitude defined as

G(t) = (woltho(t)) = (wole™M]4ho). (2.42)

where |1)g) is the ground state of the initial Hamiltonian Hy and [¢o(t)) = e—ifl tl4po) is the time evolved
non-equilibrium state according to the quench protocol (2.41).

The corresponding (return-)probability
L(t) =16@) (2.43)

is called Loschmidt echo and quantifies the probability of the system returning to its initial state.
The Loschmidt amplitude G(¢) can formally be interpreted as a boundary partition function Z(z) =
(Y ale " |4hg) with a complex parameter z = it. For z € R, Z(z) is the partition function of the field
theory described by H with boundary conditions encoded in the boundary states [¢4) and |5) [71].
The initial state [¢)g) can therefore be interpreted as a boundary condition in time. While a boundary
partition function with a complex parameter doesn’t describe a physical system, this interpretation
has been used to apply concepts from equilibrium statistical mechanics to the Loschmidt amplitude.
In particular, the analysis of partition function zeros in the complex temperature plane, originally
introduced by Fisher [72], has played an important role. It also motivates the definition of a rate
function of the return amplitude g(t),

G(t) = e 190 (2.44)

with L > 1 the number of sites. Consequently, the return probability can be expressed as
L(t) = e PO, (2.45)

with the return probability rate function per site in the thermodynamic limit:

M) =~ lim. %logﬁ(t) — 2 R(g(1). (2.46)
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Due to the connection to partition functions, A(¢) can also be viewed as the dynamical analog to a
free energy density. This is however only a formal similarity. It is not a thermodynamic property from
which physical observables can be derived.

Nevertheless, by analogy with the theory of equilibrium (quantum) phase transitions, where non-
analyticities in the free energy signal phase transitions, a DQPT is defined as a non-analytic point of
the Loschmidt amplitude as a function of time [18]. In the context of Fisher zeros, this occurs when a
region of such zeros crosses the real-time axis in the thermodynamic limit. DQPTs are therefore phase
transitions in time instead of as a function of a control parameter. Most of the time, DQPTs occur
when quenching across an underlying equilibrium phase transition. In one-dimensional systems this
mostly leads to a rate function of the form

t—t,
te

A(t) ~ ‘ (2.47)

around a critical time t..

Example: DQPT in the Transverse Field Ising Model

To illustrate this behaviour, we consider the simplest example in the form of the one-dimensional
transverse field Ising model [73]. This model describes a quantum-mechanical spin chain with nearest-
neighbour interactions in a magnetic field that is perpendicular to the axis of the spin-spin coupling.
The Hamiltonian is given by

Hyi=—J) 6i65+g> 67, (2.48)
(1,3 J

where J is the interaction strength and g is the strength of the transverse magnetic field.

For |.J/g| > 1, the spin-spin interactions dominate and the system is in an ordered phase (ferromagnetic
for J > 0, antiferromagnetic for J < 0). For |J/g| < 1, the transverse field dominates and the system
is in a paramagnetic disordered phase. The system therefore undergoes a quantum phase transition
at |J/g| = 1. If the system is quenched across this equilibrium phase transition, the rate function
(2.46) for the Loschmidt echo exhibits a clear non-analytic cusp, signaling the occurrence of a DQPT,
as shown in Fig. 2.2.

0.40 9

0.3514

0.30 4

0.25 1

0.154

0.05 4

0.00 1

0 2 4 t 6 8 10
¢
Figure 2.2.: Time evolution of the rate function A(¢) following a quantum quench across the equilibrium
phase transition in the transverse field Ising model. The system was quenched from gg =
0.8 to g = 1.2 with Jy = J = 1. The ground state and subsequent time evolution were
computed using the iTEBD algorithm, which will be discussed in the next chapter. The
cusp is the signature of a DQPT.
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For specific quenches, it is even possible to demonstrate analytically, by employing renormalization
group (RG) techniques, that DQPTs in the one- and two-dimensional Ising model exhibit the same
scaling behaviour and universality class as their equilibrium counterparts [74]. In one dimension, this
correspondence arises because, in these cases, the Loschmidt amplitude is equivalent to the classical
equilibrium partition function but with a complex effective coupling. As a result, the DQPTs map to
the unstable fixed point of the equilibrium Ising model. While in the two-dimensional case there is
no exact RG transformation, the exact solution of the model can nevertheless be extended to complex
couplings.

Exceptions, Special Cases, and Generalizations

DQPTs can also occur without quenching across an equilibrium phase transition and not occur despite
quenching across an equilibrium phase transition [18]. A notable exception are noninteracting topolog-
ical systems: here, a DQPT always appears whenever a topological phase transition is crossed, specifi-
cally in one dimension or in two dimensions if the Chern number changes [18]. In these cases, one can
even define dynamical order parameters, such that the DQPT separates distinct "dynamical phases"
[75]. Nonetheless, while there is a profound connection between equilibrium phase transitions and
non-equilibrium quantum phase transitions, DQPTs are, in general, an independent non-equilibrium
phenomenon. Notably, DQPTs have also been observed experimentally in several quantum simulators
[76-81].

For more general non-equilibrium protocols beyond quenches, the Loschmidt amplitude can be gener-
alized as

G(t) = (o|U(t)[tho) (2.49)

with the unitary time evolution operator U (t) generated by the time-depended Hamiltonian.
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3.1. Tensor Networks

Tensor networks have proven to be powerful and versatile tools for simulating quantum many body
systems and especially strongly correlated systems. In this section, we provide a brief introduction to
the concept of tensor networks and matrix product states (MPS) and then discuss infinite matrix prod-
uct states (IMPS) in greater detail. For a detailed overview of tensor operations such as contraction,
tracing, and singular value decomposition (SVD), please refer to Ref. [82, Chapter 1|. Other useful
introductions to this topic include the reviews and lecture notes in Refs. |7, 8, 83-86].

Let’s consider an N-particle quantum many-body system, where each particle has d = dim H; basis
states. In section 2.1 we have seen that any pure state of such a system can be written as

d
i1 yemin |, (1 2 N
W) = Z c ’N]u§1)>®]u§2)>®---®\u§N)) (3.1)
it yein=1

with a single-particle basis {\ug )>} for each one-particle Hilbert space ng ) and ij =1,...,d. The
complex coefficients C*+N can be interpreted as a rank-N tensor C' with N indices where each index
can take up to d different values. For our needs, a tensor is therefore simply a multidimensional array.

This tensor can be represented diagrammatically as in Fig. 3.1, where each leg corresponds to an (open)
index.

Figure 3.1.: Graphical representation of an rank-N tensor C.

In this diagrammatic language, tensors are represented by geometric shapes with lines or legs repre-
senting their indices. When two tensors are combined by summing over one or more of their indices,
the corresponding legs in the diagram are connected. This operation is referred to as a contraction.

