Freie Universitat Berlin

Masterarbeit am Institut fiir Informatik der Freien Universitiat Berlin

Arbeitsgruppe Software Engineering

Large Language Models in Software
Engineering: A Critical Review of
Evaluation Strategies

Ali Bektas
Matrikelnummer: 5404368
alibl0@zedat.fu-berlin.de

Betreuerin: Carina Haupt
Eingereicht bei: Prof. Dr. Lutz Prechelt
Zweitgutachter: Prof. Dr. Michael Felderer

Berlin, January 21, 2025

mailto:alib10@zedat.fu-berlin.de

Abstract

The development of Transformer-based Large Language Models (LLMs) has
significantly influenced Software Engineering (SE), enabling advancements in ar-
eas such as requirements engineering, bug detection, and API documentation,
while drawing considerable attention in the domain of code generation. In recent
years, research in this domain has grown substantially, with numerous studies
exploring how LLMs can be applied to diverse SE tasks. While several surveys
address the use of LLMs in SE [21, 13, 90] and general evaluation strategies for
LLMs [6, 17, 8], a detailed analysis of evaluation strategies specifically tailored to
SE tasks remains lacking. Such an analysis is essential to ensure that evaluations
accurately reflect the real-world applicability of LLM-based solutions in SE.

This thesis systematically examines the evaluation strategies employed in LLM-
based SE research. Using a structured six-phase approach, a subset of 41 non-
code-centric studies derived from the corpus identified by Hou et al. [21] was
critically reviewed. The analysis found that reliability was moderate, reflecting
adherence to baseline methodological rigor but hindered by challenges such as
dataset generalizability and transparency. Relevance, on the other hand, was
moderate to high, though evaluations varied in how well metrics aligned with
task objectives. Researchers often faced trade-offs between rapid solution devel-
opment and evaluation rigor, leading to persistent baseline-level limitations.

The study highlights key opportunities to improve evaluation practices. Col-
laboration between academia and industry is critical to addressing dataset limita-
tions by developing methods to create representative datasets that reflect indus-
trial workflows while respecting confidentiality. Task-specific best practices can
be developed by synthesizing strengths from existing evaluation strategies, en-
suring alignment with SE tasks. Additionally, incorporating LLM-specific traits,
such as variability in probability distributions and the influence of temperature
settings, can improve evaluation reliability and better reflect real-world perfor-
mance.

By addressing these gaps and implementing the proposed improvements, this
thesis provides actionable recommendations to enhance the reliability and rel-
evance of LLM evaluation strategies in SE. These advancements are crucial for
ensuring that LLM-based solutions deliver meaningful and impactful outcomes
in both academic and industrial contexts.

Zusammenfassung

Die Entwicklung von auf Transformern basierenden grofien Sprachmodellen
(LLMs) hat die Softwareentwicklung (SE) mafigeblich beeinflusst und Fortschritte
in Bereichen wie Anforderungsmanagement, Fehlererkennung und API-Dokumentation
ermoglicht — neben der Code-Generierung, die bislang im Fokus vieler Entwick-
lungen stand. In den letzten Jahren hat die Forschung in diesem Bereich erheblich
zugenommen, wobei zahlreiche Studien untersuchen, wie LLMs auf verschiedene
Aufgaben der Softwareentwicklung angewendet werden konnen. Wéhrend einige
Ubersichtsarbeiten die Nutzung von LLMs in der SE [21, 13, 90] sowie beste-
hende Ansitze zur Evaluation von LLMs [6, 17, 8] zusammenfassen, fehlt bisher
eine detaillierte Analyse der Evaluierungsstrategien, die speziell auf SE-Aufgaben
zugeschnitten sind. Eine solche Analyse ist jedoch entscheidend, um sicherzustellen,

dass die Bewertung von LLM-basierten Losungen deren Praxistauglichkeit in der
SE realistisch widerspiegelt.

Diese Arbeit untersucht systematisch die in der LLM-basierten SE-Forschung
eingesetzten Evaluierungsstrategien. Dabei wurde ein strukturierter Ansatz in
sechs Phasen verfolgt, um 41 nicht-code-zentrierte Studien aus dem von Hou et
al. [21] identifizierten Korpus kritisch zu analysieren. Die Ergebnisse zeigen, dass
die Zuverlassigkeit der Evaluierungen moderat ist: Zwar wurde eine grundsit-
zliche methodische Sorgfalt eingehalten, doch beeintrachtigten Herausforderun-
gen wie mangelnde Generalisierbarkeit und Transparenz der Datensétze die Ergeb-
nisse. Die Relevanz der Evaluierungen wurde hingegen als moderat bis hoch
eingeschétzt, wobei die Metriken in unterschiedlichem Mafse an die spezifischen
Aufgaben angepasst waren, fiir die sie die Qualitdt der Losungen bewerten soll-
ten. Haufig mussten Forschende Kompromisse zwischen der schnellen Entwick-
lung von Lésungen und einer rigorosen Evaluierung eingehen, was zu grundle-
genden Einschriankungen bei den Baseline-Ansétzen fiihrte.

Die Studie identifiziert zentrale Ansatzpunkte zur Verbesserung der Evaluierun-
gspraxis. Eine stdrkere Zusammenarbeit zwischen Wissenschaft und Industrie
ist entscheidend, um Datenliicken zu schliefen und Methoden zur Erstellung
reprdsentativer Datensitze zu entwickeln, die industrielle Workflows widerspiegeln,
dabei jedoch Vertraulichkeitsanforderungen berticksichtigen. Durch die Synthese
bewdhrter Ansidtze konnen aufgabenspezifische Best Practices entwickelt werden,
die besser mit den Zielen der SE-Aufgaben iibereinstimmen. Dartiber hinaus
kann die Berticksichtigung von LLM-spezifischen Eigenschaften, wie der Vari-
abilitat in Wahrscheinlichkeitsverteilungen und dem Einfluss von Temperature-
instellungen, die Zuverldssigkeit der Evaluierungen verbessern und die realen
Leistungsfahigkeiten préziser abbilden.

Durch die Identifizierung dieser Schwachstellen und die Umsetzung der vorgeschla-
genen Verbesserungen bietet diese Arbeit praxisorientierte Empfehlungen, um
die Zuverldssigkeit und Relevanz von LLM-Evaluierungsstrategien in der SE zu
steigern. Diese Fortschritte sind von zentraler Bedeutung, um sicherzustellen,
dass LLM-basierte Losungen sowohl in der Forschung als auch in industriellen
Anwendungen wirkungsvolle und nachhaltige Ergebnisse liefern.

Eidesstattliche Erklirung

Ich versichere hiermit an Eides Statt, dass diese Arbeit von niemand anderem als
meiner Person verfasst worden ist. Alle verwendeten Hilfsmittel wie Berichte, Biicher,
Internetseiten oder dhnliches sind im Literaturverzeichnis angegeben, Zitate aus frem-
den Arbeiten sind als solche kenntlich gemacht. Die Arbeit wurde bisher in gleicher
oder dhnlicher Form keiner anderen Priifungskommission vorgelegt und auch nicht
veroffentlicht.

January 21, 2025

Ali Bektas

@L‘fm; A/{/_

Contents

1 Introduction
1.1 Motivation e
1.2 Research Questions e

2 State of the Art
21 LargeLanguageModels
22 Software Engineering Lo oL
2.3 Large Language Models for Software Engineering Tasks

3 Related Work and Research Corpora
31 ResearchCorpora
3.2 Exploration of Replication Package from Literature Review

4 Method

4.1 Summary of the Study’s Approach

411
4.1.2
4.1.3

414
4.1.5

4.1.6

Core Evaluation Dimensions: Reliability and Relevance
Phase 1: Categorization by Research Focus
Phase 2: Identification of Key Aspects of Evaluation through
Detailed Review
Phase 3: Refinement of Scope and Grouping by Task Objectives .
Phase 4: Group-wise review - Evaluation summarization and
SCOTING . . . v vttt e
Phase 5: Critical Analysis of Strengths and Limitations of Eval-
uation Strategies oL

42 Setting the Stage for the Review

421
422
423

424
425

Research Focus Categorization
Defining Reliability and Relevance
Review of the First Batch and Identifying Key Aspects of Evalu-
ation e e
Refinement of Scope L oL
Grouping the papers by underlying task objectives

4.3 Review Process e e

43.1
432

5 Results

Qualitative Review of Evaluation Strategies
Quantitative Analysis of Evaluation Strengths and Limitations .

5.1 Descriptive Summarization of Evaluations by Task Objectives

51.1

512
513
514
515
5.1.6

Group 1: Improving Developer Efficiency — Effort and Resource
Estimation
Group 2: Enhancing Software Reliability and Maintenance

Group 3: User Feedback Processing
Group 4: Requirements Evaluation and Traceability
Group 5: Program Specifications and API Documentation
Group 6: Prototyping and System Design.

5.2 Critical Analysis of Strengths and Limitations of Evaluation Strategies .

10
11
11

12
12
16
17

18
18
19

20
21
21
22

23
23

24

24
25
26
31

33
37
39
41
41
42

43
43

43
46
51
53
56
60
62

52.1 Evaluation Patterns Across Task Objective Groups
5.2.2 Evaluation Patterns Across Research Focus of the Papers
5.2.3 Influence of ML Task Types on Evaluation Strategies
524 Temporal Trends in Evaluation Strategies
5.3 Insights on Reliability and Relevance of the studies
53.1 Opveral Reliablity and Relevance
5.3.2 Summary of Reliability and Relevance Across Dimensions
5.3.3 Cluster Patterns of Reliability and Relevance
5.3.4 Task-Specific Contrasts in Evaluation Strategies

Addressing the Research Questions

6.1 Implications for the Reliability of Evaluation Practices
6.2 Implications for the Relevance of Evaluation Practices.
6.3 Addressing Key Gaps and Enhancing Evaluation Practices

Conclusion

71 KeyConclusions

7.2 Opportunities for Improvement

7.3 Recommendations for Trustworthy Evaluations and Where More Cau-
tionisRequired oL oo

74 Further Work

7.5 Final Reflections L,

68
72
74
75
76
78
80
82

85
85
87
90

List of Figures

1

N

[ustration of the Scaled Dot-Product Attention and Multi-Head Atten-
tion mechanisms, adapted from [72]. The left part of the image demon-
strates the computation within a single attention head, focusing on the
scaled dot-product attention process, while the right part delineates the
aggregation of multiple such heads in the multi-head attention frame-
work. ..o
[llustration , adapted from [72]. Isolated attentions from just the word
‘its” for attention heads 5 and 6. Note that the attentions are very sharp
for thisword ‘Law’.
lustration adapted from [73]. Neuron view of GPT-2 for layer 1, head
10 with last token selected. Positive and negative values are colored
blue and orange, respectively, with color saturation based on magni-
tude of the value. As with the attention-head view, connecting lines
are weighted based on attention between the words. Blue arrows mark
positions in the element-wise products where values decrease with in-
creasing distance from the source token (becoming darker orange or
lighterblue).
Flow diagram illustrating the steps from Phase 1 to Phase 3, outlining
the process for preparing thereview
Example abstract of a study [1] assessing performance of existing solu-

Example abstract [7] of a study investigating LLM properties in SE tasks
Distribution of reliability and relevance scores across tasks
Reliability and Relevance Scores Across Tasks and Research Focus . . .

List of Tables

NGl = W IN -

e

10
11
12
13
14
15

Summary of Software Engineering Activities, Tasks, and References . .
Research Focus Categories with References
Evaluation Setup Summary for Group 1 Papers
Evaluation Setup Summary - Bug Detection and Localization
Evaluation Setup Summary - Log Parsing and Analysis.
Evaluation Setup Summary - Sentiment Analysis & User Feedback Pro-
CESSING v i
Evaluation Setup Summary for Requirements Evaluation Papers
Evaluation Setup Summary for Program Specifications and API Docu-
mentation
Evaluation Setup Summary - Prototyping and System Design
Identified Limitations in Datasets Across Tasks
Recurring Themes in Dataset Limitations Across Tasks
Identified Limitations in Ground Truth Across Tasks
Identified Limitations in Baselines Across Tasks
Identified Limitations in Metrics Across Tasks
Identified Limitations in Validation Methods Across Tasks

38
39
44
47
48

52
54

16
17

18
19

20
21
22
23
24
25

Thematic Strengths in Development of New SE Solutions (NSE)
Thematic Strengths in Performance Assessment of Existing Solutions
(PES) . . . o e
Thematic Limitations in Development of New SE Solutions (NSE)

Thematic Limitations in Performance Assessment of Existing SE Solu-
tions (ESE)
Key Evaluation Limitations Across ML Tasks in Software Engineering .
Evaluation Limitations in 2020 - Total 3 Papers
Evaluation Limitations in 2021 - Total 2 Papers
Evaluation Limitations in 2022 - Total 11 Papers
Evaluation Limitations in 2023 - Total 17 Papers
Evaluation Limitations in 2024 - Total 8 Papers

1 Introduction

The introduction of transformer-based models has significantly influenced the field of
natural language processing (NLP), particularly through the use of attention mecha-
nisms. These mechanisms allow models to process input sequences in parallel, greatly
enhancing their ability to capture context and relationships within the text. This ad-
vancement has led to the widespread adoption of Large Language Models (LLMs)
across various domains, including Software Engineering (SE).

As the application of LLMs in SE expands, there has been a notable increase in
both academic research and industry adoption. The number of studies exploring the
use of LLMs for SE tasks has grown significantly, as documented by Hou et al. [21].
Researchers are applying LLMs to a variety of SE tasks such as code generation, bug
detection, comment generation, and test generation. Meanwhile, industry has also
begun integrating LLMs into real-world SE workflows. For example, GitHub Copi-
lot! provides LLM-powered code suggestions within integrated development envi-
ronments (IDEs), facilitating pair programming and boosting developer productivity.
Additionally, IDEs are embedding LLMs to support pair programming, with courses
and tools being developed to help engineers leverage these capabilities®. Tools like
IBM Engineering Requirements Quality Assistant’ are also using LLMs to assist with
requirement management, automating complex aspects of SE workflows.

While the potential of LLMs in SE is widely acknowledged, the evaluation of these
models within SE tasks presents unique challenges. Ensuring that the evaluation
methods used in research are reliable and relevant to real-world SE applications is
critical for understanding how these models perform and for guiding future research.
Existing surveys and studies primarily focus on various aspects of LLM usage in SE,
from general applications to task-specific evaluations, but a comprehensive review of
evaluation strategies tailored specifically for SE tasks is lacking. This gap makes it
difficult to assess the reliability and relevance of current evaluation practices when
applied to SE tasks. Since the quality of evaluation directly impacts the perceived
effectiveness of LLM-based solutions, it is essential to critically examine the methods
used to ensure they provide meaningful insights into the models” practical utility.

The goal of this thesis is to address this gap by systematically reviewing the eval-
uation strategies employed in research on LLM-based SE solutions. By assessing the
reliability and relevance of these evaluations, this study aims to provide a clearer un-
derstanding of how well current methodologies align with the practical needs of SE
tasks. Through a structured analysis of the literature, the research seeks to identify
strengths and weaknesses in existing approaches, contributing to the development of
more robust and effective evaluation strategies for LLM applications in SE.

The structure of this thesis reflects the systematic approach taken to analyze eval-
uation strategies for LLM-based Software Engineering tasks. Section 2 reviews the
state of the art in LLMs (2.1) and their applications in Software Engineering, highlight-
ing advancements, challenges, and opportunities (2.2-2.3). Section 3 presents related
work and describes the research corpora used in this study, including the replication

Ihttps://github.com/features/copilot
Zhttps://www.deeplearning.ai/short-courses/pair-programming-11lm/
Shttps://www.ibm.com/docs/en/erqa?topic=assistant-overview

10

https://github.com/features/copilot
https://www.deeplearning.ai/short-courses/pair-programming-llm/
https://www.ibm.com/docs/en/erqa?topic=assistant-overview

package provided by Hou et al. [21]. Section 4 starts by introducing the six-phase
methodological framework applied in this research (4.1), detailing the preparation of
the review (4.2), the group-wise review process organized by task objectives (4.3.1),
and the criteria used to assess reliability and relevance (4.2.2). Section 5 summarizes
the findings, including descriptive overviews of the review organized by task objec-
tive groups (5.1) and critical analyses of strengths and limitations across dimensions
such as task objectives, research focus, ML task types, and publication trends (5.2).
It also examines reliability and relevance, identifying patterns and contrasts across
evaluation practices (5.3). Section 6 synthesizes these findings to address the research
questions on reliability (6.1), relevance (6.2), and approaches to addressing limitations
in evaluation strategies (6.3). Finally, Section 7 provides a summary of the key con-
tributions of this work, discusses its implications for the field, and outlines directions
for future research.

1.1 Motivation

The increasing adoption of LLMs in SE offers significant potential for automating
complex tasks such as code generation, bug detection, and test generation. How-
ever, despite their growing use, there is a critical gap in the way LLM-based solutions
are evaluated in SE research. Current evaluation methods often rely on conventional
metrics like accuracy, precision, and Fl-score, which may not fully capture the com-
plexities and real-world challenges posed by SE tasks. These standard metrics may
overlook important dimensions such as interpretability, robustness, and contextual
relevance, which are essential in SE applications [6, 17].

As suggested by recent studies and highlighted in this work, many existing re-
search papers likely fall short in providing reliable or relevant evaluations of LLMs
for SE tasks. This poses a risk of misleading results, overestimating the effective-
ness of LLMs, or failing to address critical areas where these models underperform
in practical applications. By focusing on a systematic review of evaluation strategies,
this research aims to unveil these limitations and provide a structured critique of the
current practices.

Uncovering these gaps is essential not only for academic progress but also for the
broader SE community, where the reliability and relevance of LLM-based tools di-
rectly impact the quality and success of software development workflows. Improved
evaluation methods will ensure that research results more accurately reflect the ca-
pabilities of LLMs in SE, guiding both future research efforts and practical industry
applications. This study, therefore, aims to elevate the evaluation standards in SE re-
search and contribute to the development of more rigorous and meaningful method-
ologies that align with real-world SE needs.

1.2 Research Questions

Motivated by the observation that evaluation strategies for LLM-based solutions in
software engineering (SE) may face challenges in effectively assessing their real-world
applicability, this thesis investigates the following research questions:

11

e RQ1: How reliable are the evaluation strategies used in LLM-based software
engineering research?

e RQ2: How relevant are the evaluation strategies in reflecting real-world software
engineering needs?

e RQ3: What are the key gaps and limitations in current evaluation strategies,
and how can they be addressed?

These questions aim to critically examine existing evaluation practices, identify
potential shortcomings, and provide structured insights to guide improvements in
future research and practical applications.

2 State of the Art

2.1 Large Language Models

Natural Language Processing (NLP) is a domain within artificial intelligence that fo-
cuses on the interaction between computers and humans through natural language.
The objective is to enable computers to understand, interpret, and generate human
language to support tasks like translation, summarization, information retrieval, sen-
timent analysis, and more. Within this field, a language model is a computational tool
that predicts the likelihood of a sequence of words or phrases, capturing the essence
of language syntax and semantics based on vast amounts of training text data.

The evolution of language models has unfolded through distinct phases, each
marked by significant technological milestones. In the 1950s and 1960s, the field
was dominated by rule-based models, relying on manually crafted linguistic rules
to process language. The 1980s and especially the 1990s witnessed a pivotal shift to
statistical models that used large text corpora to infer language patterns, enhancing
the adaptability and scalability of language processing.

The late 1990s and early 2000s introduced neural network-based models, notably
Recurrent Neural Networks (RNNs) [32], which excelled in sequential data process-
ing, laying the groundwork for sophisticated text understanding and generation. The
evolution continued into the mid-2010s with the emergence of pre-trained models,
paving the way for the development of Large Language Models (LLMs). A transfor-
mative moment occurred around 2017 with the introduction of transformer models
in the "Attention Is All You Need" paper [72], which for the first time relied solely
on self-attention mechanisms, eliminating the need for RNNs or convolutional lay-
ers. This marked a significant paradigm shift from earlier models that combined
self-attention with other architectures, to a new era where self-attention alone could
drive deep, contextually aware language understanding, propelling the field of NLP
into new frontiers of capability and flexibility.

Sequential models, particularly Recurrent Neural Networks (RNNs) and their ad-
vanced variants like Long Short-Term Memory (LSTM) networks, have been pivotal
in processing language data due to their inherent design to handle sequential infor-
mation. They process text one token at a time, maintaining a hidden state that theo-
retically encapsulates the information from all previously seen tokens, thus creating

12

a sense of memory. However, these models often struggle with long-range dependen-
cies due to issues like vanishing or exploding gradients.

A pivotal feature of the Transformer architecture is its self-attention mechanism,
which significantly enhances the model’s ability to address the limitations inherent
in sequential processing. Unlike sequential models that process data in order, self-
attention allows the model to weigh and relate any two tokens in the input, regardless
of their positions. This mechanism computes the representation of each token by
considering how it relates to every other token in the sequence, enabling the model
to capture dependencies without being constrained by the distance between tokens.
As a result, self-attention provides a more flexible and context-aware way to encode
the semantics of the input sequence, enhancing the model’s ability to understand and
generate language with greater nuance and coherence.

The self-attention mechanism within large language models represents a paradigm
shift in how models ascertain and encode the relationships between tokens in a se-
quence. Specifically, self-attention calculates alignment scores, typically through a
scaled dot-product attention process (Fig. 2 left), where each token’s representation is
dynamically influenced by computing how much focus it should place on every other
token in the sequence. These scores determine the extent to which each token should
attend to every other token across the sequence, enabling the weighted aggregation of
token representations that effectively contextualizes each word within its surrounding
linguistic environment.

Scaled Dot-Product Attention Multi-Head Attention

Linear

MatMul

L
Scaled Dot-Product JA o
Attention “
H

|
[T_inear]_] [T_inear],] [T_inear]_]

e

vV K Q

Figure 1: Illustration of the Scaled Dot-Product Attention and Multi-Head Attention
mechanisms, adapted from [72]. The left part of the image demonstrates the com-
putation within a single attention head, focusing on the scaled dot-product attention
process, while the right part delineates the aggregation of multiple such heads in the
multi-head attention framework.

Diving deeper into the multi-head attention feature (Fig. 1 right), we understand
that it subdivides the attention mechanism into multiple "heads," allowing the model

13

to concurrently explore different dimensions of the data. Each head can potentially
capture distinct types of relationships, such as varying syntactic or semantic connec-
tions, by computing separate sets of alignment scores. After this parallel processing,
the diverse outputs from all heads are concatenated and linearly transformed, yield-
ing a rich, integrated representation that encapsulates various linguistic nuances and
facets, thereby enhancing the model’s linguistic comprehension.

The attention mechanism inherent in transformer models not only enhances their
performance but also offers a level of interpretability that is crucial for understanding
their inner workings. Recent works [73, 84] have delved into exploring these models’
attention mechanisms through visualization techniques, shedding light on how these
models process and prioritize different parts of the input data.

In Figure 2, we observe a visualization that elucidates the functionality of two
attention heads processing the word ’its” within an input sequence. It becomes clear
from this visualization that these attention heads are adept at anaphora resolution,
showcasing their ability to link referential expressions with their antecedents effec-
tively. Additionally, Figure 3 provides insights to the scaled dot-product attention
mechanism within a single attention head, focused on the token ’.". This visualiza-
tion intuitively demonstrates how the attention values evolve, emphasizing a pattern
where attention diminishes as the distance from the sentence-ending token increases.

[=
<] -
m;z_g’ ‘T - 7&8 % ® 2,0 8 > S 88_
FS3SE288 BL2F583 .23 355 E cE& .V V
- - o e * AN A
2 63813 228328 E = ES » ©
85 @ Q w v
= = o v
a
®

Figure 2: Illustration , adapted from [72]. Isolated attentions from just the word ‘its’
for attention heads 5 and 6. Note that the attentions are very sharp for this word
‘Law’ .

Typically, a model might employ 8 or 16 attention heads, with the choice of this pa-
rameter influencing the granularity and scope of relationships the model can capture,
thereby affecting its performance and interpretability [73, 84]. This feature contrasts

14

Layer: 1 § Head: 10%
Query q Key k q x k (element-wise) q-k Softmax
The i 1l The
quick quick
brown brown
fox fox
jumps jumps
over over
the the
lazy | lazy
dogs | dogs
It \ It
then | then
quickly | quickly
runs | runs
away | away
- | l '

Figure 3: Illustration adapted from [73]. Neuron view of GPT-2 for layer 1, head
10 with last token selected. Positive and negative values are colored blue and or-
ange, respectively, with color saturation based on magnitude of the value. As with
the attention-head view, connecting lines are weighted based on attention between
the words. Blue arrows mark positions in the element-wise products where values
decrease with increasing distance from the source token (becoming darker orange or
lighter blue).

with the sequential nature of RNNs, where information processing is inherently lin-
ear and time-dependent. Self-attention’s parallelizable structure not only mitigates
these limitations but also facilitates significantly faster training times and improved
handling of longer sequences.

In the context of NLP tasks, these architectural innovations have proven instru-
mental across a range of applications, from translation to content generation, under-
pinning the versatile and powerful capabilities of large language models. However, it
is also crucial to acknowledge inherent challenges, such as increased computational
demands and potential difficulties in model interpretability, particularly in dissecting
the specific contributions of individual attention heads or understanding the model’s
decision-making process in detail. Acknowledging these limitations alongside the
benefits provides a comprehensive understanding of the self-attention and multi-head
mechanisms within the larger narrative of language model evolution.

Following the introduction of transformer models, a notable development in the
field of NLP is the application of Reinforcement Learning from Human Feedback
(RLHF) to enhance the performance of large language models. The study by Ziegler
et al. [94] exemplifies this approach, applying RLHF to refine pre-trained language
models for specific tasks like text continuation and summarization, informed by hu-
man feedback.

In their research, Ziegler et al. [94] demonstrate how RLHF can be used to adjust
language models based on human evaluations, aiming to produce outputs that are

15

more aligned with human judgments of quality and relevance. This process involves
training a reward model from human preferences, which is then used to guide the
fine-tuning of language models, enhancing their ability to generate text that resonates
more aligned to with human readers preference. The integration of RLHF represents
a methodological advancement in the field, enabling language models to evolve based
on direct human input, thus improving their applicability and effectiveness in real-
world tasks. This development underscores the shift toward more interactive and
adaptive systems in NLP, where human feedback plays a vital role in refining Al
outputs. Through such advancements, language models continue to evolve, offering
more sophisticated tools for a variety of NLP applications, illustrating a commitment
to aligning Al systems more closely with human expectations and standards, and
showcasing the potential for these models to become more nuanced and context-
aware in their language generation capabilities.

2.2 Software Engineering

Software Engineering (SE) emerged as a distinct discipline during a pivotal period
in the mid-20th century, marked by the rapid expansion of computing technology.
As hardware capabilities advanced, significant disparities in software development
methodologies became evident, leading to what is known as the "software crisis."
This crisis highlighted difficulties in developing reliable, maintainable, and efficient
software within acceptable timeframes and budgets. In response, the seminal NATO
conferences of the late 1960s were convened. These conferences played a crucial role
in defining SE as a critical field aimed at addressing the complexities of software cre-
ation. Due to its abstract nature, software allows for substantial customization and
wide applicability but also introduces significant complexities that challenge the au-
tomation of development processes. This dynamic requires a careful balance between
specialized solutions and broadly applicable approaches in software design, under-
scoring the nuanced and continuously evolving nature of the field. The discipline
of SE continues to adapt, applying established principles to new challenges across a
diverse range of application domains [60, 2].

SE orchestrates all aspects of software production by applying engineering prin-
ciples to develop functional, dependable, and efficient software within financial and
temporal constraints. Unlike computer science, which explores theoretical aspects, or
systems engineering, which addresses broader systems issues, SE focuses specifically
on software solutions. It incorporates the Software Development Lifecycle (SDLC),
a systematic process that includes phases such as planning, design, implementation,
testing, deployment, and maintenance. This lifecycle helps manage and streamline
the creation and maintenance of software, accommodating a diverse array of software
types and usage scenarios. While no single methodology fits every project, leading
practices vary from stand-alone applications to embedded systems. However, prin-
ciples like effective process management, dependability, clear requirement gathering,
and efficient resource use remain universal. These principles ensure the delivery of
reliable software that meets various user and market demands, amidst ongoing tech-
nological and business challenges [68].

16

2.3 Large Language Models for Software Engineering Tasks

Building on the advancements in artificial intelligence research within SE, such as
the optimization techniques employed in Search-Based Software Engineering (SBSE)
which also involved natural language processing [70, 36], an intriguing new focus
has emerged: the application of Large Language Models (LLMs) in SE. This area ex-
plores the potential of LLMs to manage tasks that involve understanding and generat-
ing human language, now directed toward the complexities of software development
processes.

Since 2019, LLMs have garnered significant attention for their applications in SE,
reflecting a broader trend across computer science disciplines. According to Fan et al.
(2023), this focus has led to the recognition of LLM-based SE as an emerging subdis-
cipline [13]. The authors highlight the substantial growth in publications related to
LLMs in SE, demonstrating the community’s rapid adoption of this technology.

Supporting this observation, Hou et al. [21] document an exponential increase
in publications that integrate LLMs with SE tasks—from 7 papers in 2020 to an im-
pressive 160 in just the first half of 2023 [21]. This surge in research activity has
spurred the development of the term Large Language Models for Software Engineer-
ing (LLMA4SE), defining this vibrant area of study. According to Fan et al. [13], since
2022, more than 10% of all LLM-related publications have focused specifically on SE
applications, underscoring the significant interest in this field [13].

