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Realtime Limb Trajectory Optimization for Humanoid Running Through
Centroidal Angular Momentum Dynamics

Sait Sovukluk, Robert Schuller, Johannes Englsberger, and Christian Ott

Abstract— One of the essential aspects of humanoid robot
running is determining the limb-swinging trajectories. During
the flight phases, where the ground reaction forces are not
available for regulation, the limb swinging trajectories are
significant for the stability of the next stance phase. Due to
the conservation of angular momentum, improper leg and
arm swinging results in highly tilted and unsustainable body
configurations at the next stance phase landing. In such cases,
the robotic system fails to maintain locomotion independent of
the stability of the center of mass trajectories. This problem
is more apparent for fast and high flight time trajectories.
This paper proposes a real-time nonlinear limb trajectory
optimization problem for humanoid running. The optimization
problem is tested on two different humanoid robot models,
and the generated trajectories are verified using a running
algorithm for both robots in a simulation environment.

I. INTRODUCTION

Humanoid robot locomotion is mainly composed of two
parts. The first part and the main objective of locomotion is
translating the overall body mass (center of mass) to a desired
point and at a desired rate. The second part is preserving a
proper posture that is suitable to the nature of the selected
locomotion method. The posture objective also splits into
two parts: keeping the torso upright and swinging the feet in
the direction of locomotion to prepare for the next step. This
paper aims to determine how to swing the limbs so that the
robotic system is ready for the next step while preserving a
proper posture.

As the influence of the contact forces on the centroidal
dynamics is significant [1], [2], motion generation for the
center of mass (CoM) through a template or reduced models
is very popular in the legged locomotion literature. These
models are crafted to capture the ground reaction force pat-
terns and centroidal dynamics well and are used to simplify
some multi-body effects and limitations such that online
control, planning, and decision-making are computationally
feasible. The usage of centroidal or center of mass mod-
els in humanoid control appears in push recovery control
through capture point [3]; walking control through linear
inverted pendulum (LIP) [4], divergent component of motion
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(DCM) [5], and spring-loaded inverted pendulum (SLIP)
based walking [6], [7]; running control through SLIP [8],
[9] and biologically inspired deadbeat control (BID) [10].
Control and planning through such models also appear in
periodic jumping [11], bipedal backflip [12] and are also
widely used in quadruped locomotion literature in single
rigid body dynamics (SRBD) form [13]. The locomotion
control literature is covered extensively in [14] and [15].

Even though the aforementioned methods showed success
in simulation and hardware experiments, they do not capture
the limb dynamics. All the methods assume the stance
foot is placed at a specific location and do not include
any information regarding the torso orientation, swing leg
trajectories, and arm trajectories. Whole-body controllers
handle this part of the locomotion control and require the
user to select and tune these uncaptured trajectories. In the
case of the slow pace and small step size walking, which
covers the walking of almost all humanoid robots in the
current market, the effect of limb swing is not that apparent
mainly for two reasons. First, by the nature of walking
behaviors, at least one foot is always in contact with the
ground. Hence, the ground reaction forces can continuously
be used for regulation as long as the friction cone allows.
Second, the swing leg velocity is small due to the high step
times and small foot displacements. Hence, the effect of leg
swinging on the overall posture and dynamics is small. Such
behaviors may not even require an arm swing behavior to
regulate the angular momentum. As the walking gets more
dynamic and the step length increases, the swing leg moves
faster and affects on the overall dynamics more significantly.
Such behaviors require more precise trajectory tuning both
for the swing leg and arms. This problem is addressed in [16]
through an optimization for the overall centroidal angular
momentum target value.

In the case of running, which is the target of this paper, the
aforementioned conditions get even more challenging. As the
flight phase does not involve any contact with the ground,
limb movement during this phase drastically affects the over-
all posture due to the conservation of angular momentum.
Such behaviors require either very well-tuned limb swing
trajectories or have to be limited with very short-lasting flight
phases. This problem is more apparent while running through
random environments where, due to lack of periodicity, each
step may require different running trajectories along with
their well-tuned limb swing characteristics. Unprecise tuning
of limb trajectories results in ill-defined postural configura-
tions and high body rotational velocities at the touchdown,
which cannot be dissipated by the time and friction cone



limited stance phase control. Independent from the desired
center of mass trajectory tracking performance, such systems
inevitably fail to sustain their motions either immediately or
as a result of the accumulated body orientation error. We
demonstrate such behaviors in the supplemental video.