3.1.1. Matrix Product States

In case of the one-band Hubbard model, each index corresponds not to one particle, but to one lattice
site. The basis states for each site are given by {|0), | 1),| J),| TJ)}, and thus the local Hilbert space has
dimension d = 4. This implies that we would need O(4") coefficients to represent the quantum state
of a system with L lattice sites. This exponential growth of the Hilbert space in system size quickly
becomes computationally infeasible, making it necessary to find a more efficient way to represent |¢).

15
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This is where tensor networks, and in particular MPS for one-dimensional systems, come in. The key
idea, as illustrated in Fig. 3.2, is to use a network of smaller tensors rather than a single large tensor.
In our example, the network consists of five tensors, which are interconnected via contracted indices.
Each unmatched leg still corresponds to an index, associated with the physical degrees of freedom of
that site. Starting from a general rank-N tensor, the MPS representation can be constructed using

successive SVDs.
- EHA A
| | | | |

i io i3 iy i5

Figure 3.2.: Graphical depiction of a tensor network in the form of a MPS for five sites.

Using this MPS representation, we now have a handle to limit the number of parameters by bounding
the so-called bond dimension x of the contracted indices. For a chain with of L sites, the MPS pa-
rameterizes the system with only O(Lx?d) parameters, which is exponentially fewer than the O(4")
parameters for the exact representation. By restricting x, we effectively truncate the smallest singular
values (Schmidt coefficients) in the SVD of the state at each bipartition [82]. The maximum entan-
glement entropy that can be represented is therefore bounded by logx, making the MPS framework
particularly efficient for states with limited entanglement.

Area Law

The area law is a fundamental property of the entanglement entropy that is essential for the relevance
of MPS. It states that for a low energy eigenstate of a gapped Hamiltonian with only local interactions,
the entanglement entropy S(pa) of a connected region A scales as the size of its boundary [87|. For a
bipartition of a one-dimensional chain, the area law therefore predicts that the entanglement entropy
is independent of system size:

Sa~O(). (3.2)

For a gapless or critical one-dimensional system, however, the entanglement entropy scales as [88, 89|
Sa ~ const. -logl + O(1) (3.3)

with [ the size of the subsystem A. The entanglement entropy of excited states can even scale with
the volume of the subsystem [90-92].

Any MPS with finite bond dimension x can therefore efficiently represent ground states of gapped
systems, because the maximal entanglement entropy across any cut is upper bounded. This makes
MPS a natural and efficient ansatz for such states. In contrast, highly entangled states, such as those
found in critical one-dimensional systems like the repulsive Hubbard model, require an MPS with a
bond dimension that grows polynomially with system size to accurately capture the logarithmic scaling
of entanglement entropy.
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3.1.2. Infinite Matrix Product States

To work directly in the thermodynamic limit L — oo, the conventional MPS ansatz must be extended
to the iMPS representation, as introduced in Refs. [8, 10, 85|. By exploiting translational invariance,
the state of an infinite chain can be efficiently represented by repeating a finite unit cell of tensors. In
this section, we introduce the basics of the iMPS representation for the simplest case of a single-site

unit cell, consisting of a tensor A* € CX*X for each physical index ij = 1,...,d. The state can be
written as ‘ o
[h(A)) = Z G ATTA AT Ly qug g ). (3.4)
{in}

The diagrammatic representation of such a state is

W(A»:{fHTHfHTHT‘} (3.5)

This concept can be generalized to unit cells containing multiple sites, which we will do in the next
section on algorithms.
One central object in many calculations is the transfer matrix or transfer operator defined as

d
B(X)=> AX(AH. (3.6)
=1

For a properly normalized iMPS, the transfer matrix has a leading eigenvalue A\ = 1 with left and
right fixed points [, r fulfilling Tr(lr) = 1:

E(r)=Y Alr(A)=r Ef()=> (A)14"=1. (3.7)

(2

From now on, we will switch to the diagrammatic language for its simplicity. Here, the eigenvalue

equations are
A A
= and —~ ?} . (3.8)
At At

Notice that the state |1)(A)) is invariant under the gauge transform A% — X 1A% X. Consequently,
the tensor A is not uniquely defined by the state. To address this, we make use of this gauge freedom,
together with the fixed points of the transfer matrix, to define canonical forms. These are very useful
both conceptually and computationally.

First we decompose the fixed points as | = LTL and » = RR'. This allows us to express the state
in left-canonical form using the tensor A; = LAL™', or in right-canonical form using the tensor
Ar = R7YAR. In left- or right-canonical form, the corresponding transfer matrices of A7, and Ag have
the identity matrix 1 as their left or right fixed point, respectively. Ay, is thus a left-normalized tensor,

Canonical Forms
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while Ap is right-normalized. With the help of a new tensor C = LR we arrive at the mixed-canonical

o W(A) = .. e (3.9)

The matrix C can additionally be diagonalized using an SVD, C' = USVT, where the unitary matrices
U and V1 can be absorbed into new definitions of Ay, and Ar. With this, we see a major advantage of
the canonical form for the first time: the diagonal elements C;; are the Schmidt coefficients, and the
entropy of entanglement can be directly read off as

X
SL/r=— Z Cyi°log Cyi. (3.10)
i=1
Since the chain is translation invariant, the entanglement entropy is the same at every cut. However,
it does depend on the bond dimension x, and we therefore write Sy = Sp,g. In particular, as in the
finite case, the entanglement entropy is bounded from above by log x.

Expectation Values and Overlaps

To calculate the expectation value (per site) of an operator H , the approach of the finite-size case can
be transferred, and the calculation becomes

All the infinitely many sites on which the operator does not act are contracted away using the corre-
sponding left and right fixed points.
The norm of a state is then accordingly computed as

(a4 [ 4] ‘
((A)|v(A4)) = :?D = [g :?) = @ =1. (312
fAT i ATT ;?

Now it is also clear why the iMPS is normalized the way it is.

However, if we want to calculate the overlap between two different states |¢)(A)) and | (B)), it vanishes
exponentially with system size in the thermodynamic limit. This is because the largest eigenvalue €; of
the mixed transfer matrix F(X) = Y, A*X(B%)T is strictly less than one, provided the two states are
not related by a gauge transformation. This phenomenon is known as the orthogonality catastrophe,
according to which different states in the thermodynamic limit become orthogonal.

To compute the Loschmidt amplitude (2.42) in this context, we interpret the leading eigenvalue € (t)
as the overlap per site [8, 93, 94]. The rate function (2.46) is then computed as

At) = —2log |ex (¢)]. (3.13)
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Correlation Functions

With this knowledge we can now also compute two point correlation functions <w(A)|Og)Oé] )\1/1(/1»
as

(3.14)

which only depends on the distance |i — j| because of translation invariance. We can now add the
identity 1 = >, |\;)(\;) into the correlation function, where |\;) and ();| are the biorthogonal right
and left eigenvectors of the transfer matrix for eigenvalues \; [8]. As we have already seen, \; = 1,
|A1) = r and (A;| = {. This reduces the transfer matrices to a product of the corresponding eigenvalue
in every summand and the correlation function can be written as [8, 10|

Caplli—i) =@ 0. Ox® 0 @ +Z(Ai)m*”*1 (6) G)x() (0,) (. (3.15)

Any correlation function of an iMPS therefore consists of a long-range disconnected part and a con-
nected part that is a sum of exponentials. Power-law correlations cannot be captured natively, and
long-range correlations only exist if (OEZ )) and (Og)) are non vanishing.

