
EASY AND AUTOMATIC CMAKE BASED PROJECT GENERATION FOR LARGE-SCALE
SIMULATION APPLICATIONS

Noah Wiederhold, Luca Tiedemann

DLR e.V., Institut für Flugsystemtechnik, Lilienthalpl. 7, 38108 Braunschweig

Abstract
When working with large-scale software projects, it is essential to use a meta-build system in order to maintain flexibility
in terms of the build system used. At the Department of Flight Dynamics and Simulation (FDS) in the Institute of Flight
Systems (FT) of German Aerospace Center (DLR), there exists several such large-scale projects, for instance in the
Air Vehicle Simulator (AVES). AVES utilises the real-time simulation framework 2Simulate, which consists of multiple
subprojects. Currently, 2Simulate relies on a project structure that enables to build with Visual Studio and Unix Makefiles.
Migrating from such existing project structures to a meta-build system is time-consuming, and requires a coordinated
design approach. To address this issue, this paper proposes the introduction of an abstraction layer to cross-platform
Make (CMake) with regards to research specific requirements based on the meta-build system CMake. The general
concept for this approach is based on state of the art principles from web development. The approach aims to create a
uniform project standard while applying common software development best practices.

Keywords
CMake; Simulation; C++; Cross Plattform; Windows; Linux

DLR German Aerospace Center

VS Visual Studio

CI Continuous Integration

IDE Integrated Development Environment

QNX QNX RTOS by Blackberry

FDS Department of Flight Dynamics and
Simulation

FT Institute of Flight Systems

AVES Air Vehicle Simulator

GTest GoogleTest

CppLint C++ Lint

Doxygen Doxygen Documentation Generator

CTest CMake Test

CMake cross-platform Make

1. INTRODUCTION

At DLR, working with large-scale facilities, such as AVES
within FT FDS, is common. AVES enables the simulation of
air vehicles for research.
To this end, AVES employs a complex and interconnected
software architecture consisting of multiple large-scale soft-
ware projects. In this specific context, large-scale does not
necessarily mean that there is a high number of lines of
code, but rather that there is a complex dependency struc-
ture between many projects, regardless of their size. One of
these software projects is called 2Simulate [1]. 2Simulate is
a real-time simulation framework consisting of several sub-
projects. At present, 2Simulate projects depend on manu-
ally created Visual Studio (VS) project files or QNX RTOS

FIG 1. AVES

by Blackberry (QNX)-specific build processes [2]. Maintain-
ing these build systems is resource-intensive and often re-
sults in inconsistent states of the same subproject across
different VS versions or platforms. As developers work on
different parts of 2Simulate, the project structure of each
subproject tends to be unique, as there is no complete stan-
dard for the definition of projects. This makes it challenging
to add generalized testing or Continuous Integration (CI).
Using a dedicated build system is common practice when
working with large software projects. With the increasing
amount of files and dependencies, the maintainance of
multible build systems for different Integrated Develop-
ment Environment (IDE) versions or platforms becomes
time-consuming. The adoption of meta-build systems
streamlines this task to maintaining only a single build
system-specific configuration. This configuration can then
be used to generate the necessary project files for the build
systems itself. This enables flexible workflows, as build
systems can be seamlessly interchanged. Additionally,
most meta-build systems enable cross-platform capabilities
by design. Despite working with complex C++ projects in
FDS, a meta-build system is currently missing.

1



2. STATE OF THE ART

In the C++ domain, there is a wide range of build systems,
as well as meta-build systems available. Plain build sys-
tems provide a set of instructions to a compiler, detailing
the necessary parameters to create an executable file, for
example. Meta-build systems, in contrast, are designed to
generate project files for a range of supported build sys-
tems. Notable meta-build systems include CMake, Auto-
tools, GYP/GN and Meson [3] [4] [5] [6]. Of these, CMake
is the most popular option [7, p.17] [8, p.15] [9, p.14]. The
aforementioned meta-build systems have in common, that
they offer a platform and IDE-independent way of defining
building logic. This includes features such as defining tar-
gets and linker dependencies, including source code and
setting compiler flags. In addition, CMake and Meson offer
a way of managing dependencies, by using modules called
either "FetchContent" in CMake or "wrap" in Meson [10]
[11]. These methods allow loading of files or even projects
at build-time. While all these features improve the overall
workflow for developers, the level of complexity of meta-
build systems itself is a significant challenge. For instance
as of 2025 CMake consists of 1.5 million lines of code which
is roughly equivalent to the size of the 2010 Linux kernel,
highlighting the scope of the project [12] [13].
Nevertheless, as of 2021 46% the highest-ranking GitHub
repositories use a dedicated meta-build system [14, Fig.5.1
p.28]. In the field of scientific applications, meta-build sys-
tems are a common occurrence as well. For instance, the
ATLAS particle detector utilizes CMake [15].
In order to mitigate the potential disadvantages associated
with meta-build system integrations, an abstraction layer is
needed. This layer should conceal the complexity of the
meta-build systems, thereby facilitating a smoother transi-
tion from existing build systems.

