

European Aerospace Science Network (EASN) 2025: Session LCA in Aviation

Uncertainty Quantification in Life Cycle Assessment for Aviation

Maria Höller, maria.hoeller@dlr.de

German Aerospace Center (DLR e.V.)

Life Cycle Assessment according to DIN EN ISO 14040/14044

Goal and Scope

Defining the system

boundaries and

functional unit

Life Cycle Inventory

Modelling the inventory: materials, energy, emissions and waste

Assessment

Life Cycle Impact

Translating the inventory to environmental impacts

ECOTOXICITY RESOURCE USE minerals & metals

EUTROPHICATION marine

LAND USE

EUTROPHICATION EUTROPHICATION

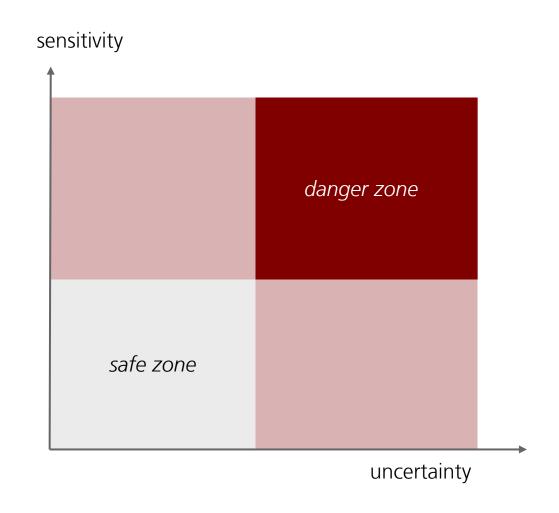
freshwater

and many more...

Interpretation

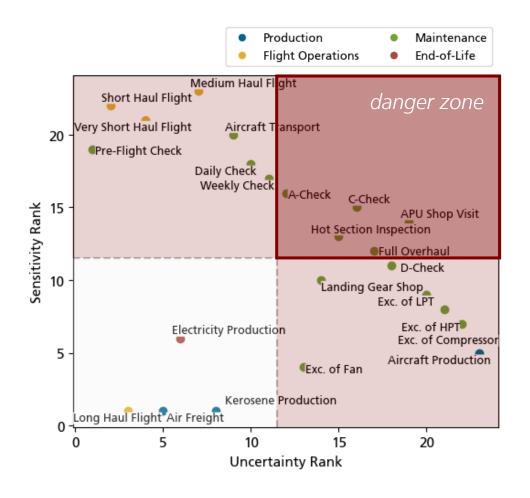
Drawing conclusions and analysing of results (→ includes uncertainty and sensitivity assessment)

fossils



Why should we care about uncertainties?

- LCA is a model that assesses potential environmental impacts
- Transparency regarding uncertainties enables trustworthiness
- Uncertainty analysis can help direct efforts for model improvement


Finding Critical Parameters: Diagnostic Diagrams

Diagnostic Diagram for a Case Study

- D250-TF-2040 from DLR's digital hangar
 - Short-haul aircraft with Entry into Service 2040
 - Turbofan with kerosene combustion
- Data from the projects EXACT and ALICIA