In case of the pair correlation function (2.31), the disconnected part is zero because the half-filled
Hubbard model is particle-number-conserving. Thus, the ODLRO of 7-pairing states can only be
approximated by the exponentially decaying connected part of the correlation function.

To characterize the decay of the connected part, we define the correlation length in terms of the

second-largest eigenvalue of the transfer matrix as

1
= —— 3.16
$= Tloaln (3.16)

Since the value of the correlation length generally depends on the bond dimension x, we write &, .
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3.2. Algorithms

All tensor network calculations were performed using the Julia language with the work-in-progress
ITensorInfiniteMPS. j1 package [95], based on the ITensors.jl library [96-98|.

3.2.1. iTEBD

The infinite time-evolving block decimation algorithm (iTEBD), first proposed in 2006 by Vidal [9],
allows the simulation of an infinite one-dimensional quantum lattice systems. The algorithm is based
on the TEBD algorithm [99, 100] and makes use of translational invariance and parallelizability of
local updates in TEBD to work directly in the thermodynamic limit. In this way, extrapolations using
finite-size scaling can be omitted.

Starting with an initial state |t¢)g), iTEBD can be used for a real-time evolution

[(t)) = exp (—iHt) o), (3.17)

as well as for an imaginary time evolution to find the ground state |¢gg) of the Hamiltionian H:

o exp(—?t)w(» .
[Yas) et || exp (—Ht)|wo)||

We use iTEBD for all our real-time evolutions and some ground-state computations.

(3.18)

Gamma-Lambda Notation

Before presenting the algorithm, we first extend the unit cell to include two sites in order to maintain
translational invariance when applying a two-site operator that represents nearest-neighbour interac-
tions:

{?H?H?H?%_ (3.19)

It is also useful to introduce the I'A notation for iMPS, which can easily be obtained using SVDs
[86]. In this form, the state is described by tensors I' and diagonal matrices A containing the Schmidt
coefficients. The relationship between the mixed-canonical form and the I'A notation for a two-site
unit cell, which we will use as the definition of the I'A notation, is

(3.20)

The Algorithm

To perform the imaginary time evolution of an iMPS, the operator U (t) = e~ has to be applied to
the state. For a real-time evolution, the following algorithm remains identical except that the operator
becomes U(t) = ¢~ To apply the time evolution operator, we start by splitting the Hamiltonian H
with nearest-neighbour interactions into two parts, containing the odd and even bonds respectively:

.FAI = Z il[j’j+1] = Z B[2j’2j+1} + Z B[Qj—lﬂj] = Heven + Hodd- (321)
J J J
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The on-site Coulomb interaction of the Hubbard model can be arbitrarily divided between the two
parts. Using a second-order Suzuki-Trotter decomposition [101], U(t) can then be written as

. . 5 N - - - N
O(t) = et — NI _ [efT(He+Ho):| _ [67(7/2)1{067711667(7/2)1{0 Lo (3.22)

Since the individual terms in both the even and the odd sum commute with each other, the exponen-
tials can easily be computed as products of two-site gates corresponding to the local exponentiated
Hamiltonian terms. Time evolution is then achieved by repeatedly applying the three operators and
due to translation invariance, only two sites need to be updated in each application. The error grows
with the time-step size and accumulates over the course of the simulation. A fourth-order Suzuki-
Trotter decomposition would reduce the error per step to O(75) but also requires the application of
seven operators per step instead of three [101].

After applying a gate, the I'A iMPS structure is destroyed and needs to be restored. The original
version [9, 102| of the iTBED algorithm requires the inversion of singular value matrices, potentially
leading to numerical instabilities, to achieve this. Therefore, we use a modified algorithm following
Hastings [103|. The procedure for updating an odd bond after applying U, = e~ (7/2Ho g jllustrated
in Fig. 3.3.
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Figure 3.3.: Updating steps of the iMPS after applying U,. Notice that after this update procedure, we
do not know the individual tensors I'e and I', but only I'eAs and I'gA,. This is, however,
not a problem because A. and A, are updated individually, which is sufficient to compute
the entanglement entropy, expectation values, and the eigenvalues of the transfer matrix.

To control the size of the iMPS, only the largest x singular values are kept after the SVD. A major
advantage of this algorithm is that both storage and computational costs are independent of system
size. However, for ground-state computations, there are more efficient algorithms.

3.2.2. VUMPS

For the computation of ground states, we also use the VUMPS (variational uniform matrix prod-
uct states) algorithm [10, 11], which efficiently computes ground states of one-dimensional systems in
the thermodynamic limit. VUMPS is used because it typically converges significantly faster and is
more accurate than iTEBD, especially for critical systems. It variationally updates the iMPS through
eigenvalue problems to minimize the energy until convergence is reached. We use the existing imple-
mentation in the ITensorInfiniteMPS. j1l package [95] and will not discuss the internal workings of
the algorithm in this thesis. For a detailed description, please refer to the original publications.
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3.2.3. Jordan—Wigner Transformation

Tensor network methods work naturally with spin or boson operators. Due to the anticommutation
relations, however, fermionic operators do not fit natively into the framework. To work with (spinful)
fermions, we use the Jordan—Wigner transformation that maps between spin—% operators and fermionic
creation and annihilation operators. These spin—% operators can also be interpreted as hard-core boson
operators:

Stead, ST ea. (3.23)
Hard-core bosons are particles that obey bosonic statistics but have an additional constraint preventing
them from occupying the same quantum state. They therefore anti-commute like fermions for the
same state and commute like bosons for different states. Since we are working with spinful fermionic
operators, a second spin—% degree of freedom needs to be added:

Steal,  Sfed (3.24)

We can now define the Jordan—Wigner transformation to map spinful fermion operators on spinful
boson operators [104]: o )

éj,T = FlFQ"'Fj_lCALj’T, (325)

&y = FiFy - Fioa(Fjay,). (3.26)

The so-called Jordan-Wigner string operator F j is defined as

~ ~

Fy=(1—=2n)(1 —2n;) = (-1)". (3.27)

This mapping ensures the correct fermionic anticommutation (2.9) for operators acting on different
sites. Note that this transformation maps ¢;, é;[ to global operators. However, most of these non-local
parts usually cancel. For example, the Hubbard Hamiltonian (2.18) maps to

H=—ty) (@,T i — (@50 F) a0 + (@) Fjan)ago, - (&j,ipjﬂ)&jﬂ,i) +Hy. (3.28)

3.3. Finite-Entanglement Scaling

Quantum critical systems exhibit long-range correlations characterized by a diverging correlation length
and increasing entanglement. Since iMPS can only capture systems with finite entanglement, their
accuracy for critical systems is limited by the finite bond dimension . Similar to the well established
finite-size scaling, utilized to account for universal behaviours in finite-size systems, finite-entanglement
scaling leverages the universal nature of errors induced by finite entanglement.
One way to describe critical phenomena in 1+ 1 dimensions is through conformal field theory (CFT).
With its help, it has been shown that in the critical region, where the correlation length is much larger
than the lattice spacing (£ > a), the entanglement entropy of a large one-dimensional system scales
like [88]

Sy ~ glog &y (3.29)

The dimensionless number ¢ is called central charge and uniquely describes the universality class of
the critical system [12].