Additionally, Fan et al. [13] also notes that while LLMs are extensively explored in
the domain of software development, certain subdomains such as Requirements En-
gineering and Design, and Refactoring are notably under-represented. These areas,
which rely heavily upon linguistic forms of analysis and the recognition and predic-
tion of patterns, are identified as surprisingly ripe for consideration, presenting an
opportunity for future research and application of LLMs [13].

From the detailed analysis by Hou et al. [21], it is evident that LLMs are currently
being utilized across a spectrum of SE tasks. They are categorized based on their
architecture into encoder-only, encoder-decoder, and decoder-only models, with the
latter being the most utilized in SE, particularly for tasks involving code generation
and program repair. The popularity of decoder-only models in SE underscores their
effectiveness in tasks requiring deep syntactic and semantic understanding of code.
This effectiveness is attributed to the autoregressive nature of decoder-only models,
which allows them to generate sequences of text by predicting the next token based
on the context of the preceding tokens. This capability is crucial for code generation
and repair tasks, where understanding the sequential and contextual relationships
within the code is essential for producing accurate and coherent outputs.

Data handling is another area of focus; the predominant use of open-source datasets,
which constitute approximately 59.35% of cases, shows a reliance on widely accessible
resources for training these models. Data types within these datasets are primarily
code-based and text-based, aligning with the strengths of LLMs in handling complex
structured data, which is crucial for SE tasks.

Moreover, Hou et al. [21] outlines specific optimization techniques like fine-tuning
and the Adam optimizer, which are commonly used to enhance the performance of
LLMs in SE. The use of prompt engineering, particularly in data-scarce scenarios, fur-

17

ther enhances these models” adaptability and effectiveness, allowing them to perform
optimally across various SE tasks.

3 Related Work and Research Corpora

3.1 Research Corpora

This thesis builds upon a comprehensive literature review detailed in the foundational
paper by Hou et al. [21]. This pivotal review thoroughly explored the broader appli-
cation of LLMs in SE, examining the types of LLMs utilized, data handling methods,
optimization and evaluation techniques employed, and the specific tasks these mod-
els have been applied to. By delving deeper into the methodology and findings of
this foundational literature review, this subsection provides crucial insights into the
landscape from which this research sources its corpus.

The identification process in the basis paper [21] followed a carefully structured
approach, adhering to the SLR methodologies established by Kitchenham et al. [29,
28].

The five-step seach strategy started by selecting six prominent SE venues—ICSE,
ESEC/FSE, ASE, ISSTA, TOSEM, and TSE—for manual searches and extended their
scope to include seven databases: IEEE Xplore, ACM Digital Library, ScienceDirect,
Web of Science, Springer, arXiv, and DBLP for automated searches. A quasi-gold
standard was developed by screening papers from manual search based on specific
inclusion and exclusion criteria, followed by the creation of a search string informed
by domain expertise for the automated search. The process concluded with a snow-
balling search, integrating findings from both manual and automated searches to en-
sure a comprehensive collection of pertinent studies for subsequent analysis.

The manual and automated search resulted in 164,366 papers which was reduced
to a focused set of 218 foundational studies through a series of structured steps ap-
plied in the study selection process. After an initial automated filter based on paper
length trimmed the count to 63,404, a thorough title, abstract, and keyword review
further reduced the pool to 4,341. At this juncture, the researchers identified the
publication venues to discern the source quality, which, along with subsequent dedu-
plication and in-depth full-text reviews considering relevance and rigor, distilled the
collection to 548. Additional exclusion of papers was done by applying quality as-
sessments and manually scoring papers based on content relevance and publication
type/venue quality finally narrowed it down to 218 papers. A subsequent snow-
balling search, executed on these selected studies, yielded an additional 11 papers,
thereby establishing a final set of 229 papers after deduplication and verification.

The distribution of the 229 relevant papers identified demonstrates that 38% were
published in peer-reviewed venues like ICSE, TSE, ICSME, and SANER, while 62%
appeared on arXiv, reflecting the field’s swift evolution and the pre-peer review sta-
tus of much Large Language Models for Software Engineering (LLM4SE) research. A
temporal analysis shows a significant surge in publications from 2020 to 2023, high-
lighting escalating interest and research activity in LLM4SE.

18

3.2 Exploration of Replication Package from Literature Review

In this section, we delineate the review process applied to the contents of the repli-
cation package* provided by Hou et al. [21]. of Hou et al. [21] as of February 2024.
Our objective is to scrutinize the available data within the package to identify the
papers that constitute the literature review from Hou et al. [21] and to discern which
information about these reviewed papers is structured and accessible. This careful
examination aims to uncover potential facilitators for our analysis, ensuring we lever-
age any structured information to augment our understanding and streamline our
research process.

The package comprises five Excel sheets: QAC, RQ1, RQ2, RQ3, and RQ4. A
preliminary review of the column names and entries revealed that these labels stand
for Quality Assurance Criteria and Research Questions 1-4, each sheet containing relevant
data.

Each sheet adheres to a uniform structure, presenting identifier information for
the reviewed papers, including Title, URL, Year, Venue, and Abstract, succeeded by
sheet-specific values.

QAC: In their inclusion criteria, the authors of [21] evaluated the quality of each
review paper, as detailed in the Study Selection section of [21], attributing a score to 10
Quality Assurance Criteria (QAC). The QAC sheet encapsulates the scores for these
10 criteria.

The Quality Assurance Criteria collectively assess the relevance, methodology,
clarity, and impact of the studies within the scope of software engineering tasks,
specifically examining their use of large language models (LLMs), publication venue
prestige, motivation clarity, technique description, experimental detail, findings con-
firmation, discussion on contributions and limitations, and overall contribution to the
academic or industrial community.

The sheets RQ1 to RQ4 provide structured documentation of the data extracted by
[21] to address their respective Research Questions.

RQ1: This sheet includes information on the utilized large language models (LLMSs)
and their respective Transformer Types for each study reviewed. Columns are desig-
nated with names of LLM Models, covering all within the GPT and BERT series, and
feature three additional columns to identify Transformer Types: Decoder only, En-
coder only, or Decoder-Encoder. The inclusion of a model in a study is indicated by a
column value of 1" or detailed further with specific information, such as the model’s
number of parameters.

RQ2: This sheet organizes dataset-specific details, identifying the source of the
dataset as open-source, collected, constructed, or an industry dataset. It also categorizes
the type of data utilized in the studies, distinguishing among text-based, code-based,
graph-based, software-repository-based, or combined datasets. The input types for LLMs
are outlined as token-based, pixel-based, tree/graph-based, or hybrid input types, with a
"1” denoting usage or additional details provided. A column on data preprocessing lists
specific preprocessing steps applied.

RQ3: This sheet provides information on the methods and metrics employed for

4https://docs. google.com/spreadsheets/d/1iomMvoDL2znNDQ_J4aGnqb3BhZpEM1fz/edit#gid=
1471652439

19

https://docs.google.com/spreadsheets/d/1iomMvoDL2znNDQ_J4aGnqb3BhZpEMlfz/edit#gid=1471652439
https://docs.google.com/spreadsheets/d/1iomMvoDL2znNDQ_J4aGnqb3BhZpEMlfz/edit#gid=1471652439

optimizing and evaluating the large language models (LLMs) as described in the
research studies. It includes a column for Parameter Optimization Algorithms, indicating
the techniques utilized, such as hyperparameter tuning, fine-tuning, or a combination of
both. It also details the specific optimizers used, for instance, Adam, AdamW, or ZeRO.
For selected studies, it documents strategies to prevent overfitting within the combat
overfitting column, mentioning approaches like early stopping and data augmentation.
The sheet categorizes the machine learning problem in the problem type column into
classification, regression, generation, or recommendation. Additionally, a Metrics column
records the metrics applied by the research papers to assess their findings.

RQ4: This sheet organizes the research papers according to SE-Activities and SE-
Tasks. It features a dedicated column for each SE-Activity: Software Requirements,
Software Design, Software Development, Software Testing, Software Management, and Soft-
ware Maintenance. Within these columns, the corresponding SE-Task(s) addressed by
the research are listed as values. It is observed that some papers could not be as-
sociated with a specific SE-Task, marked by the value other. Additionally, there are
instances where certain studies are not aligned with any SE-Activity.

Upon reviewing the list of paper titles retrieved, the paper [92] titled Large lan-
guage models are human-level prompt engineers stood out as it seemed unrelated to the
application of LLMs in addressing a Software Engineering task. This paper is listed
in Table 6 of [21] among papers using Text-based datasets and in Table 9 among those
using Text as Tokens as input for the LLMs.

However, upon closer examination of the content, it was found to violate the in-
clusion criterion 2) in Table 3, which states, "The paper claims that the study involves an
SE task,” of the survey paper [21]. It appears this paper uses the SE task of Program
Synthesis to address the topic of automatic prompt engineering for LLMs. For this
reason, this paper is excluded from the investigation in this work.

As of November 2023, upon revisiting the source paper [21], it was observed that
a newer version of the paper, accompanied by an updated replication package, had
been published®.

4 Method

This section presents the methodological framework applied to prepare and conduct
the review, which yielded qualitative summaries of the selected papers, quantitative
scores for the reliability and relevance of their evaluations, and insights into the lim-
itations and strengths of their methods. These results form the basis for the critical
analysis provided in Section 5. In the first subsection (Section 4.1), the overall six-
phase framework used to address the study’s research questions is described. The
second subsection (Section 4.2) details the preparation steps taken to set the stage
for the review, and the third subsection (Section 4.3.1) explains how the review was
conducted, including the procedures for analyzing each paper’s evaluation strategy.

Shttps://github.com/security-pride/LLM4SE_SLR

20

https://github.com/security-pride/LLM4SE_SLR

41 Summary of the Study’s Approach

This subsection provides a high-level summary of the systematic approach employed
in this study to critically review and evaluate research papers leveraging Large Lan-
guage Models (LLMs) for Software Engineering (SE) tasks. The approach is structured
into six phases, designed to ensure a comprehensive and focused analysis.

Phases 1 to 3 (4.1.2-4.1.3) lay the groundwork by identifying relevant papers, defin-
ing key evaluation aspects, refining the scope to ensure manageability, and grouping
the papers by their task objectives for thematic coherence. Phase 4 (4.1.5) details the
review process, summarizing evaluation strategies, scoring reliability and relevance,
and identifying strengths and limitations based on the defined evaluation aspects. In
Phase 5, the findings are described groupwise, with a critical analysis of strengths
and limitations across multiple dimensions. Finally, Phase 6 synthesizes the findings,
discussing reliability and relevance from different perspectives and linking them back
to the research questions.

H mmmﬂ:&mgw(sl\

Figure 4: Flow diagram illustrating the steps from Phase 1 to Phase 3, outlining the
process for preparing the review

4.1.1 Core Evaluation Dimensions: Reliability and Relevance

The assessment of evaluation strategies in this study is grounded in the dimensions
of reliability and relevance, which are defined and discussed in detail in Section 4.2.2.
Both dimensions are scored on a scale from 0 to 5, providing a structured framework
for evaluating the reproducibility and trustworthiness of the methodologies (relia-
bility) and their alignment with the real-world needs of the SE task(s) addressed
(relevance) in LLM-based SE research.

These dimensions directly align with the study’s research questions (1.2), address-
ing RQ1 by evaluating the reliability of current practices and RQ2 by examining their
relevance to real-world software engineering needs. Together, they provide a founda-
tion for identifying and analyzing the key gaps and limitations explored in RQ3.

21

4.1.2 Phase 1: Categorization by Research Focus

The goal of this phase is to categorize the research papers into distinct groups based
on their research focus and identify those most relevant to this thesis. Specifically, the
focus is on papers that either propose novel solutions to SE tasks or evaluate existing
solutions for SE tasks, as these align with the thesis’s objective of critically assessing
the evaluation strategies applied to the SE tasks being addressed. At the end of this
process, 295 papers out of an initial set of 396 were identified as directly relevant
to this thesis. Papers that explore LLM characteristics or create resources such as
datasets or benchmarks are categorized but not analyzed further, as they fall outside
the primary scope of this thesis.

This phase is carried out in the following steps (see Section 4.2.1 for more details):

1. Initial Manual Selection: A subset of papers is selected, ensuring diversity in
SE activities such as code generation, bug detection, and test generation. This
subset is then manually reviewed to guide the identification of research focus
categories.

2. Definition of Research Focus Categories: Four categories are identified:

(1) Development of Novel SE Solutions.

(2) Performance Assessment of Existing Solutions.

(3) Exploration of LLM Characteristics.

(4) Creation of SE Evaluation Resources.
The first two categories—Development of Novel SE Solutions and Performance As-
sessment of Existing Solutions—are directly relevant to the thesis and prioritized

for further analysis. Papers in the remaining two categories are categorized but
not analyzed in detail, as they fall outside the thesis’s primary focus.

3. Automated Categorization: An LLM is used to categorize all papers into these
groups based on their titles and abstracts.

4. Manual Review and Corrections: The automated results are reviewed and cor-
rected to ensure accuracy and consistency. During this process, papers falling
outside the scope of this thesis are identified and excluded. These include:

e Papers proposing solutions with no clear SE-task boundaries.
e Survey papers.
e Papers not related to SE tasks.

While these exclusions are separate from the four research focus categories, they
help refine the dataset to align with the thesis’s objective.

By systematically categorizing the papers, this phase ensures a focused dataset for

subsequent phases of the study, prioritizing papers that align with the thesis’s goal of
evaluating LLM-based solutions in SE contexts.

22

4.1.3 Phase 2: Identification of Key Aspects of Evaluation through Detailed Re-
view

The primary goal of this phase is to identify the key aspects of evaluation strategies
used in LLM-based SE research. To achieve this, a representative subset of 14 papers
was selected from the 295 relevant papers categorized in Phase 1. These papers were
chosen to capture a diverse range of SE tasks and machine learning applications, such
as requirements engineering, code generation, and bug detection, ensuring broad
coverage of evaluation practices. This subset served as a basis for understanding
evaluation strategies across various SE contexts.

During the detailed review of these 14 papers, it became evident that analyzing
all 295 papers would be beyond the practical scope of this thesis. This realization
informed the decision to narrow the thesis’s focus in subsequent phases to ensure
depth and rigor.

The detailed review of the subset focused on identifying key evaluation aspects,
including:

e Datasets: The datasets used and their alignment with real-world SE challenges.

Ground Truths: The clarity and appropriateness of the ground truths used.

Benchmarks: The role of benchmarks in comparative evaluation.

Metrics: The suitability of metrics for measuring performance.

These aspects are critical for assessing the reliability and relevance of evaluation
methods and provide the foundation for the scoring process in later phases. For a
detailed description of this phase, see Section 4.2.3.

4.1.4 Phase 3: Refinement of Scope and Grouping by Task Objectives

The goal of this phase is to refine the scope of the thesis and group papers by their
underlying objectives to enable a systematic and focused evaluation. This approach
ensures depth and rigor in analyzing evaluation strategies, aligning with the thesis’s
practical constraints and its emphasis on non-code-centric SE tasks.

To achieve this, the focus was narrowed to SE tasks such as requirements en-
gineering, software specifications, API documentation, and bug detection and re-
producibility. Code-centric evaluations (e.g., code generation and code completion),
while prevalent in the corpus, presented unique challenges that require dedicated in-
vestigation in future work. This refinement aligns with the research emphasis of DLR,
the primary stakeholder, and ensures the thesis’s scope remains manageable.

Papers were grouped based on their underlying objectives, with the rationale that
papers sharing similar objectives address common strengths and challenges relevant
to their respective tasks. This thematic grouping enabled consistency and focus within
each group during the review process. While some papers align with multiple groups
to varying degrees, the grouping allowed for a structured comparative analysis.

By refining the scope and grouping papers based on their objectives, this phase
structured the dataset for subsequent comparative analyses. These analyses address
the research questions outlined in Section 1.2, ensuring that the results and discussion
sections provide actionable insights into evaluation practices.

23

4.1.5 Phase 4: Group-wise review - Evaluation summarization and scoring

The goal of this phase was to analyze the evaluation strategies employed in the se-
lected 41 papers systematically. This analysis aimed to produce qualitative summaries
of each paper’s evaluation reliability and relevance and to assign quantitative scores
for these dimensions. These outputs provide the groundwork for subsequent critical
analysis of limitations across the key evaluation aspects (Section 5.2) and statistical
analyses of reliablity and relevance of the evaluation practices (Section 5.3).

The review was conducted group-wise, aligning with the task objectives identified
in Phase 3, to ensure coherence and consistency in the analysis of papers with similar
goals. Each paper was reviewed along the key evaluation aspects identified earlier,
including datasets, baselines, metrics, ground truth, and validation methods. Obser-
vations of advanced practices, such as cross-validation techniques and error analyses,
led to the inclusion of a new evaluation aspect, Validation Method, for systematic doc-
umentation.

For each paper, summaries of strengths and limitations in terms of reliability and
relevance were documented, alongside scores ranging from 0 to 5 for these dimen-
sions. The review process included an in-depth analysis of sections such as the title,
abstract, and introduction to understand the paper’s contributions. Particular fo-
cus was given to methods, tables, and figures detailing datasets, metrics, baselines,
and validation practices. For instance, papers frequently contained specific sections
on datasets—often including ground truth creation details—and metrics or baselines,
which facilitated structured and consistent analysis.

This phase is detailed in Section 4.3.1, while descriptive summaries of grouped
evaluations are presented in Section 5.1. These structured outputs laid the foundation
for the critical and statistical analyses conducted in subsequent phases.

4.1.6 Phase 5: Critical Analysis of Strengths and Limitations of Evaluation Strate-
gies

The goal of this phase was to conduct a critical analysis of the evaluation strate-
gies identified during the group-wise review (Phase 4), focusing on their strengths
and limitations across key evaluation aspects. The phase aimed to identify recurring
patterns, gaps and insights for addressing the research questions. The outcomes of
this phase include a thematic understanding of challenges and notable practices in
datasets, baselines, metrics, ground truth, and validation methods, as well as insights
into how these aspects vary across task objectives, research focuses, ML task types,
and temporal trends.

The findings and insights generated during this phase serve as foundational inputs
for subsequent analyses and interpretations.

e Categorized Findings: Evaluation strategies were critically analyzed across:

— Task objective groups (e.g., improving developer efficiency, enhancing soft-
ware reliability).

— Research focuses (Development of New SE Solutions, Performance Assess-
ment of Existing Solutions).

24

— ML task types (classification, regression, recommendation, generation).

— Temporal trends (evaluation practices from 2020-2024).

o Identification of Patterns and Gaps: Recurring limitations such as dataset rep-
resentativeness and generalizability, inadequate baselines, and inconsistent val-
idation methods were highlighted.

For details on the critical analysis process and findings, refer to Sections 5.2
through 5.2.4.

Phase 6: Analyzing Reliability and Relevance from Multiple Perspectives

The goal of this phase was to synthesize the findings from previous analyses, pro-
viding a holistic assessment of the reliability and relevance of evaluation strategies
across multiple perspectives. The results include descriptive summaries, identified
trends, and actionable insights into the recurring challenges and strengths in evalua-
tion methodologies. This phase also sets the stage for answering the study’s research
questions.

e Overall Reliability and Relevance: The analysis reveals moderate performance
across reliability and relevance dimensions, with recurring limitations in dataset
generalizablity and representativeness, baseline diversity, metrics suitability, val-
idation scope, and ground truth clarity. These insights are quantitatively sum-
marized in Sections 5.3.1 and 5.3.2.

o Cluster Patterns: Reliability and relevance scores were analyzed to identify dis-
tinct clusters and outliers, highlighting systemic trends and task-specific differ-
ences in evaluation strategies (see Section 5.3.2).

o Task-Specific Contrasts: Comparative analyses of differing evaluation practices
within the same task were conducted, focusing on papers with varying reliabil-
ity and relevance scores within the same task. This analysis provided nuanced
insights into how methodological choices impact the quality of evaluation strate-
gies and emphasized the need for task-tailored approaches to address recurring
weaknesses. These contrasts were explored across multiple tasks.

The combined findings from Phases 4, 5, and 6 form the foundational inputs for
answering the research questions. Details of this synthesis and its connection to the
research questions are presented in Sections 6.1, 6.2, and 6.3. An overview of the
research questions is available in Section 1.2.

4.2 Setting the Stage for the Review

This subsection establishes the methodological foundation for the critical review of
evaluation strategies in research leveraging Large Language Models (LLMs) for Soft-
ware Engineering (SE) tasks. The goal is to outline the systematic process adopted to
identify, categorize, and refine the scope of studies, ensuring a focused and manage-
able review aligned with the thesis objectives.

25

The scope was refined in two stages: first, by excluding papers whose research
focus (4.2.1) is not directly on evaluating a proposed or existing solution, but which
may still serve as valuable candidates for future work, such as studies exploring LLM
characteristics or creating datasets and benchmarks; and second, by narrowing the
focus to non-code-centric Software Engineering tasks (4.2.4), such as requirements
engineering, software specifications, API documentation, and bug detection. Code-
centric tasks, including code generation and completion, were excluded from detailed
analysis due to their distinct challenges and evaluation requirements, which warrant
dedicated future work. These steps ensured that the review remained both rigorous
and manageable.

To support a structured and in-depth analysis, this section identifies key evalu-
ation aspects (4.2.3)—such as datasets, ground truths, metrics, and baselines—that
underpin the evaluation of reliability and relevance (4.2.2). Additionally, the selected
papers were grouped based on their underlying task objectives (4.2.5), ensuring the-
matic coherence and enabling meaningful comparisons across task-specific evaluation
strategies.

421 Research Focus Categorization

The primary objective of this phase is to identify research papers where the evalua-
tion focuses on assessing LLM-based solutions to SE problems. Of the initial corpus
of 396 papers, 17 papers were excluded, resulting in a refined set of 379 papers. These
exclusions were made due to misalignment with the scope of this research, such as
being surveys, lacking a focus on specific SE tasks, or addressing areas outside of soft-
ware engineering. Additionally, six papers were categorized under multiple research
focus categories, reflecting their dual contributions to both proposing new solutions
and creating relevant datasets or evaluation methods.

From the remaining 379 papers, 294 fall into the research focus categories of De-
velopment of New SE Solutions and Performance Assessment of Existing Solutions,
which are directly relevant to the goals of this thesis. The remaining papers were cat-
egorized as either Exploration of LLM Characteristics in SE or Creation of SE Evaluation
Resources but were not analyzed further due to their indirect relevance to the thesis.

Process of Research Focus Category Identification

This categorization process was executed in the following steps, blending a manual
review of papers with an automated categorization using an LLM-based model. The
process was structured as follows.

1. Initial Manual Selection of Papers: A random subset of 11 papers was initially
selected, ensuring that the selected papers represented a diverse set of SE activities
[20, 1, 9, 76, 80, 55, 7, 35, 38, 62, 22]. These papers covered a wide range of SE-
Activities including code generation, bug detection and vulnerability detection.

2. Review of Titles and Abstracts: The titles and abstracts of these 11 papers were
manually reviewed to answer the following questions:

26

e What is the contribution of the paper? This could include fine-tuning a model,
creating a new framework, empirical observations, or creating datasets.

e What is the object of evaluation? Whether the evaluation focuses on the pro-
posed solution, empirical observations, or the assessment of a created resource.

e Who is the target group benefiting from the paper’s contributions? Potential
target groups include end users, such as developers benefiting from SE solu-
tions, and researchers who gain insights from empirical investigations or make
use of resources like new datasets or benchmarks.

This manual review helped in identifying distinct research focuses, which were
then used to categorize the remaining papers.

3. Identification of Categories: Based on the manual review, four distinct categories
of research focus were identified:

e Development of New SE Solutions: Papers proposing novel (own) LLM-based
solutions for SE tasks (e.g., code generation or bug detection).

e Performance Assessment of Existing Solutions: Papers empirically evaluating
the performance of existing LLM-based SE solutions.

o Exploration of LLM Characteristics in SE: Papers that investigate properties of
LLMSs, such as robustness or determinism, in relation to SE tasks.

e Creation of SE Evaluation Resources: Papers focused on developing resources
like datasets or benchmarks for future evaluations.

These categories reflect the diversity of research in LLM usage for SE and provide
a structured framework for reviewing and evaluating papers.

4. Automated Categorization using an LLM: After establishing the categories, an
LLM (GPT-40 model) was used to automatically categorize the remaining papers in
the dataset. The titles and abstracts were extracted from the replication package®
provided by Hou et al. [21].

The model was instructed to classify each paper into one of the identified cate-
gories or the “other” category if none of the pre-defined categories applied. The LLM
was also asked to provide reasoning for its classification.

This categorization process was implemented using the OpenAl API” and the
LangChain library to extract structured output. The specific prompts and API inter-
actions are openly available at [3].

bhttps://docs.google.com/spreadsheets/d/1iomMvoDL2znNDQ_J4aGnqb3BhZpEM1fz/edit#gid=
1471652439
"https:/ /openai.com/api/

27

https://docs.google.com/spreadsheets/d/1iomMvoDL2znNDQ_J4aGnqb3BhZpEMlfz/edit#gid=1471652439
https://docs.google.com/spreadsheets/d/1iomMvoDL2znNDQ_J4aGnqb3BhZpEMlfz/edit#gid=1471652439

5. Manual Review and Corrections: After the automated categorization, the author
of this thesis manually reviewed the LLM-generated categorizations for accuracy and
consistency. The review process focused on papers that appeared misclassified or
unclear based on their title and abstract. The manual review resulted in two distinct
outcomes: refinements to the categorization of papers and the exclusion of papers
that fell outside the scope of this thesis.

Category Refinements: Five papers were categorized under both Development of
New SE Solutions and Creation of SE Evaluation Resources. Four of these papers con-
tributed new datasets in addition to their primary focus on developing SE solutions
[66, 26, 71, 14]. The remaining paper [37] was categorized under both categories as it
introduced a novel evaluation method alongside the proposed solution.

Paper Exclusions: The following papers were excluded from the review for rea-
sons detailed below:

e Surveys and reviews: Papers initially categorized under Performance Assessment
of Existing Solutions were excluded upon further review as they were surveys or
reviews without a clear focus on proposing a solution to SE tasks [47, 75].

e Lack of specific SE task focus or clear task boundaries: These papers catego-
rized under Development of New SE Solutions or Performance Assessment of Existing
Solutions were excluded upon closer manual review because they did not focus
on a specific SE task or lacked clear task boundaries [63, 54, 58, 89, 64, 56, 5, 34,
59, 65, 91, 69].

e Unrelated to software engineering: Three papers were excluded because they
did not address software engineering:

- [92]: Excluded because, although it utilizes the SE task of program syn-
thesis, its focus is on solving prompt engineering for LLMs rather than
addressing a specific SE task.

- [30]: Excluded as it proposes a multilingual solution for detecting phishing
sites, falling within the scope of Social Engineering rather than Software
Engineering.

- [27]: Excluded because it focuses on supporting developers with hyper-
parameter tuning of machine learning models, which is not an SE-specific
task.

Identified Research Focus Categories

The following subsections provide a detailed description of the four identified re-
search focus categories.

The categorization of research papers into these four groups allows for a clear
distinction between studies that directly assess LLM-based solutions for SE tasks and
those that contribute indirectly by exploring LLM properties or developing evaluation
resources. For the purposes of this thesis, only the first two categories—Development

28

of New SE Solutions and Performance Assessment of Existing Solutions—are considered
directly relevant and are the focus of the subsequent review of evaluation strategies.
While categories Exploration of LLM Characteristics in SE and Creation of SE Evaluation
Resources provide useful context for future work, they fall outside the specific goal
of this research, which is to critically analyze the evaluation methods used to assess
LLM-based SE solutions.

Development of New SE Solutions

This category includes 230 studies which focus on developing new solutions to SE
problems using LLMs. These papers typically introduce novel frameworks, fine-tuned
models, or methods to address specific SE tasks such as code generation, bug detec-
tion, program repair, or test generation.

e Evaluation focus: The evaluation methods in these papers are aimed at directly
assessing the effectiveness of the proposed solutions in solving the specific SE
problem(s).

e Relevance: This category is directly relevant to this thesis, as it aligns with the
goal of assessing the reliability and relevance of evaluation strategies for LLM-
based SE solutions.

Performance Assessment of Existing Solutions

This category encompasses 64 papers that focus on evaluating existing LLM-based
solutions for SE tasks. Rather than proposing new methods, these studies assess and
validate the performance of established LLM solutions in real-world SE applications.

e Evaluation focus: These papers aim to measure the effectiveness of existing
solutions through comparative analyses and benchmarking.

e Relevance: This category is also directly relevant to the thesis, as it provides
insight into how well current evaluation strategies assess the performance of
existing LLM-based solutions in SE tasks.

The marked sections in the abstract of [1] (Fig. 5) highlight the study’s focus:

The red-highlighted text indicates the study’s primary objective of evaluating the
effectiveness of context-aware NLP models, specifically BERT and TF-IDF, for predict-
ing software task effort estimates. This reflects a focus on assessing existing solutions
rather than introducing new methods or frameworks. The yellow-highlighted text
emphasizes the study’s comparative analysis between machine learning (ML) mod-
els and expert estimates across multiple datasets, including both open-source and
commercial projects. This aspect showcases the study’s intent to benchmark existing
solutions against human performance, further underlining its evaluative nature. The
green-highlighted text summarizes the empirical findings, such as the comparable
performance of ML estimates and expert estimates. The results validate and extend
existing literature under different experimental conditions, reinforcing the study’s
focus on assessing the reliability of current approaches within diverse software en-
gineering contexts.