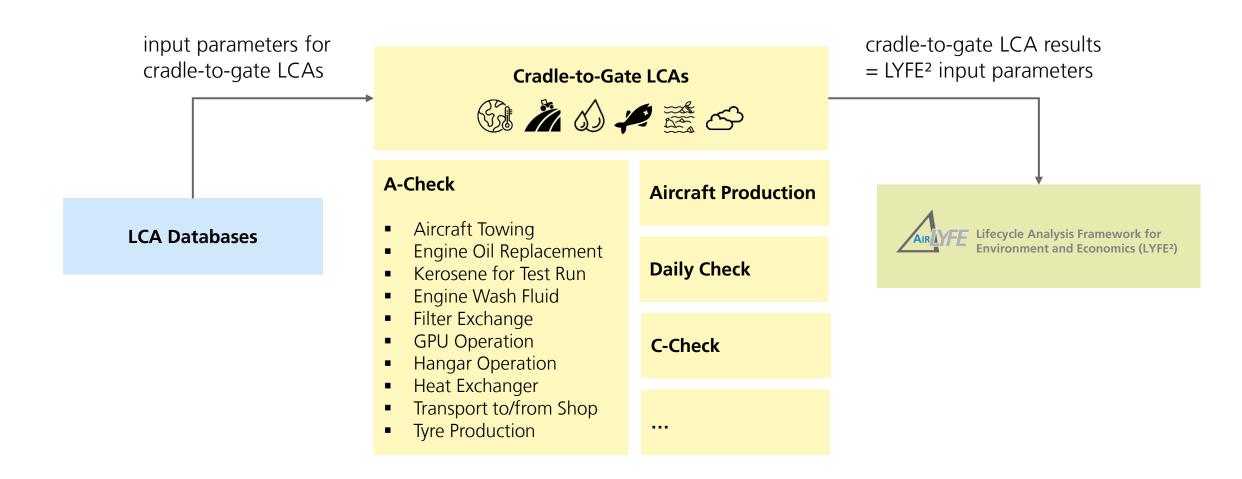
Methodological Framework

Discrete-Event Life Cycle Assessment

Lifecycle Analysis Framework for Environment and Economics (LYFE²) DLR's in-house discrete-event simulation framework Flight Event Figure 1: Event calendar from LYFE²

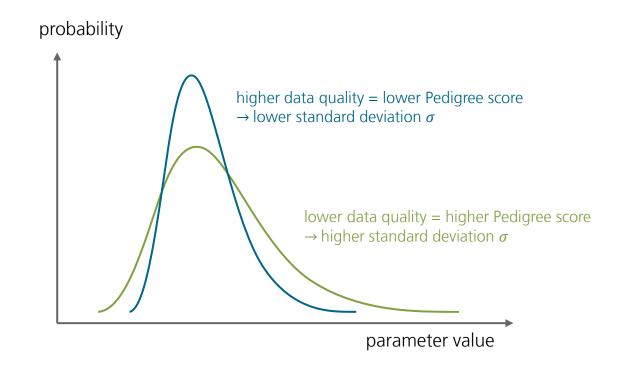
Life Cycle Assessment (LCA) using Brightway2 Defined by DIN EN ISO 14040 & 14044

- Goal and Scope Definition
- Life Cycle Inventory
- Life Cycle Impact Assessment
- Interpretation



Connection of LCA and Discrete-Event Simulation

Life Cycle Inventory of an A-Check


Input Activity	Deterministic Amount	Unit
Aircraft Towing	1.0	_
Engine Oil Replacement	3.2	kg
Kerosene for Test Run	578.4	kg
Engine Wash Fluid	140.0	kg
Filter Exchange	1.5	kg
GPU Operation	10.0	h
Hangar Operation	10.0	h
Heat Exchanger	1.0	h
Transport to/from Shop	664.0	tkm
Tyre Production	109.4	kg

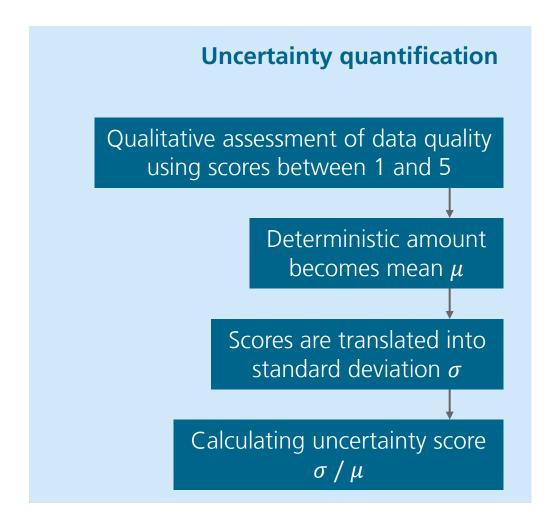
Pedigree Approach by Ciroth et al. (2016)¹

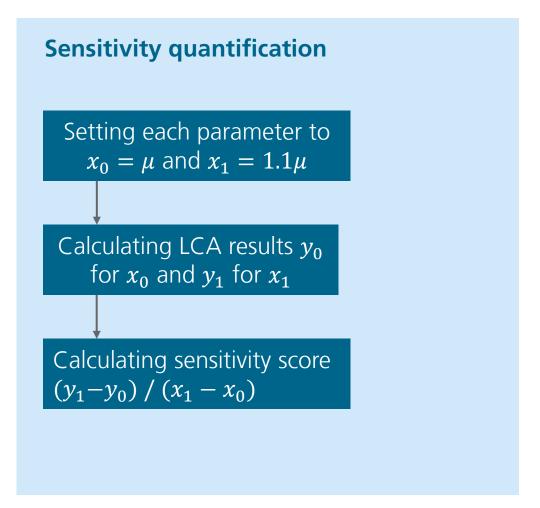
Assessing data quality based on five criteria:

- Reliability
- Completeness
- Temporal Correlation
- Geographical Correlation
- Technological Correlation
- → Modelling of a log-normal probability distribution

¹ Ciroth, Andreas et al. "Empirically based uncertainty factors for the pedigree matrix in ecoinvent". In: The international journal of life cycle assessment 21.9 (Jan. 2016), pp. 1338–1348. ISSN: 0948-3349. DOI: 10.1007/s11367-013-0670-5

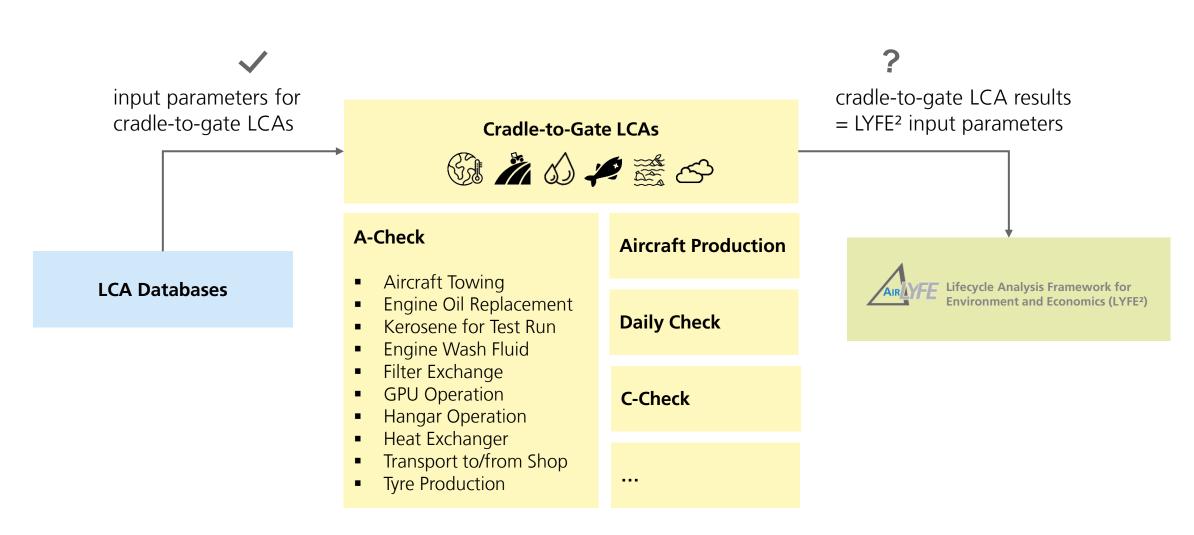
Modelling of probability distributions for an A-Check


Using the Pedigree Approach


Input Activity	Deterministic Amount (= Mean μ)	Pedigree Scores	Standard Deviation σ	Unit
Aircraft Towing	1.0	(4,5,1,1,2)	0.29	-
Engine Oil Replacement	3.2	(4,4,1,1,2)	0.92	kg
Kerosene for Test Run	578.4	(4,5,1,1,2)	169.2	kg
Engine Wash Fluid	140.0	(4,5,1,2,2)	41.3	kg
Filter Exchange	1.5	(4,5,1,2,5)	0.74	kg
GPU Operation	10.0	(4,5,1,1,2)	2.9	h
Hangar Operation	10.0	(4,5,1,1,2)	2.9	h
Heat Exchanger	1.0	(4,5,1,1,2)	0.29	h
Transport to/from Shop	664.0	(4,5,4,2,2)	200.0	tkm
Tyre Production	109.4	(4,5,1,2,2)	32.3	kg

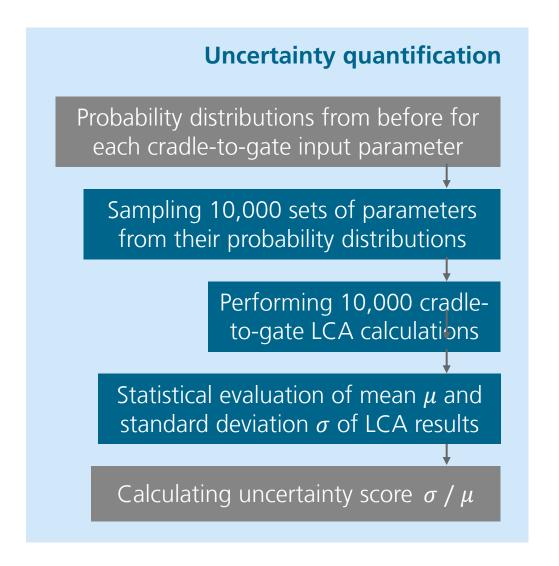
Individual Events: Uncertainty and Sensitivity Scores