Interestingly, the Hubbard model and other spin—% Luttinger liquids cannot be described by a CFT
because they are not Lorentz-invariant; their spin and charge velocities, v, and v, act as two different
speeds of light. However each sector by itself is conformally invariant and described by a Virasoro
algebra with central charge ¢ = 1 [105]. Since the charge sector is gapped at half-filling with U > 0,
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it is not expected to influence the scaling, as it only contributes a constant term to the entanglement
entropy. A central charge of ¢ = 1 is therefore expected for the CFT describing this critical system
[12]. Previous numerical studies also showed that the finite effective correlation length induced by
finite entanglement in iMPS scales according to the empirical scaling law [20]

& ~ X5, (3.30)

where £ is determined by the central charge [21]

(3.31)

- 6
" 12t 1)

Combining (3.29) and (3.30) also yields the relation

Sy ~ %logx. (3.32)



4. Results

In this chapter we use the numerical methods and theoretical concepts introduced in the previous
chapters to analyze the behaviour of the half-filled Hubbard model under a photoexcitation protocol.
We begin with a finite-entanglement scaling analysis of the ground state, which serves as a reference
point and as a benchmark for our numerical setup. We then continue with the time evolution of
the system under the influence of a photo pulse, studying various physical quantities, including the
pair correlation function, double occupancy, entanglement entropy, and correlation length. Finally, we
attempt to apply finite-entanglement scaling to the system’s post-pulse state.

4.1. Finite-Entanglement Scaling

As a baseline, we compute the central charge of the half-filled Hubbard Model in the Mott insulating
phase using the scaling relation (3.29) between the entanglement entropy S, and correlation length
&y- Linear fits are performed using ordinary least squares regression. The reported uncertainties
correspond to the standard error of the fit. Figure 4.1 shows the scaling behaviour for ground states
at U/t;, = 8, obtained using both iTEBD and VUMPS for a range of bond dimensions from y = 20 up
to x = 2500. The fitted slope of 0.1661 agrees with the theoretical expectation of £, confirming ¢ =1
for the Luttinger liquid description of the gapless spin sector to a high accuracy. This validates the
reliability of our numerical approach.

o VUMPS
187 iTEBD
—— Fit: S, = 0.1661 - In(&,) + 0.651
164 f

« Pl
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|C =0.99674 £ 0.00138
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0.8
1 2 3 4 5 6 7
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Figure 4.1.: Finite-entanglement scaling of the ground state of the half-filled Hubbard model at U/t}, =
8. The data shows S, versus log, for various bond dimensions 20 < x < 2500. The linear

fit yields a slope close to %, confirming a central charge of ¢ = 1.

24



4.1.

Finite-Entanglement Scaling

25

If we only consider bond dimensions x > 750, we get an even more accurate result (Fig. 4.2).

Figure 4.2.:

o VUMPS
iTEBD
—— Fit: S, = 0.1665 - In(&,) + 0.648

1.80

1,751
C/)X

1.70 4

c = 0.99891 %+ 0.00095
1.651
1.60

6.4 6.6 6.8 7.0

In (&)

6.0 6.2

7.2

Finite-entanglement scaling of the ground state of the half-filled Hubbard model at U /t;, =
8. The data shows S, versus log¢, for various bond dimensions 750 < x < 2500. The

linear fit yields a slope close to é, confirming a central charge of ¢ = 1.

As an additional benchmark, we also compute the central charge in the non-interacting limit of the
Hubbard model (U/t;, = 0). In this regime, the system is equivalent to two decoupled gapless fermionic
chains, corresponding to the independent charge and spin sectors, resulting in a central charge of
c=1+1=2.
Figure 4.3 shows the finite-entanglement scaling of the entanglement entropy with respect to the
correlation length for the ground state at U/t, = 0, using VUMPS. The fitted slope is in agreement

with the theoretical prediction s = g = %, confirming ¢ = 2.
2.6
o  VUMPS
Fit: 5, = 0.3345 - In(,) + 1.268
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2.2
CI)X
2.0
¢ = 2.00687 £ 0.01214
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Figure 4.3.: Finite-entanglement scaling of the ground state of the half-filled Hubbard model at U/t;, =
0. The data shows S, versus log &, for various bond dimensions 90 < x < 900. The linear

fit yields a slope close to %, confirming a central charge of ¢ = 2.
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4.1.1. Scaling with Bond Dimension

While the scaling £ ~ x" and consequently S, ~ % logx was qualitatively observed (see Fig. 4.4),
the extracted exponent x shows systematic deviations from the theoretical prediction (3.31). These
deviations are present both at U/t;, =0 (¢ = 2) and U/t;, = 8 (¢ = 1), and interestingly, they become
more pronounced at larger bond dimensions x. The derivation of k¥ by Pollmann et al. assumes a critical
point separating two gapped phases, which can be described by a single CFT. These assumption do
not perfectly fit the Hubbard model: At U/t;, = 0, it is a Luttinger liquid with two decoupled ¢ = 1
sectors, each described by a CFT. The truncation of entanglement in iMPS acts independently on each
sector, which could affect the scaling behaviour. At U/t;, = 8, the model is in a critical phase rather
than at a critical point separating two gapped phases.

However, we observed similar deviations for the critical XX model (¢ = 1) [106], which nominally fits
Pollmann’s assumptions, using both the iTEBD and VUMPS algorithms. Figure 4.4 presents these
deviations for all three models; a comprehensive summary of results for different models, parameters,
and bond dimensions is provided in Appendix A.

Hubbard U/t;, =8 Hubbard U/t;, = 8, x > 750

o VUMPS o VUMPS
iTEBD 7.0 iTEBD
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2 T 6.0 4
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3 4 5 6 7 8 6.8 7.0 7.2 74 7.6 7.8
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Figure 4.4.: Finite-entanglement scaling for various models, algorithms, parameters and bond dimen-
sion ranges. The linear fits confirm the £, ~ £" scaling relation with a Pearson correlation
coefficient R > 0.999. The extracted exponent x, however, does not confirm the theoretical
prediction (3.31) of k¢, = 1.344055 for ¢ = 1 and kg, = 0.869694 for ¢ = 2. The deviation
seems to increase for larger bond dimensions x.

