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Abstract

This work presents a quantum variational algorithm with which the Entanglement
Hamiltonian of lattice systems can be learned. It was first introduced by Kokail et
al. The Ansatz is motivated by the Bisognano-Wichmann theorem from quantum
field theory, which will be extended to quantum critical systems with conformal
symmetry. The fundament is an optimized implementation in the programming
language j u l i a . An important part of this work is to provide a complete understanding
of this algorithm and to investigate its convergence properties. With the knowledge
of convergence, accurate results for the thermodynamic limit are obtained. The
limitations of the Bisognano-Wichmann theorem will be shown and corrections to
this theorem will be discussed.

Kurzfassung

In dieser Arbeit wird ein quanten-variationeller Algorithmus vorgestellt, mit welchem
der Entanglement Hamiltonian von Gittersystemen gelernt werden kann. Der Al-
gorithmus stammt von Kokail et al. Das Bisognano-Wichmann Theorem aus der
Quantenfeldtheorie liefert einen variationellen Ansatz, welcher auch auf quantenkri-
tische Systeme mit konformer Symmetrie erweitert wird. Als Fundament dient eine
optimierte Implementierung in der Programmiersprache j u l i a . Ein wichtiger Teil
dieser Arbeit ist es, vollständiges Verständnis von diesem Algorithmus zu bieten
und aufzuzeigen, wie konvergierte Ergebnisse erhalten werden können. Mit den
Erkenntnissen der Konvergenz können genau Ergebnisse für den thermodynamischen
Limes erzielt werden. Es werden die Einschränkungen des Bisognano-Wichmann
Theorems aufgezeigt und Korrekturen zu dem Theorem diskutiert.
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1 Introduction

This work deals with the simulation of quantum systems using the tools of modern
quantum information theory. The simulation of quantum many-body systems is
one of the key challenges addressed with a quantum computer. Computational
access to quantum many-body systems to gain knowledge about e.g. complex phase
diagrams or non-equilibrium quantum systems, is useful to advance in these research
areas. However, accessing large systems poses a significant challenge with classical
computers. The reason for that hurdle is the tensor product structure of the Hilbert
space of composite quantum systems, resulting in an exponential growth of the
Hilbert space dimension. This work deals exclusively with spins-1/2 systems, i.e.,
with two-level systems (qubits). Its individual Hilbert space dimension is 2. Each
added qubit doubles the composite system Hilbert space dimension, leading to a
dimension of 2𝑁, where 𝑁 is the number of qubits [12].
State-of-the-art quantum computers are limited by the number of qubits, lack of
connectivity between the qubits as well as coherent and incoherent errors reducing
the possible computation time and the reliability of the results [5]. These devices
are part of the Noisy Intermediate-Scale Quantum (NISQ) era [42]. To make use of
the current NISQ devices, despite the noise, the Variational Quantum Algorithms[5]
(VQAs) are a promising strategy. Within the framework of such algorithms, classical
computers are used for optimization of a cost function, while the quantum time
evolution is done on a quantum device. VQAs use parameterized quantum circuits
to be run on the quantum computer and then utilize a classical computer to optimize
the parameters. This approach has the advantage that the circuit depths can be
held shallow and errors can be mitigated [5].
Part of the VQAs is Hamiltonian learning, where, as its name suggests, Hamil-
tonians are learned with parameterized quantum circuits. Specifically, here, the
Entanglement Hamiltonian (EH) is learned by leveraging quantum time evolution
under a variational Ansatz for the EH. The underlying algorithm was first presented
by Kokail et al. [26]. The quantity of interest is the eigenspectrum of the EH, the
Entanglement Spectrum (ES), which yields rich information about entanglement
in quantum many-body systems [29]. For example, Li and Haldane[29] proposed
that the ES works as a generalization of the Entanglement Entropy, leading to the
identification of topological order. To this day, entanglement in quantum many-
body systems is an open topic in research. Its experimental measurement is often
difficult. However, there are some procedures for the quantification and detection
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1 Introduction

of multipartite entanglement, such as the Quantum Fischer Information, shown by
Hauke et al.[17].
In general, analytical results for the EH are very difficult to obtain. For quan-
tum field theories (QFTs) and certain geometries, the Bisognano-Wichmann (BW)
theorem[3, 4] provides an exact result. However, lattice systems are, in general,
not described by QFTs[32] and the form of the EH on lattice systems and the
applicability of the BW theorem to lattices still remains an open question, which is
thoroughly addressed in this work.
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2 Theoretical foundation

2.1 Bipartite entanglement

Given a composite Hilbert space H = HA ⊗ HB, composed of two subsystems A
and B with its respective Hilbert spaces HA and HB of dimensions 𝑑A = dim(HA)
and 𝑑B = dim(HB), spanned by the orthonormal bases {|𝜇𝑖