3. REQUIREMENTS

For the purposes of this paper, 2Simulate is used as an ex-
ample. Given the aforementioned context, the requirements
are as follows:
Cross-platform The build and generation approach shall
support configuring, building and installing all defined tar-
gets on both Microsoft Windows (VS) and a supported Linux
distribution using the same unified project definition without
modifications.
Cross-version The solution shall allow generating project
files for multiple supported IDE’s / compiler versions (e.g.
different VS releases) without requiring per-version mainte-
nance inside individual projects.
Effortless testing The proposed architecture shall enable
the addition and execution of unit tests via a full-fitted test-
ing framework with at most one explicit test enable switch
(e.g. a single variable) per project, and without custom per-
project build logic.
Effortless CI The solution shall permit headless configu-
ration, build and test execution (including linting and docu-
mentation targets when enabled) through a single reusable
continuous integration pipeline configuration file applied un-
changed across projects.
Uniform projects Every project shall conform to a speci-
fied directory layout so that working with the projects can be
done in a generalized manner.
Dependency optimality The solution shall ensure that
each third-party dependency is integrated exactly once
within a multi-project generation, in order to avoid redun-
dancy.

A short overview of the defined requirements is given in Ta-
ble 1. Optional design drivers are depicted in Table 2.

Requirement Description

cross-platform support for Windows and Linux

cross-version supports different IDE-Versions

effortless testing straightforward tests integration

effortless CI straightforward CI integration

uniform projects consistent project structure

TAB 1. List of requirements

Design Driver Description

easy to use intuitive usability

dependency optimality no/less dependency overhead

linting support integrate a linting tool

TAB 2. List of design drivers

4. CONCEPT & IMPLEMENTATION

The use of meta-build systems provides the majority of the
necessary functionality to meet the requirements for 2Simu-
late, as listed in Table 1. However, meta-build systems also
introduce further complexity. Converting existing projects
to use meta-build systems hence would require for at least
one maintainer per project to have a deep understanding of
the given meta-build system. Furthermore, within 2Simulate
several interlinked subprojects exist. As these subprojects
depend on each other, their respective maintainers would
need to coordinate the conversion with one another. In or-
der to minimize training and coordination requirements, the
following concept introduces an abstraction layer to meta-
build systems with a uniform project structure. For the given
use case, CMake is selected as the meta-build system.

4.1. Concept

The following approach aligns with best practices, com-
monly adopted by web developers. For example, in frontend
development, initial code served by the web-server typi-
cally consists of basic page structures. Additional page
elements, styles, and logic are fetched asynchronously in
the background. This approach is known as "lazy load-
ing" [16, p.7]. While lazy loading primarily helps to achieve
shorter loading times in the domain of web development, it
is also applicable to build systems.
The foundation of the proposed concept is the division of
CMake project definitions into two parts, one frontend and
one backend part. The schematic of such a distinction is de-
picted in Figure 2. The frontend is "static" and only includes
variable definitions as well as minimal code for fetching the
backend (e.g. code for loading a second CMakeLists.txt
over the network). The second part, which is more com-
plex, is the backend of the project definition. It uses the
variables defined in the frontend part to declare targets, add
linking dependencies, and so on. Targets in this context are
best described as desired configuration sets of the given
code files. For instance, generating a static library requires
at least a target to be configured as a static library and to
include references to the relevant code files.
This approach allows one general logic to be defined
within the backend part and used for multiple projects.

