
Object-Guided Tree Species Classification Using Deep Learning

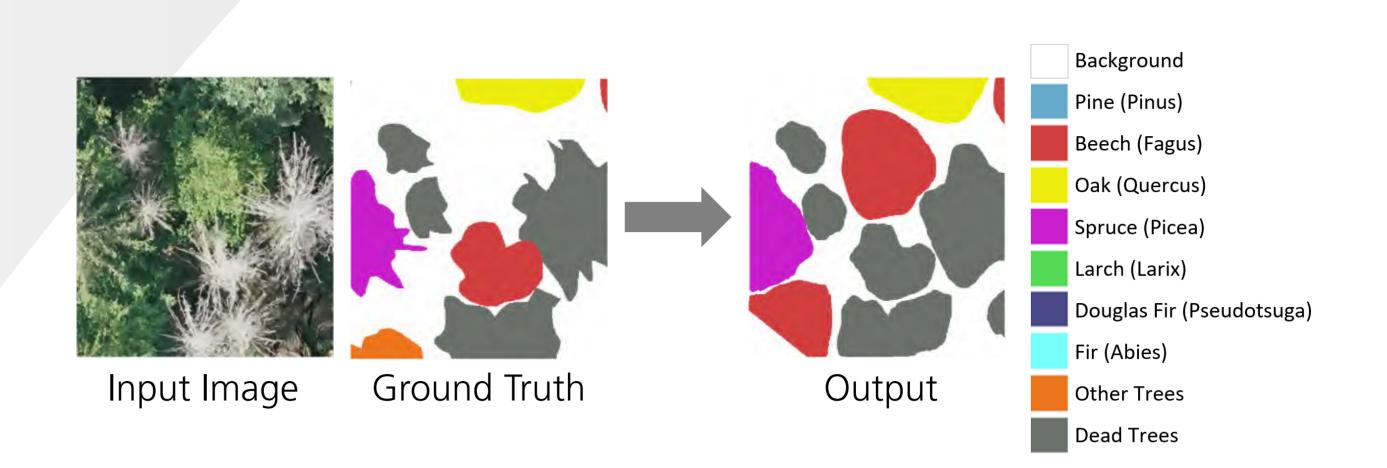
Mareike Weishaupt¹, Wen Fan², Jonas Troles³, Jiaojiao Tian^{1,2}

Dataset

Motivation

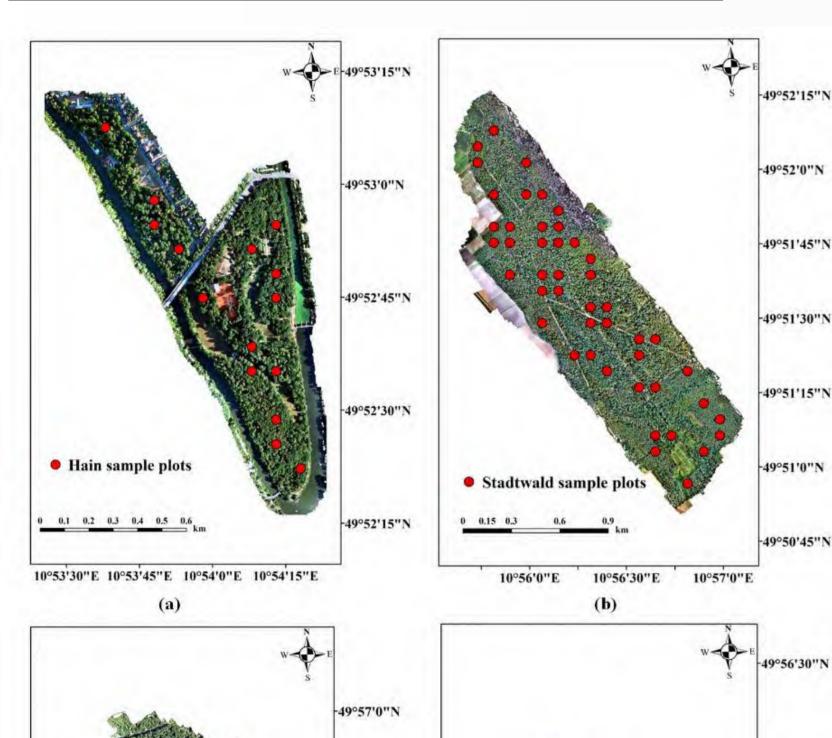
3 University of Bamberg, Cognitive Systems Group, Bamberg, Germany

Goal


- Optimize the classification of individual tree species.
- Minimize the impact of overlapping canopies and dense regions with mixed tree species.