A⟩} and {|𝜇𝑖
B⟩}, a general

pure state |𝛹⟩ ∈ H can be written as

|𝛹⟩ =
𝑑A

∑
𝑖=1

𝑑B

∑
𝑗=1

𝑀𝑖𝑗|𝜇𝑖
A⟩ ⊗ |𝜇𝑗

B⟩, (2.1)

where the rank 𝜒 ≤ min(𝑑A, 𝑑B) of the complex matrix 𝑀 is called the Schmidt
rank [19]. Since the dimensions of the sub-Hilbert spaces can in general differ, the
matrix 𝑀, sometimes called the entanglement matrix, is rectangular in general and
obeys

𝑑A

∑
𝑖=1

𝑑B

∑
𝑗=1

|𝑀𝑖𝑗|2 = 1,

to ensure normalization of the state |𝛹⟩. In case of 𝜒 = 1, the state |𝛹⟩ takes the
form of a simple product state

|𝛹⟩ = |𝛹A⟩ ⊗ |𝛹B⟩

and is said to be separable, entangled otherwise.

2.2 Schmidt decomposition

Recalling a general pure state describing a composite system (see Equation (2.1)),
the entanglement matrix 𝑀 can be brought into a diagonal form 𝐷 via a singular
value decomposition (SVD)[43]

𝑀 = 𝑈𝐷𝑉 †.

3



2 Theoretical foundation

The matrices 𝑈 and 𝑉 are of size 𝑑A ×min(𝑑A, 𝑑B) and 𝑑B ×min(𝑑A, 𝑑B), respectively,
and obey 𝑈†𝑈 = 𝟙 and 𝑉 𝑉 † = 𝟙 [43]. The non-negative entries (the singular values
of 𝑀) of the diagonal matrix 𝐷 with dimension min(𝑑A, 𝑑B) are called Schmidt-
coefficients[38] and can be expressed as e−𝜉𝛼/2 (the explicit choice of this representation
should become clear in Section 2.3). Using the SVD, Equation (2.1) reads

|𝛹⟩ =
𝑑A

∑
𝑖=1

𝑑B

∑
𝑗=1

min(𝑑A,𝑑B)

∑
𝛼=1

e−𝜉𝛼/2𝑈𝑖𝛼𝑉 ∗
𝑗𝛼|𝜇𝑖

A⟩ ⊗ |𝜇𝑗
B⟩.

Defining a new orthonormal basis set {|𝛷𝛼
A⟩ = ∑𝑑A

𝑖=1 𝑈𝑖𝛼|𝜇𝑖
A⟩} and

{|𝛷𝛼
B⟩ = ∑𝑑B

𝑗=1 𝑉 ∗
𝑗𝛼|𝜇𝑗

B⟩} yields[43]

|𝛹⟩ =
𝜒

∑
𝛼=1

𝑒−𝜉𝛼/2|𝛷𝛼
A⟩ ⊗ |𝛷𝛼

B⟩, (2.2)

where {𝜉𝛼} will be referred to as the Entanglement Spectrum (ES) (see Section
2.3). Since the rank is preserved under a SVD, the number of non-zero singular
values coincides with the Schmidt rank 𝜒[27], and thus, the sum in Equation (2.2)
is restricted to 𝜒. The lower and upper bound of summation will be dropped from
now on as long as it is unambiguous.

2.3 Reduced density matrix and Entanglement Hamiltonian

Given a pure state ̂𝜌 = |𝛹⟩⟨𝛹|, which describes the composite system H = HA⊗HB,
after a Schmidt decomposition as in Equation (2.2), the reduced density matrix
(RDM) on a subsystem A after tracing out the degrees of freedom related to
subsystem B is defined as

̂𝜌A = TrB [ ̂𝜌] = ∑
𝛼

𝑒−𝜉𝛼 |𝛷𝛼
A⟩⟨𝛷𝛼

A| = 𝑒−𝐻̂A , (2.3)

parameterized by the EH 𝐻̂A [26, 44]. The EH and its non-negative eigenvalues
{𝜉𝛼}, the ES, completely characterize all correlations in partition A and reveal much
more than the entanglement entropy [29] or the entanglement witness [45]. On the
one hand, the ES can be used to detect quantum phase transitions as for example in
spin models, where quantum phase transitions are signalled by a singular behaviour
of the Schmidt gap (difference between the two largest eigenvalues of the reduced
density matrix) [9, 28, 45]. On the other hand, the ES can be utilized to identify
topological order [13, 29, 41, 45]. In general, it is hard to derive an analytical form
of the EH especially for lattice theories. The BW theorem (Section 2.4) delivers one
way to obtain the EH analytically for specific cases for QFTs.