2



Frontend CMake

+ name : string

+ linker flags : string

+ enable testing : bool

Backend CMake

+ addProjectTarget()

+ setLinkerFlags()

+ addTestingFramework()

(load) 

FIG 2. Concept schematic

Each project only needs to include the minimal redundant
frontend part and define variables as needed. The given
concept enables developers to maintain the build system
of multiple projects by modifying a single point of code.
Furthermore, it eliminates the need for manual changes to
every dependent project when the underlying build logic
changes. Because of this, the frontend part is called
"static": apart from the variable values, it is never changed.
Only the backend part is adjusted if necessary.
Additional objective is to reduce overhead in the depen-
dency management. Within dependency management, the
primary focus of the proposed approach lies on two key
points. The first can be clarified by referring to the schemat-
ics in Figure 3a and Figure 3b. Assume a project A, which
depends on B1 and B2. B1 and B2 are dependent on C. If
B1 and B2 were to load their dependencies individually, this
would result in C being loaded multiple times. To resolve
this issue, it is essential to ensure that dependency resolu-
tion is unique. Even though the dependency C for example
could potentially be requested with differing configuration,
for the current use case 2Simulate only non-configurable
projects exists.
The second point is more specific to the use case in ques-
tion, as developers at AVES work on several subprojects of
2Simulate. In order to facilitate effective workflows with ei-
ther a single project, or a combination of multiple dependent
projects, it is necessary to distinguish between "solo" and
"workspace" mode. When solo generating a project, it is es-
sential that all its dependencies are loaded by the backend.
However, when using a workspace generation, only depen-
dencies outside the scope of the collection of dependent
projects need to be loaded. The remaining dependencies
need to get resolved locally, as the projects already exist on
the drive.

A

B1 B2

CC =

(a) Unsolved dependency problem

A

B1 B2

C

(b) Solved dependency problem

FIG 3. Dependency problem of shared resources

4.2. Implementation

In line with the specified concept, the overall project is
divided into a template project and a core project. The
template project corresponds to the frontend and the core
project to the backend. CMake is currently the most popular

meta-build system, with a significant lead over Meson and
other similar systems. This is why CMake is used as the
meta-build system for the following [7, p.17].
As outlined in Section 4.1, the template’s primary logic, en-
capsulated in its CMakeLists.txt file, is structured in two sec-
tions. The first section contains all variable definitions and is
used by the developer to configure the project. The second
section uses CMake’s FetchContent module to define and
load the core project. At present, a developer can use the
features listed in Table 3. As there may be several compiler
flags needed for instance, the variables are implemented as
lists wherever applicable.

Option Description

project name identifier of the project

project path relative path in VS solution

project type shared/static library; executable

enable testing yes/no

linker language C++/C

third-party workspace internal dependencies

third-party extern extern dependencies

Compiler Flags -

Linker Flags -

TAB 3. List of template configuration options

In addition to the CMakeLists.txt the template project also
consists of a streamlined and unified project structure as
depicted in Figure 4.

root

include

header.h

src

main.cpp

tests

tests.cpp

CMakeLists.txt

.gitlab-ci.yml

FIG 4. Template project structure

In contrast, the core project consists of one large CMake-
Lists.txt and a number of CMake scripts that are out-
sourced.
As outlined in Section 4.1, the logic behind the core project
is divided into solo and workspace mode. When gener-
ating the workspace each third-party project outside the
workspace is uniquely fetched. This is achieved by compar-
ing each one against a list of already fetched target names
and utilizing CMake’s FetchContent methods. Following the
resolution of third-party projects, the project’s own target
will be defined based on the variables, specified in the
template project. The installation directories are set target
and configuration (debug/release) dependent, ensuring the
correct and consistent export of build results and header
files when using the generated projects. In contrast, the
solo generation also features fetching all internal third-party
projects, prior to the declaration of the target. The com-
parison between both modes is illustrated in Figure 5a and
Figure 5b.
Further features of the core project, listed in Table 4, are
bundled in a utility section for both modes. Linting is carried
out using the open-source tool C++ Lint (CppLint) [17].
By utilizing CMake’s "add_custom_target" method, call-

3



Fetch 3rdParty
In Workspace

Fetch 3rdParty
Out Workspace

Target Definition

Utility

(a) solo generation

Fetch 3rdParty
Out Workspace

Target Definition

Utility

(b) workspace generation

FIG 5. Generation modes

ing the Python-based CppLint tool is encapsulated into
the generated build-system projects. For every project,
including dependencies, one linting target is created. Nec-
essary input parameters, like the path to code-containing
directories, get generated dynamically when creating the
corresponding targets. For instance, when creating the
project "2Simulate", a target called "run_cpplint_2Simulate"
is created, which executes CppLint with the project specific
source code paths. Every dependent project using the
templates also creates their respective "run_cpplint_..."
target. Configuration of the linting process happens per
project through a CppLint-specific configuration file.
To generate streamlined documentation, Doxygen Docu-
mentation Generator (Doxygen) is used [18]. In contrast to
linting, only one target is created for running Doxygen. This
target only creates documentation for the current project,
excluding dependencies.
Testing is integrated with Google’s testing framework
GoogleTest (GTest) [19]. Similar to the integration of
Doxygen, testing is only possible for the current project.
The execution of tests is enabled through a project-specific
executable target, which is linked against the GTest-library.
To demonstrate the different targets created, an exemplary
target-tree of "2Simulate" is depicted in Figure 6.