To fully understand the origin of these deviations, a more detailed study would be required. However,
since this is not the main focus of the present work, it is not explored further here.
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4.2. Photoinduced Dynamics

We now turn to the effect of a photo pulse on the Mott insulating phase of the half-filled Hubbard
chain at U/t, = 8. Starting from the ground state obtained using VUMPS at time ¢ = 0, we add the
time-dependent external field (2.40) modeling a pump pulse as discussed in section 2.4.1. The system
is driven out of equilibrium as |¢(0)) — [¢(t)), with its time evolution simulated using the iTEBD
algorithm with a time step 7 = 0.0025 if not stated otherwise. All simulations are performed with a
two-site unit cell. For comparison, we also tested a four-site unit cell at lower bond dimensions but
found no differences. We use a pulse tuned to parameters that were previously identified as optimal
for inducing maximal 7-pairing correlations in the half-filled Hubbard model [15, 107]. It is centered
at time tp = 10, with a width of o, = 2, an amplitude Ayp = 0.37 and a frequency of w,/t, = 7.1.
These values correspond to the pulse shown in Fig. 2.1. Additionally, we also consider parameters
that maximize the double occupancy. This is achieved with amplitude Ag = 0.95 and frequency
wp/ty, = 8.4. The centering and width is the same as for the n-pairing-dominant pulse. Following the
pulse, the system is expected to undergo a pronounced change in dynamical behaviour, providing a
concrete example of how targeted out-of-equilibrium protocols can generate nontrivial quantum states
that cannot be captured by traditional equilibrium statistical mechanics.

4.2.1. n-Pairing

Figure 4.5 shows a significant enhancement of the double occupancy, P(r = 0,t) = 2n4(t), during
both pulses. Due to its local character, the double occupation is captured accurately even at lower
bond dimensions and plateaus almost independently of x after the pulse. However, it remains slightly
more stable for higher bond dimensions. As expected, the double-occupancy-dominant pulse plateaus
at a higher value and, interestingly, exhibits a high peak before the center of the pulse. The double
occupancy following both pulses shows a minor peak at t &~ 12.5 and subsequently reaches a minimum
at t ~ 15, after which it remains constant. This confirms the results of Ref. [15] and shows that the
increased double occupancy remains stable for longer periods.

06d — X = 2200 solid: n-pairing pulse
’ x = 1000 === dashed: double occupancy pulse
0.5 -t X = 2200 7
-== x = 1000 X .
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Figure 4.5.: Time evolution of the double occupancy for various bond dimensions y. Solid lines rep-
resent the n-pairing-dominant pulse, while dashed lines denote the double-occupancy-
dominant pulse. The vertical dashed line marks the center of the pulses.

As shown in Fig. 4.6, P(r # 0,t) also exhibits a considerable increase during the pulse for both pulse
types. P(r,t) alternates in sign between odd and even distances r, which is typical for n-pairing
states [14]. These longer-ranged correlations are induced by the photo pulse and are absent in the
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Mott insulating ground state at ¢t = 0 (see Fig. 4.7). For the pulse maximizing double occupancy, this
induced correlation decays quickly after the pulse ends, returning close to its initial value within ¢ &~ 25.
In contrast, for the n-pair-maximizing pulse, the increased correlations remain stable throughout the
simulation, indicating the formation of a robust n-pairing state. We found that it is important to use
a sufficiently small time step 7, as larger values induce an unphysical drift in the pair correlations over
time.

0.15 1 T r:
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Figure 4.6.: Time evolution of the pair correlation fun(zzftion P(r,t) for different distances r. Solid lines
represent the n-pairing-dominant pulse, while dashed lines denote the double-occupancy-
dominant pulse. The vertical dashed line marks the center of the pulses. Simulations were
performed using x = 2200.

Figure 4.7 also shows that the pair correlations, which are initially localized at short distances, appear
to spread outward following the photoexcitation. Specifically, we observe that the short-range pair
correlations decrease over time, while correlations at longer distances grow. This suggests an outward
propagation of pairing correlations following the photoexcitation. Such behaviour is reminiscent of
the light-cone effect observed after quenches [108-110], where correlations spread at a finite velocity
determined by the underlying quasiparticle dynamics. In this picture, the pulse acts as a source of
quasiparticles. Figure 4.8 further illustrates this effect, showing that the pair correlations spread with
an approximately constant velocity after the pulse.
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Figure 4.7.: Pair correlation function at times ¢ = 0 (ground state), ¢ = 12.5 and ¢t = 20. The results
were obtained using a bond dimension of y = 2200.
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Figure 4.8.: Heatmap of the absolute value of the pair correlation function |P(r,t)|. The results show
the outward spreading of pair correlations over time, indicative of a finite-velocity propa-
gation front following the photoexcitation. Computed with bond dimension y = 2200.

The qualitative features of P(r,t) are consistent across various bond dimensions. The decrease as
a function of r can be attributed to the limitations of the iMPS representation, which can only ap-
proximate the expected long-range correlations as a sum of exponentials. Figure 4.9 illustrates the
dependence of P(r,t) on bond dimension x. Even a relatively large bond dimension, such as x = 2499,
still significantly limits the amount of long-range correlations that can be captured by the iMPS ansatz.
This constraint becomes increasingly pronounced at larger distances r. While previous finite-size stud-
ies for this pulse protocol demonstrated the discrepancy between exact diagonalization and the MPS
method (see Ref. [14] and its supplementary material), the infinite MPS appears to face even greater
challenges in accurately capturing long-range correlations, especially at large distances.
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Figure 4.9.: (a) Pair correlation function Py (r,t) at fixed time ¢t = 22.5 for different bond dimensions
x. Increasing the bond dimension leads to higher values of the pair correlation.
(b) Relative difference AP/P = [Py (r,t = 22.5) — Pigoo(r, t = 22.5)]/[Piooo(r, t = 22.5)] of
P, to Piooo at t = 22.5. The relative difference increases as x increases and grows faster
at larger . The iTEBD simulations were performed using 7 = 0.005.
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The Fourier transform ﬁ(q, t) (also called the pair structure factor), shows a clear peak at ¢ = 7 after
the pulse, as expected from the alternating sign. Figure 4.10 demonstrates the enhancement of ﬁ(ﬂ', t)
during the pulse, which strongly indicates the emergence of n-pairing in the system.

These results are consistent with previous findings [15]. For finite systems, further evidence of n-pairing
is provided in Ref. [14], where the overlap wit n-pairing eigenstates is explicitly computed.
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Figure 4.10.: (a) Time evolution of P(r, t) for different bond dimensions y with 7 = 0.005. The Fourier
transform was computed using P(r,t) up to a range of r = 128. P(m,t) plateaus at a
value dependent on x. The decrease is due to numerical errors as it should be constant
due to the commutation relation (2.28). (b) Peak of the pair structure factor at ¢ = .
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4.2.2. Dynamical Quantum Phase Transitions

Having established that the photoexcited state exhibits properties that are absent in any region of
the ground-state phase diagram, we now investigate whether these changes are accompanied by a
DQPT. It is important to emphasize again that this scenario differs qualitatively from most other
DQPT studies, which typically involve sudden quenches or slow ramps. Although DQPTs have been
investigated in Floquet systems [68, 69], to the best of our knowledge, they have not yet been studied
within photo-pulse protocols.