4



2.4 Bisognano-Wichmann theorem

2.4 Bisognano-Wichmann theorem

In a 𝑑 + 1-dimensional relativistic QFT with a local Hamiltonian-density ℋ̂(𝒙), the
EH of the ground state for the special case of a bipartition of an infinite system A
(A = {𝒙 ∈ ℝ𝑑|𝑥1 > 0}) is

𝐻̂A = ∫
A

d𝑑𝑥 𝛽(𝑥1)ℋ̂(𝒙) + 𝑐′ (2.4)

with 𝛽(𝑥1) = 2𝜋
𝑐 𝑥1 [8, 14, 26], whereby the “speed of sound” 𝑐 of the underlying QFT

is set to unity from now on. The constant 𝑐′ ensures the normalization Tr[ ̂𝜌A] = 1.
This is the seminal BW-theorem, which is exact for QFTs. In Equation (2.4) it
becomes apparent that the EH is a deformation of the system Hamiltonian [26].
Additionally, the RDM ̂𝜌A can be interpreted as a thermal state with a locally
varying entanglement temperature, which is very high near the entanglement cut
(boundary between both partitions) and decreases with 1/𝑥1 away from it [26].

A

𝑥1

𝛽 ∝ 𝑥1B

̂𝜌A = e−𝐻̂A

Figure 2.1: Interpretation of the reduced density matrix ̂𝜌A as a thermal state
with a locally varying temperature, the entanglement temperature. The inverse
entanglement temperature takes the form of a linear ramp, and thus, the entangle-
ment temperature decreases as ∝ 1/𝑥1, indicated by the color gradient from orange
to blue.

For lattice systems, it is straightforward to propose a discretized version of Equation
(2.4) s.t.

𝐻̂A ≈ ∑
𝑖∈A

𝑔𝑖ℎ̂𝑖 + 𝑐′, (2.5)

where the substitution 𝛽(𝑥1) → 𝑔𝑖 and ℋ̂(𝒙) → ℎ̂𝑖 with ℎ̂𝑖 as a quasi-local few-body
operator for the 𝑖-th lattice site is utilized. A natural question is whether the BW
theorem works for lattice systems since it is defined for relativistic QFTs at first.
Although the presence of a lattice breaks the Lorentz invariance[8] (even when it
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2 Theoretical foundation

is recovered as a low-energy symmetry[14]), numerical calculations[8, 14, 32, 44]
suggest that the discretized version of the BW theorem (2.5) is often a good first
approximation for lattice systems.

2.4.1 Conformal extensions

For systems, which have conformal symmetry in addition to Lorentz invariance, the
BW theorem (Equation (2.4)) can be extended to different geometries [14]. Since
this work only deals with one dimensional systems, only conformal extensions for
one spatial dimension will be listed.

A

B

𝑙
𝐿

𝛽 ∝ sin (𝜋(𝑙−𝑥)
𝐿 ) sin(𝜋𝑥

𝐿 )

(a)

A

𝛽 ∝ sin(𝜋𝑥
𝐿 )

B

𝐿/2𝐿/2

(b)

Figure 2.2: The BW theorem extended to one dimensional systems with conformal
symmtery. Schematic representation of the entanglement temperature for (a) a
subsystem of length 𝑙 embedded in a system of length 𝐿 with periodic boundary
conditions and (b) a subsystem of length 𝐿/2 embedded at a boundary of an open
system of length 𝐿. The colors indicate a high (orange) and low (blue) entanglement
temperature.

In case of a finite subsystem of length 𝑙 in a ring of circumference 𝐿, the EH is given
by

𝐻̂CFT1
A = 2𝐿 ∫

𝑙

0
d𝑥

sin (𝜋(𝑙−𝑥)
𝐿 ) sin (𝜋𝑥

𝐿 )
sin (𝜋𝑙

𝐿 )
ℋ̂(𝑥) + 𝑐′. (2.6)

Since the system obeys periodic boundary conditions (PBC), there are two entan-
glement cuts, where the inverse temperature rises approximately linearly for small
distances from the entanglement cut in agreement with the BW theorem (Equation
(2.4)). For a finite partition of length 𝐿/2 at the edge of a finite open system of
length 𝐿, the EH reads

𝐻̂CFT2
A = 2𝐿 ∫

𝐿/2

0
d𝑥 sin (𝜋𝑥

𝐿
) ℋ̂(𝑥) + 𝑐′, (2.7)

6



2.5 The original algorithm

again with a linear rise of the inverse entanglement temperature near the entangle-
ment cut. For a finite subsystem of length 𝑙 in an infinite composite system, the EH
is given by

𝐻̂CFT3
A = 2𝜋 ∫

𝑙

0
d𝑥 𝑥 (𝑙 − 𝑥

𝑙
) ℋ̂(𝑥) + 𝑐′. (2.8)

2.5 The original algorithm

The following algorithm was first presented in Reference [26] and the information in
the following is taken from that article.
The main goal of the algorithm is to learn the EH via a hybrid quantum-classical
feedback loop (QCFL) utilizing the variational Ansatz 𝐻̂Var

A (𝒈) = ∑𝑖 𝑔𝑖ℎ̂𝑖, which
acts as a generator for the time evolution operator

̂𝑈A(𝒈, 𝑡) = e−i𝐻̂Var
A (𝒈)𝑡,

acting on subsystem A for some time 𝑡 s.t.

̂𝜌A → ̂𝑈A(𝒈, 𝑡) ̂𝜌A
̂𝑈†
A(𝒈, 𝑡).