FIG 6. Overview of generated targets

While the mentioned features are common in the C++
domain, the licence check is unique to the proposed ap-
proach. The backend continuously checks for licence files
when adding projects, comparing them against a list of
authorized licence types. In the event of missing licences,
a warning will be issued while any detected forbidden li-
cences will result in an error. Currently, the configuration of
permitted and prohibited licence types is managed centrally
within the core project.
To enable features that fall outside the capabilities of the
proposed approach, the generation process can be ex-

Feature Description

linting integration of CppLint as a target

documentation integration of Doxygen as a target

testing integration of GTest

licence check check for allowed licences

TAB 4. List of features

tended on a per-project basis through the use of additional
CMake scripts.
In situations where a user may wish to create a project using
an older version of the template, it is always possible to fetch
older backend versions by specifying a Git tag or commit
directly within the project’s frontend.
In addition to new features, the proposed implementation
also offers indirect improvements. The uniform project
structure enables CI via a generic .yaml file. This file
uses CMake’s CMake Test (CTest) to facilitate testing.
Furthermore, current forms of build result distribution can
be replaced with CI-based artifacts distribution.

5. CONCLUSION

The proposed approach makes the transition from existing
build systems in AVES less challenging. For this purpose,
a front-end template project is available for immediate use.
Developers can now use the introduced abstraction layer
to utilize a widely used meta-build system without special
training. By default, CMake’s sophisticated mechanisms
are not exposed to the typical user, but can be accessed
through custom code. By using a dedicated backend for the
build logic, improvements, and changes can still be intro-
duced later on and independent of the project’s developer.
The primary requirements, including cross-platform, cross-
version, and the integration of modern development con-
cepts, are met by using the meta-build system CMake. Ap-
plying the proposed approach of splitting a CMake project
into two projects, enabled a seamless integration of a com-
plex meta-build system into the existing project structures
of 2Simulate with only minimal effort. The decision to dif-
ferentiate between solo and workspace generation enabled
a space optimal solution to the dependency management
problem of large projects. Furthermore, it allows flexibility in
terms of solo project-based workflows to remain. The uni-
form implementation of all features through the proposed
approach indirectly enabled the generalized integration of
CI by using a single .yaml file. The usage of CMake also
enhanced the testing integration into CI pipelines, enabling
CI-workflows to rely on CTest for automated test execution
and status reporting.

Contact address:

Noah.Wiederhold@dlr.de

References

[1] Jürgen Gotschlich, Torsten Gerlach, and Umut Du-
rak. 2simulate: A distributed real-time simulation
framework. In Jürgen Scheible, Ingrid Bausch-Gall,
and Christina Deatcu, editors, ASIM Mitteilung 149
/ ARGESIM Report 42. ARGESIM Verlag, 2014.
ISBN: 9783901608438.

4

mailto:Noah.Wiederhold@dlr.de


[2] Blackberry. Qnx momentics projects, 11.03.2025. http
s://www.qnx.com/developers/docs/8.0/com.qnx.doc.id
e.userguide/topic/creating_qnx_project.html.

[3] Cmake, 23.04.2025. https://cmake.org/about/.

[4] Automake - gnu project - free software foundation,
23.04.2025. https://www.gnu.org/software/automake/.

[5] gn - git at google, 23.04.2025. https://gn.googlesourc
e.com/gn/.

[6] Meson build system, 22.04.2025. https://mesonbuild.c
om/.

[7] Standard C++ Foundation. Cppdevsurvey 2024, 2024.
https://isocpp.org/files/papers/CppDevSurvey-2024-s
ummary.pdf.

[8] Standard C++ Foundation. Cppdevsurvey 2023, 2023.
https://isocpp.org/files/papers/CppDevSurvey-2023-s
ummary.pdf.

[9] Standard C++ Foundation. Cppdevsurvey 2022, 2022.
https://isocpp.org/files/papers/CppDevSurvey-2022-s
ummary.pdf.