29

Abstract—Reflecting upon recent advances in Natural Lan-

guage Processing (NLP), HiiSiiSpeeyalaiesuieeieeHenessio]

context-aware NLP models for predicting software task effort es-
@S] Term Frequency-Inverse Document Frequency (TF-IDF)
and Bidirectional Encoder Representations from Transformers
(BERT) were used as feature extraction methods; Random forest
and BERT feed-forward linear neural networks were used as
classifiers. Using three datasets drawn from open-source projects
and one from a commercial project, the paper evaluates the
models and compares the best performing model with expert
estimates from both kinds of datasets. The results suggest that
BERT as feature extraction and classifier shows slightly better
performance than other combinations, but that there is no sig-
nificant difference between the presented methods. On the other
hand, the results show that expert and Machine Learning (ML)
estimate performances are similar, with the experts’ performance
being slightly better. Both findings confirmed existing literature,
but using substantially different experimental settings.

Index Terms—empirical software engineering, software effort
estimation, software maintenance issues, machine learning, NLP,
BERT, TF-IDF, datasets, Planing Poker

Figure 5: Example abstract of a study [1] assessing performance of existing solutions

Exploration of LLM Characteristics in SE

This category, comprising 56 papers, investigates specific properties of LLMs in rela-
tion to SE tasks. These studies explore attributes such as robustness, generalizability,
and interpretability, with the goal of understanding how these characteristics impact
SE applications.

e Evaluation focus: The evaluation methods in this category are primarily de-
signed to support research questions or assumptions regarding LLM properties
in SE contexts.

e Relevance: Although these papers do not directly focus on evaluating solutions
to SE problems, they contribute valuable insights into how LLM properties in-
fluence SE applications. Understanding these characteristics is crucial for de-
signing future SE solutions and developing more targeted evaluation strategies.
While papers from this category are indirectly relevant to this thesis, they are
outside the scope of the current work and are considered as potential objects for
future research.

Figure 6 illustrates a representative example [7] of research within this category.

The marked sections in the abstract highlight the study’s focus:

The red-highlighted text indicates the objective of understanding how mono-
lingual and multilingual PLMs differ in their handling of programming languages,
which aligns with investigations of LLM robustness and adaptability in diverse con-
texts. The yellow-highlighted text outlines specific research aspects, such as the im-
pact of programming language choice, fine-tuning strategies, and code lengths on
PLM performance. These aspects demonstrate a focus on exploring LLM properties
rather than directly solving an SE task. The green-highlighted text presents find-
ings that provide insight into the behavior of multilingual PLMs, such as their lower
Performance-to-Time Ratio compared to monolingual PLMs. Rather than solely as-
sessing performance, this finding sheds light on how LLMs behave under different
configurations and condjitions.

30

ABSTRACT

A recent study by Ahmed and Devanbu reported that using a corpus
of code written in multilingual datasets to fine-tune multilingual
Pre-trained Language Models (PLMs) achieves higher performance
as opposed to using a corpus of code written in just one program-
ming language. However, no analysis was made with respect to
fine-tuning monolingual PLMs. Furthermore, some programming
languages are inherently different and code written in one language
usually cannot be interchanged with the others, i.e., Ruby and Java

code possess very different structure. IINEHCENNUCTSORROW0

monolingual and mulfilingual PLMs affect different programming
ERENEEES, we investigate 1) the performance of PLMs on Ruby for
two popular Software Engineering tasks: Code Summarization and
Code Search, 2) the strategy (to select programming languages)
that works well on fine-tuning multilingual PLMs for Ruby, and 3)
the performance of the fine-tuned PLMs on Ruby given different
code lengths.

In this work, we analyze over a hundred of pre-trained and fine-
tuned models. Our results show that 1) multilingual PLMs have a
lower Performance-to-Time Ratio (the BLEU, METEOR, or MRR
scores over the fine-tuning duration) as compared to monolingual
PLMs, 2) our proposed strategy to select target programming lan-
guages to fine-tune multilingual PLMs is effective — it reduces the
time to fine-tune yet achieves higher performance in Code Sum-
marization and Code Search tasks, and 3) our proposed strategy
consistently shows good performance on different code lengths.

Figure 6: Example abstract [7] of a study investigating LLM properties in SE tasks

Creation of SE Evaluation Resources

This category consists of 29 papers that focus on developing datasets, benchmarks,
or other resources that can be used for evaluating LLM-based solutions in SE tasks.
These studies contribute essential tools for future research but do not directly evaluate
SE solutions themselves.

e Evaluation focus: These papers evaluate the quality and utility of the resources
(datasets and benchmarks) they create, ensuring they are suitable for future SE
evaluations.

e Relevance: Although indirectly relevant to this research, this category is not
within the scope of the thesis.

4.2.2 Defining Reliability and Relevance

The two key dimensions—reliability and relevance—serve as the foundation for eval-
uating the evaluation methodologies applied in LLM-based software engineering (SE)
research. These dimensions provide a structured framework for assessing how well
evaluation methods align with scientific rigor and real-world applicability.

A scoring system ranging from 0 to 5 is applied to each dimension, serving as an
indicator for identifying trends and patterns across the reviewed studies. The definitions
and criteria for these scores are outlined below, emphasizing their interpretive nature.

31

Reliability

Reliability measures the consistency, reproducibility, and scientific rigor of an evaluation
method. A highly reliable evaluation produces stable results across experiments, datasets,
and environments, with transparent reporting of procedures.

e 0: No Reliability — The evaluation lacks scientific rigor and transparency; re-
producibility is impossible.

e 1: Very Low Reliability — Significant weaknesses, such as insufficient or biased
datasets, undermine reproducibility.

e 2: Low Reliability — The evaluation uses flawed or outdated datasets and met-
rics; reproducibility is uncertain.

e 3: Moderate Reliability — The evaluation employs established datasets and met-
rics but lacks robustness in addressing task-specific nuances.

e 4: High Reliability — The evaluation uses diverse datasets, well-defined metrics,
and robust validation strategies, though minor limitations persist.

e 5. Very High Reliability — The evaluation is exemplary, combining multiple
datasets, diverse metrics, and rigorous analysis to ensure high reproducibility
and consistency across scenarios.

Relevance

Relevance assesses how well an evaluation aligns with the practical and real-world
challenges of the SE task being addressed. A highly relevant evaluation reflects real-
world data variability, edge cases, and practical constraints.

e 0: No Relevance — The evaluation has no meaningful alignment with the SE
task’s objectives.

e 1: Very Low Relevance — The evaluation lacks connection to real-world chal-
lenges, relying on synthetic or overly simplistic data.

e 2: Low Relevance — Partial alignment with task-specific challenges, with key
real-world aspects overlooked.

e 3: Moderate Relevance — The evaluation addresses key task-specific aspects but
misses real-world edge cases or scalability concerns.

e 4: High Relevance — Strong alignment with real-world conditions, covering
diverse datasets and metrics with actionable insights.

e 5. Very High Relevance — Comprehensive alighment with real-world chal-
lenges, including edge cases, diverse datasets, and actionable insights for prac-
titioners.

32

Scoring Interpretation and Limitations

The scoring system functions as an indicator to identify trends and patterns across
evaluation strategies rather than as an absolute benchmark for assessing individual
studies. While the scoring criteria are clearly defined, a degree of subjectivity remains
inevitable, particularly in borderline cases where scores might fluctuate between adja-
cent levels (e.g., between 3 and 4).

This subjectivity can arise due to:

o Ambiguity in Reporting: Insufficient details in methodology sections.

o Reviewer Judgment: Differences in interpretation when assigning scores in nu-
anced cases.

o Granularity Limitations: The scoring scale simplifies complex methodological nu-
ances into discrete levels.

As a result, individual scores should not be viewed in isolation but rather in
relation to broader trends. The scoring aims to highlight recurring strengths and weak-
nesses, identify evaluation gaps, and guide improvements in future research practices.

4.2.3 Review of the First Batch and Identifying Key Aspects of Evaluation

In Phase 1 (Section 4.2.1), we categorized research papers based on their research
focus, with the aim of identifying those where the object of evaluation is a solution
utilizing LLMs for solving SE-Task(s). As a result, we identified two categories di-
rectly relevant to this thesis: Development of New Solutions and Performance Assessment
of Existing Solutions. From these categories, 230 papers focused on new solution de-
velopment, and 65 papers focused on evaluating existing solutions, forming the basis
for further investigation in this section.

In Section 4.2.2, we defined the key concepts of reliability and relevance in the
context of evaluating LLM-based solutions for Software Engineering (SE) tasks. These
definitions provide the foundation for assessing the quality of the evaluation methods
applied in the selected studies.

This section now reviews a subset of 14 papers from the two most relevant cate-
gories of research focus. The primary objective is to identify key aspects of evaluation
that will guide the subsequent iterative review process. These key aspects will serve
as the criteria for assessing the reliability and relevance of the applied evaluation
strategies across different SE tasks.

Distribution of SE Activities

The papers were chosen to ensure comprehensive coverage of various SE tasks, fa-
cilitating an exploration of evaluation methods for different problem domains. The
selection mirrors the distribution of SE activities and tasks from Hou et al. [21]:

e Software Development (New Solutions): Code generation, Code Translation
and Story point estimation [76], [66], [25], [15].

33

e Software Development (Existing Solutions): Code generation and Verilog code
generation [40], [71].

e Software Maintenance (New Solutions): Bug triage, duplicate bug report de-
tection, and program repair [35], [24], [50], [26].

e Software Maintenance (Existing Solutions): Program repair [14].
e Software Quality Assessment (New Solutions): Unit test generation [80].
e Software Quality Assessment (Existing Solutions): Unit test generation [67].

e Software Management (Existing Solutions): Effort estimation for software main-
tenance [1].

This distribution allows for an examination of evaluation strategies across different
SE contexts, providing insights into how evaluation methods adapt to varying SE
tasks and real-world scenarios.

Identifying Key Aspects of Evaluation

Throughout the review process, several important observations were made that led to
the identification of key aspects critical to evaluating the reliability and relevance of
the applied evaluation methods in the selected papers. These observations, combined
with collaborative discussions with the reviewer of this thesis—an experienced soft-
ware engineering practitioner—helped shape the identification of these aspects. The
following sections outline some of the key papers that influenced the identification of
these aspects and the insights gained from them.

Collaboration and Comparative Review

Two papers—Fu and Tantithamthavorn [15] and Alhamed and Storer [1]—were re-
viewed and discussed in detail with the reviewer of this thesis, a member of the
Intelligent and Distributed Systems department at the German Aerospace Center
(DLR) and an experienced agile practitioner. Both papers addressing effort estima-
tion tasks in software development provided contrasting approaches to key aspects
such as ground truth, datasets, data preprocessing, metrics, and benchmarks.

Fu and Tantithamthavorn [15]: GPT2SP: A Transformer-Based Agile Story Point
Estimation

e Dataset: The study utilized data from 16 projects in well-known open-source
repositories, such as Apache, Atlassian, and Moodle, with story points esti-
mated by users as the ground truth. However, the range of story points across
projects varied significantly (from 1-8 to 1-100), raising concerns about the con-
sistency of the evaluation. Additionally, limiting the dataset to open-source
projects reduces the relevance of the evaluation, as effort estimation practices
can differ significantly between open-source and industry projects.

34

e Ground Truth: Fu and Tantithamthavorn [15] used story points without cate-
gorization as the ground truth. Precisely estimating time effort is a challenging
task even for humans, and using non-categorized story points in a regression
task reduces both the reliability and relevance of the evaluation. Standardiz-
ing and categorizing the story points into broader effort categories would have
allowed for more consistent and practical assessments, as it accounts for inher-
ent uncertainties in real-world estimations. This approach would have better
aligned the evaluation with the complexities of real-world SE tasks.

e Metrics: The paper used Mean Absolute Error (MAE) as the evaluation metric,
reporting an average MAE of 1.6. Given the variance in story point ranges, this
metric required more careful interpretation to account for differences in scale,
suggesting that standardization could improve reliability.

e User Study: The study included a small-scale user study with 16 agile practi-
tioners to assess the real-world applicability of the solution. Although the sam-
ple size of practitioners was limited, the study contributed to the relevance of
the evaluation by involving actual users. Additionally, the solution was assessed
both with and without interpretability features, which further strengthened the
evaluation by providing insights into the practical utility of the solution in dif-
ferent contexts.

Alhamed and Storer [1]: Evaluation of Context-Aware Language Models for Effort
Estimation

e Dataset: This paper used a mix of four open-source datasets and one industrial
dataset, enhancing the relevance of the evaluation by introducing more diverse
and realistic data.

e Ground Truth: Unlike Fu and Tantithamthavorn [15], Alhamed and Storer [1]
standardized the story points and time estimates across different projects, mak-
ing the evaluation more reliable. They also categorized the story points and
time estimates, inspired by the Planning Poker estimation approach. This trans-
formation improved the relevance of the evaluation by better reflecting practical
estimation tasks in real-world SE environments. Furthermore, for comparing
the estimates of learned embedding-based estimators with human experts, they
used realized times from project log entries. This approach further increased the
relevance of the evaluation method in terms of ground truth selection, especially
since the study found that human experts performed only slightly better than
learned embeddings-based estimators.

e Baseline: The study compared Decision Trees using TF-IDF features with De-
cision Trees using learned embeddings, as well as with human expert esti-
mates. The results showed that the models using learned embeddings were
only slightly better than those using TF-IDF features but closely matched the
performance of human experts. This comparison increased the relevance of
the evaluation by demonstrating the competitiveness of learned embeddings in

35

real-world scenarios, offering valuable insights for practitioners assessing the
model’s effectiveness.

These contrasting approaches in terms of dataset quality, ground truth construc-
tion, and metric selection provided insights into how different evaluation strategies
can impact both the reliability and relevance of a study’s findings.

Additional Observations and Insights

Several other papers reviewed provided further insights into key aspects of evalua-
tion. These observations helped solidify the focus on datasets, ground truth, bench-
marks, and evaluation metrics as the central elements for assessing reliability and
relevance.

e Training Data Usage: Both Jin et al. [26] and Isotani et al. [24] used their train-
ing data for evaluation without clearly mentioning a train-validation-test split,
raising concerns about the reliability of their evaluations. Furthermore, Isotani
et al. [24] used a very small dataset of 51 bug reports, with only 5 reports having
no duplicates, which limited the robustness of the evaluation.

e Code Generation: In the field of code generation, papers Liu et al. [40] and Jana
et al. [25] employed similarity-based metrics such as BLEU, CodeBLEU, and
Exact Match (EM) for evaluation. While these metrics are useful, they mainly
assess syntactic similarity. Liu et al. [40] enhanced the relevance by manually
evaluating the functional equivalence of generated code, while Jana et al. [25] in-
troduced Input-Output (IO) equivalence checks, further increasing the relevance
and reliability of their evaluation strategies.

e Manual Code Review: Thakur et al. [71] used hand-written test benches and
manual code reviews to assess the correctness of Verilog code generation. The
custom pass@k metric introduced a nuanced way to evaluate performance across
different problem categories. However, the lack of documentation about the
sampling and review process for manual code review raised minor concerns
about the study’s reliability.

Emerging Key Aspects of Evaluation

From these observations, the following key aspects of evaluation emerged as critical
for assessing the reliability and relevance of the reviewed studies:

e Dataset: The diversity, size, and representativeness of the dataset directly af-
fect the reliability of an evaluation. Papers using larger, more diverse datasets
from real-world or industrial environments typically provide more reliable and
relevant insights.

e Ground Truth: The quality and construction of the ground truth significantly
impact the relevance of the evaluation. For example, efforts to discretize or
transform ground truth values (e.g., person-time estimates) to better reflect prac-
tical scenarios enhance the relevance of the evaluation.

36

e Baseline: The use of appropriate benchmarks or baselines, such as human ex-
pert estimates or well-established machine learning models, adds value to the
relevance of the evaluation, especially when the goal is to assess the real-world
utility of the LLM-based solutions.

e Evaluation Metrics: The choice of metrics used for evaluation—whether accu-
racy, MAE, BLEU, or custom metrics like IO equivalence—affects both reliability
and relevance. Metrics that align closely with the SE task and real-world use
cases contribute more meaningfully to assessing a solution’s effectiveness.

These aspects form the foundation for evaluating the studies’ reliability and rel-
evance in the context of SE tasks and activities. They provide a structured way to
assess how well an evaluation method reflects real-world challenges while ensuring
that the results are replicable and trustworthy.

4.24 Refinement of Scope

In the previous phase, Phase 3 (Section 4.2.3), a subset of papers spanning diverse
SE tasks was reviewed to identify key aspects of evaluation that would guide the
remainder of this thesis. During this initial review, it became clear that thoroughly
analyzing all 295 relevant papers—each focused on evaluating SE solutions—was be-
yond the practical scope of this thesis. To maintain depth and rigor in the evaluation
process, we decided to narrow the focus to exclude studies primarily dealing with
code-related tasks. This refinement aligns with both the practical constraints of the
thesis and the research emphasis of DLR, the primary stakeholder, on SE tasks outside
of code generation.

Code-related activities refer to tasks with a primary focus on code manipulation
or generation, including code generation, summarization, review, translation, com-
pletion, test case generation, and code repair. Excluding these tasks allowed for a
concentrated examination of SE activities focused on process improvement, require-
ments analysis, and maintenance.

After refining the scope to exclude code-centric papers, 41 papers remained from
the original set of 295. The Software Development SE activity saw the largest refine-
ment, where only 2 papers remained relevant to the new focus: [83], which explores
API documentation augmentation, and [43], which examines requirements complete-
ness. This reduction aligns with the high prevalence of code-centric tasks within
Software Development. The Software Quality Assurance activity was similarly nar-
rowed, from 52 papers to one paper, while Software Maintenance retained a substan-
tial number, with 19 papers remaining from an initial 86, underscoring its relevance
within the final review corpus.

Following this refinement, we noted the distribution of the remaining 41 papers
by research focus: 38 papers center on the Development of New SE Solutions, while
12 focus on the Performance Assessment of Existing Solutions. This selection enables
a concentrated investigation of evaluation strategies relevant to non-code-centric SE
tasks, facilitating a targeted analysis of the reliability and relevance of these methods.

Table 1 illustrates the diversity of SE tasks within each activity area in the refined
selection. In particular, Software Design and Development studies emphasize enhanc-

37

Software Engineer-

Software Engineering Tasks with References

GUI retrieval (1) [31], Software specification synthesis (1) [48]

API documentation augment (1) [83], Requirement Complete-
ness Checking (1) [43]

Bug prediction (1) [16], Bug report related (1) [10], Bug repro-
duction (1) [23], Bug triage (1) [35], Duplicate Bug Report Detec-
tion (1) [24], Stack Overflow Posts summarization (1) [33], API
aspect classification (from Stack Overflow Posts) (1) [82],Tag rec-
ommendation (Stack Overflow Posts) (1) [19], logging (2) [49,
81], Log parsing (3) [41, 46, 85], Traceability recovery (1) [93],
App review feature extraction (1) [53], App Review clustering
(1) [78], Sentiment analysis (3) [88, 87, 4]

ing Activity
Software Design (2)
Software Develop-
ment (2)

Software Mainte-
nance (19)

Software =~ Manage-
ment (3)

Effort Estimation (3) [15, 38, 1]

Software Quality As-
surance (1)

Mobile app crash detection (1) [42]

Software = Require- | Anaphoric Ambiguity Detection (2) [52, 12], Intra-domain Am-

ments (13) biguity detection (1) [51], Coreference detection (1) [77], Require-
ment analysis and evaluation (2) [57, 61], Requirement traceabil-
ity (1) [39], Requirements classification (3) [18, 44, 20], Specifica-
tion formalization (1) [11], Specification generation (2) [45, 79]

Software = Require- | Use cases generation, System design (1) [86]

ments & Software

Design (1)

Table 1: Summary of Software Engineering Activities, Tasks, and References

ing clarity and completeness, such as specification synthesis and requirements docu-
mentation, while Software Maintenance research concentrates on improving process
efficiency with tasks like bug prediction, logging, and user feedback analysis. Soft-
ware Quality Assurance focuses on reliability, addressing fault localization and GUI
testing. Research on Software Requirements prioritizes structuring and clarifying
requirements through ambiguity detection, traceability, and categorization. Finally,
Software Management research centers on optimizing resource planning through
tasks like effort estimation. Together, these studies aim to streamline development
processes, increase reliability, and enhance clarity across SE activities outside of code

generation.

Following this refinement, Table 2 provides a breakdown of the research focus
of the remaining 41 papers, where the majority (30 papers) are concentrated on the
Development of New SE Solutions, while the remaining 11 focus on the Performance
Assessment of Existing Solutions. This approach enables a nuanced understanding of
the suitability of evaluation strategies used to assess whether the proposed solutions
effectively address the distinct needs of SE activities, thereby providing insights for
refining evaluation methodologies in future research.

By refining the scope to focus on non-code-centric tasks, we are positioned to con-

38

Research Focus References

Development of New SE | [48, 45, 77, 10, 11, 43, 33, 24, 51, 57, 39, 35, 44, 20, 49, 81, 78,
Solutions (30) 41, 46, 85, 23, 53, 19, 38, 93, 83, 15, 52, 31, 42]

Performance Assessment | [82, 1,79, 18, 61, 12, 88, 4, 87, 16, 86]
of Existing Solutions (11)

Table 2: Research Focus Categories with References

duct a more reliable and thorough assessment. This narrowed selection enables an
in-depth review of each evaluation strategy and allows for meaningful discussions
with SE experts who bring practical and specialized insights. This collaborative and
focused approach strengthens the reliability of the assessment, ensuring a solid foun-
dation for the next stages of the review.

4.2.5 Grouping the papers by underlying task objectives

The goal of this step is to ensure consistency and focus in the review process by group-
ing papers according to their primary objectives. This organization enables a coherent
analysis of evaluation strategies by ensuring that papers addressing similar task ob-
jectives are reviewed together, avoiding fragmentation and facilitating a systematic
comparison within each group. The thematic organization also highlights the specific
challenges addressed and the stakeholders benefiting from these solutions, providing
a clear structure for evaluating how well the methods align with the objectives of
distinct SE activities.

While some overlap exists across groups due to the interconnected nature of SE
tasks, this grouping facilitates a structured and consistent review process. The follow-
ing categories represent the diverse objectives addressed in the reviewed studies.

Improving Developer Efficiency - Effort and Resource Estimation

Objective: Enhance developer productivity and project management efficiency through
supportive estimations, bug triage prioritization, and knowledge base summa-
rization.

Stakeholders: Project managers, developers, and decision-makers.

Important Evaluation Aspects: Accuracy in estimations, time savings, usability for
developers, and ease of workflow integration.

Papers: [1, 15, 38, 24, 35, 33].

Enhancing Software Reliability and Maintenance

Objective: Improve reliability through automated bug detection, log analysis, and
maintenance prediction to enable proactive system upkeep.

Stakeholders: Developers, QA teams, and maintenance engineers.

39

Important Evaluation Aspects: Precision and recall, computational efficiency, robust-
ness, and accuracy of localization.

Papers: [10, 16, 23, 41, 46, 81, 85, 49, 42].

User Feedback Processing

Objective: Analyze and structure user feedback from platforms like Stack Overflow
and app reviews to support user-driven insights for product development.

Stakeholders: Product managers, UX/UI designers, and developers.

Important Evaluation Aspects: Classification accuracy, relevance and quality of in-
sights, and adaptability across feedback sources.

Papers: [19, 53, 78, 4, 88, 87].

Requirements Evaluation and Traceability

Objective: Improve requirements documentation by detecting ambiguities, ensuring
traceability, and assessing completeness to reduce miscommunication.

Stakeholders: Requirements engineers, project managers, and developers.

Important Evaluation Aspects: Accuracy in ambiguity detection, traceability preci-
sion, completeness validation, and clarity of results.

Papers: [18, 20, 61, 44, 12,51, 52,77, 43, 39, 57, 93].

Program Specifications and API Documentation

Objective: Generate and enhance program specifications and API documentation to
clarify software functionality and improve developer accessibility.

Stakeholders: API consumers, documentation teams, and developers.

Important Evaluation Aspects: Specification accuracy, documentation completeness,
and support for different levels of abstraction.

Papers: [11, 48, 82,79, 45, 83].

Prototyping and System Design

Objective: Support early design and prototyping tasks, helping teams rapidly define
system requirements and conceptualize solutions.

Stakeholders: Designers, product managers, and stakeholders in early product de-
velopment.

Important Evaluation Aspects: Clarity and relevance of prototypes, support for iter-
ative design, and integration with agile workflows.

Papers: [31, 86].

40

4.3 Review Process

The stage for the review is set in the previous section, which details the execution
of Phases 1 to 3. A focused set of 41 papers, selected from the original set of 396,
is identified for non-code-centric SE tasks, ensuring that the evaluation focus in each
paper aligns with a solution to a specific SE task. A small but diverse subset of
papers is initially reviewed to identify key evaluation aspects, and a scoring system for
reliability and relevance is defined. To maintain consistency, the focused set of papers
is grouped by underlying task objectives, enabling papers with similar objectives to
be reviewed together.

The objective of this section is to conduct the review in an organized manner,
producing concise summaries of the reliability and relevance of the evaluations while
extracting quantitative notes and scores on the strengths and limitations of evaluation
aspects.

4.3.1 Qualitative Review of Evaluation Strategies

The goal of this step was to analyze the evaluation strategies of the selected papers,
producing qualitative summaries and scoring their reliability and relevance. The re-
view focused on assessing and summarizing the key evaluation aspects identified in
Section 4.2.3.

The author of this thesis conducted the review group-wise, ensuring that papers
addressing similar task objectives were analyzed together. For each paper, a summary
ranging from 50 to 100 words was written, documenting strengths and limitations
in terms of reliability and relevance as defined in Section 4.2.2. Additionally, both
dimensions were scored on a scale from 0 to 5.

The review process included analyzing the title, abstract, and introduction to un-
derstand each paper’s contributions and context. Focus was placed on sections com-
monly dedicated to datasets (often including descriptions of ground truth creation),
metrics, and baselines, as these provided detailed information about the evaluation
methodologies. Additionally, tables and figures presenting comparative analyses,
benchmarks, and validation methods were examined. Many papers applied cross-
validation techniques—such as within-repository, cross-repository [1, 15, 38], or k-
fold approaches—or conducted error analyses of predictions [81] and complementary
user studies [86]. These observations led to the inclusion of an additional evaluation
aspect, Validation Method, to systematically document such practices.

The summaries and scores for reliability and relevance generated during the qual-
itative review, as of 21.01.2025, are available at [3].

For instance, the review for [12] included:

41

Qualitative Evaluation Summary Details

e Datasets: DAMIR, ReqEval, CoNLL2011
e Baselines: None (standalone evaluation with different configurations)
e Metrics: F2-Score, Success Rate

Validation Methods: 10-fold cross-validation, external datasets

Ground Truth: Expert-curated annotations with inter-rater agreement
and robust documentation

Reliability and Relevance Summary:

e Reliability: Robust evaluation using diverse datasets, expert annota-
tions, and metrics addressing class imbalance. Cross-validation and test
splits enhanced generalizability. Ground truth creation demonstrated a
thoughtful, well-documented process with inter-rater agreement analy-
sis, reinforcing reliability. However, reliance on manual annotation may
limit scalability.

e Relevance: Emphasis on recall ensures ambiguous cases are flagged for
review, addressing critical SE needs. Evaluation on industrial require-
ments provided strong generalizability, though including open-source
datasets could enhance broader applicability. The lack of qualitative stud-
ies limited deeper insight into outcomes.

e Scores: Reliability: 4, Relevance: 4

4.3.2 Quantitative Analysis of Evaluation Strengths and Limitations

This step focused on systematically extracting strengths and limitations for evalua-
tion aspects from the summaries, enabling quantitative analysis. Each evaluation as-
pect—datasets, baselines, metrics, validation methods, and ground truth—was scored
as follows:

Strength(s) identified
. , . No notable comments
Evaluation Aspect’s Rating = o]
—1 Limitation(s) or mixed outcomes

(both strengths and limitations identified)

42

Evaluation Summary of Key Evaluaiton Aspects

e Task: Ambiguity Detection
e Reliability: 4, Relevance: 4
e Datasets: 1 (Diverse datasets: DAMIR, ReqEval, CONLL2011)

e Baselines: 1 (Comparison across six paradigms: two SpanBERT-based
models, three ML-based models, and one NLP-coreference-based solu-
tion)

e Metrics: 1 (Recall-focused metrics: F2-Score, Success Rate)

e Validation: 1 (Cross-validation approach)

These structured summaries ensure that both qualitative and quantitative insights
are systematically documented for further analysis, laying the foundation for a robust
evaluation of current practices.

5 Results

5.1 Descriptive Summarization of Evaluations by Task Objectives

This section provides a descriptive review of the grouped papers based on their task
objectives, with the goal of summarizing the evaluation strategies employed across
different task categories. The focus is on systematically describing how the key evalu-
ation aspects identified in Phase 3—datasets, baselines, metrics, ground truth, and
validation methods—are addressed within each group. By highlighting patterns,
strengths, and limitations in these evaluation strategies, this section sets the stage
for a critical analysis of the limitations and strengths along key evaluation aspects
(5.2) and a insights on reliability and relevance of the reviewed papers evaluaiton
strategies(5.3).