The parameters 𝑔𝑖 act as variational parameters. The QCFL works as follows:

pr
ep

ar
e

|G
S⟩

A

B

...
...

e−i𝐻̂Var
A (𝒈)𝑡𝑛

data optimize
𝒞(𝒈)

new parameters 𝑔

Figure 2.3: Quantum classical feedback loop (QCFL). The composite system is
initialized with the ground state, |GS⟩, of the system Hamiltonian. The subsystem
A is then evolved under the variational Ansatz 𝐻̂Var

A (𝒈) and some observables
⟨ ̂𝒪A

𝑗 ⟩𝑡𝑛
are measured at time instances {𝑡𝑛}. The cost function is then evaluated

with the measurements and the new parameters suggested by the optimizer are
used to repeat the procedure.

1. Prepare an initial state ̂𝜌A = TrB [|GS⟩⟨GS|] with |GS⟩ as the ground state of
the composite system.

7



2 Theoretical foundation

2. Evolve the subsystem A under the variational Ansatz for some time 𝑡𝑛 > 0,
leaving the complementary subsystem untouched.

3. Evaluate the expectation values ⟨ ̂𝒪A
𝑗 ⟩𝑡𝑛

after each time 𝑡𝑛.

4. Calculate a suitable cost function 𝒞(𝒈).

5. Repeat step 2 to 4 for different variational parameters and minimize 𝒞(𝒈).

The expectation value after the subsystem A has been evolved under the variational
Ansatz reads

⟨ ̂𝒪A
𝑗 ⟩𝑡𝑛

= TrA [ ̂𝒪A
𝑗

̂𝑈A(𝒈, 𝑡𝑛) ̂𝜌A
̂𝑈†
A(𝒈, 𝑡𝑛)] ,

where the operators ̂𝒪A
𝑗 are only defined on subsystem A and are restricted to be

(quasi-)local. The optimal parameters 𝒈opt are learned by minimizing the time
variation of the observables s.t. ⟨ ̂𝒪A

𝑗 ⟩𝑡𝑛
= const. A suitable cost function left be to

be minimized is given as

𝒞(𝒈) =
𝑁𝑂

∑
𝑗=1

𝑁𝑇

∑
𝑛=1

(⟨ ̂𝒪A
𝑗 ⟩𝑡𝑛

− ⟨ ̂𝒪A
𝑗 ⟩0)

2

with 𝑁𝑂 as the number of observables and 𝑁𝑇 as the number how often the subsystem
A is evolved and each observable is measured. For sufficiently many observation
times 𝑡𝑛 and observables ̂𝒪A

𝑗 , a cost function value of zero implies

[𝐻̂Var
A (𝒈opt), 𝐻̂A ] = 0, (2.9)

where 𝐻̂A is the exact EH and 𝒈opt are the optimal variational parameters. Equiv-
alently, a cost function value of zero implies [𝐻̂Var

A (𝒈opt), ̂𝜌A ] = 0, too, since the
exact RDM ̂𝜌A = exp(−𝐻̂A) is given by a power series in 𝐻̂A. This results in a
thermalized subsystem A and the observables are constant in time. The precise
choice of observables is not crucial, since an operator is expected to evolve into
a complex operator under the dynamics as long as [𝐻̂Var

A (𝒈), ̂𝒪A
𝑗 ] ≠ 0. Since the

aforementioned commutator is still fulfilled if a solution 𝒈opt is scaled by a factor 𝛾,
the scale factor remains undetermined by the algorithm as well as the normalization
constant 𝑐′ (see Equation (2.5)). To compare the ES of the variational solution and
the exact ES, the universal ratios

𝜅𝛼 =
𝜉𝛼 − 𝜉𝛼0

𝜉𝛼1
− 𝜉𝛼0

(2.10)

are defined s.t. the undetermined scaling factor 𝛾 and the normalization constant 𝑐′

are eliminated by division and subtraction, respectively.

8



2.6 Improvement of the cost function

2.6 Improvement of the cost function

The original algorithm, introduced in the previous section, provides a good way to
determine the EH of lattices systems, which is hard to obtain otherwise. However,
throughout the investigation of this algorithm, some difficulties, and thus, possibili-
ties to improve the algorithm have been noticed. A reliable algorithm should provide
converged results (in this case the optimal variational parameters 𝒈opt), which
could not be achieved with the algorithm initially presented. A major challenge is
determining how to select the observation times 𝑡𝑛, which can be easily solved by
choosing another interpretation of the cost function. This section addresses this
problem and presents the improved interpretation of the cost function of this work.
Numerical examples and benchmarks in regard to convergence will be presented in
the results (see Chapter 4).
Recalling the cost function from Section 2.5

𝒞(𝒈) =
𝑁𝑂

∑
𝑗=1

𝑁𝑇

∑
𝑛=1

(⟨ ̂𝒪A
𝑗 ⟩𝑡𝑛

− ⟨ ̂𝒪A
𝑗 ⟩0)