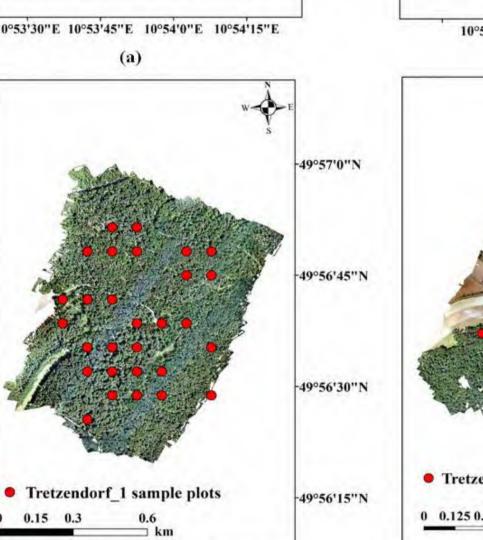
Problems

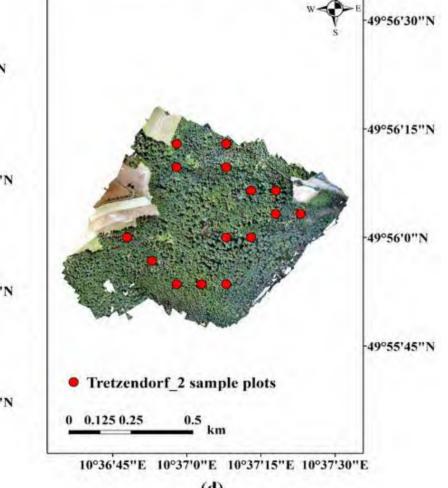
- Tree-level classification limited by noise despite high-detail data.
- Minority classes are difficult to learn accurately.
- Use of very high-resolution imagery remains underexplored.

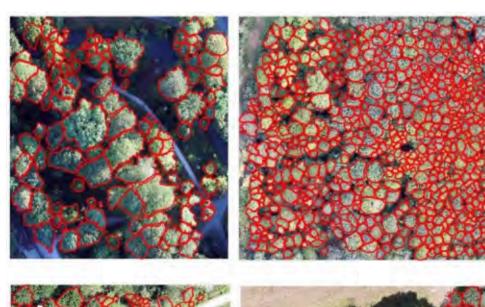

Contributions

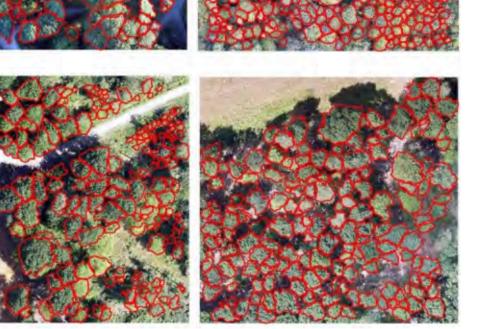
- Develop a model for pixel-based tree species classification (10 classes).
- Combine semantic and individual tree crown (ITC) segmentation.

Methodology

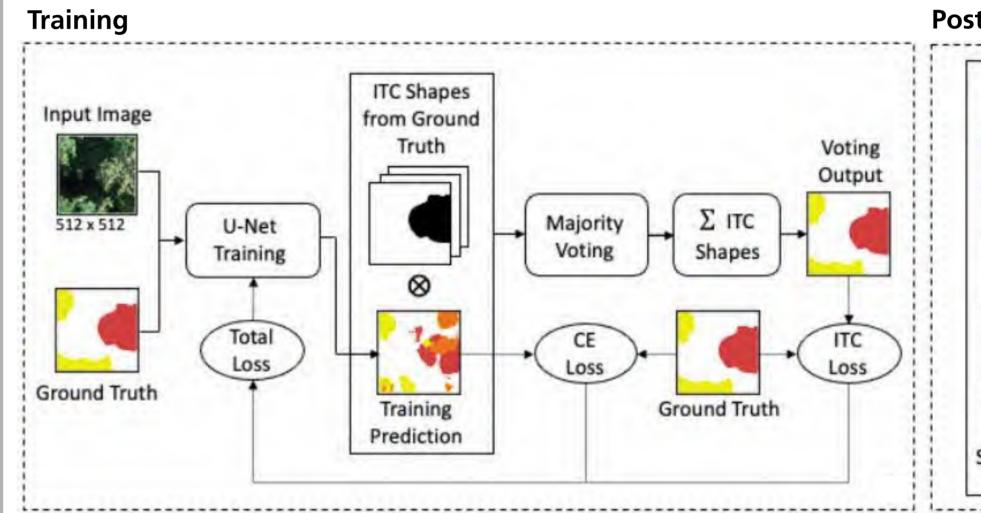

Bamforest Benchmark Dataset [2]

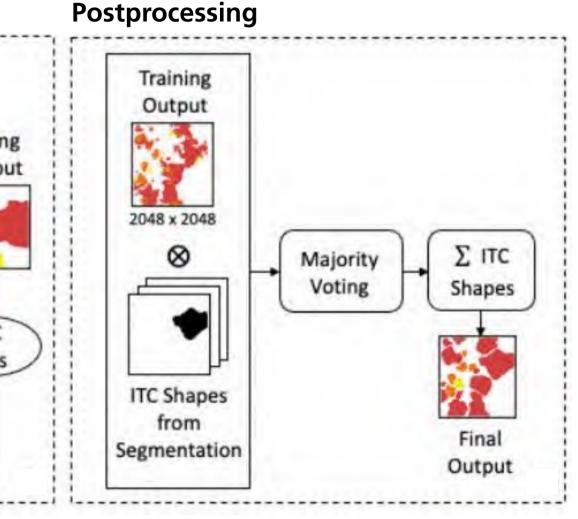



- **Ground Sampling Distance**
- Hain: 1.82 cm (a) Stadtwald: 1.7 cm (b)
- Tretzendorf: 1.79 cm (c,d)