The insights provided in this section establish a foundational understanding of the
evaluation practices within each task group, ensuring a coherent basis for interpreting
the reliability and relevance of the evaluations in later sections.

5.1.1 Group 1: Improving Developer Efficiency — Effort and Resource Estimation

The papers in this group aim to enhance developer productivity by addressing tasks
such as effort estimation, bug triage and deduplication, and knowledge summa-
rization. Evaluations rely heavily on quantitative metrics, with validation strategies
like cross-validation, practical alignment with real-world datasets and usage sce-
narios, and occasional user studies. While datasets predominantly originate from
open-source repositories, a few papers incorporate industrial datasets for increased
relevance.

43

Table 3: Evaluation Setup Summary for Group 1 Papers

Paper | Datasets Baselines Metrics Validation Ground Truth
Methods
[1] DEEP-SE, DT with TF- | AUC-ROC, F- | Cross- Actual time
JOSSE, Porru, | IDE, DT with | score validation spent/ SP
PPI, Industrial | learned em-
Dataset beddings,
Human Expert
Estimations
[15] 16 open-source | Traditional MAE Within- and | Estimated SP
projects ML, deep cross-project
learning, scenarios
analogy-based
methods
[38] JIRA projects, | TE-IDF, LDA, | MAE, MMRE, | Cross- Actual effort in
17 enterprise | Deep-SE, PRED(50) validation person-months
projects GPT2SP
[24] NTT Corpo- | TF-IDE LDA MAP 5-fold cross- | Human-
ration bug validation labeled du-
reports plicates and
non-duplicates
[35] Google Transformer- acc@k (Top-k | Real-world Actual devel-
Chromium, based meth- | Accuracy) benchmark- | opers who
Mozilla Core, | ods, Tradi- ing fixed each bug
Mozilla Fire- | tional ML report
fox, Private
Industrial
Dataset
[33] SOSum Heuristic- Precision, Re- | 10-fold Human-
dataset, addi- | based, deep | call, Fl1-score Cross- labeled sum-
tional labeled | learning validation, maries
posts user study
Datasets The datasets used across the group predominantly come from open-source

repositories, including JIRA project repositories, Mozilla and Google Chromium bug
repositories, and the SOSum dataset for knowledge summarization. These datasets
offer transparency and reproducibility but often lack domain diversity.

Among the six papers:

e [38] combines both open-source (JIRA) and industrial project datasets, enhanc-
ing real-world generalizability.

e [1] integrates industrial datasets, increasing external validity.

e [24] uses a small proprietary dataset with only 51 labeled bug reports, limiting

statistical robustness.

44

Observation: Open-source datasets dominate, with industrial datasets selectively
incorporated. Smaller proprietary datasets risk reducing generalizability.

Baselines The baselines used in this group span a range of approaches, reflecting
the diverse tasks being addressed:

e Traditional Machine Learning Methods: Models such as TE-IDF, LDA, and De-
cision Trees are used for baseline comparisons, providing foundational bench-
marks for evaluating newer methods ([15], [24]).

e Deep Learning Models: Transformer-based architectures and neural networks
serve as advanced baselines, particularly in tasks requiring contextual under-
standing and sequence modeling ([35], [15]).

e Heuristic and Unsupervised Methods: Task-specific rule-based approaches,
heuristic algorithms, and unsupervised techniques provide additional reference
points for evaluating task performance ([33]).

The alignment between baselines and research objectives is evident across the
studies:

e [15] evaluates their GPT2SP model against traditional ML techniques (e.g., De-
cision Trees) and deep learning models, ensuring a balanced comparison across
baseline types.

e [35] focuses on comparing transformer-based architectures against simpler ML
techniques, emphasizing the strengths of transformer models for bug triage
tasks.

e [33] incorporates a diverse set of baselines, including a fine-tuned BERT-based
summarization model, three heuristic methods, and one unsupervised learning
approach, ensuring a multi-faceted evaluation.

Observation: Traditional ML methods continue to serve as benchmarks in most
tasks, while transformer-based architectures dominate in bug triage and summariza-
tion. Kou, Chen, and Zhang [33], highlights the reliance on hybrid evaluation setups
that combine heuristic, deep learning, and unsupervised approaches.

Metrics Metrics are tailored to task objectives:
o Effort Estimation: MAE, MMRE, PRED(50), AUC-ROC ([1], [15], [38]).

e Bug Triage and Deduplication: Top-k Accuracy (acc@k), Mean Average Preci-
sion (MAP) ([35], [24]).

e Summarization: Precision, Recall, and F1-score ([33]).

Observation: Metrics align well with task objectives, but qualitative aspects (e.g.,
user satisfaction) remain underexplored.

45

Validation Methods The predominant validation strategies include:

e Withing repository and cross-repository validation: Effort estimation tasks ([1],
[15], [38]).

e Real-World Benchmarking: Bug triage studies ([35]).
e User Studies: Summarization tasks ([33]).

Observation: Cross-validation dominates, while user studies remain underuti-
lized, and deployment factors (e.g., latency, scalability) are rarely assessed.

Ground Truth Ground truth sources include:
o Actual Effort Metrics: Story points, developer time logs ([1]).
e Estimated Story Points: Derived from previous estimates ([15]).
e Manual Annotations: Bug detection and summarization tasks ([24], [33]).

Observation: Actual data improves evaluation relevance, while estimated metrics
introduce inherent uncertainty.

Descriptive Summary The six papers in this group demonstrate varied evaluation
strategies:

e Datasets: Open-source datasets dominate; industrial datasets remain underuti-
lized.

Baselines: Traditional ML remains common, but transformers lead in bug triage.

Metrics: Task-specific metrics align well with objectives.

Validation: Cross-validation dominates; user studies are infrequent.

Ground Truth: Actual effort data enhances reliability.

5.1.2 Group 2: Enhancing Software Reliability and Maintenance

The papers in this group aim to improve software reliability and maintenance by
addressing tasks such as bug detection, fault localization, log analysis, and crash
reproduction. Evaluations rely on a combination of quantitative metrics (e.g., Pre-
cision@K, Balanced Accuracy, Fl-score) and qualitative insights (e.g., manual vali-
dation, ablation studies). Validation strategies prominently feature cross-validation,
module-level ablation, and manual crash reproducibility checks. While datasets are
primarily derived from open-source repositories, a few studies incorporate industrial
datasets to improve real-world applicability.

46

Table 4: Evaluation Setup Summary - Bug Detection and Localization

Paper | Datasets Baselines Metrics Validation Ground Truth
[10] Aspect], JDT, | Locus, Precision@K, | Ablation Manually
PDE, SWT, | TBERT-Single, | MAP, MRR (granularity, validated
Tomcat, ZX- | TBERT- encoding), mappings
ing (OS) Siamese Runtime anal- | (SZZ error
ysis mitigated)
[16] Eclipse, TF-IDE, SVM, | Balanced Ac- | 10x5 CV, | Bug fix times
Freedesktop, RF, k-NN, NB, | curacy Wilcoxon test | (1-year thresh-
GCC, Gnome, | NN (95%) old)
Mozilla,
WineHQ (OS,
50K+ reports)
[42] 36 widgets, 31 | 18 baselines: | Detection Ablation Crash repro-
Android apps | fuzzing, mu- | rate, At- | (modules), ducibility
(0S) tation, string | tempts, Time GUI integra- | verified man-
analysis, GUI tion, Manual | ually and by
tools validation developers
[23] 75 crash re- | ReCDroid, Success rate, | Ablation Automated
ports, 58 | Monkey, Hu- | Time to repro- | (scorer im- | reproduction
Android apps | manoid, Ape, | duce pact), Manual | confirmed
(OS, IND) Q-Testing validation (14 | manually and
testers) systematically

Datasets The datasets primarily come from open-source repositories like Aspect],
Eclipse, Mozilla, and Android logs. These datasets provide reproducibility and trans-
parency but often lack the diversity and variability of real-world industrial datasets.

Notable dataset usage patterns include:

e [23] integrates both open-source crash reports and industrial datasets from An-
droid apps.

e [46] incorporates logs from industrial vendors like Cisco and Huawei but lacks

o [42] relies on a relatively small dataset of 36 widgets from 31 apps, limiting
generalizability.

Observation: Open-source datasets dominate, but industrial datasets play a sup-
porting role in enhancing generalizability. Dataset size and diversity remain limiting
factors in some studies.

Baselines Baseline comparisons include:

e Traditional IR and ML Approaches: TE-IDF, SVM, k-NN ([16]).

e Deep Learning Models: Transformer-based architectures ([10], [41]).

47

Table 5: Evaluation Setup Summary - Log Parsing and Analysis

Paper | Datasets Baselines Metrics Validation Ground Truth
[49] 7,125 Java | Ablation: No | Accuracy Manual val- | Assumed
methods, Pre-training, (level, loca- | idation (300 | correctness
1,465 Log4j | Multi-Task, tion), BLEU-4 | errors), Abla- | of developer-
repos (OS) LogStmt-Task, tion studies written logs
Denoising-
Task
[85] 16 Loghub | Drain, Spell, | Grouping Ablation (test- | Manually la-
datasets (e.g., | LenMa, Accuracy, Edit | time training, | beled subsets
HDFS, BGL, | SHISO, Lo- | Distance variable imita- | (2K logs/-
Android, gram, Nulog tion), Sensitiv- | dataset),
Windows) ity analysis minor correc-
(OS, IND) tions applied
[46] 96K tem- | CNN, Bi- | Accuracy, Low-resource | FPI: Expert-
plates, Cisco, | LSTM, BERT, | Weighted F1, | analysis labeled (43
Huawei, H3C | RoBERTa, Precision@1, phenomena,
logs (OS, | UniLog MRR multi-label,
IND) no conflict de-
tails); LDSM:
Positive from
documenta-
tion, negative
sampled auto-
matically
[41] (HDFS, BGL, | LogPPT, Fl-score Ablation Expert-
Zookeeper, LogStamp, (session-level, | (prompt annotated
Android) (OS, | LogParse, template- strategies: anomalies
IND) LogSig, level), Preci- | Self-prompt, and parsing
Spell, Drain, | sion, Recall Chain-of- templates,
DeepLog, Thought, potential pre-
LogAnomaly, In-context), training data
LogRobust Human eval- | overlap
uation (6
experts, 200
logs)
[81] 12,012 code | LANCE, GPT- | PA, LA, MA, | Ablation Log statement
snippets from | 3 variants | CLA, CMA, | (warmup, ex- | correctness
1,465 GitHub | (Ada, Bab- | BLEU-4 ample count, | validated via
repositories bage, Curie), example or- | annotated
(OS) Codex (Fine- der), Manual | dataset and
Tuned) error analysis | automated
(500 samples) | metrics

48

e Systematic Testing Tools: Random testing tools ([23] - Monkey) and crash re-
production frameworks ([23] - ReCDroid).

e Heuristic Methods: Rule-based tools for log analysis ([85]).

Examples include:

e [16] evaluates using classical ML approaches like TF-IDF and k-NN.

e [10] employs Transformer-based deep learning models for bug localization tasks.

e [23] utilizes systematic testing tools like Monkey (random testing) and ReCDroid
(crash reproduction).

Observation: Baselines generally align with task objectives, with Transformer-
based models dominating bug detection tasks, while systematic tools like Monkey and
ReCDroid address crash reproduction. In log parsing tasks, heuristic approaches re-
main prominent as evaluation baselines, but comparisons with deep learning models
(e.g., CNN, LSTM) and large language models (e.g., GPT variants, Codex) are becom-
ing increasingly common.

Metrics Metrics are aligned with task objectives, including:
e Bug Detection and Localization: Precision@K, MAP, MRR ([10]).

e Crash Detection: Detection Rate, Experimental Performance Indicators (e.g.,
number of attempts, time to trigger crashes) ([42]).

e Log Analysis: F1-score, Precision, Recall ([41]), BLEU-4 ([49], [81]), Edit Distance
([85D).

Observation: Metrics generally align well with objectives, with traditional quan-
titative metrics (e.g., Precision@K, MAP, Fl-score) dominating bug detection and log
analysis tasks. Experimental performance indicators (e.g., number of attempts, time
to trigger crashes) play a crucial role in evaluating crash detection scenarios. In log
analysis tasks, studies often combine categorical metrics (e.g., position and level ac-
curacy) with text-generation metrics (e.g.,, BLEU-4, Edit Distance) to assess both the
placement and content quality of generated log statements. Despite this, some tasks
still lack qualitative validation to complement these quantitative measures.

Validation Methods Validation strategies include:
e Cross-Validation: Used in bug detection tasks ([16]).
e Ablation Studies: Module-level analyses for crash detection ([42]).
e Manual Verification: Manual assessment of reproducibility in crash logs ([23]).

Observation: Cross-validation is widely used, but deployment-related metrics
(e.g., latency, scalability) remain underexplored.

49

Ground Truth Ground truth sources vary across tasks, reflecting the evaluation fo-
cus:

e Manual Verification and Annotation: Many studies rely on human-annotated
datasets, including manually validated mappings for bug localization ([10]) and
manually verified crash reproducibility results ([42]). In the case of crash repro-
duction, validation combines manual checks with automated scripts to ensure
consistency and reproducibility ([23]).

e Historical and System Data: For long-lived bug prediction, bug fix timelines
from issue tracking systems are used as ground truth ([16]).

e Log Analysis and Generation: Approaches vary in annotation rigor. [49] uses
log datasets extracted directly from software repositories without additional
manual validation, while others, such as [81] and [46], incorporate varying de-
grees of manual annotation. [81] employs detailed validation for log position,
verbosity level, and message accuracy, whereas [46] primarily derives ground
truth from vendor documentation with limited manual annotations, focusing
mainly on Fault Phenomenon Identification (FPI).

Observation: Ground truth sources are generally reliable but vary in validation
rigor. Manual verification dominates bug detection and crash reproduction tasks,
whereas log analysis exhibits a spectrum from fully automated datasets to partially
annotated ones.

Observation: Ground truth sources are generally reliable but vary in validation
rigor. Manual verification dominates bug detection and crash reproduction tasks,
whereas log analysis exhibits a spectrum from fully automated datasets to partially
annotated ones.

Descriptive Summary The papers in this group demonstrate diverse evaluation
strategies:

e Datasets: Open-source datasets dominate; industrial datasets are selectively
used.

e Baselines: Classical ML techniques, transformer-based models, and systematic
testing tools are most common.

e Metrics: Metrics align well with objectives but lack qualitative depth.

e Validation: Cross-validation and ablation dominate; deployment factors are un-
derexplored.

e Ground Truth: Predominantly manually verified; log analysis ranges from au-
tomated datasets to partial manual validation.

50

5.1.3 Group 3: User Feedback Processing

The papers in this group aim to analyze and structure user feedback from plat-
forms such as Stack Overflow, app reviews, and developer forums. Tasks addressed
include sentiment analysis, tag recommendation, and feature extraction. Evalua-
tions rely primarily on quantitative metrics, with validation strategies such as cross-
validation, dataset ablation studies, and manual validation through expert anno-
tations. Datasets are predominantly sourced from platform-specific corpora, with
occasional integration of crowdsourced annotations to ensure representativeness.

Datasets The datasets in this group primarily focus on platform-specific user feed-
back corpora, sourced from platforms such as:

e Stack Overflow Posts: 10.38 million training posts, 100,000 test posts ([19]).

e App Reviews: Diverse collections from Google Play Store, Apple Store, and
alternative repositories ([78], [53]).

e Software Engineering Platforms: Gerrit, Jira, GitHub, and others ([87], [88]).
Annotations vary:

e Manually labeled datasets ([4], [87]).

e Crowdsourced annotations ([53]).

e Mixed manual and automated validation pipelines ([19]).

Observation: Dataset quality varies, with stronger annotations derived from inter-
rater agreements and iterative refinements, while larger datasets rely more heavily on
automated validation.

Baselines Baseline comparisons span:

e Pattern-Based Methods: SAFE (PoS-based extraction using 18 grammatical pat-
terns), Caspar (dependency parsing with PoS tagging), and KEFE (pattern-based
filtering combined with classification) ([78]).

e Traditional Models: TF-IDF, LDA, and other statistical approaches ([78]).

e Deep Learning Models: RNN, BERT, and Transformer-based methods ([4],
[871).

e Hybrid Models: Multi-model combinations, such as PTM4Tag, which blend
transformer models with task-specific optimization ([19]).

Observation: Transformer-based models dominate sentiment analysis and tag-
ging tasks, while pattern-based and statistical models are primarily used for feature
extraction and clustering.

51

Table 6: Evaluation Setup Summary - Sentiment Analysis & User Feedback Processing

Paper | Datasets Baselines Metrics & Vali- | Ground Truth

dation

[4] 5500 SO sen- | RNN4SentiSE Precision, Recall, | Manual, re-
tences F-Measure (10- | fined guidelines,

fold CV, Kappa: | cross-validation
0.88)

[87] API reviews, SO | CoreNLP, Precision, Recall, | Manually la-
posts, app re- | SentiStrength(- F1, Training | beled, SE-
views, GitHub, | SE), SentiCR, | Time (70/30 | specific polarity
Jira, CR (15K to- | Senti4SD split, Cross-
tal) dataset)

[88] SE datasets: | sLLMs (BERT, | Precision, Re- | Pre-labeled,
Gerrit, GitHub, | RoBERTa), call, F1, AUC | multiple anno-
GooglePlay, Jira, | bLLMs (Llama2, | (80/10/10 split, | tators, conflict
StackOverflow Vicuna) Wilcoxon test) resolution
(11K total)

[78] App reviews: 6 | SAFE, Caspar, | Precision, Recall, | Manual, iter-
apps (34K la- | KEFE, BiLSTM- | F1 (extraction), | ative refine-
beled), 18 apps | CRF, LDA, | ARI, NMI (10- | ment (Kappa:
(318K unlabeled) | K-Means fold CV, wuser | 0.78-0.86)

survey)

[19] Stack Overflow | Post2Vec, Precision@k, User-labeled
posts (10.38M | PTM4Tag (BERT, | Recall@k, Fl@k | tags, filtered
train, 100K test) | RoBERTa, Code- | (Fixed split, | rare/noisy tags

BERT, ALBERT, | ablation, error
BERTOverflow) | analysis)

[53] App reviews: | SAFE (baseline), | Precision, Recall, | Crowdsourced
468 apps (23.8K | BERT, RoBERTa, | F1 = (token & | (AlternativeTo),
reviews, 32.4K | XLNet feature-level), validated by hu-
annotated fea- Precision@k, man annotators
tures) Recall@k (10- | (F1: 0.719)

fold CV, lexical
overlap analysis,
ablation, human
validation)

Metrics Metrics are task-specific:

e Sentiment Analysis: Precision, Recall, F1-score ([4], [87]).

e Tag Recommendation: Precision@k, Recall@k ([19]).

e Feature Extraction: ARI, NMI, Lexical Overlap ([78], [53]).

Observation: Metrics are well-aligned with task goals, though interpretability of
results (e.g., qualitative evaluation) is occasionally overlooked.

52

Validation Methods Validation strategies include:
e Cross-Validation: Applied extensively ([4], [78]).
e Ablation Studies: To assess model robustness ([19]).
e Manual Validation: Expert annotations ([88]).

Observation: Cross-validation is the most common strategy, while ablation stud-
ies provide additional robustness checks.

Ground Truth Ground truth varies:
e Manual Annotations: Expert-labeled ground truth ([88]).
e Crowdsourced Data: From platforms like AlternativeTo ([53]).
e User-Generated Tags: Validated systematically ([19]).

Observation: Annotation processes differ, affecting consistency and reliability
across studies.

Descriptive Summary The papers in this group demonstrate:
e Datasets: Platform-specific datasets dominate, with varying annotation quality.

e Baselines: Transformer-based models dominate, supported by traditional ML
baselines.

e Metrics: Task-specific metrics are well-suited but lack interpretability aspects.
e Validation: Cross-validation and ablation studies ensure robustness.

e Ground Truth: Manual and crowdsourced annotations are common.

5.1.4 Group 4: Requirements Evaluation and Traceability

The papers in this group address critical tasks in requirements engineering, including
requirements classification, ambiguity and coreference detection, user story evalu-
ation, and requirements traceability and completeness. Evaluations primarily rely
on quantitative metrics such as Fl-score, MAP, and precision to assess the effec-
tiveness of proposed methods. Validation approaches often include cross-validation,
cross-dataset testing, or manual expert evaluations to ensure robustness and gener-
alizability. However, some studies are limited by reliance on qualitative evaluations
conducted on small, manually reviewed samples, reducing the scalability and repro-
ducibility of their findings.

Datasets vary across tasks, with some studies relying on well-established bench-
marks such as PROMISE NFR or industrial datasets, while others use domain-
specific corpora or synthetic data. Despite this variety, reliance on older benchmarks
and narrowly scoped datasets restricts the broader applicability of the results, partic-
ularly in addressing contemporary requirements engineering challenges.

53

Table 7: Evaluation Setup Summary for Requirements Evaluation Papers

Paper | Datasets Baselines Metrics Validation Ground Truth
[20] PROMISE NFR | Tree, SVM,, | Precision, Re- | 10-fold CV, | Human-
(orig/rela- Naive Bayes, | call, F1 loPo annotated
beled) CNN (Functional,
NFR sub-
classes)
[44] PROMISE, NoRBERT, Precision, F1, | 10-fold CV, tri- | Human-
NEFR-Review, BERT-MLM T-test als annotated
NFR-SO labels
[18] PROMISE, SVM, LSTM, | Fg-Score Cross-dataset Human-
Dronology, GPT-3.5, GPT4 testing labeled
ReqView datasets
[12] DAMIR, None F2, Success | 10-fold CV, ex- | Expert-
ReqgEval, Rate ternal datasets | annotated
CoNLL2011 labels
[51] Domain- None Manual valida- | Qualitative Manual inspec-
Specific, Multi- tion analysis tion
Domain Cor-
pus
[52] CS Corpus, | None Manual valida- | Qualitative No formal Ila-
PURE Dataset tion analysis bels
[77] Industry None Precision, F1 10-fold CV Human-
Dataset (21 annotated
projects) labels
[61] Open-source AQUSA Agreement, One-shot trials | Double-
User Stories Precision, F1 blinded human
eval
[39] Flask, Pgcli, | VSM, LDA, | F1, F2, MAP@3 | 10-fold CV, | Mined links
Keras TraceNN ONS (commit tags)
[93] Flask, Pgcli, | TRACEFUN F1, F2, MAP 5-fold CV Inherited
Keras mined links
[57] Five hierarchi- | IR-based F2, MAP 5-fold CV, re- | Manually cu-
cal datasets chunking peated trials rated RTMs
[43] PURE Dataset | TE-IDF, Word- | Accuracy, Pre- | 5-fold CV, hu- | Simulated in-
(40 specs) Net Synonyms | cision, Cover- | man eval completeness
age
Datasets The datasets used across this group exhibit a mix of legacy benchmarks,

industrial datasets, and manually annotated corpora. PROMISE NFR and its vari-
ants remain heavily used in classification tasks, while more domain-specific corpora
(e.g., industrial datasets from partner organizations) support ambiguity detection and
traceability tasks.

Among the key observations:

54

e [20], [44], and [18] rely on PROMISE NFR, a benchmark dataset for require-
ments classification, but its age raises concerns about relevance to modern soft-
ware projects.

e [77] and [43] leverage industrial datasets, enhancing real-world applicability.

e [51] employs a domain-specific Wikipedia corpus, reducing alignment with
real-world requirements engineering documents.

Observation: Dataset diversity varies across tasks, with older benchmarks domi-
nating classification tasks and industrial datasets supporting traceability tasks.
Baselines Baseline approaches vary significantly depending on the task:

e Machine Learning Classifiers: SVM, CNN, Naive Bayes ([20], [18]).

e Transformer Models: BERT, GPT-based models ([44], [61]).

e Heuristic/Rule-Based Methods: Used in limited settings ([12]).

Observations include:

e Transformer-based approaches dominate classification tasks ([44]).

e Traditional ML methods remain common in ambiguity detection tasks ([12]).

Observation: While ML baselines are well-documented, ambiguity detection tasks
lack comparative baselines.

Metrics Evaluation metrics are tailored to task-specific objectives:

o Classification Tasks: Precision, Recall, Weighted F1 ([20], [44]).

e Ambiguity Detection: F2-Score, qualitative validation ([12], [52]).

e Traceability Tasks: MAP, Map@k, F2, MRR ([39]).

Observation: Metrics are generally aligned with task goals but lack qualitative
measures for real-world deployment.

Validation Methods Validation approaches include:

e Cross-Validation: Stratified and repeated trials ([20], [44]).

e Human Evaluation: Manual verification, expert annotations ([43]).

e Cross-Dataset Testing: Ensures robustness across datasets ([18]).

Observations:

e Cross-validation dominates classification tasks.

e Ambiguity detection tasks rely heavily on manual validation.

Observation: Cross-validation is robust, but reliance on manual validation re-

duces scalability.

55

Ground Truth Ground truth in this group is primarily derived from:

e Annotated Datasets: Datasets labeled by human annotators, often following
predefined guidelines ([20], [18], [77]).

e Manual Inspection: In some studies, ground truth is validated through focused
manual reviews on smaller sample sets ([52]).

e Absence of Ground Truth (Unsupervised Tasks): In tasks without labeled data,
evaluations rely on qualitative analysis or indirect proxies for correctness, such
as clustering consistency or partial alignment with expected outcomes ([51],
[52]).

Observation: While annotated datasets are widely used across the group, some
studies rely heavily on manual validation, limiting scalability and reproducibility.
Additionally, unsupervised tasks often lack explicit ground truth, leading to reliance
on proxy measures or qualitative assessments, which reduces the robustness of their
evaluation outcomes.

Descriptive Summary The papers in this group reveal:

e Datasets: PROMISE NFR dominates; industrial datasets improve real-world rel-
evance.

e Baselines: Transformer-based models excel in classification tasks; ambiguity
detection lacks strong baselines.

e Metrics: Metrics are task-aligned but lack deployment-focused measures.

e Validation: Cross-validation dominates; ambiguity tasks rely on manual valida-
tion.

e Ground Truth: Annotated datasets are common, but legacy benchmarks reduce
relevance.

5.1.5 Group 5: Program Specifications and API Documentation

The papers in this group address challenges related to program specification gen-
eration and API documentation augmentation. These tasks aim to improve code
clarity, documentation completeness, and developer accessibility to software com-
ponents. Evaluation strategies across the group predominantly focus on quantitative
metrics, supplemented by occasional qualitative analyses. Validation approaches
include cross-validation, manual error analysis, and in some cases, user studies.
While datasets are typically derived from open-source sources, some studies rely on
synthetic datasets to increase data scale ([48]), while others employ domain-specific
benchmarks such as SV-COMP, SpecGenBench, or EvalPlus to ensure standardized
evaluation across tasks ([45], [11]).

56

Table 8: Evaluation Setup Summary for Program Specifications and API Documenta-

tion
Paper | Datasets Baselines Metrics Validation Ground
Truth

[82] 4,522 Stack | Opiner, Weighted 10-fold CV, | Manual
Overflow BERT- P/R/F1, manual labels (sub-
API sen- | family, MCC, AUC | analysis stantial
tences CostSens- agreement)

BERT

[83] APISumBench SISE, P/R/F1 Cross- Labeled
(4,344 sen- | DeepTip, for clas- | /Within-API | sentences,
tences, 48 | LexRank, sification, splits, Hu- | Extractive
summaries) | TechSum- ROUGE for | man review | summaries

Bot++ summariza- | (Likert rat-
tion ings)

[48] SpecSyn PracExtractor | Precision, By software | Manually
(300 real Recall, F1 | types and | curated
specs, 3000 Score categories specs from
synthetic) diverse

sources

[79] Jdoctor Jdoctor, Accuracy, Leave-One- | Annotated
(854), Doc- | DocTer Precision, Out CV, | datasets,
Ter (2,876) Recall, F1 | Failure corrected

Score Analysis for semantic
equivalence

[45] SV-COMP Houdini, Verifier Comparative | Expert
(265 Java); | Daikon, Calls, study, User | specs;
SpecGen- AutoSpec, Passes, survey Verification-
Bench (120); | LLM Success guided
Defects4] (50 Rate, User benchmarks
files) Rating

[11] EvalPlus TOGA, Accept@k, Comparative | Expert-

(164 Python | Daikon, Bug- study, Man- | verified
problems); GPT-family, | Completeness| ual analysis | annotations,
Defects4] StarChat Qualitative Test suite
(525 Java Analysis with code
bugs) mutants

Datasets The datasets employed in this group encompass a mix of open-source
repositories, evaluation-specific datasets, and domain-specific benchmarks. These
datasets vary in size, transparency, and representativeness.

Key observations include:

e [82] uses 4,522 Stack Overflow API sentences, annotated with substantial inter-
annotator agreement, ensuring consistency in labeling.

57

o [48] evaluates using a small test set of 250 samples, with limited transparency
regarding the composition of specification (spec) and non-specification (non-
spec) examples. The paper suggests a significant class imbalance, implying that
the 250 samples likely consist entirely of spec examples. Additionally, an un-
specified number of synthetic non-spec examples are introduced for evaluation,
but the creation process and distribution criteria for these non-spec samples
remain undocumented.

e [45] combines domain-specific benchmarks such as SV-COMP, SpecGenBench,
and Defects4], ensuring task diversity and alignment with verification tools.

e [11] employs expert-verified datasets and curated benchmarks like EvalPlus and
Defects4], ensuring reliability in ground truth annotations.