This paper focuses on online nonlinear constrained limb
trajectory optimization through centroidal angular momen-
tum dynamics for humanoid running. The objective of the
optimization is to determine the liftoff configuration and
flight phase joint trajectories such that at the next touchdown,
the body orientation is minimal. The proposed optimization
structure is independent of centroidal running trajectory
generation methods. It requires only the desired stance leg
position w.r.t. the CoM location at the moment of liftoff and
touchdown. While doing so, we exploit some properties of
the centroidal momentum matrix (CMM), reduce the size of
the problem by some minimal simplifications, and construct
a nonlinearly constrained optimization problem that can be
solved in real-time. We implement our nonlinear optimiza-
tion solver for the best efficiency and customization. Lastly,
we verify our method in a simulation environment on two
different robots. We also implement SLIP-based humanoid
running trajectories and verify that the optimized flight
phase joint trajectories result in minimal body orientation
in the next touchdown phase. The running trajectories are
constructed for long flight phases, even longer than the stance
phase, such that they are more challenging and harder to
control. Lastly, we share the computation time report and
show that online implementation is possible.

II. SYSTEM DYNAMICS

Let g be a set of configuration variables and v = (v, v;)
be the generalized velocity where v, = (vp,wp) € RE is
the linear and angular velocity of the floating base and v; €
R™ is the generalized velocity of the joints. The well-known
robotic system dynamics results in
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where f. € R3"¢ is the vector of contact forces for n.
number of contacts. The first six rows of (1) correspond to
the floating base dynamics and are the underactuated portion
of the system dynamics, i.e., the base dynamics cannot
directly be driven by the instantaneous joint torques. Hence,
the base movement is determined by the contact forces and
inertial couplings.

Define hg = [lg; ka] € R® as the centroidal momentum,
which is a combination of translational Iz € R3 and
rotational (angular) kg € R3 momentum. Then, based on
[2] and [17], the first six rows of (1) are equivalent to

A tG _|mg S fc,i
he = [k:g} N [ 0 } i ; [(Pc,z‘ — Pcom) X fc,i] @

where g € R3 is the gravitational acceleration vector, f.; €
R? is the contact force vector originating from p.; € R3,

pcom € R? is the position of center-of-mass, and m is
the total mass. The centroidal momentum dynamics (2)
shows the significance of the contact forces on the body
dynamics and is one of the main motivations of template
model based locomotion approaches [1], [14]. The centroidal
momentum 1is related to the generalized velocities through
he = Ag(q)v where Ag € RO*("+6) i the centroidal
momentum matrix (CMM) [1], [17].

III. PROPERTIES OF THE CENTROIDAL ANGULAR
MOMENTUM MATRIX

In order to focus our discussion on the angular portion of
the CMM, we decompose the linear and angular portions:

A € RSx(nJrG)
Ag = A, € R3x(n+6) | -

The centroidal angular momentum matrix Ay can also be
decomposed into

Ay =[A, eR¥? A, eR¥™ A; eR¥>], 4

3

where A,, A,, and A; represent body translational, body
rotational, and joint velocity portions, respectively.

Property 1 A, is a zero matrix.

Proof: Let “Rp € SO(3) be a rotation matrix from
the body frame to the centroidal (CoM) frame. Additionally,
let X% € R5%6 be momentum transformation from the
floating base body frame to the centroidal frame [18]:

5x%= o - &l o
RpS(®pc) Rp

The centroidal momentum matrix can be calculated as [17]

Ag = {Al € sz(nﬂi)} _ BT {Mn M M13:| ,

Ay, € R3x(n+6) G| My My Mo 6

where the rightmost matrix is the first six rows of
the mass matrix: { M1, Mo, Moy, Moy} € R3*3 and
{M3, M3} € R3>*", Similarly, decomposing angular por-
tion of the centroidal momentum matrix as

Ap=[A, eR¥3 A, eR¥>3  A; e R

results in
A, =“RpS("ps)" M1+ “RpMz. (7)
Similarly, based on [18] and [17]
{Mu Mu} _ [ mt].ng mS(Ppa)’ ®)
M Mso mS(°pa) Ip ’

where Ip(q) € R3*3 is the overall Cartesian inertia about
the floating base body frame. Finally, the substitution of M7,
and M, from (8) into (7) yields

A, =m°RpS(Ppc)" + mi“RpS(Ppc) = 03x3. (9)

|
The important implication of Property 1 is that the centroidal
angular momentum dynamics is completely decoupled from



the translational body velocities. Knowing the initial condi-
tion, joint trajectories, and flight time, the body orientation
evolution is the same for any set of translational body
velocities. Hence, the resultant optimization problem does
not require any translational trajectory information and is
completely independent of running models.

