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Experiment
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Ground Sampling Distance

▪ Hain: 1.82 cm (a)

▪ Stadtwald: 1.7 cm (b)

▪ Tretzendorf: 1.79 cm (c,d)

Dataset Specifications

▪ Data acquisition: Summer 2022

▪ 27,160 trees delineated

▪ RGB imagery

▪ Bamberg area

▪ Tree species determined

Region Size Sample 
plots

Tree 
numbers

Hain 50ha 15 1.978
Stadtwald 150ha 46 15.477

Tretzendorf_1 50ha 29 6.898

Tretzendorf_2 50ha 15 2.814

Dataset Image 
numbers

Tree 
numbers

Train 367 16.124

Test 255 7.722

Validation 226 6.391

Bamforest Benchmark Dataset [2] ITC-Based Tree Species Classification [3]

Goal

▪ Optimize the classification of individual tree species. 

▪ Minimize the impact of overlapping canopies and dense regions with mixed tree species.

Problems

▪ Tree-level classification limited by noise despite high-detail data.

▪ Minority classes are difficult to learn accurately.

▪ Use of very high-resolution imagery remains underexplored.

Contributions

▪ Develop a model for pixel-based tree species classification (10 classes).

▪ Combine semantic and individual tree crown (ITC) segmentation.

Majority Voting: Using the ITC 
shape to refine the results during 
the training and creating a loss 
(LITC) of the comparison of false 
predictions in comparison of total 
predictions: 

LITC =
Number of False Predictions
Total Number of Predictions

▪ Use the features of tree crowns for species classification.

▪ Combine pixel-based and ITC-based segmentation approaches.

▪ Pixel-based segmentation performed using U-Net.

▪ ITC-based segmentation applied post hoc [1].

▪ Two-step method for improving segmentation:

▪ Incorporation of a second loss function during U-Net training.

▪ Postprocessing with ITC-based segmentation to refine crown shapes.

▪ Combination improves both accuracy and biological realism of results.

Dataset

Key Results [3]

▪ Input patches (512 × 512) yield better segmentation accuracy than 2048 × 2048 patches.

▪ Consistent improvement in both F1 Score and IoU across most classes.

Visual Outputs [3]

▪ For the postprocessing, clear qualitative improvement using ITC approaches:                                                    

Sharper tree boundaries, fewer false positives, and one species per ITC.

Conclusion

▪ Combining pixel-based segmentation with ITC-based segmentation enhances 

both precision and interpretability.

▪ Supports forest inventory, species mapping, and biodiversity monitoring at high resolution.

Future Directions

▪ Apply approach to additional datasets and diverse forest types.

▪ Train with more annotated data to improve performance for more tree species and regions.
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Prediction output 
from training.

Refinement from 
shaping and voting.

Ground truth for 
refinement and to 
calculate the loss (LITC).

Training Postprocessing