Observation: While curated benchmarks like SV-COMP and Defects4] provide
task diversity and align well with verification tools, the evaluation dataset in [48] is
limited by a small sample size and lack of transparency regarding the distribution
and creation process of the non-specification (non-spec) examples.

Baselines Baseline strategies vary across tasks but generally include:

Pre-Trained Transformers: GPT-family models, BERT-family variants.

Dynamic Analysis Tools: Daikon (for dynamic invariant detection).

Annotation Inference Tools: Houdini (for automatic generation of verification
annotations).

Graph-Based and ML Models: LexRank (graph-based summarization), Tech-
SumBot++ (ML-based summarization).

Examples include:
e [82] compares pre-trained transformers against Opiner and CostSensBERT.

e [45] evaluates performance using benchmarks like Houdini, Daikon, and Au-
toSpec.

e [83] employs LexRank and TechSumBot++ as baseline summarization tools.

Observation: Baseline comparisons for API documentation tasks frequently in-
volve Transformer-based models, while evaluations for program specification tasks
rely on well-established tools such as Daikon for invariant detection and Houdini
for annotation inference. Additionally, graph-based (LexRank) and ML-based (Tech-
SumBot++) models serve as comparative benchmarks for summarization tasks.
Metrics Evaluation metrics are highly task-specific:

e API Documentation: Weighted Precision, Recall, F1, ROUGE, AUC.

e Program Specifications: Accuracy, Bug-Completeness, Accept@k.

58

e Validation Success Metrics: Verifier Calls, Pass Rates, User Ratings.

Examples:

e [83] emphasizes ROUGE scores for summarization.

e [11] uses Accept@k and Bug-Completeness for formal verification tasks.

Observation: API documentation heavily relies on classification and summariza-
tion metrics, while program specification tasks focus on correctness and verification
success.
Validation Methods Validation approaches include:

e Cross-Validation: Standard 10-fold validation.

e Manual Error Analysis: Used in almost all papers.

e User Studies: Limited but included in tasks like specification generation ([45]).

Examples:

e [83] combines cross-validation with human annotation.

e [45] employs a user survey for qualitative validation.

Observation: Cross-validation dominates, while manual error analysis is consis-
tently employed for fine-grained insights.
Ground Truth Ground truth sources include:

e Human Annotations: Verified annotations for API sentences and specifications.

e Benchmark Data: Verification-guided benchmarks like SV-COMP.

e Synthetic Annotations: Common in tasks reliant on synthetic specifications

([48]).

Observation: Expert-verified datasets strengthen reliability, but reliance on syn-
thetic ground truth introduces limitations.

Descriptive Summary The papers in this group demonstrate diverse evaluation
strategies:
e Datasets: Synthetic datasets reduce real-world applicability.

e Baselines: Transformer-based models dominate API tasks; traditional tools are
key in formal specification tasks.

e Metrics: Metrics are well-aligned with task goals.
e Validation: Cross-validation and manual error analysis dominate.

e Ground Truth: Benchmark datasets enhance evaluation robustness, but syn-
thetic data reduces generalizability.

59

5.1.6 Group 6: Prototyping and System Design

The two papers in this group focus on supporting early software design and pro-
totyping through tasks such as interactive programming frameworks and natural-
language-based GUI retrieval. Evaluations rely on task-specific quantitative metrics
for correctness and efficiency, combined with user studies for practical validation.
The datasets include structured benchmarks and crowdsourced annotations, ensuring
both reproducibility and alignment with real-world scenarios.

Table 9: Evaluation Setup Summary - Prototyping and System Design

Paper | Datasets Baselines Metrics Validation Ground
Truth

[86] CAASD (72 | ChatDev, Pass Rate | Manual Reference
software MetaGPT (%), Token | testing, use cases for
tasks, avg. Cost automatic functional
240 LoC/- testing require-
task) ments

[31] Rico GUI | TE-IDF, Precision@k, | Crowdsourced GUI rele-
dataset BM25, NDCGek, query cre- | vance an-
(57,764 nBOW, MRR, ation, rel- | notations (3
GUIs), PRF-KLD, HITS@k, evance independent
Crowd- Sentence- Avg. Preci- | annotations | worker-
sourced BERT sion (AMT), user | s/query,
Gold Stan- study (19 | majority
dard (100 participants, | vote, filtered
NL queries, real-world for quality)
top-20 tasks)
GUlIs/-
query)
Datasets Zhang et al. [86] introduces the CAASD benchmark, a set of 72

tasks averaging 240 lines of code per task, simulating functional program-
ming requirements. However, the origins of these tasks and diversity across
domains are not well-documented. Kolthoff, Bartelt, and Ponzetto [31] uses
the Rico GUI dataset with 57,764 GUIs, enriched by crowdsourced anno-
tations for 100 natural-language queries. These annotations, validated by
three independent annotators per query, ensure high reliability and cover-
age. Observation: While Zhang et al. [86] focus on structured program-
ming tasks, Kolthoff, Bartelt, and Ponzetto [31] emphasize GUI relevance
annotations validated through robust crowdsourced processes. Zhang et
al. [86] compares their approach against:ChatDev and MetaGPT for GUI-
Retrieval efficiency from Natural Language Query. Mockplus in a user
study to evaluate usefulness and productivity improvements for GUI pro-
totyping tasks.

60

Kolthoff, Bartelt, and Ponzetto [31] evaluates retrieval quality against traditional
ranking models like TF-IDF and BM25, as well as transformer-based models
such as Sentence-BERT.

Observation: Zhang et al. [86] incorporate a two-tier comparison (quantitative
baselines and a qualitative user study with Mockplus), while Kolthoff, Bartelt,
and Ponzetto [31] focus on retrieval and ranking baselines.

Metrics Zhang et al. [86] uses:

— Pass Rate (%) to measure task correctness.

— Token Cost to assess computational efficiency.
[31] employs:

- Ranking metrics such as Precision@k, NDCG@k, MRR.
— Usability-focused metrics like HITS@k and Average Precision.

Observation: Zhang et al. [86] emphasize correctness and efficiency, while
Kolthoff, Bartelt, and Ponzetto [31] focus on ranking accuracy and user-centric
relevance.

Validation Methods [86] uses:

— Manual and automatic testing across CAASD tasks.

— A controlled user study comparing their approach against Mockplus, with
19 participants performing prototyping tasks under randomized conditions
to reduce bias.

Kolthoff, Bartelt, and Ponzetto [31] integrates:

— A structured user study with 19 participants.

- Crowdsourced query annotations validated by three independent annota-
tors.

Observation: Both studies integrate structured user studies, with Zhang et
al. [86] emphasizing productivity comparisons via Mockplus, while Kolthoff,
Bartelt, and Ponzetto [31] focus on usability and retrieval relevance.

Ground Truth Zhang et al. [86] defines ground truth using reference use cases
for functional requirements, serving as benchmarks for correctness validation.

Kolthoff, Bartelt, and Ponzetto [31] employs crowdsourced relevance annota-
tions, validated by majority voting among annotators and further refined for
quality.

Observation: Zhang et al. [86] rely on functional correctness benchmarks, while
Kolthoff, Bartelt, and Ponzetto [31] use crowdsourced, multi-annotator relevance
judgments.

61

Descriptive Summary The two papers in this group demonstrate focused and
task-specific evaluation strategies:

— Datasets: Structured functional task benchmarks (CAASD) and crowd-
sourced GUI datasets (Rico).

— Baselines: Quantitative frameworks (ChatDev, MetaGPT) and qualitative
user study comparisons (Mockplus) for Zhang et al. [86]; retrieval and
ranking models (TF-IDF, Sentence-BERT) for Kolthoff, Bartelt, and Ponzetto
[31].

— Metrics: Task correctness and efficiency (Pass Rate, Token Cost) for Zhang
et al. [86]; retrieval accuracy and usability (Precision@k, NDCG@K) for
Kolthoff, Bartelt, and Ponzetto [31].

- Validation: Controlled user studies (Mockplus comparison in Zhang et al.
[86]) and structured crowdsourced query validation [31].

- Ground Truth: Functional correctness benchmarks (Zhang) versus multi-
annotator validated relevance annotations [31].

5.2 Critical Analysis of Strengths and Limitations of Evaluation Strate-
gies

The analysis of evaluation strategies employed in LLM-based Software Engi-
neering (SE) research reveals recurring patterns and limitations across datasets,
ground truth, metrics, baselines, and validation methods, examined through
the lenses of task objective groups (5.2.1), research focus (5.2.2), ML task types
(5.2.3), and temporal trends (5.2.4). Furthermore, a quantitative assessment of
overall reliability and relevance scores (??) highlights discernible patterns, dis-
tinct clusters, and outlier studies in evaluation practices 5.3.2.

Dataset limitations were the most frequently observed, with concerns about
representativeness, generalizability, and completeness emerging across multi-
ple task groups. Reliance on narrowly scoped, outdated, or synthetic datasets
was a recurring issue. Ground truth construction was often affected by unclear
annotation processes and reliance on proxy measures, such as estimated story
points in regression tasks, which reduced confidence in evaluation outcomes.
While many studies included baseline comparisons, these were frequently ab-
sent, simplistic, or non-competitive, with cross-dataset and cross-model com-
parisons underutilized.

Evaluation metrics varied widely, with some studies using generic or proxy
measures that lacked alignment with task objectives. For example, in ranking
tasks like requirements traceability, reliance on metrics such as MAP without
cutoff reduced practical insights. In contrast, studies employing task-specific,
class-balanced, and interpretative metrics demonstrated higher reliability and
relevance. Validation strategies were similarly inconsistent, ranging from struc-
tured methods like cross-validation, user studies, and ablation tests to more
qualitative approaches with limited sample sizes, which reduced reproducibil-

ity.

62

Differences across research focuses (4.2.1) revealed that Performance Assess-
ment of Existing Solutions (PES) studies generally scored higher in both relia-
bility and relevance due to structured validation, robust baseline comparisons,
and task-specific metrics. In contrast, Development of New SE Solutions (NSE)
studies, while demonstrating strengths in validation diversity, faced recurring
challenges in dataset representativeness and baseline design.

5.2.1 Evaluation Patterns Across Task Objective Groups

This subsection presents a structured analysis of evaluation strategies across
task objective groups, focusing on datasets, ground truth, baselines, metrics,
and validation methods. The analysis identifies common limitations and recur-
ring themes across these evaluation aspects, offering insights into the reliability
(RQ1) and relevance (RQ2) of the evaluation strategies in effectively assessing
real-world software engineering scenarios. Key themes that emerged during the
analysis are summarized across all evaluation aspects, with notable emphasis
on dataset representativeness (statistical and temporal) and generalizability as
critical concerns. The findings aim to address RQ3 by highlighting significant
gaps and recurring patterns across evaluation practices.

Datasets form the foundation for evaluating the performance and applicabil-
ity of LLM-based software engineering solutions. The analysis of dataset limita-
tions, as summarized in Table 10, highlights recurring concerns across multiple
tasks. Common issues include limitations in dataset size, domain diversity, and
clarity in dataset origins or validation processes. These limitations impact the
ability of evaluations to generalize findings or accurately reflect real-world soft-
ware engineering scenarios.

The ratio presented in Table 10 represents the proportion of papers reporting
limitations for a specific task objective in relation to the total number of papers
addressing that task objective.

Upon closer inspection, these dataset limitations align with four overarching
themes: Generalizability, Representativeness, Completeness, and Transparency—as
summarized in Table 11. Representativeness can be further divided into two

key dimensions: statistical representativeness, which refers to dataset size and
diversity, and temporal representativeness, which concerns whether datasets
reflect current software engineering practices or rely on outdated data. These
themes encapsulate the key factors that influence the robustness and relevance

of dataset choices in evaluation strategies.

These themes represent systematic challenges in dataset design and usage, with
implications for the reproducibility and applicability of evaluation outcomes.

Frequency and Distribution Insights: The analysis reveals that representa-
tiveness and generalizability are the most frequently observed limitations, each

63

Table 10

: Identified Limitations in Datasets Across Tasks

Task Ratio Observed Limitations

Requirements Trace- | (4/4) Limited to open-source Python projects; potential in-

ability and Com- completeness of mined traceability links [39, 93]; Lim-

pleteness ited dataset size [57]; Limitation in dataset representa-
tiveness for task [43]

Automated Require- | (1/1) Limited dataset size [61]

ments Evaluation

Requirements Elicita- | (1/1) Unclear task origins and reference use case creation pro-

tion and System De- cess [86]

sign

Bug Detection and | (3/4) Limited to open-source projects [10]; Limited widget

Localization sample size [42]; Limited crash report sample [23]

Ambiguity Detection | (2/4) Non-requirements corpus [51, 52]

Bug Triage and As- | (1/2) Small dataset (51 reports) with bias [24]

signment

Requirements Classi- | (1/3) Limited to (old) PROMISE dataset [20]

fication

Sentiment Analysis (1/3) Limited to SO posts only [4]

Program Specifica- | (1/4) Small test set (250 samples) with unclear composition;

tions lack of transparency on whether samples included non-
spec data and how these were created [48]

appearing in six papers and spanning diverse tasks such as Bug Detection, Re-
quirements Classification, and Sentiment Analysis. Within representativeness,
statistical representativeness issues, including dataset size and diversity con-
straints, are prevalent across Bug Triage and Program Specifications. Conversely,
temporal representativeness concerns, such as outdated datasets, are notable in
Requirements Classification ([20]).

In contrast, completeness and transparency are less frequent but still critical.
Transparency limitations often arise from ambiguous dataset origins or undoc-
umented annotation processes, particularly in Ambiguity Detection and Re-
quirements Elicitation tasks. Requirements Traceability tasks exhibit limitations
across multiple themes, underscoring the inherent complexity of constructing
reliable datasets in this domain.

This distribution highlights the need for improved dataset design practices, in-
cluding broader statistical and temporal coverage, better documentation of an-
notation processes, and more diverse dataset sources. Addressing these areas
will enhance both the reliability and relevance of evaluations in LLM-based soft-
ware engineering research.

Ground Truth serves as the benchmark for evaluating solution performance,
with limitations outlined in Table 12. Common issues include uncertainty in
annotation processes, unvalidated assumptions, and reliance on simulated or

64

Table 11: Recurring Themes in Dataset Limitations Across Tasks

Theme Papers (n) | Associated Tasks Representative Limitations
Generalizability | 6 Bug Detection, | Limited to open-source datasets
Requirements Trace- | [10, 39, 93]; Limited widget sam-
ability, Sentiment | ple size [42]; Limited crash report
Analysis sample [23]; Limited to SO posts
[4]
Representativeness| 6 Program Specifica- | Small dataset size (51 reports)
tions, Bug Triage, | with bias [24]; Small test set
Requirements Trace- | with unclear composition [48];
ability, =~ Ambiguity | Simulated incompleteness may
Detection, Require- | not reflect real-world gaps [43];
ments Classification | Wikipedia Corpus not tailored
for requirements domain [51, 52];
Outdated dataset (2007 PROMISE
dataset) [20]
Completeness 2 Requirements Trace- | Potential incompleteness of mined
ability, Requirements | traceability links [39, 93]
Evaluation
Transparency 2 Requirements Elicita- | Unclear task origins and reference
tion, Ambiguity De- | use cases [86]; No labeled data
tection validation process [52]

artificial ground truths. Annotation transparency and validation rigor are par-
ticularly important for ensuring reproducibility and reliability in ground-truth

creation.

Table 12: Identified Limitations in Ground Truth Across Tasks

Task Ratio Observed Limitations

Automated Logging | (1/1) Assumed correctness without validation [49]
Requirements Trace- | (2/4) Potential link incompleteness [39, 93]

ability and Com-

pleteness

Effort and Resource | (1/3) Ground truth based on uncertain story point estimates
Estimation [15]

Log Parsing and | (1/4) Unclear annotation process for some tasks [46]
Analysis

Program Specifica- | (1/4) Nontransparent in class distribution and non-spec cre-
tions ation process [48]

Ground truth limitations are less uniformly distributed across tasks but remain
critical where they occur. In Requirements Traceability, the reliance on poten-
tially incomplete mined traceability links emerges as a recurring concern. In
Effort Estimation, the use of estimated story points as ground truth, rather than
actual recorded effort, introduces significant uncertainty and reduces the reli-

65

ability of the evaluation outcomes. Similarly, tasks such as Log Parsing and
Analysis and Program Specifications exhibit issues related to unclear annota-
tion processes and nontransparent ground-truth creation.

Baseline comparisons are crucial for contextualizing the performance of pro-
posed solutions. However, as shown in Table 13, common limitations include
the absence of baselines, reliance on limited or non-competitive baseline models,
and narrow baseline configurations.

Table 13: Identified Limitations in Baselines Across Tasks

Task Ratio Observed Limitations

Ambiguity Detection | (3/4) No baseline comparison [51, 52, 77];

Bug Triage and As- | (1/2) Limited/ Non-competitive baseline selection [24]
signment

Program Specifica- | (1/4) Single extractor comparison [48]

tions

Metrics

Metrics are essential for quantifying performance. However, as illustrated in
Table 14, common issues include reliance on inappropriate metrics, lack of task-
specific metrics, and metrics poorly suited for class imbalances.

Table 14: Identified Limitations in Metrics Across Tasks

Task Ratio Observed Limitations

Automated Logging | (1/1) Misaligned metrics for log evaluation; poor handling of
class imbalance [49]

Ambiguity Detection | (2/4) No cluster quality assessment metrics [51, 52]

Bug Triage and As- | (1/2) MAP without cutoff reduces practical ranking insights

signment [24]

Program Specifica- | (1/4) Basic classification metrics [48]

tions

Requirements Trace- | (2/4) MAP without cutoff reduces practical ranking insights

ability and Com-
pleteness

[93]

Validation Methods

Validation strategies ensure reproducibility. Table 15 highlights limitations such
as reliance on qualitative evaluation and insufficient sample sizes.

Baseline comparisons, metrics, and validation strategies collectively ensure that
evaluation outcomes are interpretable, reproducible, and aligned with real-world
objectives. However, recurring limitations are observed across these aspects:

66

Table 15: Identified Limitations in Validation Methods Across Tasks

Task Ratio Observed Limitations

Ambiguity Detection | (2/4) Qualitative analysis only with limited sample size [51,
52]

Program Specifica- | (1/4) Limited validation approach [48]

tions

Baselines often suffer from a lack of meaningful baseline comparisons, with
limited diversity or reliance on non-competitive baselines (Table 13). In some
cases, baseline comparisons are entirely absent, undermining the robustness of
performance claims.

Metrics are frequently misaligned with task objectives or insufficient for captur-
ing key performance characteristics. For example, MAP without cutoff reduces
practical ranking insights in bug triage and requirements traceability tasks. Sim-
ilarly, class imbalance in tasks like automated logging is often poorly addressed
(Table 14).

Validation practices exhibit limitations in both scope and transparency. Qualita-
tive analyses, while useful for providing nuanced insights, are often conducted
with limited sample sizes and lack standardization. Structured validation strate-
gies, such as cross-validation or statistical significance testing, are inconsistently
applied across tasks (Table 15).

Additionally, across tasks and evaluation aspects, a notable observation is the
inconsistent integration of qualitative evaluation methods, such as error analysis
and user studies, which can provide complementary insights to quantitative
metrics. For example:

— In Xu et al. [81], a qualitative error analysis was performed on 500 ran-
domly selected log messages, categorizing errors into semantic mismatches,
incorrect variable predictions, and meaningless descriptions. This analysis
offered actionable guidance for improving LLM-based logging systems but
was not systematically replicated across other studies.

- In Yang et al. [82], error analysis identified critical insights into out-of-
vocabulary issues and comparative strengths of different approaches using
Venn diagrams to visualize overlaps and differences in correct predictions.

Despite their value, such qualitative evaluations remain sporadic and lack con-
sistent adoption across different tasks and studies. Future evaluation strategies
should emphasize the integration of structured qualitative error analysis and
user studies to complement quantitative results, improving both reliability and
relevance.

The results reveal systemic patterns across evaluation strategies, with several
recurring challenges affecting both reliability and relevance:

Reliability is frequently undermined by dataset limitations, especially around
representativeness and transparency, which affect reproducibility. Similarly, in-

67

consistencies in validation methods, insufficient baseline comparisons, and un-
derutilization of structured qualitative evaluation reduce confidence in reported
findings.

Relevance is often restricted by misaligned metrics and datasets with limited
generalizability, reducing the ability of evaluations to reflect real-world software
engineering scenarios accurately. The absence of qualitative evaluation practices,
such as error analysis or user studies, further limits practical insights.

Addressing these shortcomings requires improvements across multiple dimen-
sions:

— Enhanced dataset design with a focus on representativeness (both statistical
and temporal). Clearer documentation and standardization of validation
processes. Metrics aligned with task-specific goals, particularly in scenarios
with class imbalance or ranking objectives.

— Broader adoption of structured qualitative evaluation methods, such as er-
ror analysis and user studies, to complement quantitative results. Rigor-
ous and diverse baseline comparisons to provide meaningful performance
benchmarks.

These insights contribute directly to answering RQ3, identifying actionable focus
areas for enhancing evaluation strategies in LLM-based SE research.

5.2.2 Evaluation Patterns Across Research Focus of the Papers

The evaluation strategies observed across the two primary research focuses—Development
of New SE Solutions (NSE) and Performance Assessment of Existing Solutions
(PES)—reveal distinct patterns and priorities across key evaluation aspects. While

NSE studies demonstrate notable strengths, particularly in validation method-

ologies, their performance in other aspects shows recurring limitations. In con-

trast, PES studies exhibit consistently robust evaluation practices, with fewer
limitations overall. However, the imbalance in sample sizes—31 NSE studies

versus 10 PES studies—must be considered when interpreting these patterns.

Validation emerges as the most prominent strength in NSE studies, with a sig-
nificant majority employing cross-validation strategies, comparative analysis,
ablation studies, user studies, and manual validation approaches (Table 16).
Cross-validation methods are extensively applied, often incorporating sensitiv-
ity analyses and statistical measures to enhance result reliability. Compara-
tive approaches, including benchmarking across datasets and methods, provide
valuable insights into solution performance. Ablation studies are frequently
used to isolate and measure the impact of individual components or design
choices within the evaluated solutions. User studies further complement these
methods by adding a layer of practical insight into solution usability. However,
NSE studies occasionally exhibit reliance on qualitative validation methods, lim-
ited validation scope, and a lack of robust statistical analysis, resulting in vari-
able reproducibility (Table 18). In contrast, PES studies prioritize controlled and

68

statistically grounded validation approaches. Cross-validation methods in PES
studies are typically accompanied by statistical significance testing and compar-
ative benchmarking across diverse datasets (Table 17). This focus on method-
ological rigor ensures that PES validation results are reproducible and inter-
pretable, albeit with a narrower range of validation strategies compared to NSE
studies.

Table 16: Thematic Strengths in Development of New SE Solutions (NSE)

Evaluation Aspect | Ratio Thematic Strengths
(n/31)

Validation 28/31 Cross-validation strategies: [15, 38, 35, 31, 39, 44,
20, 46, 53, 78, 81, 49, 85, 57, 87, 83, 82, 77]. Com-
parative analysis: [11, 33, 45, 93, 43]. User studies:
[33, 78, 45, 31, 15]. Ablation studies: [10, 19, 23,
81, 86, 42, 46, 43]. Manual validation and error in-
spection: [23, 85, 31, 53, 78].

Baseline 24 /31 Diverse paradigms: [15, 38, 33, 35, 41, 44, 81, 78,
93]. Tool comparisons: [23, 45, 31, 43, 46, 53, 20,
10]. Variant comparisons: [19, 53, 11, 86].

Metrics 24/31 Task-specific metrics: [15, 33, 81, 78, 83, 86, 20, 11].
Balanced metrics: [38, 19, 87, 44, 53, 45, 39, 41].
Comprehensive metric suites: [35, 23, 42, 43, 85,
31, 46].

Ground Truth 21/31 Human validation: [15, 33, 81, 44, 31, 39, 42, 78].
Expert annotations: [23, 45, 86, 20, 10, 41]. Inter-
rater agreement: [85, 53, 57]. Systematic valida-
tion: [46, 53, 43]. Real-world assignments and ef-
fort validation: [35, 38].

Datasets 18/31 Dataset diversity: [15, 33, 38, 35, 43, 86, 10, 11].
Balanced splits: [41, 81, 31, 45, 44]. Well-annotated
datasets: [23, 45, 53, 10, 20]. Large-scale datasets:
[19, 46, 39]. Real-world data inclusion: [23, 38].

In terms of baseline comparisons, NSE studies emphasize diverse paradigms,
variant comparisons, and tool-based evaluations (Table 16). However, recurring
limitations such as single-tool reliance, simplistic baselines, or absence of com-
parative baselines are evident (Table 18). Conversely, PES studies apply focused
comparisons between tools, models, and paradigms, ensuring precise bench-
marking (Table 17). While PES studies occasionally exhibit narrower baseline
diversity, they demonstrate methodological clarity and relevance in their com-
parative approaches.

When examining metrics, NSE studies frequently employ task-specific and purpose-
oriented metrics tailored to the evaluation objective (Table 16). A recurring
strength lies in their appropriate handling of imbalanced datasets, ensuring fair-
ness in performance assessments. However, NSE studies sometimes rely on lim-

69

Table 17: Thematic Strengths in Performance Assessment of Existing Solutions (PES)

Evaluation Aspect | Ratio Thematic Strengths

(n/10)

Validation 10/10 Cross-validation strategies: [1, 4, 18, 16, 61, 79, 82,

87, 88, 12]. Statistical significance testing: [61, 12].
Cross-dataset validation: [18, 88].

Metrics 10/10 Class-balanced metrics: [1, 18, 87, 88]. Task-

specific metrics: [4, 16, 82]. Comprehensive metric
suites: [12, 79]. Addressing class imbalance: [1,
61].

Ground Truth 10/10 High inter-rater agreement: [1, 4, 87, 88]. Man-

ual SE-specific annotations: [18, 88]. Clear anno-
tation processes: [61, 82]. Double-blind human
evaluation: [79]. Semantic validation: [82]. Expert
agreement in annotations: [16]. Multiple annota-
tors with resolution: [12].

Baseline 9/10 Tool comparisons: [79, 61, 82]. ML and human ex-

pert baselines: [1]. Paradigm diversity: [18, 16].
Limited baseline comparison: [4]. Model compar-
isons: [88, 87].

Datasets 8/10 Dataset diversity: [1, 4, 18]. Well-annotated

datasets: [79]. Large-scale datasets: [16]. Multiple
SE domain datasets: [82, 87]. Validated datasets:
[61].

ited or overly simplistic metrics and occasionally omit quantitative assessments
(Table 18). PES studies, in contrast, consistently apply class-balanced metrics,
task-specific metrics, and comprehensive suites of performance measures (Ta-
ble 17). Their metric choices are often aligned with the unique challenges posed
by their evaluation scenarios.

For ground truth, NSE studies emphasize manual validation, expert annota-
tions, inter-rater agreement assessments, and systematic validation processes
(Table 16). Despite these strengths, limitations persist, including uncertain an-
notations, reliance on unvalidated manual labeling, and inherited dataset incom-
pleteness (Table 18). PES studies demonstrate structured annotation processes,
high inter-rater agreements, and clear expert validation protocols (Table 17).
While these strategies ensure reliability, PES studies remain dependent on pre-
existing datasets, which can introduce constraints in representativeness.

The handling of datasets represents one of the most pronounced differences be-
tween the two research focuses. NSE studies often emphasize diverse datasets,
balanced splits, and large-scale collections (Table 16). However, they frequently
face challenges such as limited dataset diversity, reliance on synthetic data, task-
specific biases, and small sample sizes (Table 18). PES studies, on the other hand,
make use of well-annotated, validated, and domain-representative datasets (Ta-

70

Table 18: Thematic Limitations in Development of New SE Solutions (NSE)

Evaluation Aspect | Ratio Thematic Limitations
(n/31)
Validation 3/31 Limited validation approaches: [24, 48, 51]. Re-

liance on qualitative analysis: [24, 48].

Metrics 5/31 Limited metric diversity: [24, 48, 51]. Lack of

quantitative metrics: [52, 77]. Reliance on basic
classification metrics: [48].

Ground Truth 9/31 Uncertain or incomplete annotations: [24, 51, 52,

77]. Manual labeling without validation: [48, 20,
23]. Inherited incompleteness in ground truth
data: [39, 10]. Unclear annotation processes: [52].

Baseline 5/31 Limited baseline diversity: [24, 51]. Absence of

baseline comparisons: [52, 77]. Single extractor
comparisons: [48].

Datasets 13/31 Limited dataset diversity: [24, 48, 77, 86]. Small

dataset size: [24, 52, 10]. Task-specific limita-
tions: [57, 39]. Synthetic data reliance: [23].
Domain-specific bias: [42, 43]. Limited to non-
requirements data: [39, 52]. Bias in sampling: [20].

ble 17). Despite their methodological consistency in dataset utilization, limita-
tions still surface in terms of dataset size and diversity, as highlighted by the
recurring reliance on narrow dataset scopes in two PES studies (Table 19).

Notably, many NSE studies not only evaluate their proposed solutions but also
contribute new datasets and resources as secondary outputs. These datasets
vary widely in scope and purpose. Some are closely tailored to the specific tasks
addressed in the study, such as SOSum (Stack Overflow Summary Dataset) for
summarization tasks [33] and API documentation datasets for API analysis [83].
However, other datasets, while large-scale and general in nature, diverge from
typical real-world task data. For example, NFR-SO (Non-Functional Require-
ments Stack Overflow dataset) [81] aggregates large-scale recent content from
Stack Overflow but differs in structure and focus compared to conventional re-
quirements datasets. Similarly, datasets constructed from Wikipedia corpora
for intradomain ambiguity detection [51, 52] introduce significant scale but lack
direct alignment with typical software engineering requirements, raising ques-
tions about their real-world applicability.