Quench Protocol

Before we inspect this novel scenario, we first demonstrate a prototypical DQPT in a sudden quench.
Specifically, we cross the metal-insulator transition of the half-filled Hubbard model by starting in the
non-interacting ground state with Uy = 0, and then suddenly turning on interactions to U > 0 at time
t = 0 while keeping t;, = 1 constant.

For a two-site system and assuming U > 1, strong-coupling time-dependent perturbation theory [111]
can be used to time-evolve the known ground state

1
[%o) =5 (ITL0) + 11,0 =L, 1) +10,11) (4.1)
as [112]
" 92 .
[9(0) = e o) + T (1 — V). 42)
Now the Loschmidt echo is easily obtained as
L(t) = cos® <U2t> + (:l]—gsin2 (U;) (4.3)

Calculating other quantities, such as (S7(¢)?) and the double occupancy ng(t), reveals that they all
oscillate with a period of %“ In the context of DQPTs, however, it is immediately apparent that
the Loschmidt echo is continuous and exhibits no non-analyticities. This is because Fisher zeros in
the complex time plane only accumulate as the system size increases [18], leading to DQPTs in the
thermodynamic limit.

Figure 4.11 shows the results of our simulations in the thermodynamic limit using iTEBD. DQPTs
emerge periodically and appear earlier and more frequently for larger U, closely resembling the peri-
odicity of the Loschmidt echo (4.3) in the two-site system.
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Figure 4.11.: Rate function A(¢) following quenches from Uy = 0 to various finite U in the half-filled
Hubbard model. Pronounced cusps are visible, signaling DQPTs. The calculations were
carried out using x = 900 and 7 = 0.0005.
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The agreement between our simulation and the two-site prediction improves with increasing U as
expected from the strong-coupling perturbation theory approximation. For U 2 32, the cusps almost
perfectly coincide with the predicted minima of the Loschmidt echo (4.3) (maxima of the corresponding
rate function) in the two-site system. For U = 48, the agreement is perfect within the limits of our time
step resolution. The same holds for the maxima of (S7(¢)?) and the minima of n4(t), as demonstrated
in Fig. 4.12. In this regime, spin dynamics, charge dynamics, and DQPTs evolve on the same timescale.
However, in the infinite system, the oscillations are damped.

Our results closely reproduce earlier studies [112] which showed that DQPTs already appear in large
but finite systems. Our calculations, however, achieve even higher accuracy.
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Figure 4.12.: Rate function A(t), twice the double occupancy 2n,4(t), and (S7(t)?) following a quench
from Uyg = 0 to U = 24 and U = 48 in the half-filled Hubbard model. Agreement
with the perturbation theory results for a two-site system, depicted by the thin black
lines, increases with U. Clear cusps signaling DQPTs emerge in the otherwise smooth
rate function for finite systems. The calculations were carried out using x = 900 and
7 = 0.0005.
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Photoinduced Hubbard Model

Having established the classical case, we now turn to the photoexcited case. After the n-pairing-
dominant pulse, we observe a non-analytic point at ¢, =~ 15. The cusps’s occurrence immediately
after the pulse suggests that the system undergoes a DQPT induced by the photo pulse. As shown in
Fig. 4.13, the cusp only shows up at large bond dimensions y. However, if x is large enough, the point
is consistent across multiple different y and becomes more pronounced the larger the bond dimension
gets. The time t. roughly coincides with the point at which the double occupancy reaches its minimum.
This is similar to the behaviour after the quench, which is further evidence of there being a DQPT
even though the cusps are not as sharp as the ones following the quench. A second kink that is only
recognizably for y > 2200 occurs at t. ~ 20 signaling another DQPT similar to the recurring DQPTs
in the quench case. Beyond this point, numerical errors begin to dominate and further conclusions
cannot be drawn.
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Figure 4.13.: Loschmidt echo rate function during the 7-pairing-dominant pulse for different bond
dimensions y. The iTEBD simulations were run using a time step of 7 = 0.0025. The
insets highlight non-analytic points after the pulse.

Figure 4.14 shows that the Trotter error plays a large role in these numerical instabilities at longer
times, as the second cusp becomes really pronounced even for x = 2200 if the time step is small enough.
The rate function also stays smooth for longer times if the time step is smaller.
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Figure 4.14.: Loschmidt echo rate function during the n-pairing-dominant pulse for different time steps
7 at a fixed bond dimension x = 2200.

For the double-occupancy-dominant pulse, the rate function exhibits a smooth peak shortly before the
center of the pulse, closely mirroring the behaviour observed in the double occupancy. The rate function
displays some cusps at t ~ 15 and at later times (see Fig. 4.15). However, these features show little
consistency across different bond dimensions, indicating significant numerical uncertainty. Therefore,
a clear identification of a DQPT is not possible based on the current data. One interesting feature to
note is that the rate function levels off much earlier than that of the n-pairing pulse, indicating a more
stable state.
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Figure 4.15.: Loschmidt echo rate function during the double-occupancy-dominant pulse for different
bond dimensions x. No DQPT can be identified. The iTEBD simulations were run using
a time step of 7 = 0.005.
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4.2.3. Entanglement Entropy, Correlation Length, and Finite-Entanglement Scaling
Entanglement Entropy

As can be seen in Fig. 4.16, the von Neumann entanglement entropy increases linearly during both
pulses and shortly afterwards.

x =1000 —— x =1900
X =1250 —— x =2000
x=1500  —— x =2200
x = 1750 — x =2499
25 30 35

Figure 4.16.: Time evolution of the von Neumann entanglement entropy for different bond dimensions
X using (a) the n-pairing-dominant pulse and (b) the double-occupancy-dominant pulse.
Simulations were performed using 7 = 0.005.

The increase in entanglement entropy reflects the departure from equilibrium, the creation of a highly
entangled excited state, and can be related to the induced correlations. For the n-pairing-dominant
pulse, the entanglement entropy S, stops increasing around ¢ ~ 17 and then begins to decrease again
at approximately t &~ 20. This decrease of entanglement entropy is likely a numerical error, as using
smaller time steps resulted in a less pronounced decrease. These observations indicate that the true
entanglement and correlations in the system can no longer be represented by the numerics once the
bond dimension limit is reached. Any further features such as the drop in entropy should therefore not
be interpreted as a genuine property of the system.

In contrast, for the double-occupancy-dominant pulse, which induces fewer long-range correlations, the
entanglement entropy grows faster, plateaus and remains stable even at longer times. This indicates
that the corresponding state is easier to represent by iMPS and does not push the representation to
its limits. These results for the entanglement entropy are consistent with Ref. [107].