Property 2 A, is always invertible.

Proof: Invertibility of A, is intuitively apparent and
has a similar proof. Similar to (7)

A, = RpS(Ppc) Mi> + “ RpMa,. (10
Substitution of M5 and Mss from (8) into (10) yields
A, =m°RpS(Epc)"S(Pps)" + “Rplp.  (11)

where fB = fcom + mtS(BpG)S(BpG)T [18] and fcom
represents the overall inertia with respect to the center of
mass. Consequently

Aw = GRBI_com~ (12)

Hence, A, is always invertible as it is a product of two
invertible matrices. u
The invertibility of A, implies that for a given centroidal
angular momentum and joint velocities, there exists a finite
body rotational velocity at any system configuration. As this
work focuses on estimating the body’s rotational velocity and
minimizing its integration during the flight phase, Property 2
ensures that there exists a solution to the calculation for any
joint configuration and velocity.

IV. FLIGHT PHASE BODY ORIENTATION DYNAMICS

The first obvious observation for the flight phase is the
conservation of angular momentum. As the contact force
fe is a zero vector, there is no external force other than
gravity acting on the system, i.e., k¢ = 03,1. Hence, during
the flight phase, the body orientation cannot directly be
controlled by the actuators. It can only be controlled by the
coupling effects of the actuated links and this information
is embedded inside the A; matrix. Define kgy € R3 to be
the centroidal angular momentum of the system during the
flight phase such that:

vy
kGfZ[AU Aw A]} wp
vj

Due to the conservation of angular momentum, kg is
constant throughout the flight phase. The consequent body
orientation dynamics yields:

wy = AL (kg — Aoy — Aju;),

where A, is always invertible by Property 2. Furthermore,
due to Property 1, the body orientation dynamics results in

wp = AL (kg — Ajvj). (13)

The body orientation dynamics (13) implies a few important
aspects. First and most apparent, it shows that the body

Fig. 1.
touchdown. The green variables (liftoff and touchdown point w.r.t. CoM)
are given by any running or jumping algorithm and assumed to be known.
Uncolored parameters are not captured by the reduced models and require
manual selections. The objective of optimization is to eliminate these
selections.

Tllustration of humanoid running from liftoff to the consecutive

orientation can be implicitly controlled through the actuated
link joints. Second, during the flight phase, the orientation
dynamics is completely decoupled from the translational tra-
jectory. This decoupling allows the body rotational velocity
estimation to be independent of the robotic system’s flight
phase trajectory.

V. OPTIMIZATION PROBLEM FORMULATION

As discussed in the introduction, centroidal model-based
running and jumping planners fall short of identifying how
the body, arm, and swing leg trajectories should evolve.
They usually capture only the essence of the locomotion,
i.e., center of mass, stance foot, and contact force evolution
of the system. However, as shown in Fig. 1, humanoid robots
require much more to control. The stance foot location just
before the liftoff phase is known. On the other hand, since
the stance leg becomes the next step’s swing leg, the user
has to define an appropriate trajectory for its evolution. The
same is valid for the swing leg. At the liftoff moment, the
swing leg configuration is unknown and must be decided
manually. However, at the next touchdown moment, the
same leg becomes the stance leg and should be placed at a
known location with respect to the center of mass. Nothing
is given for arm evolution. They should be used to regulate
the robot’s posture. This section works on these unknown
aspects and formulates an optimization problem to decide
the limb evolution of the system.

Define ¢ : R — R"™ to be a vector of polynomials
for the desired actuated joint evolution of the system for
the flight phase. Hence, q¢(0) and q?(t;) represent the
desired joint position at the beginning and end of the flight
phase, respectively. Similarly, define 6, to be the body
orientation. Hence, for a given initial body orientation 6;(0)
the consequent final touchdown configuration integrated:

O(t7) = 05(0) + /Otf T(6p(t), wp(t))dt, — (14)

where function 7" is a mapping from the angular velocities to
the body configuration rate (for example Euler or Quaternion
rate).