While these contributions undoubtedly enrich the SE evaluation landscape by
offering novel data sources, they also highlight recurring challenges. The re-
liance on self-curated or domain-divergent datasets can introduce biases, task-
specific constraints, or domain mismatches, limiting broader generalizability
across diverse SE tasks. This dual role of NSE studies—simultaneously propos-
ing solutions and creating evaluation resources—adds a layer of complexity
when assessing the overall reliability and representativeness of their evaluation

71

strategies.

Table 19: Thematic Limitations in Performance Assessment of Existing SE Solutions
(ESE)

Evaluation Aspect | Ratio Thematic Limitations
(n/10)
Datasets 2/10 Limited dataset diversity: Reliance on datasets re-

stricted to Stack Overflow (SO) posts [4].
Small dataset samples: Use of small samples of
requirements data, limiting generalizability [61].

In summary, NSE studies excel in validation diversity and methodological breadth,
leveraging multiple evaluation approaches to address real-world applicability.
However, they frequently encounter limitations in consistency, baseline compar-
isons, metric diversity, and dataset representativeness. PES studies, while fewer
in number, consistently apply methodologically rigorous evaluation strategies
across multiple aspects. They display strengths in comparative metrics, struc-
tured validation, and well-annotated datasets. Nonetheless, recurring dataset
limitations suggest potential areas for refinement. These patterns set the stage
for deeper reflection and critical discussion in the subsequent section.

5.2.3 Influence of ML Task Types on Evaluation Strategies

The comparative analysis of evaluation strategies across different ML task types
reveals notable patterns concerning recurring limitations and strengths. While
no clear causal relationship between ML task type and evaluation quality can be
established, the observed trends highlight key areas where evaluation strategies
demonstrate weaknesses or strengths.

Ambiguity Detection studies, primarily framed as classification tasks [51, 52],
face consistent limitations across multiple evaluation aspects. These include the
absence of quantitative baselines, reliance on qualitative validation approaches,
and the use of datasets that are not representative of typical software requirements
documents. For example, Wikipedia corpora are used instead of domain-specific
datasets, which reduces the applicability of the evaluation results to real-world
software engineering tasks. Both studies rely on clustering techniques, which
introduce unique evaluation challenges due to the absence of labeled data for
clear ground truth comparisons. Despite these inherent challenges, minimal
effort is observed in applying established evaluation practices tailored for such
unsupervised tasks.

In contrast, Automated Logging, addressed through generation tasks [49], ex-
hibits limitations primarily in the lack of efforts to assess the quality of the logs
used as data. These study assume the correctness of the logs without reviewing
their quality, potentially introducing biases or inaccuracies. Additionally, the
reduced generalizability stems from the exclusive use of logs from Java projects

72

using Log4j, limiting generalizability to other programming languages or log-
ging frameworks.

Bug Detection and Localization displays notable differences between classifica-
tion and generation approaches. Studies adopting classification approaches [10, 42]
often suffer from dataset-related limitations, including reliance on open-source
data and small sample sizes. Meanwhile, generation approaches [23] encounter
fewer limitations but still show dataset-related weaknesses, particularly con-
cerning the scale and representativeness of the data.

In Bug Triage and Assignment, studies using generation tasks [24] exhibit more
limitations compared to their classification counterparts. Observed weaknesses
include reliance on manual labeling without quality metrics, limited baseline
comparisons, and simplistic evaluation metrics. These limitations reduce the
robustness and comparability of results.

For Effort and Resource Estimation, regression-based studies [15] highlight chal-
lenges with uncertain ground truth data, specifically the reliance on estimated
rather than empirically measured values (e.g., story points). This limitation
raises concerns about the reproducibility and reliability of evaluation results.
In contrast, classification-based studies display fewer observed limitations in their
evaluation practices.

Requirements Traceability and Completeness shows recurring weaknesses in
studies using recommendation tasks [39, 93, 43], where incomplete ground truth
data and the limited representativeness of datasets frequently surface as primary
concerns. In comparison, classification-based studies exhibit fewer limitations, par-
ticularly in validation methodologies.

Program Specifications, when framed as classification tasks [48], show signifi-
cant limitations, including reliance on synthetic datasets, basic evaluation met-
rics, and simplistic validation strategies. Generation-based approaches demonstrate
fewer observed weaknesses, suggesting a stronger alignment between evalua-
tion practices and task objectives.

Tasks such as Sentiment Analysis and Log Parsing and Analysis consistently
display fewer evaluation limitations across both classification and generation fram-
ings. These tasks benefit from established datasets, reproducible metrics, and
validation methodologies, contributing to more robust evaluation practices.

These insights are summarized in Table 20, which highlights key evaluation
limitations across ML task types and references associated studies.

Key Insights: While ML task types cannot be identified as causal factors for
evaluation limitations, patterns emerge indicating recurring weaknesses tied to
specific tasks. Ambiguity Detection and Bug Triage tasks face substantial eval-
uation challenges, while Sentiment Analysis and Log Parsing tasks exhibit rel-
atively consistent evaluation robustness. Dataset representativeness and valida-
tion methodologies remain persistent concerns across multiple ML-task types.

The observations suggest that dataset diversity, baseline comparisons, and met-
ric selection require more attention, regardless of the ML task framing. Addi-

73

Table 20: Key Evaluation Limitations Across ML Tasks in Software Engineering

ML Task Key Limitations References

Ambiguity Detection Classification No quantitative ground | [51, 52, 77]

truth, no baseline compari-
son, reliance on qualitative
analysis, non-representative

datasets

Automated Logging Generation Assumed correctness with- | [49]
out validation, limited metric
selection

Automated Requirements Evaluation Classification Small dataset sample limits | [61]
generalizability

Bug Detection and Localization Classification Dataset limitations (open- | [10, 42]
source only, widget sample
size)

Bug Triage and Assignment Generation Manual labeling without | [24]

quality metrics, limited base-
line comparison, simplistic
evaluation metric

Effort and Resource Estimation Regression Uncertain ~ ground truth | [15]
(story point estimates)

Log Parsing and Analysis Generation Unclear annotation processes | [46]

Program Specifications Classification Limited real specifications, | [48]

basic metrics, reliance on
synthetic data

Requirements Traceability and Completeness | Recommendation | Incomplete ground truth, | [39, 93, 43]

non-representative datasets

Requirements Elicitation and System Design | Generation Limited task diversity [86]

Sentiment Analysis Recommendation | Dataset restricted to Stack | [4]

Overflow posts

tionally, more structured approaches to handling evaluation in unsupervised or
clustering-based tasks may help mitigate some of the observed limitations.

5.24 Temporal Trends in Evaluation Strategies

The temporal analysis of evaluation strategies reveals recurring and evolving
patterns in the limitations observed across studies from 2020 to 2024. While
the number of studies per year fluctuates, some persistent trends emerge, par-
ticularly concerning dataset representativeness, validation practices, and task-
specific methodological choices.

Table 21: Evaluation Limitations in 2020 - Total 3 Papers

Evaluation Aspect | Limitations (Cited Papers)

Dataset (2 papers) | [20]: Limited to PROMISE dataset

[4]: Limited to SO posts only

Dataset limitations consistently appear across all years, indicating ongoing
challenges in dataset diversity, size, and representativeness (see Tables 21-25). In
many cases, studies rely on narrowly scoped datasets, synthetic data, or domain-
specific corpora, which reduce the generalizability of evaluation outcomes.

Ambiguity Detection studies demonstrate recurring limitations across multiple
years, particularly in aspects of baseline comparisons and metrics selection.
Studies from the same research group across 2022 and 2023 (e.g., [51], [52]) ex-

74

Table 22: Evaluation Limitations in 2021 - Total 2 Papers

Evaluation Aspect Limitations (Cited Papers)
Ground Truth (2 papers) | [39]: Potential link incompleteness

[24]: Manual labeling without quality metrics
Baseline (1 paper) [24]: Limited baseline comparison
Metrics (1 paper) [24]: Single metric (MAP) without context
Dataset (2 papers) [39]: Limited to Python projects

[24]: Small dataset (51 reports) with bias

Table 23: Evaluation Limitations in 2022 - Total 11 Papers

Evaluation Aspect Limitations (Cited Papers)
Ground Truth (3 papers) | [49]: Assumed correctness without validation
[51]: No quantitative ground truth
[93]: Inherited potential incompleteness
Baseline (2 papers) [51]: No baseline comparison
[77]: No baseline comparison
Metrics (2 papers) [49]: Limited metric selection
[51]: No quantitative metrics
Validation (1 paper) [51]: Qualitative analysis only
Dataset (3 papers) [10]: Limited to open-source projects
[51]: Non-requirements corpus
[93]: Limited to specific projects

hibit similar shortcomings, such as the absence of quantitative metrics, reliance
on qualitative validation, and a lack of robust baselines.

Ground truth limitations evolve over time. Earlier studies (e.g., [24]) focused on
manual labeling challenges, while later works (e.g., [15]) highlighted reliance on
uncertain proxy measures, such as estimated story points, instead of empirically
validated ground truth data.

In summary, while certain evaluation challenges remain persistent, task-specific
trends and methodological choices have a significant influence on the presence
and severity of these limitations. The tables embedded in this subsection (Ta-
bles 21-25) provide a detailed overview of these trends, referencing the specific
limitations and associated studies.

5.3 Insights on Reliability and Relevance of the studies

The quantitative evaluation of strengths and limitations of the reviewed evalua-
tion practices in the previous (Section 5.2) revealed clusters of high-performing
studies with robust datasets and evaluation strategies, as well as outliers char-
acterized by methodological weaknesses or exemplary practices.

In the context of ML task types (5.2.3), no causal relationship was established be-
tween task type (e.g., classification, generation, regression) and evaluation qual-

75

Table 24: Evaluation Limitations in 2023 - Total 17 Papers

Evaluation Aspect Limitations (Cited Papers)

Ground Truth (3 papers) | [48]: Limited real specifications
[52]: No labeled data validation
[15]: Ground truth based on uncertain story point esti-

mates
Baseline (2 papers) [48]: Single extractor comparison
[52]: No baseline comparison
Metrics (2 papers) [48]: Basic classification metrics
[52]: No quantitative metrics
Validation (2 papers) [52]: Qualitative analysis only
[48]: Limited validation approach
Dataset (6 papers) [43]: Limited specifications sample

[52]: Non-requirements corpus

]: Limited dataset size

[42]: Limited widget sample size
]: Small requirements sample
]: Predominantly synthetic data

Table 25: Evaluation Limitations in 2024 - Total 8 Papers

Evaluation Aspect Limitations (Cited Papers)
Ground Truth (1 paper) | [46]: Unclear annotation process for some tasks
Dataset (2 papers) [86]: Limited task diversity

[23]: Limited crash report sample

ity. However, patterns emerged: classification tasks frequently faced challenges
with dataset representativeness and validation transparency, while generation
tasks often like for automated logging fall short of reviewing and validating the
quality of used test data and the use of metrics captuing all aspects relevant for
assign real world applicability. Across all dimensions, no significant temporal
trends were observed (5.2.4), with dataset limitations and validation inconsis-
tencies persisting across all years despite modest improvements in task-specific
metrics and validation practices.

5.3.1 Overal Reliablity and Relevance

The preceding subsections examined evaluation strategies across multiple di-
mensions, uncovering recurring limitations in dataset representativeness, baseline
diversity and competitiveness, metrics suitability, validation scope, and ground truth
clarity. These limitations affect the overall reliability and relevance of evalua-
tion outcomes, with discernible patterns emerging across task objective groups,
research focuses, and publication years.

Building on these observations, this subsection consolidates the findings, be-
ginning with an overview of the overall reliability and relevance scores ob-

76

Count of Papers

served across the reviewed studies. These insights provide a foundation for
understanding recurring challenges and areas of strength in current evaluation
practices.

Overall the evaluation strategies across the reviewed studies reveal a mod-
erate performance in both reliability and relevance dimensions, with notable
limitations affecting their overall effectiveness. For reliability, the mean score of
3.20 and median score of 3.0 indicate that most evaluation methodologies achieve
only a baseline level of scientific rigor and reproducibility. While no study
scored a 0, signaling that all evaluations included some methodological effort,
recurring weaknesses—such as insufficient validation, reliance on limited datasets,
and lack of methodological transparency—prevent higher reliability scores.

Distribution of Reliability and Relevance Scores by Task

Score Type=Reliability Score Score Type=Relevance Score
Tasks

B Effort and Resource Estimation

B Bug Triage and Assignment

B Summarization and Knowledge Extraction
Bug Detection and Localization
Automated Logging
Log Parsing and Analysis
Sentiment Analysis
User Feedback Processing
Requirements Classification
Ambiguity Detection
Automated Requirements Evaluation
Requirements Traceability and Completeness
Program Specifications
API Documentation and Augmentation
Requirements Elicitation and System Design
Prototyping and GUI Retrieval

25

20

20

15
i5
10

5
u
1 2 3 4

25
12
; 3
1
0 0 0 0
5] 1 2 3 4 5

Score (0-5) Score (0-5)

1]
0

Figure 7: Distribution of reliability and relevance scores across tasks

In contrast, relevance scores suggest slightly better alignment with real-world
applicability, with a mean score of 3.59 and a median score of 4.0. However, this
alignment remains inconsistent across tasks, often constrained by over-reliance
on proxy metrics, simplified assumptions, and task-specific biases in dataset design.

These moderate scores in both dimensions highlight shortcomings in evaluation
strategies, including dataset representativeness, baseline robustness, and transparency
in validation methods. While some evaluations demonstrate thoughtful design
and alignment with real-world conditions, many remain hindered by method-
ological weaknesses that undermine their ability to provide trustworthy and
practically meaningful insights.

77

5.3.2 Summary of Reliability and Relevance Across Dimensions

The analysis reveals distinct patterns in the reliability and relevance of evalua-
tion strategies across years, research focuses, and tasks, offering insights into
the strengths and limitations of current practices.

Over time, no clear temporal pattern in reliability and relevance scores is ev-
ident. While minor improvements are observable in recent years, particularly
in the percentage of studies with limitations related to datasets, these trends
remain inconclusive. The years 2023 and 2024 show a lower percentage of
dataset-related limitations compared to 2020 and 2021. However, these differ-
ences should be interpreted cautiously, as the earlier years have significantly
fewer studies (2020: 3 papers, 2021: 2 papers), while the majority of reviewed
studies are from 2023 and 2024. This uneven distribution limits the validity of
drawing strong conclusions from temporal trends alone.

When comparing the two primary research focuses, notable differences emerge.
Evaluations centered on the Performance Assessment of Existing Solutions
(PES) generally achieve higher reliability and relevance scores and display
limitations primarily in the datasets used for evaluation. In contrast, evaluations
focusing on the Development of New SE Solutions (NSE) reveal a broader
spectrum of limitations, spanning datasets, baselines, metrics, ground truth, and
validation methods. These findings suggest that PES studies benefit from more
mature evaluation methodologies, while NSE studies face challenges in estab-
lishing robust and reproducible evaluation frameworks.

At the task level, clear patterns emerge, forming distinct clusters based on eval-
uation performance. A group of tasks, including API Documentation and Aug-
mentation, Prototyping and GUI Retrieval, Summarization and Knowledge Extraction,
and User Feedback Processing, consistently demonstrate high reliability and rel-
evance. These tasks are often closely aligned with broader NLP challenges
or involve inherently practical evaluation setups, contributing to their strong
methodological performance.

In contrast, tasks such as Ambiguity Detection, Bug Report Deduplication, and Auto-
mated Requirements Evaluation frequently exhibit lower reliability and relevance
scores, with recurring limitations across multiple evaluation aspects. These
tasks often face challenges in defining clear evaluation metrics, constructing
representative datasets, and establishing reliable ground truths, which may stem
from the inherent complexity and ambiguity of the tasks themselves.

In summary, while gradual improvements are visible across years and signif-
icant differences exist between research focuses, task-level patterns reveal the
most pronounced contrasts. These findings set the stage for the cluster analysis
that follows, where the interplay between reliability, relevance, and evaluation
aspects across distinct groups of studies is examined.

Cluster Patterns in Evaluation Performance Figure 8 illustrates the distribu-
tion of studies across reliability and relevance scores, highlighting several no-

78

Relevance Score (Categorical: 1-5)

table trends. First, the reviewed papers generally exhibit slightly higher rele-
vance scores compared to reliability scores, suggesting that while evaluations
often align with practical task objectives, they frequently face challenges related
to reproducibility and methodological rigor. However, a significant number of
studies still fall into moderate and low relevance clusters, indicating inconsis-
tencies in addressing real-world applicability.

Second, a clear trend emerges in the performance of studies based on their
research focus. Papers categorized under the PES generally achieve higher reli-
ability and relevance scores compared to those under the NSE focus.

Third, patterns are also observable across task objective groups. For example,
tasks in Group 3: User Feedback Processing—including Sentiment Analysis and
User Feedback Processing—tend to achieve consistently high reliability and rele-
vance scores. Similarly, tasks in Group 2: Enhancing Software Reliability and
Maintenance—such as Bug Detection and Localization, Automated Logging, and
Log Parsing and Analysis—demonstrate moderate to high performance along rel-
evance axis and only moderate reliability, indicating task-specific patterns in
evaluation outcomes.

Reliability vs Relevance Scores (with Jittering)

Tasks & Research Focus

5 ® A Existing Solution
@ Direct Solution
@ Effort and Resource Estimation
@ Bug Triage and Assignment
@ Summarization and Knowledge Extraction
Bug Detection and Localization
Automated Logging
-~) Qj:) .. @ Log Parsing and Analysis
4 (O] @ Sentiment Analysis
A % User Feedback Processing
. &) Requirements Classification
@ Ambiguity Detection
@ Automated Requirements Evaluation
@ Requirements Traceability and Completeness
@ Program Specifications
[] e on and Augmentation
® @ @ @ Requirements Elicitation and System Design
oh 11 Retriey
5 % s @ Prototyping and GUI Retrieval
&k Outliers
a @ o
>
2 3 4

Reliability Score (Categorical: 1-5)

Figure 8: Reliability and Relevance Scores Across Tasks and Research Focus

These overarching patterns provide a foundation for a closer examination of the
identified clusters.

79

5.3.3 Cluster Patterns of Reliability and Relevance

The following analysis delves into distinct groups of papers, focusing on those
characterized by moderate reliability and relevance (3,3), moderate reliability
and high relevance (3,4), and high reliability and high relevance (4,4). Addi-
tionally, a smaller group with low reliability and relevance (<2,<3) and a set of
outlier papers are briefly discussed. Finally, variations across studies address-
ing the same tasks but falling into different clusters are explored to uncover
task-specific evaluation differences.

High Reliability and High Relevance (4,4) This cluster represents evaluations
with strong methodological rigor and clear alignment with real-world applica-
bility. Studies in this group ([83, 12, 38, 1, 11, 82,79, 31, 87, 88, 33, 78, 19, 53]) con-
sistently demonstrate well-validated ground truths, multiple comparative base-
lines, task-specific metrics, robust validation strategies (e.g., cross-validation,
ablation studies, and user studies), and diverse, well-annotated datasets. These
strengths contribute to reproducibility and practical relevance, setting a bench-
mark for evaluation practices.

Moderate Reliability and High Relevance (3,4) This cluster includes evalua-
tions that excel in relevance but exhibit moderate reliability due to challenges
in specific methodological aspects. Common strengths include manually val-
idated ground truths ([23, 10, 42, 35, 46, 85, 18, 86, 57, 39]), often supported
by systematic annotation processes, and diverse comparative baselines tailored
to task requirements. Metrics are typically well-aligned with task objectives,
ensuring meaningful performance assessment. However, recurring limitations
are evident in dataset representativeness, including restricted diversity or small
sample sizes, and occasional ambiguity in ground truth annotation processes.
Despite these challenges, the evaluations offer valuable practical insights and
maintain a strong focus on real-world applicability.

Moderate Reliability and Moderate Relevance (3,3) Studies in this cluster
achieve balanced but modest performance in both reliability and relevance.
While they generally meet baseline methodological standards, recurring weak-
nesses include reliance on simplistic baselines, limited dataset representative-
ness, and ambiguities in ground truth validation processes ([49, 16, 15, 41, 81,
20, 44, 43, 93, 4]). Strengths in these evaluations are often seen in the systematic
use of human-validated datasets and task-specific evaluation metrics. However,
the datasets frequently lack diversity, and the metrics, while task-relevant, are
often insufficient to fully capture the nuances of the evaluated tasks. Improve-
ments in dataset design, baseline robustness, and the granularity of evaluation
metrics are necessary to enhance the reliability and relevance of these evalua-
tions.

80

Low Reliability and Low Relevance (<2,<3) This group highlights studies
with significant methodological weaknesses, including poorly defined ground
truths, limited or absent baselines, reliance on simplistic or inappropriate met-
rics, inconsistent validation methods, and small or synthetic datasets ([77, 52, 24,
48]). These evaluations face challenges in both reproducibility and alignment
with real-world applicability, necessitating substantial methodological improve-
ments across all aspects.

Outliers Three notable outliers deviate from the observed clusters. One study
on API Documentation and Program Specification Generation ([45]) demonstrates
exceptionally high reliability and relevance. This study excels through the use
of expert-validated specifications as ground truth, ensuring rigorous correct-
ness and accuracy. It employs multiple comparative baselines, including tools
like Houdini, Daikon, and AutoSpec, and evaluates results using task-specific
metrics such as:

— Number of Verifier Calls: Measuring the efficiency of the verification pro-
cess.

— Success Probability: Quantifying the likelihood of successfully generating
valid specifications across multiple attempts.

— User Ratings: Reflecting human expert evaluation of the semantic clarity
and correctness of specifications, assessed through a structured user study
involving 15 Ph.D. students with expertise in Java programming and formal
verification. The evaluation employed a Likert Scale (1-5) with predefined
criteria for clarity, correctness, and completeness, ensuring transparency
and consistency in scoring. Ratings were aggregated to minimize bias,
providing a robust assessment of the semantic quality of the generated
specifications.

The study combines comparative analysis and user surveys, contributing to both
methodological rigor and practical applicability. Additionally, the inclusion of
diverse datasets (SV-COMP, SpecGenBench, and Defects4]) enhances robustness
and generalizability across a variety of real-world scenarios.

Another study on Automated Requirements Evaluation ([61]) exhibits strong per-
formance and high relevance (3 for reliability, 4 for relevance), effectively com-
paring ChatGPT’s outputs against human assessments and a baseline tool (AQUSA)
using multiple effectiveness metrics. However, the small sample size of only 11
requirements raises concerns about reproducibility and generalizability, and the
absence of detailed configuration settings (e.g., temperature values for prompt-
ing) further limits transparency.

Conversely, a study on Ambiguity Detection ([51]) scores poorly on both dimen-
sions, exhibiting significant methodological shortcomings across multiple as-
pects. The evaluation was limited to just three examples demonstrating intra-
domain ambiguity detection for words. Despite the absence of quantitative
ground truth, no effort was made to assess cluster quality, nor was there any

81

qualitative evaluation conducted on a larger sample size. Even for the three
examples provided, the evaluation process lacked transparency and was not
adequately described.

It is worth noting that the same research group later published an additional pa-
per ([52]), introducing a web tool for their ambiguity detection solution. While
this subsequent work provides access and transparency for the validation of the
tool, it does not replace the need for a rigorous and systematic evaluation of the
original methodology.

These outliers underscore both the potential and variability of evaluation prac-
tices across tasks and research focuses. High-performing groups excel in dataset
diversity, validation methodologies, and task-specific metrics, while lower-
performing groups consistently struggle with ground truth clarity, dataset lim-
itations, and validation rigor.

5.3.4 Task-Specific Contrasts in Evaluation Strategies

Comparison of Requirements Classification Studies While all three studies
(Hey et al. [20] (3,3), Luo et al. [44] (3,3), and El-Hajjami, Fafin, and Salinesi
[18] (3,4)) address requirements classification, they exhibit notable differences
in their evaluation strategies. Hey et al. [20] relies on the PROMISE dataset,
created in 2007, which may not fully capture the characteristics of contempo-
rary software requirements. In contrast, Luo et al. [44] incorporates the NFR-50O
dataset, significantly increasing dataset quantity and reflecting more current
data trends. However, the StackOverflow data used in NFR-SO lacks alignment
with the structured nature of formal software requirements, limiting its appli-
cability representativness for the task beeing adressed.

In comparison, El-Hajjami, Fafin, and Salinesi [18] stands out due to its cross-
dataset validation across five diverse datasets and its ability to capture evalu-
ation insights even for ambiguous requirements, reflecting a nuanced assess-
ment approach better aligned with real-world scenarios. This distinction is par-
ticularly relevant as, in real-world settings, requirements often cannot be neatly
classified as purely functional or non-functional, underscoring the importance
of evaluating performance under such ambiguous conditions. While its small
dataset size constrained its reliability score to 3, the diversity of datasets and
the robustness of cross-dataset testing suggest it could have reasonably been
scored as a 4, highlighting the inherent smoothness of scoring boundaries for
individual studies.

Comparison of Ambiguity Detection Studies Among the four studies ad-
dressing Ambiguity Detection, Ezzini et al. [12] (4,4) stands out with its robust
evaluation strategy, employing diverse datasets, expert annotations with inter-
annotator agreement, and recall-focused metrics to ensure that ambiguous
cases are effectively flagged for review. Its use of cross-validation, separate
test splits, and diverse baseline comparisons enhances confidence in the eval-
uation’s generalizability and reliability. The study emphasizes the criticality of

82

ambiguity detection in early project stages, where unresolved ambiguities can
lead to significant costs in downstream phases. While reliance on manual an-
notation poses scalability limitations, the evaluation’s focus on a large set of
industrial requirements significantly strengthens its practical relevance.

In contrast, the other three studies exhibit significant methodological limita-
tions. Moharil and Sharma [51] (1,2) and Moharil and Sharma [52] (2,3) suffer
from a lack of standardized validation metrics, absence of baseline compar-
isons, and an overreliance on qualitative analysis, undermining reproducibility
and generalizability. Additionally, the reliance on corpora such as Wikipedia re-
duces the applicability of their findings to real-world requirements engineering
scenarios. Similarly, Wang et al. [77] (2,2) evaluates its solution on an under-
sampled dataset with an artificial class balance, which diminishes alignment
with real-world requirements distributions and limits the evaluation’s external
validity.

In comparison, Ezzini et al. [12] excels not only in dataset diversity, method-
ological rigor, and robust baseline comparisons but also in aligning evaluation
metrics and validation techniques with the practical needs of requirements en-
gineering. This study offers deeper insights into ambiguity detection’s impli-
cations for downstream project phases, highlighting its substantial relevance in
real-world scenarios.

Comparison of Program Specification Generation Studies Among the four
studies addressing Program Specification Generation, Yang et al. [82], Xie et al.
[79], and Endres et al. [11] (all scored 4,4) exhibit robust evaluation method-
ologies, while Mandal et al. [48] (2,3) demonstrates significant shortcomings in
comparison.

The stronger studies share common strengths in their evaluation approaches,
including a focus on transparent dataset construction and robust performance
benchmarking. For example, Yang et al. [82] emphasizes a well-annotated dataset
with high inter-annotator agreement, while Endres et al. [11] leverages expert-
verified annotations. These processes enhance confidence in the reliability of
their ground truth data.

In terms of baseline comparisons, Yang et al. [82] evaluates performance against
diverse baselines, such as Opiner, BERT-family models, and CostSensBERT.
Similarly, Xie et al. [79] benchmarks 15 state-of-the-art LLMs against tools like
Jdoctor and DocTer, and Endres et al. [11] employs a broad range of bench-
marks, including TOGA, Daikon, GPT-family models, and StarChat. This
diversity ensures comprehensive performance assessments across multiple con-
texts.

The metrics employed by these studies align closely with real-world challenges
in program specification. Yang et al. [82] adopts class-balanced metrics such as
Weighted Precision, Recall, F1 Score, MCC, and AUC to address data imbal-
ances effectively. Endres et al. [11] further extends this alignment with task-
specific metrics like Accept@K, which reflects the likelihood of developers se-

83

lecting valid postconditions among the top k outputs, and Bug-Completeness,
which measures a postcondition’s ability to discriminate between correct and in-
correct implementations using both natural and artificial mutants. These metrics
provide nuanced insights into debugging and verification tasks, highlighting ro-
bustness and real-world applicability.

While Xie et al. [79] employs general classification metrics such as Accuracy,
Precision, Recall, and F1 Score, these are complemented by semantic equiva-
lence validation and cross-validation with Few-Shot Learning (FSL). Despite
this, limited transparency in manual review processes and failure analysis rep-
resents a minor weakness in their methodology.

Qualitative analysis also plays a significant role in these studies. For example,
Yang et al. [82] includes detailed error analysis, while Xie et al. [79] conducts
comparative failure diagnosis, providing deeper interpretative insights into the
results. Cross-validation techniques, such as 10-fold validation [82] and multi-
dataset evaluations [79, 11], further bolster the reliability of their findings.

In contrast, Mandal et al. [48] suffers from multiple methodological deficiencies.
The evaluation relies on a dataset of 250 extracted specifications, but its creation
and the treatment of non-specifications are poorly documented. Metrics are
limited to basic classifications (Precision, Recall, F1 Score), which fail to address
contextual relevance or task-specific needs. Additionally, the absence of diverse
baselines, with only PracExtractor as a comparator, significantly undermines the
interpretability and generalizability of the study’s conclusions.