Similar entanglement growth has been observed in finite systems under quench protocols. In such
settings, entanglement grows linearly in time until it saturates to a value proportional to the subsystem
size [113, 114].
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Correlation Length

Figure 4.17 displays the time evolution of the correlation length &, for the n-pairing-dominant pulse.
Before the pulse, it is stable and shows the expected scaling behaviour. During the pulse, the correlation
length drops sharply and the values for different bond dimensions converge. This indicates that the spin
sector becomes non-critical, with a finite intrinsic correlation length &y independent of . Figure 4.18
explicitly shows that the antiferromagnetic spin correlations present in the ground state vanish during
the pulse, and further analysis of the spin correlation function reveals that it transitions from algebraic
to exponential decay. Physically, the pulse injects energy to create n pairs, pushing the system into
a transient regime dominated by n-pairing correlations rather than critical spin waves. Because the
iMPS representation is not able to capture the long-range correlations, the correlation length does not
diverge.

The inset in Fig. 4.17 shows that after the pulse, there is a kink around ¢ =~ 17, after which the
correlation length slightly increases again and the results for different bond dimensions diverge without
any uniform scaling behaviour. As we will show shortly, the finite-entanglement scaling breaks down
at exactly that point, supporting its interpretation as a transition point marking the end of criticality
in the spin sector. Since the kink coincides approximately with the time at which the entanglement
entropy stops increasing (see Fig. 4.16), a formal similarity can also be drawn to the non-analytic
features that can appear in correlation function safter quenches in finite systems [108, 115]. These
features can emerge at such transition points due to the light-cone-like spreading of correlations and
entanglement.

However, the kink could also be a numerical artifact that arises because the iMPS reaches the limit
of its bond dimension at this point, such that the growth of entanglement entropy is truncated by
numerical constraints.
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Figure 4.17.: Time evolution of the correlation length &, for different bond dimensions x during the
n-pairing-dominant pulse using 7 = 0.005. The correlation length drops sharply during
the pulse centered at the dashed vertical line.
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Figure 4.18.: Time evolution of the spin correlation function (S7(t)S7,.(t)) for different distances r,
under the n-pairing-dominant pulse. The vertical dashed line marks the center of the

pulses. Simulations were carried out with y = 2000 and 7 = 0.005.

In case of the more generic, double occupancy-maximizing-pulse, there is a smooth transition instead
of a kink, as shown in Fig. 4.19. Other than the smooth turning point, the change in correlation length
for the double-occupancy-dominant pulse is qualitatively similar to that of the n-pairing-dominant
pulse, indicating a suppression of correlations in the dominant spin sector, similar to what is observed
after an n-pairing-dominant pulse. However, the correlation length drops to significantly lower values
and exhibits a much smaller increase after the turning point. Thus, a substantial part of the larger
correlation length remaining after the n-pairing-dominant pulse can be attributed to the presence of
n-pairing correlations, which are absent after the double-occupancy-dominant pulse.

i
i —— y=1000 —— y=1900
—— y=1250 —— y =2000
1200 - I X X
! —— y=1500 —— y=2200
: —— y=1750 —— y=2499
1000 - i
1
|
800 1 ! 3.75/]
1
= :
> 1
w600 i
1
i 3.51
400 1 :
200 A 3.251
1
0 i
0 5 10 15 20 25 30 35 40

t

Figure 4.19.: Time evolution of the correlation length &, for different bond dimensions x during the
double-occupancy-dominant pulse using 7 = 0.005. The correlation length drops to much
lower values than after the n-pairing-dominant pulse.
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Finite-Entanglement Scaling

As can be seen from the results in the previous section, both scaling laws including the correlation
length, Sy ~ glog¢, and & ~ x", no longer apply after the pulse. Specifically, they break down
at the kink or the turning point. Figure 4.20 demonstrates how attempts to extract a central charge
or effective critical exponent from finite entanglement scaling using the correlation length becomes
impossible.
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Figure 4.20.: Attempt to fit the scaling relation Sy ~ §log&, (3.29) before during and after the 7-
pairing-dominant pulse using 1500 < x < 2499. The post-pulse regime does not support
the finite-entanglement scaling law. In the observed regime, the correlation length is finite
and seems to saturate due to intrinsic physical constraints rather than limitations from
the bond dimension. Consequently, attempts to extract a central charge after the pulse
yield unphysical or inconsistent results, as the underlying assumptions of the scaling no
longer apply.
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Interestingly, despite the breakdown of finite-entanglement scaling involving the correlation length, the
bond-dimension-based scaling relation Sy ~ % logx remains valid throughout the entire simulation,
as can be seen in Fig 4.16. This scaling behaviour after the n-pairing dominant pulse is demonstrated
in Fig. 4.21.
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Figure 4.21.: Fit of the scaling relation S, ~ alogyx (3.32) before during and after the n-pairing-
dominant pulse using 1500 < x < 2499. The scaling law remains valid during the entire
simulation.

This critical-like scaling could be a numerical artifact resulting from the finite bond dimension of the
iMPS, which imposes an upper bound of log x on the entanglement entropy. Such a limitation might
mimic the scaling seen in critical systems even if the system is in a highly entangled, non-critical state.
Figure 4.22 shows the time evolution of the scaling coefficient a extracted from fits to Sy ~ alogx for
both pulses. The scaling coefficient approaches 1 after the double-occupancy-dominant pulse, showing
that the iMPS is nearly saturated and exhibits the maximal entanglement entropy growth possible.
The unstable behaviour of the coefficient after the n-pairing-dominant pulse reflects the challenge of
correctly capturing the state.

However, we also note a formal similarity to the "hidden criticality" [116] observed in free-fermionic
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systems, where entanglement-based measures reveal critical scaling despite the presence of short-range
correlations.
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Figure 4.22.: Time evolution of the scaling coefficient a, obtained from fits of S, ~ alogx (as in
Fig. 4.21), for both pulses using 1500 < y < 2499.



5. Conclusion and QOutlook

We have investigated the real-time non-equilibrium dynamics of the half-filled one-dimensional Hub-
bard model in the thermodynamic limit using iMPS and the iTEBD algorithm. By simulating pho-
toexcitation through a time-dependent vector potential (Peierls substitution), we explored two central
phenomena: the emergence of n-pairing correlations and the occurrence of DQPTs.

Our simulations confirmed that optical pump pulses can induce significant enhancement of the pair
structure factor P(w,t), providing numerical evidence for the dynamical generation of n-pairing corre-
lations with ODLRO in a Mott insulator. The persistence of these correlations after optimized pulses
suggests the formation of a robust nonthermal state. However, the iMPS representation struggles
to correctly represent the highly entangled nature of the excited state due to inherent entanglement
bounds.

In addition, we observed non-analyticities in the Loschmidt echo rate function, which serve as signa-
tures of DQPTs. Notably, such DQPT features appear not only in traditional quench protocols (across
the metal-insulator transition) but also in the photo pulse protocol. The observed DQPT cusps fol-
lowing photoexcitation, though less sharp than after quenches, were robust across bond dimensions
and time steps, supporting their physical rather than numerical origin. In combination with the simi-
lar entanglement growth pattern as after quenches, this establishes a direct connection between these
different non-equilibrium protocols.