[10] Kitware. Fetchcontent — cmake 4.1.0, 05.08.2025. ht
tps://cmake.org/cmake/help/latest/module/FetchCont
ent.html.

[11] Meson wrap, 25.08.2025. https://mesonbuild.com/W
rap-dependency-system-manual.html.

[12] Cmake loc counter, 31.01.2025. https://codetabs.com
/count-loc/count-loc-online.html.

[13] Phoronix Media. Gitstats - linux kernel, 23.06.2015.
https://www.phoronix.com/misc/linuxstat-june-2015/li
nes.html.

[14] Lukas Gygi. CppBuild: Large-scale, automatic build
system for open source C++ repositories. 2021.

[15] J. Elmsheuser, A. Krasznahorkay, E. Obreshkov,
and A. Undrus. Large scale software building
with cmake in atlas. Journal of Physics: Confer-
ence Series, 898(7):072010, 2017. ISSN: 1742-6596.
DOI: 10.1088/1742-6596/898/7/072010.

[16] María Pilar Del Salas-Zárate, Giner Alor-Hernández,
Rafael Valencia-García, Lisbeth Rodríguez-Mazahua,
Alejandro Rodríguez-González, and José Luis López
Cuadrado. Analyzing best practices on web devel-
opment frameworks: The lift approach. Science of
Computer Programming, 102:1–19, 2015. ISSN: 0167-
6423. DOI: 10.1016/j.scico.2014.12.004.

[17] cpplint/cpplint: Static code checker for c++,
24.04.2025. https://github.com/cpplint/cpplint.

[18] Doxygen, 16.04.2025. https://doxygen.nl/.

[19] GitHub. google/googletest: Googletest - google testing
and mocking framework, 24.04.2025. https://github.c
om/google/googletest.

[20] Jürgen Scheible, Ingrid Bausch-Gall, and Christina
Deatcu, editors. ASIM Mitteilung 149 / AR-
GESIM Report 42. ARGESIM Verlag, 2014.
ISBN: 9783901608438.

[21] The Linux Foundation, Victor Rodriguez. Cutting edge
toolchain (latest features in gcc/glibc), 23.04.2025. ht
tps://www.youtube.com/watch?v=QXwxBM4sbYM.

5

https://www.qnx.com/developers/docs/8.0/com.qnx.doc.ide.userguide/topic/creating_qnx_project.html
https://www.qnx.com/developers/docs/8.0/com.qnx.doc.ide.userguide/topic/creating_qnx_project.html
https://www.qnx.com/developers/docs/8.0/com.qnx.doc.ide.userguide/topic/creating_qnx_project.html
https://cmake.org/about/
https://www.gnu.org/software/automake/
https://gn.googlesource.com/gn/
https://gn.googlesource.com/gn/
https://mesonbuild.com/
https://mesonbuild.com/
https://isocpp.org/files/papers/CppDevSurvey-2024-summary.pdf
https://isocpp.org/files/papers/CppDevSurvey-2024-summary.pdf
https://isocpp.org/files/papers/CppDevSurvey-2023-summary.pdf
https://isocpp.org/files/papers/CppDevSurvey-2023-summary.pdf
https://isocpp.org/files/papers/CppDevSurvey-2022-summary.pdf
https://isocpp.org/files/papers/CppDevSurvey-2022-summary.pdf
https://cmake.org/cmake/help/latest/module/FetchContent.html
https://cmake.org/cmake/help/latest/module/FetchContent.html
https://cmake.org/cmake/help/latest/module/FetchContent.html
https://mesonbuild.com/Wrap-dependency-system-manual.html
https://mesonbuild.com/Wrap-dependency-system-manual.html
https://codetabs.com/count-loc/count-loc-online.html
https://codetabs.com/count-loc/count-loc-online.html
https://www.phoronix.com/misc/linuxstat-june-2015/lines.html
https://www.phoronix.com/misc/linuxstat-june-2015/lines.html
https://doi.org/10.1088/1742-6596/898/7/072010
https://doi.org/10.1016/j.scico.2014.12.004
https://github.com/cpplint/cpplint
https://doxygen.nl/
https://github.com/google/googletest
https://github.com/google/googletest
https://www.youtube.com/watch?v=QXwxBM4sbYM
https://www.youtube.com/watch?v=QXwxBM4sbYM

	Introduction
	State of the art
	Requirements
	Concept & Implementation
	Concept
	Implementation

	Conclusion