Dataset Specifications

- Data acquisition: Summer 2022
- 27,160 trees delineated
- RGB imagery
- Bamberg area
- Tree species determined

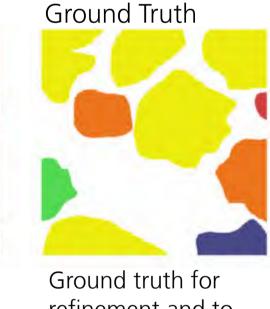




Region	Size	Sample plots	Tree numbers	Dataset	Image numbers	Tree numbers
Hain	50ha	15	1.978	Train	367	16.124
Stadtwald	150ha	46	15.477	Test	255	7.722
Tretzendorf_1	50ha	29	6.898	, 55 5		1.122
Tretzendorf_2	50ha	15	2.814	Validation 	226	6.391

ITC-Based Tree Species Classification [3]

- Use the features of tree crowns for species classification.
- Combine pixel-based and ITC-based segmentation approaches.
- Pixel-based segmentation performed using U-Net.
- ITC-based segmentation applied post hoc [1].
- Two-step method for improving segmentation:
 - Incorporation of a second loss function during U-Net training.
 - Postprocessing with ITC-based segmentation to refine crown shapes.
- Combination improves both accuracy and biological realism of results.



Majority Voting: Using the ITC shape to refine the results during the training and creating a loss (L_{ITC}) of the comparison of false predictions in comparison of total predictions:

from training.

refinement and to shaping and voting. calculate the loss (L_{ITC}) .

Experiment

Background

Pine (Pinus)

Beech (Fagus)

Oak (Quercus)

Spruce (Picea)

Larch (Larix)

Fir (Abies)

Dead Trees

Key Results [3]

- Input patches (512 \times 512) yield better segmentation accuracy than 2048 \times 2048 patches.
- Consistent improvement in both F1 Score and IoU across most classes.

Visual Outputs [3]

For the postprocessing, clear qualitative improvement using ITC approaches: Sharper tree boundaries, fewer false positives, and one species per ITC.

Conclusion

- Combining pixel-based segmentation with ITC-based segmentation enhances both precision and interpretability.
- Supports forest inventory, species mapping, and biodiversity monitoring at high resolution.

Future Directions

- Apply approach to additional datasets and diverse forest types.
- Train with more annotated data to improve performance for more tree species and regions.

References

[1] Tian, J., D. Panangian, W. Fan, B. Siegmann, and X. Yuan (2025). "Deep learning based individual tree crown delineation from panchromatic aerial imagery". In: ISPRS Geospatial Week 2025. [2] Troles, J., U. Schmid, W. Fan, and J. Tian (Jan. 2024). "BAMFORESTS: Bamberg Benchmark Forest Dataset of Individual Tree Crowns in Very-High-Resolution UAV

https://www.mdpi.com/2072-4292/16/11/1935 (visited on 07/22/2024). [3] Weishaupt, M., W. Fan, J. Troles and J. Tian (2025). "Individual Tree Crown Based Tree Species Classification from Very High-Resolution UAV Images". IGARSS 2025. Accepted paper.

Images". In: Remote Sensing 16.11. Number: 11 Publisher: Multidisciplinary Digital Publishing Institute, p. 1935. issn: 2072-4292. doi: 10.3390/rs16111935. url:

Douglas Fir (Pseudotsuga)

Class		Test-1		Test-2			
Name (Latin Name)	CE Loss [%]	CE + ITC Loss [%]	Postprocessing [%]	CE Loss[%]	CE + ITC Loss[%]	Postprocessing[%]	
Background	59.56	58.21	64.44	62.47	64.96	65.28	
Pine (Pinus)	00.04	00.02	00.00	50.22	50.78	50.96	
Beech (Fagus)	11.25	21.24	29.05	32.83	35.24	38.58	
Oak (Quercus)	23.99	19.52	29.68	33.24	32.40	37.62	
Spruce (Picea)	00.04	00.06	00.00	23.73	23.31	24.72	
Larch (Larix)	00.55	00.59	00.52	10.38	11.03	10.06	
Douglas Fir (Pseudotsuga)	00.00	00.00	00.00	00.97	00.21	00.27	
Fir (Abies)	00.00	00.00	00.00	00.00	00.00	00.00	
Other Trees	23.52	14.53	16.25	09.72	09.63	10.18	
Dead Trees	01.25	01.01	01.32	17.34	13.86	16.72	
Mean Score	15.46	17.33	20.93	42.03	42.79	44.39	