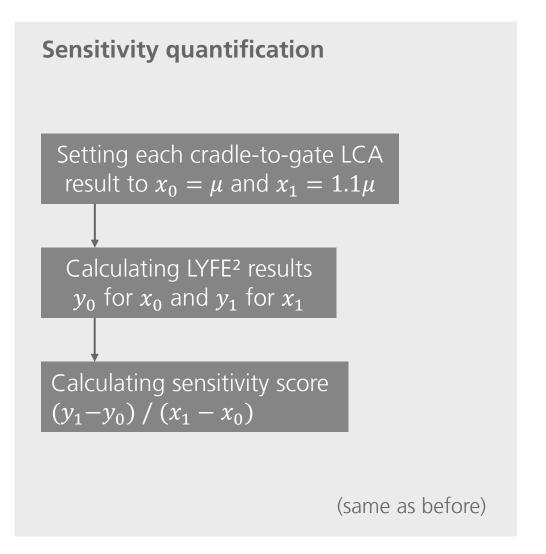
Pedigree Approach and Local Sensitivity Analysis


Uncertainty and Sensitivity Scores for an A-Check

Input Activity	Deterministic Amount (= Mean μ)	Pedigree Scores	Standard Deviation σ	Unit	Uncertainty Score σ / μ	Sensitivity Score $(y_1-y_0) / (x_1-x_0)$
Aircraft Towing	1.0	(4,5,1,1,2)	0.29	-	0.292	8.64
Engine Oil Replacement	3.2	(4,4,1,1,2)	0.92	kg	0.288	6.34
Kerosene for Test Run	578.4	(4,5,1,1,2)	169.2	kg	0.292	5.33
Engine Wash Fluid	140.0	(4,5,1,2,2)	41.3	kg	0.295	2.00
Filter Exchange	1.5	(4,5,1,2,5)	0.74	kg	0.493	39.1
GPU Operation	10.0	(4,5,1,1,2)	2.9	h	0.292	134.0
Hangar Operation	10.0	(4,5,1,1,2)	2.9	h	0.292	66.3
Heat Exchanger	1.0	(4,5,1,1,2)	0.29	h	0.292	7.78
Transport to/from Shop	664.0	(4,5,4,2,2)	200.0	tkm	0.301	0.426
Tyre Production	109.4	(4,5,1,2,2)	32.3	kg	0.295	301

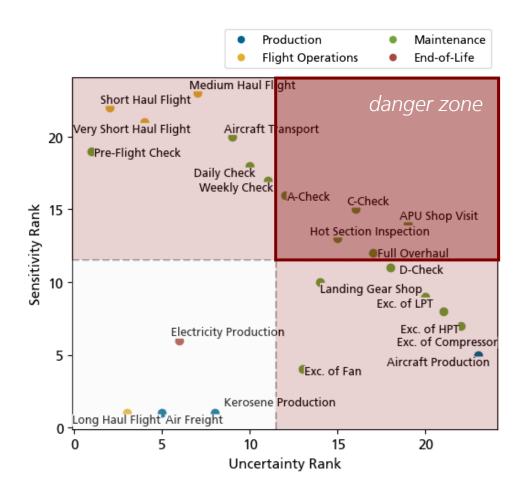
Connection of LCA and Discrete-Event Simulation





Discrete-Event LCA: Uncertainty and Sensitivity Scores

Monte Carlo Simulation and Local Sensitivity Analysis



How to Create a Diagnostic Diagram

Steps to Uncertainty Quantification:

- 1. Quantifying input uncertainties
 - → Pedigree Approach
- 2. Propagation to cradle-to-gate LCA results
 - → Monte Carlo Simulation
- 3. Sensitivity analysis
- 4. Communication \rightarrow Diagnostic diagrams

Different Types of Uncertainties in LCA for aviation

Parameters: amount of required material, fuel burn rates, maintenance frequency, ...

Model structure: simplified modelling of operation and maintenance, allocation models, ...

Impact assessment at altitude: contrail formation, non-CO₂ effects, ...

Context: fuel pathways, regulations, end-of-life practices, ...

Takeaways

 Uncertainty quantification helps ensure trustworthiness in Life Cycle Assessment results

 Diagnostic diagrams can help find critical parameters and direct efforts for model improvements

 Uncertainties are present not only in parameters, but also in model structure and context

Thank you for your attention!

Maria Höller, maria.hoeller@dlr.de

German Aerospace Center (DLR e.V.)