Algorithm 1 Integration of base orientation
1 0« 9(0)
2:t+0

30 wp  wp(0)

4: (Ay, pg) = computeCentroidal Map(0y, q*(0))

5: kgf = Apv

6

7

8

9

: while ¢ < t; do
00+ T(wp(t))*ty/N
t—t+ tf/N
: (Ax, pg) = computeCentroidal Map(0, q(t))
10: wp = A;l(kigf — qud(t))
11: end while
12: wb(tf) = Wy

An algorithm that performs a discrete summation of the
nonlinear integrator (14) through N number of sampling
points is shown in Alg. 1. Starting from a given (desired)
liftoff base orientation and rotational velocity, the algorithm
integrates for the touchdown configuration. The “compute-
CentroidalMap” function in the algorithm calculates the
forward kinematics, center of mass location, and centroidal
momentum matrix together (see documentation of Pinnochio
[19] for “computeCentroidalMap”). The given algorithm will
construct a nonlinear cost function for the optimization.

The computation cost of the optimization can be reduced
via some reasonable assumptions. Typical leg joints of a
humanoid robot are shown in Fig. 2. The ankle link is a
relatively small component of the robot and constitutes an
insignificant portion of the total inertia. Since its body is a
small mass with a very short link length, rotation of ankle
joints has a negligible effect on the overall inertia shape and
angular momentum. Hence, during the optimization, these
joints can be assumed not to move, i.e., remain at a constant
angle. This assumption still accounts for ankle inertia and
mass but neglects the inertia change with respect to the ankle
joint angle. Similarly, the hip yaw joint is also another joint
that can be simplified. Even though this joint drives the whole
leg, as the mass is distributed around its rotation axis, the
inertia that this joint drives is still comparably small. Another
important aspect of this joint is that, as seen in Fig. 1, this
joint is not very active during running and jumping but only
during a change of direction. Hence, assuming this joint will
stay at its default position during the flight phase is also
a reasonable assumption. During the direction change step,
where the support leg rotates to the new heading angle during
the flight phase, its rotational effect can be accounted for
in the optimization. Similar justifications can also be made
for the arm joints, e.g., wrist and shoulder yaw joints. On
the other hand, hip roll, hip pitch, shoulder pitch, and knee
joints are highly inertial and have an important effect on
the overall inertial shape. Additionally, these joints move in
a wide range at high velocities and generate a significant
portion of angular momentum. Hence, these joints are the
main focus of the optimization

Let T' € R*»*(m+1) be the collection of degree m polyno-

Hip Yaw

Hip Roll

Inertially Hip Pitch Inertially
Insignificant Significant
Joints Joints
Knee Pitch
Ankle Roll
Ankle Pitch
Fig. 2. Leg joints of a typical humanoid robot. The left figure shows the

joints that do not have significant effects on the inertial shape or angular
momentum of the robot. On the other hand, the right figure shows the joints
that both translate and rotate significant potions of inertia. As an example,
the image shows TORO’s right leg [20] and the joint locations are placed
to illustrate the most common and intuitive configurations.

mial constants for all desired joint trajectories such that

tm
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From this point, we label the upcoming touchdown leg (left
foot in Fig. 1) and the upcoming swing leg (right foot in
Fig. 1) as stance and swing foot, respectively.

A. Cost Function

The objective of the cost function is to minimize the body
orientation at the next touchdown moment:

ml_i‘nfcost = ||0b(tf)” (16)

From a given liftoff body orientation, the optimizer modifies
the joint trajectories through the polynomial gains such that
there is minimal body orientation at the next touchdown. The
base orientation throughout the flight phase in (16) can be
calculated through Algorithm 1.

B. Constraints

1) Setting ankle, wrist, hip yaw, and arm yaw trajectories
to zero polynomials:

a.nkler 04 4

wristI\ 04
hipYawF 02ii (17)
armYawl'\ 02 4

In case of a direction change, during the transient step,
the hip yaw joint trajectory of the related leg can
be encoded here to take account of the inertial shape
changes.