2
,

it is hard to compare numerical values of the cost function, since it is not normalized
to the number of observables 𝑁𝑂 and to the number of observation times 𝑁𝑇, which
is easily fixed by diving by these aforementioned quantities. Since the algorithm
is based on monitoring observables, it is, in general, not enough to choose a few
arbitrary discrete time points. Otherwise, the variational parameters 𝒈opt will not be
converged. Assuming equidistant time points i.e. a step size ∆𝑡 for the observation
times, the cost function can be, together with the aforementioned normalization,
rewritten as

𝒞(𝒈) = ∆𝑡
𝑇max𝑁𝑂

𝑁𝑂

∑
𝑗=1

𝑁𝑇

∑
𝑛=1

(⟨ ̂𝒪A
𝑗 ⟩𝑛∆𝑡 − ⟨ ̂𝒪A

𝑗 ⟩0)
2

, (2.11)

defining the maximum observation time 𝑇max = 𝑁𝑇∆𝑡. To obtain a cost function,
monitoring not at discrete time points but at all times, the discrete sum is replaced
by an integral. That is, in the continuum limit ∆𝑡 → 0 with 𝑇max = const, then

9



2 Theoretical foundation

𝑁𝑇 → ∞ , the cost function reads

𝒞(𝒈) = lim
∆𝑡→0

1
𝑇max

𝑁𝑇

∑
𝑛=1

1
𝑁𝑂

𝑁𝑂

∑
𝑗=1

(⟨ ̂𝒪A
𝑗 ⟩𝑛∆𝑡 − ⟨ ̂𝒪A

𝑗 ⟩0)
2

∆𝑡

= 1
𝑇max

∫
𝑇max

0

1
𝑁𝑂

𝑁𝑂

∑
𝑗=1

(⟨ ̂𝒪A
𝑗 ⟩𝑡 − ⟨ ̂𝒪A

𝑗 ⟩0)
2

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
≔𝑐(𝒈,𝑡)

d𝑡

= 1
𝑇max

∫
𝑇max

0
𝑐(𝒈, 𝑡) d𝑡 , (2.12)

which boils down to the mean value of the integrand 𝑐(𝒈, 𝑡) over an interval [0, 𝑇max].
Still, one open degree of freedom to properly choose remains, namely the maximum
observation time 𝑇max. The influence of 𝑇max will be thoroughly discussed in Section
4.2. Besides the choice of 𝑇max, the only remaining challenge is to evaluate the
integral as accurately and as quickly as possible, which will be discussed in the
implementation and runtime optimization Chapter 3.

2.7 Variational Ansätze

In the previous Section 2.5 the terminology “variational Ansatz”, denoted as 𝐻̂Var
A (𝒈),

is already introduced. There are two variational Ansätze in this work. The first
Ansatz is the BW-like Ansatz, denoted as 𝐻̂BW

A , which is used in Reference [26]. As
the name suggests, it follows the BW theorem. The second Ansatz, 𝐻̂BWV

A , is used
to show a violation of the BW theorem in lattice models. From now on, if 𝐻̂Var

A (𝒈)
is written, both Ansätze, 𝐻̂BW

A and 𝐻̂BWV
A , are addressed. This will be of use for

general derivations such as the derivation of the gradient. In general, both Ansätze
are given by a linear combination

𝐻̂Var
A (𝒈) = ∑

𝑖
𝑔𝑖ℎ̂𝑖, (2.13)

where 𝑔𝑖 is a variational parameter and ℎ̂𝑖 is a quasi-local few-body operator, which
will be referred to as a block. The subsystem A will always be on the right border
of the composite system.

2.7.1 BW-like Ansatz

The BW theorem predicts that the EH is a spatially deformed version of the system
Hamiltonian on a subsystem. That is, each lattice site 𝑖 is assigned a block ℎ̂𝑖
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... ...
B A

(ℎ̂1, 𝑔1) (ℎ̂2, 𝑔2) (ℎ̂𝑁A
, 𝑔𝑁A

)

Figure 2.4: Schematic illustration of the variational Ansatz 𝐻̂BW
A = ∑𝑖 𝑔𝑖ℎ̂𝑖.

Each lattice site in the subsystem A is assigned a few-body quasi-local operator ℎ̂𝑖
together with a variational parameter 𝑔𝑖. Only interactions within the subsystem
A are taken into account, as suggested by the green highlighting.

together with one variational parameter 𝑔𝑖, as illustrated in Figure 2.4. That
means that the index 𝑖 in Equation (2.13) coincides with the 𝑖-th lattice site in the
subsystem A. The blocks ℎ̂𝑖 are not local and act on more than one qubit. It is
important to note that all interactions are restricted to be within subsystem A as
well.

2.7.2 BW-violating Ansatz

The BW-violating Ansatz is not given by a spatially deformed Hamiltonian. Thus,
each lattice site is assigned multiple blocks ℎ̂𝑖 and multiple variational parameters
𝑔𝑖 and the index 𝑖 in Equation (2.13) does not coincide with the lattice site 𝑖. From
now on, the dependence of the variational Ansätze on the variational parameters 𝒈
will be omitted. The explicit form of the blocks will become clear in the Sections
2.10 and 2.11, where the transverse field Ising model (TFIM) and the XXZ model
will be discussed.