Finite-entanglement scaling allowed us to extract the central charge ¢ = 1 before the pulse with high
accuracy, confirming the criticality of the gapless spin sector in the initial Mott insulating ground state.
However, after the pulse, we observed a saturation in correlation length and suppression of the spin
correlations. At the same time, the entanglement entropy retains critical-like scaling (S, ~ alog x)
with a scaling coefficient a, raising the question about whether this reflects numerical artifacts from
iMPS entanglement bounds or some kind of hidden criticality that could be verified through finite-size
studies.

Besides that, several other directions for future research arise from this work. A detailed investigation
of different pulse sequences and shapes such as multi-pulse protocols, time-asymmetric pulses, or
gradual ramping might reveal stability and enhancement of photoinduced 7-pairing beyond the single-
pulse scenario. The robustness and dependence of the DQPT signature for different pulse parameters,
shapes and sequences could also be explored. Furthermore, including more realistic features such as
phonon coupling or multi-band effects would bring the simulations closer to experimental realizations.
The cases of finite temperature and perturbed Hamiltonians have already been considered |14, 15].
In addition, the deviations from the predicted scaling coefficient k for finite-entanglement scaling, as
already mentioned, require further investigation.

In terms of methodology, other tensor network structures such as the multiscale entanglement renor-
malization ansatz (MERA) [117]| could potentially provide a more accurate representation of the crit-
ical ground state. However, MERA is not commonly used for time evolution and the study of non-
equilibrium dynamics, and its application to excited states remains exploratory.

In summary, while the iMPS ansatz has inherent limitations in representing highly entangled excited
states with long-range order, it still captured essential physics of photoinduced phenomena and enabled
insight into photoinduced n-pairing and DQPTs. This underscores the power and versatility of tensor
network methods for simulating non-equilibrium quantum dynamics directly in the thermodynamic
limit and points the way toward engineering novel quantum phenomena with light.
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A. Additional Data

Tables A.1 to A.3 provide additional data on the deviations observed in the scaling coefficient &
discussed in Section 4.1.1. Specifically, they demonstrate both the dependence of these deviations on
the bond dimension range as well as the consistency of the results for different models, methods, and
parameters. The central charge, which was always computed with high accuracy, is also listed.

The increase in deviation with larger x could suggest numerical convergence issues. However, as the
data indicates, there is no significant difference between iTEBD and VUMPS, nor between different
VUMPS convergence tolerances (Tab. A.3). This consistency suggests that numerical inaccuracies are
unlikely to be the primary cause of the observed deviations.

To fully understand the origin of these deviations, a more detailed study would be required. Such an
investigation would involve simulations at even larger bond dimensions, additional tests using iTEBD,
and possibly iDMRG, as well as a systematic variation of algorithmic parameters. An analysis of the
full entanglement spectrum would also be necessary to check the assumptions made in the derivation
of the k prediction [21]. Other assumptions such as the energy cost from discarding all but the largest
x eigenvalues could also be checked. Since this topic is not the main focus of the present work, a
thorough investigation is left for future studies.

Half-filled Hubbard model, U/t;, = 8
Method Xmin - Xmax K c k deviation
VUMPS 25 - 100 1.314521 1.02283 2.1974 %
VUMPS 25 - 500 1.301012 0.99672 3.2025 %
VUMPS 25 - 1000 1.279962 0.99408 4.7687 %
VUMPS 25 - 2500 1.263835 0.99426 5.9685 %
VUMPS 100 - 2500 1.234573 0.99263 8.1457 %
VUMPS 500 - 2500 1.220411 0.99814 9.1994 %
VUMPS 750 - 2500 1.221147 0.99893 9.1446 %
| iTEBD || 50-1060 | 1.299046 | 1.0015 | 3.3488 % |

Table A.1.: Finite-entanglement scaling results for the half-filled Hubbard model at U/t;, = 8, using
VUMPS and iTEBD over various bond dimension ranges. The exponent s is extracted
from the scaling £, ~ x", and the central charge ¢ from S ~ glog{y. The final column
shows the percentage deviation of k from the theoretical prediction ky, = 1.344055 (3.31).
VUMPS was run with error tolerances < 10~%, and results are consistent across methods.
The fits used to extract k were linear regressions on log-log data, with Pearson correlation
coefficients R > 0.999 in all cases, indicating excellent agreement with power-law scaling.
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Half-filled Hubbard model, U/t =0
Method Xmin - Xmax K c k deviation
VUMPS 28 - 100 0.876782 1.99562 - 0.8150 %
VUMPS 28 - 250 0.859904 2.00649 1.1257 %
VUMPS 28 - 500 0.848623 2.01136 2.4228 %
VUMPS 28 - 750 0.844952 2.00737 2.8449 %
VUMPS 28 - 900 0.841547 2.00687 3.2364 %
VUMPS 100 - 900 0.832892 1.98774 4.2316 %
VUMPS 250 - 900 0.817954 1.99165 5.9492 %

Table A.2.: Finite-entanglement scaling results for the half-filled Hubbard model at U/t;, = 0, using
VUMPS over various bond dimension ranges. The exponent x and central charge ¢ were
extracted as in Tab. A.1. The percentage deviation from the theoretical prediction ki, =
0.869694 (3.31) is shown in the last column. All fits yielded Pearson correlation coefficients

R > 0.998.
XX Model

Method VUMPS tolerance | Xmin - Xmax K c k deviation

iTEBD - 15 - 100 1.311252 0.99710 2.4406 %
| VUMPS || le-12 | 16-100 | 1.318082 | 0.98897 | 1.9325 % |

VUMPS le-11 16 - 100 1.320258 0.98872 1.7706 %

VUMPS 1e-08 16 - 100 1.318355 0.99024 1.9122 %

VUMPS 1le-06 16 - 100 1.319463 0.99194 1.8297 %
| VUMPS | le-12 | 16-200 | 1.298145 | 0.99260 | 3.4158 % |

VUMPS le-11 16 - 200 1.298481 0.99257 3.3908 %

VUMPS 1le-08 16 - 200 1.298361 0.99324 3.3997 %

VUMPS 1e-06 16 - 200 1.293965 0.99571 3.7268 %
| VUMPS | le-1l | 16-300 | 1.286214 | 0.99363 | 4.3035 % |

VUMPS 1le-08 16 - 300 1.286540 0.99403 4.2792 %
| VUMPS || le-11 | 60-300 | 1.263362 | 0.99306 | 6.0037 % |
| VUMPS | le-ll | 100 - 300 | 1.242518 | 0.99885 | 7.5546 % |

Table A.3.: Finite-entanglement scaling results for the critical XX model (¢ = 1), using VUMPS and
iTEBD. Results are shown for various VUMPS tolerances and bond dimension ranges.
k and ¢ were extracted as in Tab. A.1, and compared to the theoretical prediction x¢, =
1.344055 (3.31). Deviations persist even at strict tolerances, with all fits yielding R > 0.999.
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