2) Enforcing the touchdown leg position for the upcoming
stance phase through a forward kinematic constraint:

p(smncert(tf)) - pG(tf) = p(é',stance' (18)



3) Enforcing the liftoff swing leg position through a for-
ward kinematic constraint:

p(swingrt(o)) - pG(tf) - pUClv‘,swing'

4) Enforcing the touchdown stance leg relative velocity to
zero through a forward kinematic constraint:

p(slancert(tf)7slance Ft(tf)) _ pG(tf) =0.
5) Enforcing the liftoff swing leg velocity to zero:

POUETE(0), " TE(0)) = 0,

19)

(20)

2n

6) Minimum or desired clearance between the next stance
leg and the ground at the beginning of the flight phase:

p(stancert(o)) = Ngtance- (22)

7) Minimum or desired clearance between the next swing
leg and the ground at the end of the flight phase:

P(VIETL (1)) = hswing- (23)

VI. SIMULATION RESULTS

The simulation section includes verification of the pro-
posed method through two different humanoid robots. We
present the optimization results and then show the optimized
trajectories’ behavior through a running algorithm. As this
study composes a subpart of humanoid running or jumping
(see Fig. 3), we inherit a SLIP-based trajectory generation
method from [9]. The running algorithm is combined with
the flight phase limb swing trajectories generated by the pro-
posed optimization problem. The overview of the nonlinear
optimization solver algorithm that we implemented in C++
can be found in Appendix.

A. Results on Kangaroo

We first present the optimization result on the Kangaroo
bipedal robot (see Fig. 4). Swing leg trajectories of this
robot are particularly important as it cannot take advantage of
arm swinging for regulation purposes. A running trajectory
with 1m/s forward velocity, 0.24s stance time, and 0.31
seconds flight time (= 12cm of vertical jumping) is ob-
tained from [9] and the optimization problem is configured
with the flight time, CoM liftoff velocity, and the relative
stance foot locations. It is worth noticing the length of the
flight phase of the generated trajectory as it makes postural
control harder and causes longer error accumulation in case

Environment l_’ Centroidal Trajectory

Generation Methods
Pta

Rigid Body ves [Nonlinear Trajectory| I" | Whole Body |
Optimization Controller

Kin. & Dyn.
{M,C.g.J,J. Teom,Teoms--- }

{#com, Eeom}

{a.4}

{a.4}

Fig. 3. A generic control system diagram of humanoid running or jumping
through centroidal trajectory generation methods. This study fits into the
orange block which is triggered at the touchdown moment and determines
the limb swing trajectories for the flight phase.

Initial Cond. Liftoff Touchdown

BARA

Flight Phase

RERL

) OPTIMIZATION I

Stance Phase

Fig. 4. Top row: optimization playback of the flight phase. Bottom row:
simulation verification of the optimized trajectories on a running algorithm.

of imprecision. A 3rd-degree polynomial is employed for
each inertially significant joint trajectory. The optimization
problem includes 24 optimization parameters along with the
14 nonlinear constraints and samples of 11 points in the
dynamics. The optimization problem takes 1.54ms to solve
on a daily use desktop computer with AMD Ryzen 7 5800X
CPU.

The snapshots of the optimized limb trajectories are shown
in the top row of Fig. 4. The optimization result suggests that
if the robotic system liftoffs with the optimized configuration
and velocities and follows the given flight phase swinging
behavior, the next touchdown will happen with minimal torso
orientation. The verification of the optimized trajectories
on the running simulation is shown in the bottom row of
Fig. 4. The optimization problem is triggered at the moment
of touchdown. During the stance phase, the whole-body
controller is commanded to liftoff with the optimized config-
uration and velocities. During the flight phase, the optimized
trajectories are followed. The only difference between the
optimization playback and the verification simulation is the
ankle configuration. Due to its negligible inertial effects, the
optimization problem assumes the ankle is always at zero
configuration. On the other hand, they are adequately actu-
ated in the simulation. The simulation shows almost identical
results with the optimization playback. The optimization
playback and running simulation animations are presented
in the supplemental video.