2.8 Computational basis

The basis used in this work is the commonly used basis in quantum simulation/-
computing, namely the computational basis spanned by the basis states |↑⟩ and
|↓⟩, corresponding to “spin up” and “spin down” respectively. These states are
the eigenstates of the 𝑧-component of the spin-1/2 operator. In most quantum
computing literature, these states are denoted as |0⟩ and |1⟩, but since this work
deals exclusively with spin models, the first notation is used. In the computational
basis, sometimes called 𝑧-basis in the context of spin models, the spin-1/2 operators
take the simple form

̂𝑆𝑥 = 1
2

𝑋 = 1
2

(0 1
1 0) , ̂𝑆𝑦 = 1

2
𝑌 = 1

2
(0 −i

i 0 ) , ̂𝑆𝑧 = 1
2

𝑍 = 1
2

(1 0
0 −1)

11
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with {𝑋, 𝑌 , 𝑍} as the three pauli matrices. All spin models will be expressed in
terms pauli matrices, i.e. in the computational basis.

2.9 Quantum phase transition and scale invariance

A phase transition exhibits a qualitative change of equilibrium properties and
separates two states of matter with different characteristics. It is a point in parameter
space, at which the a system undergoes change from a disordered to an ordered
phase (or vice versa). The qualitative change can be detected by an order parameter,
which is finite in the ordered phase and zero in the disordered phase. As an example,
the magnetization could act as an order parameter in magnetic systems. There are
two kinds of phase transitions, the continuous (second order) and discontinuous
(first order) phase transition. Both are given their name by a continuous variation
and a discontinouity of the order parameter at the phase transition, respectively.
Phase transitions can be driven by thermal fluctuations at finite temperatures 𝑇
hence giving it the name thermal phase transition (TPT).
A quantum phase transition (QPT) is a phase transition at temperature 𝑇 = 0.
Therefore, it is not driven by thermal fluctuations but by quantum fluctuations.
A QPT is induced by changes in control parameters such as pressure, magnetic

𝜂

T

ordered disordered

quantum
critical
region

TPT

QPT

Figure 2.5: Schematic drawing of a phase diagram with a control parameter 𝜂.
A thermal phase transition (TPT), which separates the ordered state from the
disordered state, is drawn by the red line. At 𝑇 = 0 the transition is a qantum
phase transition (QPT). The characteristics of the QPT translate into the quantum
critical region for finite temperature.

field strengths, etc. [20]. However, there is some caution needed with the term
“driven by quantum fluctuations”, since a quantum mechanical system is described

12
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by single coherent many-body wavefunction. Deviations from a reference state, e.g.
an ordered magnet, is the most appropriate use of the term “fluctuations”. Despite
being experimentally unavailable, a QPT is still physically relevant, because it
influences systems properties even at finite 𝑇, like the scaling behaviour of the heat
capacity. A continuous phase transition sets in at the critical point at which the
correlation length diverges. At the critical point, the correlation length is the only
relevant length scale governing the low-energy physics [48]. Now, the importance of
the (quantum) criticality for this work is the accompanying scale invariance, which
exists since there is no fixed length scale in critical systems. The importance of the
scale invariance is that QFTs are scale invariant. Thus, for the accurate applicability
of the BW theorem, which holds for QFTs, to lattice systems, the systems are mostly
considered when they are critical.

2.10 Transverse field Ising model

The Hamiltonian of the TFIM with 𝑁 sites, open boundary conditions (OBC),
nearest neighbour coupling strength 𝐽 and transverse field strength 𝛤 reads[14]

𝐻̂ = −𝐽
𝑁−1
∑
𝑖=1

𝑍𝑖𝑍𝑖+1 − 𝛤
𝑁

∑
𝑖=1

𝑋𝑖. (2.14)

The first term favors a ferromagnetic state for 𝐽 > 0 and an antiferromagnetic state
for 𝐽 < 0 while the transverse field introduces fluctuations s.t. an orientation along
the 𝑥-axis is favored by the transveral term. It possesses a ℤ2 symmetry, where the
Hamiltonian is invariant under flipping all spins, i.e.

𝑍𝑖 → −𝑍𝑖.