Comparison of Effort and Resource Estimation Studies Within Effort and Re-
source Estimation, three reviewed studies share several strengths yet also reveal
distinct methodological choices that shape evaluation reliability and relevance.
A key strength across all of them is the use of cross-repository validation [1, 15,
38], acknowledging the practical challenge of estimating effort in projects lack-
ing extensive historical data. They also evaluate on a large set of projects, with
two incorporating both open-source and industrial contexts [1, 38] to broaden
their applicability across differing work practices and schedules supporting the
generalizablity of their findings.

Despite these similarities, the studies diverge in crucial ways in their evalua-
tion strategies. The first paper [1] evaluates the problem as a classification task,
which aligns well with the real-world need to not only achieve accurate predic-
tions but also prioritize the rate of "fair enough" estimates—essential for practi-
cal decision-making in agile workflows. This evaluation is further strengthened
by the use of metrics such as AUC-ROC and F-score, which are particularly
effective for handling the imbalanced nature of effort estimates. In contrast,
the other two studies adopt regression-based evaluations. Among these, [38]
enhances its evaluation by complementing Mean Absolute Error (MAE) with
PRED(50), a metric that explicitly assesses the proportion of predictions falling
within an acceptable tolerance, thereby addressing the critical real-world re-
quirement of providing practically usable estimates. Fu and Tantithamthavorn

84

[15], however, primarily relies on MAE, which, while effective for measuring
absolute accuracy, does not evaluate how well predictions align with the need
for "good enough" estimates in agile settings.

They also differ in defining ground truth. Two studies [1, 38] use actual effort
data gleaned from project records, improving the objectivity and reliability of
their evaluations. Fu and Tantithamthavorn [15], however, bases its ground
truth on story points, which, while commonly used in agile workflows, reflects
the inherent difficulty of effort estimation as a task. This challenge, particularly
in the early phases of a project, is prone to errors, as also highlighted in the
small-scale user study conducted in [15].

Additionally, [15] is the only study to complement its evaluation with a user
study, albeit limited in scale, comparing the perceived supportiveness of effort
estimates with and without the inclusion of explainability. This addition offers
a unique perspective on how stakeholders perceive the utility of Al-assisted
predictions in practical settings, adding qualitative insights that are absent in
the other studies.

Overall, Yang et al. [82], Xie et al. [79], and Endres et al. [11] demonstrate well-
rounded evaluation methodologies characterized by diverse datasets, robust
baseline comparisons, task-specific and class-balanced metrics, and transpar-
ent validation processes. Their focus on metrics like Accept@K and Bug-
Completeness bridges the gap between experimental benchmarks and real-
world software engineering workflows. Conversely, Mandal et al. [48] falls short
in addressing these critical aspects, limiting the reliability and applicability of
its findings.

6 Addressing the Research Questions

6.1 Implications for the Reliability of Evaluation Practices

This subsection addresses the first research question (Section 1.2). As defined
in Section 4.2.2, reliability measures the consistency, reproducibility, and scien-
tific rigor of evaluation strategies. A highly reliable evaluation produces stable
results across datasets, experiments, and environments while adhering to trans-
parent and well-documented methodologies. Applying the reliability scoring
system described in Section 4.2.2, the mean score across the reviewed studies
is moderate (3.2). This reflects adequate methodological foundations but also
highlights significant variability and room for improvement.

85

RQ1: How reliable are the evaluation strategies used in LLM-based soft-

ware engineering research?

The reliability of evaluation strategies in LLM-based SE research is moder-
ate, with significant variability across tasks. As discussed in Sections 4.2.2
and 5.2.1, recurring limitations in dataset design, ground truth creation,
and baseline comparisons often undermine the reproducibility and con-
sistency of evaluations. Addressing these issues is essential for ensuring
reliable and scientifically rigorous evaluation practices in future research.

Drawing on the detailed analysis of limitations summarized in Section 5.2.1, this
subsection examines the reliability of evaluation strategies across three critical
dimensions: datasets, ground truth creation, and baseline comparisons.

Dataset Design

The reliability of evaluation strategies is highly dependent on the quality and
diversity of datasets. Dataset limitations, as detailed in Table 10 in Section 5.2.1,
frequently undermine reliability by introducing biases or reducing reproducibil-

ity.

— Narrow Dataset Scope: Tasks such as Requirements Traceability and Bug
Detection often relied on datasets limited to specific domains, such as open-
source projects or Python-based systems [39, 10]. These limitations reduce
the generalizability of results and their consistency across different con-
texts.

- Insufficient Dataset Volume: Small dataset sizes, such as the 51 bug re-
ports used in Isotani et al. [24], further restrict the reliability of findings by
failing to account for variability across larger or more diverse datasets.

Improving dataset genralizablity and representativeness, as highlighted in Ta-
ble 11, is crucial for enhancing the reproducibility and robustness of evaluation
outcomes.

Ground Truth Creation

Ground truth creation is a critical component of reliable evaluations. Table 12 in
section 5.2.1 highlights recurring challenges in this area, including;

- Lack of Transparency: Tasks like Ambiguity Detection frequently lacked sys-
tematic documentation of ground truth creation processes. For instance,
Moharil and Sharma [51] relied on qualitative assessments without quanti-
tative validation, reducing confidence in reproducibility.

— Annotation Inconsistencies: In Log Parsing and Analysis, Ma et al. [46] did
not provide sufficient transparency regarding their annotation process, rais-
ing concerns about the reliability of their results.

86

— Reliable Practices in High-Performing Tasks: By contrast, high-performing
tasks such as API Documentation and Augmentation (Yang et al. [83]) demon-
strated reliable practices through transparent annotations and validation
strategies, including expert inter-annotator agreement.

Clear and reproducible ground truth processes are essential to ensure consistent
evaluation outcomes.

Baseline Comparisons

Baseline diversity is another critical factor for reliability, as discussed in Sec-
tion 5.2.1 and summarized in Table 13.

— Limited Baseline Comparisons: Studies like Mandal et al. [48] in Program
Specifications relied on single baselines, which restricted the ability to rigor-
ously compare performance across methods.

— Absence of Baselines: In some cases, such as Ambiguity Detection (Moharil
and Sharma [51]), evaluations lacked baseline comparisons altogether, un-
dermining the reproducibility and robustness of the reported findings.

The inclusion of diverse and meaningful baselines is essential for ensuring reli-
able evaluations, as it provides a comprehensive understanding of a solution’s
performance across different conditions.

Reliability Across Tasks

The variability in reliability across tasks, as discussed in Section 5.2.1, highlights
systemic challenges:

- High-Performing Tasks (13 Studies) (3.6 < mean reliability < 4.0): Tasks
such as API Documentation and Augmentation demonstrated strong reliabil-
ity through robust dataset design, transparent ground truth processes, and
rigorous baseline comparisons.

— Moderate-Performing Tasks (21 Studies) (3.0 < mean reliability < 3.6):
Tasks such as Requirements Traceability adhered to basic methodological
standards but showed weaknesses in dataset representativeness and base-
line diversity.

— Low-Performing Tasks (7 Studies) (mean reliability < 3.0): Tasks such as
Ambiguity Detection faced significant methodological weaknesses, including
unrepresentative datasets and insufficient validation strategies.

6.2 Implications for the Relevance of Evaluation Practices

This subsection addresses the second research question (Section 1.2). Relevance,
as defined in Section 4.2.2, measures the alignment of evaluation strategies with

87

practical and real-world challenges in software engineering (SE). Achieving high
relevance requires representative datasets, task-specific metrics, and validation
strategies that reflect the variability, edge cases, and constraints encountered in
real-world scenarios.

RQ2: How relevant are the evaluation strategies in reflecting real-world

software engineering needs?

Across the reviewed studies, the mean relevance score is 3.59, indicating
moderate to high alignment with real-world needs. Many evaluations ef-
fectively capture practical challenges; however, key gaps remain. These
include reliance on constrained or unrepresentative datasets, the use of
generic metrics that fail to capture task-specific needs, and insufficient
validation strategies. Addressing these gaps is crucial to delivering ac-
tionable insights and improving real-world applicability.

Drawing on the detailed analysis presented in Section 5.2.1, this subsection ex-
plores the relevance of evaluation strategies across three critical dimensions:
datasets, metrics, and validation strategies.

Datasets

Datasets play a foundational role in determining the relevance of evaluations by
shaping their alignment with real-world data distributions and practical chal-
lenges. As highlighted in Table 10, many studies demonstrated strengths and
weaknesses in dataset design:

- High-Performing Studies: Tasks such as API Documentation and Augmen-
tation (Yang et al. [83]) and Effort and Resource Estimation (Li et al. [38])
employed expert-validated datasets and representative real-world exam-
ples. These datasets ensured evaluations captured practical scenarios and
actionable outcomes.

— Moderately Performing Studies: Tasks like Requirements Classification used
outdated (2007 PROMISE) [20] or dataset not fully aligned with tasks data
distribution like StackOverflow [44]

— Low-Performing Studies: Tasks such as Ambiguity Detection (Moharil and
Sharma [51]) non-representative datasets (Wikipedia), reducing their appli-
cability to real-world settings. For Duplicate Bug detection [24] relied on a
too small test set of only 51 Bug reports with biased and unrestnative class
distribution (duplicates/nonduplicates).

To improve relevance, future evaluations should prioritize datasets that reflect
real-world representativeness of the test and validation data.

88

Metrics

Metrics are essential for quantifying the performance of LLM-based solutions
in ways that align with task-specific objectives and real-world priorities. The
analysis in Table 14 highlights both effective practices and common limitations:

— Task-Specific Metrics: High-relevance studies, such as Effort and Resource
Estimation (Li et al. [38]), incorporated complementary metrics like toler-
ance ranges to evaluate estimation accuracy, directly addressing practical
decision-making needs.

— Misaligned Metrics: In tasks like Bug Triage and Assignment (Isotani et al.
[24]), reliance on mean average precision (MAP) without cutoffs limited the
practical relevance of ranking insights.

— Underutilized Metrics: In Ambiguity Detection (Moharil and Sharma [51]),
evaluations lacked cluster quality metrics, reducing their ability to address
key aspects of ambiguity in requirements engineering.

Future evaluations should ensure that metrics are closely aligned with task-
specific goals, particularly in addressing practical considerations like scalability,
usability, and interpretability.

Validation Strategies

Validation strategies ensure that evaluations adequately capture real-world chal-
lenges by testing solutions across diverse conditions and scenarios. As summa-
rized in Table 15, studies displayed varying levels of alignment with real-world
needs:

- High-Performing Strategies: Studies in Log Parsing and Analysis (Liu et al.
[41]) conducted ablation studies and feature impact analyses to evaluate
model robustness and relevance.

— Limited Strategies: In tasks like Coreference Detection (Wang et al. [77]),
evaluations relied on artificially balanced datasets, which failed to capture
the complexity and variability of real-world data distributions.

— Qualitative Approaches: Studies such as Xu et al. [81] performed qualita-
tive error analysis to identify critical performance gaps, demonstrating the
value of structured qualitative methods in improving practical insights.

Broader adoption of comprehensive validation methods, including real-world
simulations and user studies, would significantly enhance the relevance of eval-
uations.

Relevance Across Tasks

The relevance of evaluation strategies varied across tasks, as evidenced by their
mean relevance scores:

89

— High-Performing Tasks (3.66 < mean relevance < 4.5): Tasks such as API
Documentation and Augmentation, Prototyping and GUI Retrieval, and User
Feedback Processing demonstrated strong alignment with real-world chal-
lenges, supported by representative datasets and task-specific metrics.

— Moderately Performing Tasks (3.0 < mean relevance < 3.66): Tasks such
as Bug Detection and Program Specifications exhibited strengths in component-
level evaluations but faced limitations in dataset diversity or metric align-
ment.

— Low-Performing Tasks (mean relevance < 3.0): Tasks such as Ambiguity
Detection and Coreference Detection relied on overly simplistic datasets and
metrics, reducing their applicability to real-world scenarios.

6.3 Addressing Key Gaps and Enhancing Evaluation Practices

Building on the findings discussed in Sections 6.1 and 6.2, this analysis identifies
major shortcomings in current practices and explores how future evaluations
can achieve greater rigor and practical applicability.

90

RQ3: What are the key gaps and limitations in current evaluation strate-

gies and how can they be addressed?
Key Gaps:

- Dataset Limitations: Narrow, outdated, and poorly documented
datasets reduce generalizability, transparency, and representative-
ness, limiting reproducibility and alignment with real-world sce-
narios.

— Underdeveloped Task-Specific Best-Practices: Variations in evalu-
ation strategies reveal potential for combining strengths, but incon-
sistent practices hinder reproducibility and comparability.

— Neglect of Qualitative Methods: The lack of qualitative evaluations
limits insights into solution usability and real-world impact.

— NSE vs. PES Approaches: PES studies tend to exhibit stronger re-
liability due to standardized datasets and comprehensive baselines,
while NSE studies innovate but often face challenges with small or
task-specific datasets and unclear annotations. There is a missed op-
portunity for PES studies to integrate novel solutions proposed in
NSE studies into their baselines and for NSE studies to adopt PES
methodological rigor.

- Overlooking LLM-Specific Traits: Most evaluations treat LLMs as
agnostic tools, neglecting variability, non-determinism, and domain-
specific factors that affect reliability and relevance.

Recommendations: Improve dataset practices, develop task-specific best
practices, and incorporate qualitative feedback. Leverage strengths across
NSE and PES approaches and integrate LLM-specific traits into evaluation
frameworks to enhance rigor and real-world alignment.

Gaps in Current Evaluation Practices

Dataset-Related Limitations

Dataset limitations emerged as the most pervasive issue affecting both reliability
and relevance across multiple tasks and research focus categories. While such
limitations were present in both NSE and PES studies, they were notably more
pronounced in the NSE category, where novel solutions often depend on newly
created datasets. As summarized in Table 11, three major themes were observed:
generalizability, transparency, and representativeness. These limitations directly
impact the consistency and applicability of evaluation outcomes.

91

Generalizability Generalizability issues predominantly affect the reliability of
evaluation practices by limiting the extent to which findings can be reproduced
or extended to new scenarios. For example, evaluations in Bug Detection and Re-
quirements Traceability often relied on datasets constrained to open-source reposi-
tories [10, 39, 93]. Similarly, Liu et al. [42] employed a limited sample of widgets
for testing, and Huang et al. [23] used a narrowly scoped crash report dataset.
These choices reduce the diversity of test cases and hinder evaluations from
capturing the variability encountered in real-world settings.

Transparency A lack of transparency in dataset creation processes further un-
dermines the reliability of evaluations by impeding reproducibility. For exam-
ple, Mandal et al. [48] did not clearly document how the non-specification class
was constructed for their test set, raising concerns about the validity of their
comparisons. Similar issues were observed in Ambiguity Detection and Require-
ments Elicitation, where the origins of datasets or validation processes were either
unclear or absent [86, 52]. Without clear documentation, independent reproduc-
tion and validation of these results become challenging.

Representativeness Issues with dataset representativeness primarily impact
the relevance of evaluation practices by limiting their alignment with real-world
contexts. For example, studies in Program Specification and Requirements Classi-
fication often relied on small or outdated datasets, such as the 2007 PROMISE
dataset used by Hey et al. [20]. In Ambiguity Detection, reliance on the Wikipedia
Corpus [51, 52] failed to account for the unique linguistic characteristics of soft-
ware requirements. Similarly, Luitel, Hassani, and Sabetzadeh [43] simulated
incompleteness in requirements datasets, which may not accurately reflect real-
world gaps. These limitations reduce the practical applicability of evaluations
and risk overestimating the effectiveness of solutions in diverse, real-world sce-
narios.

It is important to note that efforts are being made within the research com-
munity to address dataset limitations, as observed in the development of new
resources to support evaluations. As discussed in Section 4.2.1, four papers
([66, 26, 71, 14]) propose new datasets as part of their contributions, along-
side either the development or evaluation of solutions. Moreover, the research
focus category "Creation of SE Evaluation Resources" encompasses 29 papers
that provide various types of evaluation resources, including but not limited
to datasets. These works collectively indicate an awareness of the importance
of high-quality datasets, benchmarks, and related resources for enhancing the
reliability and relevance of evaluation practices.

Developing Task-Specific Best Practices for Evaluation

Task-specific best practices for evaluation are essential for achieving method-
ological rigor and ensuring insights align with the objectives of real-world soft-
ware engineering tasks. By systematically combining strengths from diverse

92

evaluation strategies, best practices not only enhance reliability and relevance
but also improve the comparability of results across studies. This comparability
is vital for cumulative knowledge building and the broader adoption of effective
solutions.

The effort estimation task provides a concrete example of how such best prac-
tices can be developed. Drawing from Section 5.3.4, the reviewed studies high-
light complementary strengths in addressing generalizability, evaluation met-
rics, and the alignment of ground truth with task objectives. By synthesizing
these strengths, a robust framework for evaluating effort estimation solutions
can be constructed, offering a blueprint for developing task-specific best prac-
tices across other software engineering domains.

The three reviewed studies share complementary strengths that inform best
practices. A unifying feature is their use of cross-repository validation, a cru-
cial step for assessing generalizability in high-uncertainty situations where lim-
ited project information is available. Incorporating both open-source and indus-
trial datasets enhances the applicability of evaluations by addressing variability
across different work environments.

To develop a comprehensive best practice evaluation for effort estimation, the
following components emerge:

1. Cross-Repository Validation: Evaluation strategies should assess gener-
alizability in scenarios with limited historical data, a challenge common
in early project stages. Cross-repository testing, as demonstrated by the
studies, ensures robustness in such high-uncertainty settings. Combining
open-source and industrial datasets further supports evaluations across di-
verse real-world conditions.

2. Balanced Metrics: Best practices should include statistical measures such
as Mean Absolute Error (MAE) for accuracy, alongside practical usabil-
ity metrics like PRED(50) and AUC-ROC. These metrics not only evaluate
precision but also assess the acceptability of estimates within reasonable
tolerances, directly addressing the decision-making needs of practitioners.

3. Ground Truth Alignment with Objectives: Using objective measures of
actual effort, as seen in Alhamed and Storer [1] and Li et al. [38], better
aligns with the goal of supporting decision-makers with estimates backed
by reliable, real-world data. This approach avoids the variability and sub-
jectivity inherent in story point-based ground truths.

4. Assessment of Perceived Supportiveness: Evaluations should include qual-
itative assessments of how practitioners perceive the support provided by
solutions, particularly in high-uncertainty contexts. For instance, the user
study in Fu and Tantithamthavorn [15] demonstrates how feedback on per-
ceived utility and ease of adoption offers valuable insights beyond statisti-
cal metrics.

By combining these elements, task-specific best practices create a foundation for
evaluations that not only ensure methodological rigor but also yield insights di-

93

rectly relevant to the task’s real-world objectives. Moreover, standardizing such
practices fosters comparability across studies, enabling cumulative knowledge
building and more effective application of solutions.

Broader Implications Across Tasks. While effort estimation illustrates the po-
tential for developing best practices, this principle extends to other domains as
well. As shown in Section 5.3.4, tasks such as Program Specification Generation and
Ambiguity Detection also benefit from tailored evaluation strategies. For example,
metrics like Accept@K and Bug-Completeness in specification generation cap-
ture nuanced challenges that generic metrics overlook. Similarly, recall-focused
metrics and expert-annotated datasets strengthen evaluations in ambiguity de-
tection, ensuring alignment with the task’s practical objectives.

By promoting consistent evaluation practices within tasks, the research com-
munity can enable more reliable cross-study comparisons. This comparability
is essential for synthesizing insights that advance task-specific understanding,
support benchmarking, and ultimately improve the applicability of solutions to
real-world software engineering challenges.

Integrating Qualitative Insights into Evaluation

A further observation from the reviewed corpus is the limited use of qualitative
methods—such as user studies or qualitative analysis of results. While most
studies focus primarily on numerical measures (e.g., precision, recall, F1, MAE),
only five were found to incorporate user studies or qualitative review of pre-
diction results and errors to gain practical feedback on solution utility and ease
of adoption. Table 16 and the validation issues in Section 5.2.1 highlight that
these user studies were typically of small to medium size, limiting the depth
and representativeness of the qualitative insights.

For instance, Fu and Tantithamthavorn [15] included a small-scale user study
to gauge how agile practitioners perceived the tool’s “supportiveness” in effort
estimation, providing practical feedback that went beyond its primary metric of
Mean Absolute Error (MAE). Meanwhile, other studies with robust quantitative
evaluations—such as Ma et al. [45], Kou, Chen, and Zhang [33], Wang et al. [78],
and Kolthoff, Bartelt, and Ponzetto [31]—also integrated user studies or qual-
itative analyses of subsets of their results, reinforcing their findings with real-
world usability insights. Although these user studies were often constrained by
sample size or lacked standardization, they offered valuable glimpses into how
participants interacted with the proposed solutions in realistic settings.

Recommendation: Complement Quantitative Metrics with Qualitative Meth-
ods. Future evaluation strategies should pair solid quantitative assessments
with carefully designed qualitative components, such as user surveys and qual-
itative error analysis. For example, collecting feedback on perceived usability,

94

clarity of system outputs, or ease of integration into existing workflows can il-
luminate important usability or adoption issues that purely numerical metrics
may overlook. By systematically embedding these user-facing perspectives, re-
searchers can produce evaluations that capture both technical performance and
practical viability, ultimately aligning more closely with the needs of software
engineering practitioners.

Contrasting Evaluation Approaches in NSE and PES

As outlined in Section 5.2.2, the two primary research focuses—Development of
New SE Solutions (NSE) and Performance Assessment of Existing Solutions (PES)—show
different strengths and weaknesses. While both categories exhibit diverse val-
idation and metrics practices, studies from the PES category tend to deliver
more consistent reliability due to controlled and statistically grounded validation,
clearer documentation, and reliance on well-defined datasets. By contrast, NSE
studies, despite demonstrating notable innovations (e.g., user studies, compar-
ative analyses), often face additional obstacles such as uncertain annotations,
smaller or task-specific datasets, and limited baseline diversity (see Table 18 and
Table 17).

These patterns reveal a missed opportunity: PES evaluations should broaden
their baselines by incorporating newly proposed solutions from the NSE cate-
gory, thereby ensuring more comprehensive benchmarking. At the same time,
NSE evaluations should leverage the methodical and comparative rigor com-
monly observed in PES studies. Although this thesis does not specifically exam-
ine the extend how PES papers already incorporate NSE solutions as baselines,
deeper collaboration between these research focuses stands to benefit both solu-
tion development and evaluation methodologies.

Overlooking LLM-Specific Characteristics in Evaluation Practices

The qualitative review of the selected corpus, as described in Section 4.3.1, re-
vealed that the majority of evaluation strategies treat large language models
(LLMs) as agnostic tools. These evaluations primarily focus on task-level per-
formance metrics such as precision, recall, and F1 scores, while often neglecting
critical LLM-specific characteristics that could influence evaluation outcomes,
including prompt sensitivity, non-determinism, and variability across runs.

This observation emerged from noticing the absence of considerations for LLM-
specific characteristics in evaluation practices. However, it is important to note
that these observations were not systematically tracked in the review notes. This
limitation highlights the need for a more detailed and systematic investigation
into the role of LLM-specific characteristics in evaluation strategies in future
research.

Concrete Observations:

95

— Repetition to Mitigate Variability: Ronanki, Cabrero-Daniel, and Berger
[61] addressed the inherent non-determinism of ChatGPT by repeating
evaluations three times and adopting a "best-of-three" approach to deter-
mine consistent results. While this method acknowledges variability, it
does not systematically analyze the impact of different random seeds or
decoding parameters, such as temperature settings.

— Incorporation of Probability Distributions: Luitel, Hassani, and Sabet-
zadeh [43] incorporated BERT’s probability distributions into their evalu-
ation methodology for masked language modeling tasks. By varying the
number of predictions per masked token, they balanced recall and pre-
cision, providing deeper insights into the model’s contextual reasoning.
However, similar efforts to leverage probability distributions were not ob-
served in other reviewed studies, indicating an underutilization of this ap-
proach in evaluation practices.

— Transparency in Temperature Settings: Liu et al. [41] demonstrated trans-
parency by explicitly reporting their use of temperature settings (e.g., tem-
perature=0.5) in experiments. They reduced the temperature to 0.4 when
outputs failed to meet format expectations. While this transparency aids
reproducibility, the study did not systematically explore how variations in
temperature or other decoding parameters affect evaluation metrics.

These examples illustrate that although some studies make initial efforts to ac-
count for LLM-specific characteristics, these efforts are limited and not system-
atically integrated into evaluation frameworks.

Leveraging Insights from LLM Characteristic Exploration The separate re-
search focus category, "Exploration of LLM Characteristics in SE" discribed in
Section 4.2.1 provides valuable insights that could inform and enhance evalua-
tion strategies. For example:

— Non-Determinism in LLM Outputs: Ouyang et al. [55] demonstrated that
even when temperature is set to 0, LLM outputs like those from ChatGPT
can still exhibit variability across runs. This challenges the common as-
sumption that setting temperature to 0 ensures deterministic behavior and
highlights the importance of accounting for such variability in evaluation
practices.

— Domain-Specific Pretraining and Vocabulary: Von der Mosel, Trautsch,
and Herbold [74] explored how domain-specific pretraining impacts LLM
performance, particularly in tasks like requirements engineering. They ex-
amined vocabulary differences and the effectiveness of masked language
modeling in SE contexts, emphasizing the need for evaluation datasets that
reflect domain-specific language and challenges.

These studies suggest that incorporating an understanding of LLM-specific be-
haviors—such as variability and domain adaptation—can lead to more robust
and relevant evaluation practices.

96

Recommendations for Advancing Evaluation Strategies

To address the identified gaps in current evaluation practices, the following
recommendations are proposed:

1. Account for Non-Determinism: Incorporate repeated trials using varied
random seeds and decoding parameters. Report variability metrics such
as confidence intervals and standard deviations to enhance the reliability
and transparency of evaluations. For example, adopting practices from
Ouyang et al. [55] can help quantify the extent of variability and ensure
that evaluation results are robust across different runs.

2. Enhance Transparency of Experimental Settings: Clearly document and
report key LLM parameters, including temperature settings and any ad-
justments made during experiments. Transparency in these settings, as
demonstrated by Liu et al. [41], is crucial for reproducibility and allows
for a better understanding of how these parameters influence evaluation
outcomes.

Future strategies that respect LLM-specific characteristics need to be explored.
Insights from papers that explore these characteristics for SE tasks, such as those
by Von der Mosel, Trautsch, and Herbold [74] and Ouyang et al. [55], could
guide the development of more nuanced and effective evaluation methodolo-
gies.

7 Conclusion

This thesis investigated the evaluation of Large Language Models (LLMs) in
Software Engineering (SE) research, focusing on the reliability and relevance of
evaluation strategies. A six-phase systematic approach was employed to select
and analyze studies. The review process refined an initial corpus of 396 papers
([21]) to 41 papers focused on non-code-centric SE tasks, ensuring inclusion
criteria prioritized task-specific solution evaluations over explorations of LLM
characteristics or resource creation. Papers were categorized by task objectives
to ensure a coherent review.

Phase 4 involved a systematic qualitative review of key evaluation aspects such
as datasets, baselines, metrics, and validation methods. Phases 5 and 6 analyzed
the strengths and limitations of these strategies, revealing recurring challenges
like dataset representativeness, baseline diversity, and validation consistency.
Phase 6 synthesized these findings to assess overall reliability and relevance,
uncover systemic trends, and identify task-specific contrasts. These efforts pro-
vided nuanced insights into the impact of evaluation practices and informed
answers to the research questions (Sections 6.1, 6.2, and 6.3).

97

7.1 Key Conclusions

The research revealed significant variations in the methodological rigor and
real-world applicability of evaluation strategies in LLM-based SE research. A
key issue affecting both reliability and relevance is the widespread reliance on
readily available, yet narrow and sometimes outdated datasets, such as Stack
Overflow, Wikipedia, and open-source repositories. While these datasets offer
convenience, they frequently lack representativeness and fail to generalize be-
yond open-source contexts, limiting their applicability to real-world SE tasks.

Despite these limitations, researchers demonstrated moderate reliability and rel-
evance in their evaluation practices. Many studies adhered to baseline method-
ological standards, such as aligning datasets with task objectives and creating
ground truth data. However, these efforts often involved trade-offs between
efficiency and thoroughness, leading to shortcomings such as incomplete doc-
umentation of ground truth creation processes and insufficient consideration
of dataset generalizability. Reliance on existing datasets frequently constrained
these evaluations, prioritizing speed over depth.

Relevance was further affected by the limited alignment of datasets and metrics
with the specific characteristics of the tasks being evaluated. For instance, while
datasets like Stack Overflow data are somewhat related to tasks such as Require-
ments Classification, they do not fully match the structured requirements typi-
cally encountered in real-world settings, leading to a mismatch in distribution.
Metrics, such as Mean Average Precision (MAP), though generally useful, often
failed to capture practical priorities—such as ranking top recommendations in
tasks like traceability link prediction—highlighting a broader trend across eval-
uations rather than being an isolated case. Additionally, qualitative methods,
such as user studies or manual validation, were rarely employed, limiting the
ability to derive contextual and practical insights.

