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Policy driven flight planning in BeCoM
Motivation & Overview DLR

Non-CO, Climate Effects of Flights

:

* Non-CO, effects are more uncertain than CO, and vary with location, timing, and weather conditions.

+ Climate optimized routing offers high mitigation potentials, but increases costs and affects airline operations

Market-based / policy measures as an option to incentivize climate mitigation
= EUnNnon-CO, MRV started in Jan 2025: Aircraft operators must monitor and report non-CO, effects on all intra-EU flights.

= By Dec 2027, the Commission may adopt non-CO, mitigation rules and extend EU ETS scope to include non-CO,.

BeCoM: Non-CO, Policy Effects on Individual Flights

* Analyses key non-CO, policy parameters and their impact on operations, ticket prices, and climate impact.

» Explores approaches for integrating non-CO, uncertainties into policy design to avoid perverse incentives.

BeCoM: Network Analyses and Stakeholder Consultations

* Impacts on demand, airline networks and potential regional leakage

+ CO.,e accounting as a driver for implementing operational & technological mitigation?
» Gather expertise and identify stakeholder expectations on non-CO, policies.
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Niklal3, Zengerling et al. 2025, Ehlers et al. 2022, Lihrs et al. 2021

Modeling policy driven flight planning 4#7
Method DLR
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Can Non-CO, Policies Drive Climate-Optimized Flying?

Exploring their incentive and suitability DLR
options re-routing CO.e accounting reference costs
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Can Non-CO, Policies Drive Climate-Optimized Flying?

Exploring their incentive and suita

options re-routing CO,e accounting reference costs
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Can Non-CO, Policies Drive Climate-Optimized Flying?
Sensitivity analyses of key design parameters

Gradual accounting of CO, equivalents

DLR

----- no non-CO, accounting
----- increase of ticket price with CO2e accouting (no mitigation)
----- iIncrease of ticket price with CO2e accouting and re-routing
(1) Accounting scheme: Calculation of CO.e -
to be considered in EU ETS e 100% | [ BCN - FRA I
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Can Non-CO, Policies Drive Climate-Optimized Flying?
Sensitivity analyses of key design parameters DLR
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= CO.,e price drives the resulting cost increase, but s
only has minor effects on mitigation in contrail-

Intensive situations

= Climate metrics with a higher weight on non-CO,
effects lead to higher mitigation results

= Climate mitigation potentials mainly depend on
weather situation, while ticket price increase is
Influenced by the accounting share
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Can Non-CO, Policies Drive Climate-Optimized Flying?

Impact on ticket prices and passenger demand DLR
= Western Europe == BCN <-» FEA s PMI <-» DUS

= 300
% "{\\\
PN N —— .
G 200 p7 " P e T PR N

Demand & Passenger Impact © 100 1

= Price elasticities of air travel quantify how demand L

responds to ticket price changes. L= Apr Jun Aug Oct Dec

» Price changes affect demand differently across routes

and market segments. Ticket fare Additional CO2e charge per ticket
» Network-wide effects arise from passenger choices and 200¢€ 4.00€ 6.00€ 8.00€ 10.00€
airline responses. 25" Percentile  182.82 € 1.7% 3.4% 5.0% 6.7% 8.4%
Mean 206.71 € 1.0% 1.9% 2.9% 3.9% 4.8%
75" Percentile  312.05 € 0.7% 1.4% 2.1% 2.8% 3.5%
Impact of CO2e pricing Additional COZ2e charge per ticket
onpassengerdemand | 200€  400€  6.00€  800€  10.00€
Mean 206.71 € -0.8% -1.7% -2.5% -3.4% -4.2%

Assuming an aggregated elasticity value of -0.87 (Oesingmann and Kélker, 2025)
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Kolker et al., 2025

Network Impact of Non-CO, Pricing in EU-ETS
Demand and ticket price dynamics across geographical scopes DLR

Simulation Framework

E Modelling Climate
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H . D dand 1 ! ] !
- Integration of Passenger Preference Models into | Schedule ! | Demand | T e
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Kolker et al., 2025

Network Impact of Non-CO, Pricing in EU-ETS

Demand and ticket price dynamics across geographical scopes DLR

Use case & assumptions: 10%

= OD-market from Hamburg to New York (9 potential passenger routes) I IIIlIlI

= subject to different CO2 pricing schemes (EU ETS, UK ETS, CORSIA) 0% -—--n l+ -—--.I.+ ---u .f : I : I .