In the limit 𝐽 ≫ 𝛤, the ground state is two-fold degenerate and the system is fully
polarized with all spins pointing either up or down

|GS⟩ =
𝑁
⊗

𝑖=1
|↑⟩ or |GS⟩ =

𝑁
⊗

𝑖=1
|↓⟩,

breaking the ℤ2 symmetry spontaneously, whereas all spins are completely aligned
in the 𝑥-direction in the limit 𝛤 ≫ 𝐽

|GS⟩ =
𝑁
⊗

𝑖=1

1√
2

(|↑⟩ + |↓⟩)
⏟⏟⏟⏟⏟

|→⟩

,

exhibiting a paramagnetic behaviour. The TFIM has a quantum critical point at
𝐽/𝛤 = 1, separating the ordered ferromagnetic and the disordered paramagnetic
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phase [11]. From now on, 𝐽 = 1 holds. In the case of the Ansatz 𝐻̂BW
A , one block of

site 𝑖 is given by
ℎ̂𝑖 = −1

2
∑

𝑗∈⟨𝑗,𝑖⟩∩A
𝑍𝑗𝑍𝑖 − 𝛤𝑋𝑖,

where ⟨𝑗, 𝑖⟩ ∩ A denotes nearest neighbour coupling only if 𝑖 and 𝑗 are in the
subsystem A. One block for the Ansatz 𝐻̂BWV

A reads

ℎ̂𝑖 ∈ {−𝑍𝑗𝑍𝑗+1|1 ≤ 𝑗 < 𝑁A − 1} ∪ {−𝛤𝑋𝑗|1 ≤ 𝑗 < 𝑁A}.

That is, the complete BW-violating Ansatz for the TFIM is given by

𝐻̂BWV
A = −

𝑁A−1

∑
𝑖=1

𝐽𝑖,𝑖+1𝑍𝑖𝑍𝑖+1 −
𝑁A

∑
𝑖=1

𝛤𝑖𝑋𝑖. (2.15)

with 𝐽𝑖,𝑖+1 and 𝛤𝑖 as variational Parameters.

2.11 XXZ model

The Hamiltonian of the XXZ model with 𝑁 lattice sites and OBC is defined as

𝐻̂ =
𝑁−1
∑
𝑖=1

(𝑋𝑖𝑋𝑖+1 + 𝑌𝑖𝑌𝑖+1 + ∆𝑍𝑖𝑍𝑖+1) ,

where ∆ is the anisotropy. For ∆ = 1, the isotropic case, the Heisenberg model
is recovered. The XXZ model is ferromagnetic for ∆ < −1, quantum critical for
−1 < ∆ ≤ 1 , exhibiting a Luttinger liquid phase, and antiferromagnetic for ∆ > 1
[14]. The phase transition at ∆ = −1 is of first order, s.t. the ferromagnetic state
is exact for ∆ < −1, while the phase transition at ∆ = 1 is of second order [10].
Again in the ferromagnetic phase, the ℤ2 symmetry is spontaneously broken [14].
One block for the Ansatz 𝐻̂BW

A reads

ℎ̂𝑖 = 1
2

∑
𝑗∈⟨𝑗,𝑖⟩∩A

(𝑋𝑖𝑋𝑗 + 𝑌𝑖𝑌𝑗 + ∆𝑍𝑖𝑍𝑗), (2.16)

while the blocks for the BW-violating Ansatz are given by

ℎ̂𝑖 ∈ {𝑋𝑗𝑋𝑗+1 + 𝑌𝑗𝑌𝑗+1|1 ≤ 𝑗 < 𝑁A − 1} ∪ {∆𝑍𝑗𝑍𝑗+1|1 ≤ 𝑗 < 𝑁A − 1}.

Thus, the complete variational Ansatz 𝐻̂BWV
A for the XXZ model reads

𝐻̂BWV
A =

𝑁A−1

∑
𝑖=1

(𝐽XX
𝑖,𝑖+1 (𝑋𝑖𝑋𝑖+1 + 𝑌𝑖𝑌𝑖+1) + 𝐽Z

𝑖,𝑖+1∆𝑍𝑖𝑍𝑖+1) . (2.17)
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3 Implementation and runtime optimization

For this package, the j u l i a Programming Language[2] was chosen, because it offers
a very readable syntax similar to python and if the code is properly written, the
performance approaches that of programming languages like C. Its type system and
multiple dispatch allowed to write very readable and generic but still short code,
which can be extended to e.g. different variational Ansätze or lattice models. Another
argument for j u l i a is the extensible and efficient open-source Quantum Computing
framework Yao.jl[31], whose purpose in this work is to construct Hamiltonians and
density matrices conveniently. For optimization, the LBFGS-algorithm[40, 30], a
gradient-based optimizer, from the package Optim.jl[33] is used. As a convergence
criterium, the infinity norm of the gradient ||∇𝒈𝒞(𝒈)||∞ = max(|∂𝒞/∂𝑔1|, … , |∂𝒞/∂𝑔𝑁P

|)
is required to be less than 10−16 if not mentioned otherwise. Here, the number
of parameters is denoted as 𝑁P. This convergence criterium will be referenced to
as ∇tol. The ground state of the composite system Hamiltonian is extracted by
exact diagonalization for less than 11 spins and with the Lanczos method, whose
implementation from the package KrylovKit.jl[16] is used, for more than ten spins.
The monitored observables are {𝑍𝑖𝑍𝑖+1|1 ≤ 𝑖 < 𝑁A − 1}.
A large percentage of the work was focused on runtime optimization, especially
since the computation cost increases exponentially with the system size. The
following sections list the most important parts, which led to significant performance
increases.