The first thing to notice on the optimized trajectory is
the swing-back behavior of the liftoff leg. This behavior
is performed to balance the centroidal angular momentum
in the sagittal plane so that the torso movement remains
minimal. In order to reason the optimization results, we
plot the centroidal angular momentum portions of each limb
in the sagittal plane in Fig. 5. The flight phase angular
momentum is also an implicit product of the optimization
problem and is constant due to the conservation. As the
left leg moves forward, it generates a negative momentum
on the CoM frame. The figure shows that the swing-back
behavior of the right leg generates a positive momentum
to cancel the effect of the other leg’s swing. As the left
leg reaches its desired position, its velocity and momentum
contribution fade away. As the optimization objective is to
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Fig. 5. The total centroidal angular momentum in the sagittal plane along

with the contribution of each limb. The figure shows that the limb swing
trajectories keep the angular momentum portion of the body around zero.

minimize the body orientation for the next touchdown, the
right leg covers most of the angular momentum and keeps the
remaining momentum for the torso around zero. In the case
of a tilted liftoff condition, the limbs do not cancel the whole
momentum and let the body rotate back to the minimal body
orientation. Such behavior can also be used for disturbance
rejection purposes.

B. Results on Unitree G1

In order to show the generalizability and inclusiveness
of the proposed method, we also optimize for and simulate
Unitree’s G1 humanoid robot. A running trajectory with 1m/s
forward velocity, 0.21s stance time, and 0.26 seconds flight
time is generated, and the optimization problem is configured
with the flight time, CoM liftoff velocity, and the relative
stance foot locations. A 3rd-degree polynomial is employed
for each inertially significant leg joint and shoulder pitch
joint. The optimization problem includes 32 (24+8) opti-
mization parameters along with the 14 nonlinear constraints
and samples of 11 points in the dynamics and takes 1.92ms
to solve. The optimization playback and running simulation
animations are presented in the supplemental video.

A similar swing-back behavior on the right leg can be
observed in Fig. 6. Differently, the additional arm swing is
apparent in the movement. As the right leg covers most of the
saggital centroidal angular momentum, the arm movements
balance the body rotation in the vertical axis (transverse
plane). Even though the optimization is initiated with the
zero polynomial configuration, it still manages to converge.

Initial Cond

Touchdown

Stance Phase

Fig. 6. Top row: optimization playback of the flight phase. Bottom row:
simulation verification of the optimized trajectories on a running algorithm.

VII. CONCLUSION

This study addresses the problem of determining limb
swing trajectories for the flight phases of humanoid running.
We propose a nonlinear optimization problem to find a
set of proper limb swing trajectories that place the stance
leg at the desired location and keep the body upright for
the next stance phase. We first explore some properties of
the angular momentum portion of the centroidal momen-
tum matrix. Then, taking advantage of these properties, we
construct a cost function with some constraints for foot
placement points. We show that the size of the optimization
problem can be significantly reduced through some mild
simplifications. We implement the optimized trajectories on
a running algorithm from the literature for verification and
perform simulations on two different robots. The simulation
results verify that once the robotic system lifts off with
the optimized configuration and velocities and tracks the
optimized flight phase limb trajectories, the robotic system
lands with a proper and minimal body orientation. We also
share the computational performance results and verify that
the proposed optimization problem can be solved in real-
time. Lastly, we provide an overview algorithm for the solver
that we implement to solve the optimization problem.

VIII. APPENDIX: SOLVER ALGORITHM

We implement our solver, for the given nonlinear op-
timization problem. For the completeness of the paper,
an overview of the solver with the equality constraints is
provided in Algorithm 2. The detailed algorithms can be
found in [21]. The tool is available at

https://github.com/ssovukluk/ENFORCpp (*)

Algorithm 2 Overview of the nonlinear optimizer with
equality constraints.

1) Define n. to be the number of constraints, f.; to be the
it" constraint function, and J to be an empty matrix to collect
constraint function gradients one by one.

2) If n. # 0, set 4 = 1. Otherwise, proceed to step 8.

3) Calculate numerical gradient of f.; w.rt. the optimization
variables.

4) Store the gradient vector: J.col(i) = V fe ;.

5) If ¢ > 1, project the estimated gradient into the Nullspace of
the vector space J such that iterating with this gradient does not
disturb the previous constraints.

6) Implement a line search algorithm to find the zero crossing
point of the equality constraint via iterating through the (projected)
gradient.

7) If i <nc, seti =14+ 1 and go to step 3.

* At this point, all the equality constraints are solved, and the
optimizer is ready to proceed to minimize the cost function.

8) Calculate the numerical gradient of the cost function feos.

9) Project the gradient V f. into the Nullspace of the vector space
J such that iterating with this gradient does not disturb the equality
constraints.

10) Implement a line search algorithm to find the local minimum.
11) Check all the termination conditions and go to step 2 if none
of them is triggered.
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