= real operated fleet types (2023) for different airlines 'ST ‘l “l I II II“ II |I|

= ticket prices averaged based on real 2023 per route 10%

= pricing of routes is subject to different geographical scopes

= Geographical scope scenarios: 20%
(1) Full scope (all flights from/to Europe) Oticketprice Ademand ~ Ademand | Aticketprice Ademand  Ademand | Aticketprice Ademand  Ademand
(2) Reduced Scope (intra—EUI’Opean ﬂlght Only) (route level) (market level) (route level) (market level) (route level) (market level)
(3) Departure-based allocation.

* Price assumptions: EU ETS (€80/t), UK ETS (€50/t), CORSIA (€15/t) for mLHR WFRA MAMS WMUC mCDG WKEF mMAD ®WIST mJFK WHAM mAll Airports

30% of CO, above 2019 levels; €800/ton extra fuel; 50% allocation of CO2e  , ,,

L
Full Scope Impact for the global network |

N
720N IQ—L — EU-ETS [
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—— CORSIA >
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G I ~ number of segments ~ Matrkett_
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< : 0 _ (| [ | E II |
. N6 0.0% u I - — I T -
2 7 = II I I I ~ Connectivity to
[ 4 . N ~ Connectivity to neighbors

network
-0.5% t
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Zengerling et al., 2025

CO,e accounting as a driver for implementing

operational & technological mitigation measures? DLR
Mission | Flight performance Perlel:?nlgnce Emissions E?;isgon Climate |+ pATR100, COse
definition modelling calculation assessment e
= Purpose: Evaluate CO,e accounting to support | ooz
climate mitigation measures: Cost assessment [ 0OC, 00
o Operational: flight altitude & speed adjustments, Peuan = 0 €1t Peynn = 84 €1t
climate-optimized intermediate stops, formation flight Flight alfitude reduction O Flight altitude reduction
o Fuel & Tech: Sustainable Aviation Fuels (SAF), § Latoat adpiion 9 Latoat adapaton
technical efficiency improvements g mate-optimized 1SO v o PimeediSS
<] Formation Flight < Formation Flight

= Method: Analysis based on representative long-haul l , [ ‘

ECAC flights selected by traffic volume, OD pairs,and | |
a”'Cl’aft type 8ol ::(:;v;d:;lnr;);t:s; no accounting |
1 1 . overall average, with and without accounting
= Key Flndlngg. | | ol |
= COae pricing lowers economic barriers for ‘:E
operational mitigation g 40f | |
= High SAF costs not fully offset by CO,e accounting % v
. . 20 s
» Technological improvements (fuel burn & NOXx . R TP W
reduction) significantly increase mitigation potential i P ah E e i
. . . 0 [
= Cost/ticket impact can be reduced by flexible .i o4
accounting schemes (e.g., gradual accounting) 20 0 o0 o0 w0 20 20 " .

F-ATR100  [%]
rel
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Aviation warming stripes: Contribution of aviation emissions to global warming 1980-2021 (in %), peaking at 4% in 2018. (based on Kldwer et al., 2021)

Conclusion
Policy driven flight-planning considering non-CO,, effects DLR

EU non-CO, MRV started in January 2025
EU-COM may propose non-CO, inclusion into EU ETS by Dec 2027

Designing robust, fair, and effective accounting of aviation’s non-CO, climate effects is challenging
* |ncorporation of uncertainties of weather forecast, climate metrics, and models into the policy
= Balancing proven CO, strategies with promising but uncertain non-CO, options
= Mitigation potential and costs vary by route and weather situation, creating uneven network impacts
= Potential competitive disadvantages of regional implementation have to be avoided

Implementation depends on scientific models
» Risk of false incentives from imperfect models & data
= premature rollout may reduce trust and frustrate stakeholders

Unique chance for reducing aviation's climate impact and help to comply with Paris agreement
= Non-CO, mitigation offers substantial climate benefits
= Non-CO, accounting can drive operational & technological mitigation measures
= Lower abatement costs than other sectors (such as wind or solar energy and direct air capture)

Proactive development and stakeholder cooperation needed
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