Implications for the Field

The rapid evolution of LLM-based SE research has driven researchers to make
trade-offs between fast-paced solution development and rigorous evaluation
practices. While this approach allows researchers to stay aligned with the fast-
changing landscape of LLM advancements, it has also led to limitations in eval-
uation methodologies. These trade-offs often manifest in the reliance on readily
available datasets and generic evaluation metrics, which, while expedient, un-
dermine the reliability, relevance, and trustworthiness of evaluation results.

To ensure that LLM-based SE solutions deliver tangible value and sustain long-
term progress, it is imperative to establish reliable and trustworthy evalua-
tion practices. Without such practices, evaluations risk falling short of provid-
ing meaningful insights, potentially leading to disillusionment in the field and
stalling its momentum.

98

7.2 Opportunities for Improvement

Strengthening dataset diversity, fostering collaboration, and embracing task-
specific evaluation frameworks present critical opportunities to address these
issues.

1. Addressing Dataset Limitations: Many SE tasks require data that are not
publicly available due to their sensitivity, particularly in industrial contexts.
Strategies must be developed to enable the sharing of sensitive company
data without compromising confidentiality. Establishing broader collab-
orations between industry and academia could facilitate the creation of
datasets that capture real-world variability and edge cases, enhancing the
generalizability of evaluation results.

2. Developing Task-Specific Best Practices: The review revealed that within
the same task, different studies exhibited unique strengths in their eval-
uation practices. This diversity creates an opportunity for researchers to
synthesize these strengths into task-specific best practices. By fostering
closer collaboration between researchers working on similar tasks, the field
can develop tailored evaluation frameworks that ensure both reliability and
relevance.

3. Integrating Research from NSE and PES Categories: Studies in the Perfor-
mance Assessment of Existing Solutions (PES) category generally exhibited
stronger reliability due to their controlled validation processes and robust
methodologies. Conversely, Development of New SE Solutions (NSE) stud-
ies, while innovative, often lacked comprehensive evaluation frameworks.
Incorporating solutions from NSE studies into the baselines of PES stud-
ies would provide broader, more empirical assessments and enable further
reflection on the effectiveness, scalability, and limitations of emerging ap-
proaches. This integration requires PES studies to more broadly explore
the field for novel solutions and invest additional effort in reproducing and
validating these innovations. Such efforts will enhance the alignment of
innovative solutions with real-world requirements and foster more reliable
evaluation practices across SE tasks.

4. Leveraging LLM-Specific Characteristics: Opportunities are being missed
to incorporate insights from research exploring LLM-specific characteris-
tics. For instance, the non-deterministic behavior of LLMs, such as vari-
ations in output even when temperature settings are fixed, is rarely ac-
counted for systematically. Incorporating such insights into evaluation
methodologies will enhance robustness and better reflect the nuances of
LLM behavior.

Why This Matters

If the field fails to address these gaps and seize these opportunities, it risks un-
dermining trust in LLM-based SE solutions. Poorly grounded evaluations may

99

perpetuate hype without delivering meaningful advancements, ultimately lead-
ing to disillusionment. By addressing these challenges and prioritizing rigorous,
task-specific, and collaborative evaluation practices, the field can ensure that its
findings remain relevant and impactful, supporting long-term progress in both
academic and industrial settings.

7.3 Recommendations for Trustworthy Evaluations and Where More
Caution is Required

The evaluation practices in LLM-based SE research vary in reliability and rele-
vance. Below is a summary of tasks with trustworthy evaluations and guidance
for interpreting other results cautiously.

Tasks with Trustworthy Evaluation Practices The following tasks exhibit strong
evaluation methodologies, including robust datasets, metrics designed to reflect
real-world applicability, and rigorous validation practices such as crowdsourced
annotations or user studies:

— API Documentation Augmentation: Studies such as Yang et al. [82] and
Yang et al. [83] employ transparently annotated datasets with high inter-
annotator agreement and metrics addressing class imbalance (e.g., Weighted
F1, MCC). These evaluations also integrate human validation to provide
practical insights, aligning with real-world documentation needs.

— Sentiment Analysis: Research by Biswas et al. [4], Zhang et al. [87], and
Zhang et al. [88] leverages diverse datasets, macro-F1 and micro-F1 metrics,
and detailed error analyses to address challenges like implicit sentiment
and subjective annotations. These studies balance methodological rigor
with real-world relevance.

— User Feedback Processing: Examples such as Wang et al. [78], He et al.
[19], and Motger et al. [53] incorporate large-scale, diverse datasets vali-
dated by inter-annotator agreement. Tailored metrics like Precision@k and
Recall@k assess specific needs (e.g., tag recommendations or feature extrac-
tion). They include user studies or qualitative evaluations to align findings
with practical applications.

- Knowledge Summarization: Kou, Chen, and Zhang [33] evaluates auto-
mated summarization for Stack Overflow posts, employing cross-validation,
precision, recall, and Fl-score for quantitative robustness. A user study
provides real-world insights into summarization quality, though its small
size limits generalizability. The evaluation addresses diverse post types
(e.g., how-to, bug-fixing), enhancing relevance for developer scenarios.

— GUI Retrieval and Prototyping: Kolthoff, Bartelt, and Ponzetto [31] inte-
grates rigorous methods, including a high-quality gold standard dataset
annotation by multiple independent annotators and validated with inter-
annotator agreement. The study incorporates a user study with novice

100

developers, comparing the proposed tool to a baseline under real-world
prototyping scenarios. Metrics such as NDCG@k and HITS@k assess rank-
ing quality, while user effort metrics (e.g., number of GUI components
added and diversity) evaluate practical efficiency.

These tasks provide evaluation results that decision-makers can trust for further
development and application.

Tasks Requiring Caution In some cases, evaluations warrant more careful in-
terpretation, especially for tasks where:

— Context-Specific Workflows: Tasks often depend on unique company con-
texts or workflows, which are not captured by widely available datasets
(e.g., Stack Overflow, Wikipedia). While these datasets are commonly used
for evaluation, they may not reflect the specific industrial environments
in which these tasks are applied. Decision-makers should critically assess
whether the data used for testing and validation aligns with their own op-
erational contexts and data characteristics.

— Unclear Ground Truth: Tasks with subjective or hard-to-define ground
truths, such as Ambiguity Detection, are inherently challenging to evaluate.
Results for these tasks may be less reliable, requiring careful scrutiny to
ensure their applicability to real-world scenarios.

7.4 Further Work

This thesis focused on the evaluation strategies of LLM-based solutions for non-
code-centric SE tasks, providing critical insights into their reliability and rele-
vance. Building on these findings, the following areas require further investiga-
tion:

— Expanding to Code-Centric Tasks: Code-centric tasks, including code gen-
eration, completion, and repair, were excluded from detailed analysis due
to their distinct challenges and evaluation requirements, which warrant
dedicated investigation. These tasks represent a substantial portion of LLM
applications in SE and involve unique considerations such as execution-
based metrics, runtime performance, and functional correctness. Address-
ing these distinct challenges is necessary to develop a comprehensive un-
derstanding of evaluation practices across the full spectrum of SE applica-
tions.

- Exploration of LLM Characteristics in SE: A distinct category of 56 papers
investigates LLM properties, such as robustness, generalizability, and inter-
pretability, within SE contexts. These studies provide essential insights into
how LLM characteristics impact SE tasks and inform the design of more ef-
fective evaluation strategies. Reviewing these works will contribute to the
development of evaluation methodologies that account for the specific be-
haviors and nuances of LLMs in SE applications.

101

— Assessing SE Evaluation Resources: Another important area involves the
29 papers that focus on developing datasets, benchmarks, and other evalua-
tion resources for SE tasks. These resources are likely to be widely adopted
and will shape future evaluations. Reviewing and assessing the quality and
appropriateness of these resources is crucial to ensure that they support
robust, reliable, and task-relevant evaluations. Combining insights from
these works with research on LLM characteristics will facilitate the cre-
ation of standardized and task-specific evaluation frameworks, ultimately
improving the reliability and relevance of future evaluations.

By expanding the scope to include code-centric tasks, LLM characteristics, and
evaluation resource assessment, future research can address broader challenges
in LLM evaluation for SE tasks. These efforts are necessary to advance the field
and ensure that LLM-based solutions in Software Engineering deliver reliable,
relevant, and impactful outcomes.

7.5 Final Reflections

In conclusion, this thesis highlights the critical role of robust evaluation strate-
gies in advancing the reliability and relevance of LLM-based solutions in Soft-
ware Engineering. By systematically analyzing existing evaluation practices,
the study uncovered significant challenges, such as dataset limitations, method-
ological trade-offs, and mismatches between evaluation metrics and real-world
tasks. Addressing these gaps is essential not only to ensure that LLM-based
tools meet the practical needs of the SE community but also to sustain trust and
momentum in this rapidly evolving field.

The findings emphasize that reliable and task-specific evaluation frameworks
are paramount for translating the potential of LLMs into tangible advancements.
By fostering collaboration between academia and industry, embracing diverse
and representative datasets, and integrating insights into LLM-specific behav-
iors, the field can overcome existing barriers and unlock new opportunities for
impactful research. Looking ahead, this work underscores the importance of pri-
oritizing rigor and relevance in evaluation practices to ensure that LLM-based
solutions deliver meaningful and lasting contributions to Software Engineering.

References

[1] Mohammed Alhamed and Tim Storer. “Evaluation of context-aware lan-
guage models and experts for effort estimation of software maintenance
issues”. In: 2022 IEEE International Conference on Software Maintenance and
Evolution (ICSME). IEEE. 2022, pp. 129-138.

[2] Friedrich L Bauer. “Software Engineering—wie es begann”. In: Historische
Notizen zur Informatik (2009), pp. 72-75.

102

[3] Ali Bektas. alioio/thesis_lIms4se_review: Research focus Categorization Code and
review summaries. Version thesis_submit. Includes code for research focus
categorization and review scores/summaries as of 21.01.2025. Jan. 2025.
DOI: 10.5281/zenodo . 14708807. URL: https://doi.org/10.5281/zenodo.
14708807.

[4] Eeshita Biswas et al. “Achieving reliable sentiment analysis in the software
engineering domain using bert”. In: 2020 IEEE International conference on
software maintenance and evolution (ICSME). IEEE. 2020, pp. 162-173.

[5] Nghi DQ Bui et al. CodeTF: One-stop Transformer Library for State-of-the-art
Code LLM.(May 2023). 2023.

[6] Yupeng Chang et al. “A survey on evaluation of large language models”.
In: ACM Transactions on Intelligent Systems and Technology (2023).

[7] Fuxiang Chen et al. “On the transferability of pre-trained language mod-
els for low-resource programming languages”. In: Proceedings of the 30th
IEEE/ACM International Conference on Program Comprehension. 2022, pp. 401-
412.

[8] Mark Chen et al. “Evaluating large language models trained on code”. In:
arXiv preprint arXiv:2107.03374 (2021).

[9] Yizheng Chen et al. “Diversevul: A new vulnerable source code dataset
for deep learning based vulnerability detection”. In: Proceedings of the 26th
International Symposium on Research in Attacks, Intrusions and Defenses. 2023,
pp. 654-668.

[10] Agnieszka Ciborowska and Kostadin Damevski. “Fast changeset-based
bug localization with BERT”. In: Proceedings of the 44th International Con-
ference on Software Engineering. 2022, pp. 946-957.

[11] Madeline Endres et al. “Formalizing natural language intent into program
specifications via large language models”. In: arXiv preprint arXiv:2310.01831
(2023).

[12] Saad Ezzini et al. “Automated handling of anaphoric ambiguity in re-
quirements: a multi-solution study”. In: Proceedings of the 44th International
Conference on Software Engineering. 2022, pp. 187-199.

[13] Angela Fan et al. “Large language models for software engineering: Sur-
vey and open problems”. In: arXiv preprint arXiv:2310.03533 (2023).

[14] Zhiyu Fan et al. “Automated repair of programs from large language mod-
els”. In: 2023 IEEE/ACM 45th International Conference on Software Engineer-
ing (ICSE). IEEE. 2023, pp. 1469-148]1.

[15] Michael Fu and Chakkrit Tantithamthavorn. “GPT2SP: A transformer-
based agile story point estimation approach”. In: IEEE Transactions on Soft-
ware Engineering 49.2 (2022), pp. 611-625.

[16] Luiz Gomes, Ricardo da Silva Torres, and Mario Lucio Cortes. “BERT-and
TF-IDF-based feature extraction for long-lived bug prediction in FLOSS:

a comparative study”. In: Information and Software Technology 160 (2023),
p. 107217.

103

https://doi.org/10.5281/zenodo.14708807
https://doi.org/10.5281/zenodo.14708807
https://doi.org/10.5281/zenodo.14708807

[17] Zishan Guo et al. “Evaluating large language models: A comprehensive
survey”. In: arXiv preprint arXiv:2310.19736 (2023).

[18] Abdelkarim El-Hajjami, Nicolas Fafin, and Camille Salinesi. “Which Al
Technique Is Better to Classify Requirements? An Experiment with SVM,
LSTM, and ChatGPT”. In: arXiv preprint arXiv:2311.11547 (2023).

[19] Junda He et al. “PTM4Tag: sharpening tag recommendation of stack over-
flow posts with pre-trained models”. In: Proceedings of the 30th IEEE/ACM
International Conference on Program Comprehension. 2022, pp. 1-11.

[20] Tobias Hey et al. “Norbert: Transfer learning for requirements classifica-
tion”. In: 2020 IEEE 28th International Requirements Engineering Conference
(RE). IEEE. 2020, pp. 169-179.

[21] Xinyi Hou et al. “Large language models for software engineering: A sys-
tematic literature review”. In: arXiv preprint arXiv:2308.10620 (2023).

[22] Jie Hu, Qian Zhang, and Heng Yin. “Augmenting greybox fuzzing with
generative ai”. In: arXiv preprint arXiv:2306.06782 (2023).

[23] Yuchao Huang et al. “Crashtranslator: Automatically reproducing mobile
application crashes directly from stack trace”. In: Proceedings of the 46th
IEEE/ACM International Conference on Software Engineering. 2024, pp. 1-13.

[24] Haruna Isotani et al. “Duplicate bug report detection by using sentence
embedding and fine-tuning”. In: 2021 IEEE international conference on soft-
ware maintenance and evolution (ICSME). IEEE. 2021, pp. 535-544.

[25] Prithwish Jana et al. “Attention, compilation, and solver-based symbolic
analysis are all you need”. In: arXiv preprint arXiv:2306.06755 (2023).

[26] Matthew Jin et al. “Inferfix: End-to-end program repair with 1lms”. In:
Proceedings of the 31st ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering. 2023, pp. 1646—
1656.

[27] Jai Kannan. “Can LLMs Configure Software Tools”. In: arXiv preprint arXiv:2312.06121
(2023).

[28] Staffs Keele et al. Guidelines for performing systematic literature reviews in
software engineering. 2007.

[29] Barbara Kitchenham, Lech Madeyski, and David Budgen. “SEGRESS: Soft-
ware engineering guidelines for reporting secondary studies”. In: IEEE
Transactions on Software Engineering 49.3 (2022), pp. 1273-1298.

[30] Takashi Koide et al. “Detecting phishing sites using chatgpt”. In: arXiv
preprint arXiv:2306.05816 (2023).

[31] Kristian Kolthoff, Christian Bartelt, and Simone Paolo Ponzetto. “Data-
driven prototyping via natural-language-based GUI retrieval”. In: Auto-
mated software engineering 30.1 (2023), p. 13.

[32] Stefan Kombrink et al. “Recurrent Neural Network Based Language Mod-
eling in Meeting Recognition.” In: Interspeech. Vol. 11. 2011, pp. 2877-2880.

104

[33] Bonan Kou, Muhao Chen, and Tianyi Zhang. “Automated summarization
of stack overflow posts”. In: 2023 IEEE/ACM 45th International Conference
on Software Engineering (ICSE). IEEE. 2023, pp. 1853-1865.

[34] Teven Le Scao et al. “Bloom: A 176b-parameter open-access multilingual
language model”. In: (2023).

[35] Jaehyung Lee, Kisun Han, and Hwanjo Yu. “A light bug triage framework
for applying large pre-trained language model”. In: Proceedings of the 37th
IEEE/ACM International Conference on Automated Software Engineering. 2022,

pp- 1-11.

[36] Caroline Lemieux et al. “Codamosa: Escaping coverage plateaus in test
generation with pre-trained large language models”. In: 2023 IEEE/ACM
45th International Conference on Software Engineering (ICSE). IEEE. 2023,
pp- 919-931.

[37] Jingxuan Li et al. “Toward less hidden cost of code completion with ac-
ceptance and ranking models”. In: 2021 IEEE International Conference on
Software Maintenance and Evolution (ICSME). IEEE. 2021, pp. 195-205.

[38] Yue Li et al. “Fine-SE: Integrating Semantic Features and Expert Features
for Software Effort Estimation”. In: Proceedings of the 46th IEEE/ACM Inter-
national Conference on Software Engineering. 2024, pp. 1-12.

[39] Jinfeng Lin et al. “Traceability transformed: Generating more accurate
links with pre-trained bert models”. In: 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE). IEEE. 2021, pp. 324-335.

[40] Chao Liu et al. “Improving chatgpt prompt for code generation”. In: arXiv
preprint arXiv:2305.08360 (2023).

[41] Yilun Liu et al. “Interpretable online log analysis using large language
models with prompt strategies”. In: Proceedings of the 32nd IEEE/ACM In-
ternational Conference on Program Comprehension. 2024, pp. 35-46.

[42] Zhe Liu et al. “Testing the limits: Unusual text inputs generation for mo-
bile app crash detection with large language model”. In: Proceedings of
the IEEE/ACM 46th International Conference on Software Engineering. 2024,
pp- 1-12.

[43] Dipeeka Luitel, Shabnam Hassani, and Mehrdad Sabetzadeh. “Improving
requirements completeness: Automated assistance through large language
models”. In: Requirements Engineering 29.1 (2024), pp. 73-95.

[44] Xianchang Luo et al. “PRCBERT: Prompt Learning for Requirement Clas-
sification using BERT-based Pretrained Language Models”. In: Proceedings
of the 37th IEEE/ACM International Conference on Automated Software Engi-
neering. 2022, pp. 1-13.

[45] Lezhi Ma et al. “SpecGen: Automated Generation of Formal Program
Specifications via Large Language Models”. In: arXiv preprint arXiv:2401.08807
(2024).

105

[46] Lipeng Ma et al. “Knowlog: Knowledge enhanced pre-trained language
model for log understanding”. In: Proceedings of the 46th IEEE/ACM Inter-
national Conference on Software Engineering. 2024, pp. 1-13.

[47] Qianou Ma, Tongshuang Wu, and Kenneth Koedinger. “Is Al the better
programming partner? Human-Human pair programming vs. Human-Al
pAlr programming”. In: arXiv preprint arXiv:2306.05153 (2023).

[48] Shantanu Mandal et al. “Large language models based automatic synthe-
sis of software specifications”. In: arXiv preprint arXiv:2304.09181 (2023).

[49] Antonio Mastropaolo, Luca Pascarella, and Gabriele Bavota. “Using deep
learning to generate complete log statements”. In: Proceedings of the 44th
International Conference on Software Engineering. 2022, pp. 2279-2290.

[50] Qianru Meng et al. “Combining Retrieval and Classification: Balancing
Efficiency and Accuracy in Duplicate Bug Report Detection”. In: arXiv
preprint arXiv:2404.14877 (2024).

[51] Ambarish Moharil and Arpit Sharma. “Identification of intra-domain am-
biguity using transformer-based machine learning”. In: Proceedings of the
Ist International Workshop on Natural Language-based Software Engineering.
2022, pp. 51-58.

[52] Ambarish Moharil and Arpit Sharma. “Tabasco: A transformer based con-
textualization toolkit”. In: Science of Computer Programming 230 (2023), p. 102994.

[53] Quim Motger et al. “T-frex: A transformer-based feature extraction method
from mobile app reviews”. In: 2024 IEEE International Conference on Soft-
ware Analysis, Evolution and Reengineering (SANER). IEEE. 2024, pp. 227-
238.

[54] Manisha Mukherjee and Vincent] Hellendoorn. “Stack over-flowing with
results: the case for domain-specific pre-training over one-size-fits-all mod-
els”. In: arXiv preprint arXiv:2306.03268 (2023).

[55] Shuyin Ouyang et al. “LLM is Like a Box of Chocolates: the Non-determinism
of ChatGPT in Code Generation”. In: arXiv preprint arXiv:2308.02828 (2023).

[56] Bhargavi Paranjape et al. “Art: Automatic multi-step reasoning and tool-
use for large language models”. In: arXiv preprint arXiv:2303.09014 (2023).

[57] Amrit Poudel, Jinfeng Lin, and Jane Cleland-Huang. “Leveraging Transformer-
based Language Models to Automate Requirements Satisfaction Assess-
ment”. In: arXiv preprint arXiv:2312.04463 (2023).

[58] Julian Aron Prenner and Romain Robbes. “Making the most of small
Software Engineering datasets with modern machine learning”. In: IEEE
Transactions on Software Engineering 48.12 (2021), pp. 5050-5067.

[59] Chen Qian et al. “Communicative agents for software development”. In:
arXiv preprint arXiv:2307.07924 6 (2023).

[60] Brian Randell. “The 1968/69 nato software engineering reports”. In: His-
tory of software engineering 37 (1996).

106

[61] Krishna Ronanki, Beatriz Cabrero-Daniel, and Christian Berger. “ChatGPT
as a Tool for User Story Quality Evaluation: Trustworthy Out of the Box?”
In: International Conference on Agile Software Development. Springer. 2022,
pp- 173-181.

[62] Fardin Ahsan Sakib, Saadat Hasan Khan, and AHM Karim. “Extending
the frontier of chatgpt: Code generation and debugging”. In: arXiv preprint
arXiv:2307.08260 (2023).

[63] Imanol Schlag et al. “Large language model programs”. In: arXiv preprint
arXiv:2305.05364 (2023).

[64] Martin Schroder. “Autoscrum: Automating project planning using large
language models”. In: arXiv preprint arXiv:2306.03197 (2023).

[65] Ying Sheng et al. “Flexgen: High-throughput generative inference of large
language models with a single gpu”. In: International Conference on Machine
Learning. PMLR. 2023, pp. 31094-31116.

[66] Mohammed Latif Siddiq, Beatrice Casey, and Joanna Santos. “A lightweight
framework for high-quality code generation”. In: arXiv preprint arXiv:2307.08220
(2023).

[67] Mohammed Latif Siddiq et al. “Exploring the effectiveness of large lan-
guage models in generating unit tests”. In: arXiv preprint arXiv:2305.00418
(2023).

[68] Ian Sommerville. “Software Engineering”. In: 9th ed. Publisher Name,
2011, pp. 5-13.

[69] Giriprasad Sridhara, Sourav Mazumdar, et al. “Chatgpt: A study on its
utility for ubiquitous software engineering tasks”. In: arXiv preprint arXiv:2305.16837
(2023).

[70] Yutian Tang et al. “Chatgpt vs sbst: A comparative assessment of unit test
suite generation”. In: IEEE Transactions on Software Engineering (2024).

[71] Shailja Thakur et al. “Verigen: A large language model for verilog code
generation”. In: ACM Transactions on Design Automation of Electronic Sys-
tems 29.3 (2024), pp. 1-31.

[72] Ashish Vaswani et al. “Attention is all you need”. In: Advances in neural
information processing systems 30 (2017).

[73] Jesse Vig. “A multiscale visualization of attention in the transformer model”.
In: arXiv preprint arXiv:1906.05714 (2019).

[74] Julian Von der Mosel, Alexander Trautsch, and Steffen Herbold. “On the
validity of pre-trained transformers for natural language processing in the
software engineering domain”. In: IEEE Transactions on Software Engineer-
ing 49.4 (2022), pp. 1487-1507.

[75] Junjie Wang et al. “Software testing with large language models: Survey,
landscape, and vision”. In: I[EEE Transactions on Software Engineering (2024).

[76] Xingyao Wang et al. “Leti: Learning to generate from textual interactions”.
In: arXiv preprint arXiv:2305.10314 (2023).

107

[77] Yawen Wang et al. “A deep context-wise method for coreference detec-
tion in natural language requirements”. In: 2020 IEEE 28th International
Requirements Engineering Conference (RE). IEEE. 2020, pp. 180-191.

[78] Yawen Wang et al. “Where is your app frustrating users?” In: Proceedings
of the 44th International Conference on Software Engineering. 2022, pp. 2427-
2439.

[79] Danning Xie et al. “Impact of large language models on generating soft-
ware specifications”. In: arXiv preprint arXiv:2306.03324 (2023).

[80] Zhuokui Xie et al. “ChatUniTest: a ChatGPT-based automated unit test
generation tool”. In: arXiv preprint arXiv:2305.04764 (2023).

[81] Junjielong Xu et al. “UniLog: Automatic Logging via LLM and In-Context
Learning”. In: Proceedings of the 46th IEEE/ACM International Conference on
Software Engineering. 2024, pp. 1-12.

[82] Chengran Yang et al. “Aspect-based api review classification: How far
can pre-trained transformer model go?” In: 2022 IEEE International Confer-
ence on Software Analysis, Evolution and Reengineering (SANER). IEEE. 2022,
pp- 385-395.

[83] Chengran Yang et al. “Apidocbooster: An extract-then-abstract framework
leveraging large language models for augmenting api documentation”. In:
arXiv preprint arXiv:2312.10934 (2023).

[84] Catherine Yeh et al. “Attentionviz: A global view of transformer atten-
tion”. In: IEEE Transactions on Visualization and Computer Graphics (2023).

[85] Siyu Yu et al. “Log Parsing with Generalization Ability under New Log
Types”. In: Proceedings of the 31st ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. 2023,
pp. 425-437.

[86] Simiao Zhang et al. “Experimenting a New Programming Practice with
LLMs”. In: arXiv preprint arXiv:2401.01062 (2024).

[87] Ting Zhang et al. “Sentiment analysis for software engineering: How far
can pre-trained transformer models go?” In: 2020 IEEE International Con-
ference on Software Maintenance and Evolution (ICSME). IEEE. 2020, pp. 70—
80.

[88] Ting Zhang et al. “Revisiting sentiment analysis for software engineering
in the era of large language models”. In: arXiv preprint arXiv:2310.11113
(2023).

[89] James Xu Zhao et al. “Automatic model selection with large language
models for reasoning”. In: arXiv preprint arXiv:2305.14333 (2023).

[90] Zibin Zheng et al. “Towards an understanding of large language models
in software engineering tasks”. In: arXiv preprint arXiv:2308.11396 (2023).

[91] Wenxuan Zhou et al. “Universalner: Targeted distillation from large lan-
guage models for open named entity recognition”. In: arXiv preprint arXiv:2308.03279
(2023).

108

[92] Yongchao Zhou et al. “Large language models are human-level prompt
engineers”. In: arXiv preprint arXiv:2211.01910 (2022).

[93] Jianfei Zhu et al. “Enhancing traceability link recovery with unlabeled
data”. In: 2022 IEEE 33rd International Symposium on Software Reliability
Engineering (ISSRE). IEEE. 2022, pp. 446-457.

[94] Daniel M Ziegler et al. “Fine-tuning language models from human pref-
erences”. In: arXiv preprint arXiv:1909.08593 (2019).

109

	Introduction
	Motivation
	Research Questions

	State of the Art
	Large Language Models
	Software Engineering
	Large Language Models for Software Engineering Tasks

	Related Work and Research Corpora
	Research Corpora
	Exploration of Replication Package from Literature Review

	Method
	Summary of the Study's Approach
	Core Evaluation Dimensions: Reliability and Relevance
	Phase 1: Categorization by Research Focus
	Phase 2: Identification of Key Aspects of Evaluation through Detailed Review
	Phase 3: Refinement of Scope and Grouping by Task Objectives
	Phase 4: Group-wise review - Evaluation summarization and scoring
	Phase 5: Critical Analysis of Strengths and Limitations of Evaluation Strategies

	Setting the Stage for the Review
	Research Focus Categorization
	Defining Reliability and Relevance
	Review of the First Batch and Identifying Key Aspects of Evaluation
	Refinement of Scope
	Grouping the papers by underlying task objectives

	Review Process
	Qualitative Review of Evaluation Strategies
	Quantitative Analysis of Evaluation Strengths and Limitations

	Results
	Descriptive Summarization of Evaluations by Task Objectives
	Group 1: Improving Developer Efficiency – Effort and Resource Estimation
	Group 2: Enhancing Software Reliability and Maintenance
	Group 3: User Feedback Processing
	Group 4: Requirements Evaluation and Traceability
	Group 5: Program Specifications and API Documentation
	Group 6: Prototyping and System Design

	Critical Analysis of Strengths and Limitations of Evaluation Strategies
	Evaluation Patterns Across Task Objective Groups
	Evaluation Patterns Across Research Focus of the Papers
	Influence of ML Task Types on Evaluation Strategies
	Temporal Trends in Evaluation Strategies

	Insights on Reliability and Relevance of the studies
	Overal Reliablity and Relevance
	Summary of Reliability and Relevance Across Dimensions
	Cluster Patterns of Reliability and Relevance
	Task-Specific Contrasts in Evaluation Strategies

	Addressing the Research Questions
	Implications for the Reliability of Evaluation Practices
	Implications for the Relevance of Evaluation Practices
	Addressing Key Gaps and Enhancing Evaluation Practices

	Conclusion
	Key Conclusions
	Opportunities for Improvement
	Recommendations for Trustworthy Evaluations and Where More Caution is Required
	Further Work
	Final Reflections