3.1 General considerations

This section presents three measures, which are followed throughout the code and
should be followed in most of the codes written in j u l i a .
The first thing to mention is the type stability. Julia’s type system is dynamic,
and thus, the types are not known until runtime [23]. If the source code is not
written properly, it can happen that the type of a local variable within a function
cannot be inferred, which leads to tremendously increased runtimes. On the one
hand, type stability can be ensured by e.g. making sure that the type of elements
within an array can inferred or explicitly stating the types of the elements within a
struct. On the other hand, it is necessary to ensure that all types can be inferred, by
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3 Implementation and runtime optimization

writing functions, which always return values of the same type. To give an example,
consider the following function f.

function f(x::Float64, y::Int64)
if x >= y

return x
else

return y
end

end

If y is larger than x, y is returned, which is an Int64. Otherwise x, a Float64, is
returned. Thus, the function does not always return the same type and is said to
be “type unstable”. This can be simply fixed by e.g. converting y to a Float64. If
the type can always be inferred throughout the code, the code is said to be “type
stable”.
The second point is memory allocation. Especially at the beginning of writing j u l i a

code, it can happen that many temporary arrays or matrices are allocated. Memory
allocation itself and its resulting garbage collection often act as bottlenecks. The
function

function E(rho::Matrix{ComplexF64}, O::Matrix{ComplexF64})
return tr(rho*O)

end

simply returns a quantum mechanical expectation value of an observable. The bottle-
neck is the matrix multiplication *(Matrix{ComplexF64}, Matrix{ComplexF64}),
since it allocates an intermediate Matrix. This can be fixed by passing a preallo-
cated buffer, temp in this case, to the function, in which the result of the matrix
multiplication can be saved.

function E(rho::Matrix{ComplexF64}, O::Matrix{ComplexF64},
temp::Matrix{ComplexF64})

mul!(temp, rho, O)
return tr(temp)

end

The function mul! is the in-place version of the function *, which mutates the first
argument. As a result, the function E produces zero allocations and is therefore
optimized. This is a tremendous performance improvement if this function is looped
over hundreds or thousands of times, which in fact happens in this algorithm.
The third keypoint is the correct choice of implementations for matrix multiplication.
Since most of the runtime is spent on matrix multiplication of dense and complex

16



3.2 Numerical integration method

matrices, scaling cubically with the Hilbert space dimension, it is crucial to choose
the best implementation for the matrix multiplication, which are the routines
of openBLAS[49, 50] in this work. openBLAS is a package, mainly written in
Fortran and optimized over decades, offering highly optimized matrix and vector
operations.

3.2 Numerical integration method

The cornerstone of the algorithm is the cost function. As stated in Section 2.6, the
cost function boils down to the mean value of a continuous function, i.e., an integral
over time. Since the optimizer calls the cost function, depending on the problem
size, tens up to thousands of times, it is naturally important to obtain the most
efficient evaluation of the integral. The previously mentioned general considerations
in Section 3.1 ensure that the integrand 𝑐(𝒈, 𝑡) is efficiently evaluated at one time
point 𝑡.
The next challenge is to evaluate the integral as quickly and accurately as possible.
Thus, a numerical integration technique, which needs as few as possible evaluations
of the integrand to converge, is required. At the beginning of the work, the right
point rule was used to determine the cost function as in Equation (2.11). The reason
behind is that, in Reference [25], it was stated, as already pointed out in Section 2.6,
that the cost function is evaluated at a few arbitrary time points. Thus, the first
idea was to conveniently sample at a few equidistant time points. With that method,
no convergence regarding the optimal parameters 𝒈opt could have been achieved in
an adequate computation time. Over time, the idea emerged to interpret the cost
function as an integral and up until that point, one of the worst integration methods
was chosen with the right point rule for Riemann sums, which converges linearly
with the number evaluation points. A better approach is to use the midpoint rule,
which converges quadratically with the number of evaluation points [24]. Since
the midpoint rule, like the right point rule, is a rectangular integration method,
it will be used for future benchmarks for comparing different integration methods.
Especially since the integrand 𝑐(𝒈, 𝑡) is an oscillatory function, as illustrated in
Figure 3.1, a better approach is needed for maximum performance. Additionally,
the integrand changes with each new parameters 𝒈, and thus, the integral can be
seen as a blackbox, which is why an adaptive or iterative integration method with a
good error estimation scheme is required. The best method for the integrand 𝑐(𝒈, 𝑡),
as it turns out, is the Tanh-sinh quadrature, which is one quadrature formula of a
whole family, the Double Exponential Formulas[46] (DE Formulas).
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Figure 3.1: Integrand 𝑐(𝒈, 𝑡) for the TFIM with 𝛤 = 1, the Ansatz 𝐻̂BW
A , 𝑁 = 10,

𝑁𝐴 = 5 and OBC for (a) 𝒈 = (1 2 3 4 5)𝑇 and (b) 𝒈 = (4 3 2 3 4)𝑇.

Starting from an integral over the interval [−1, 1]

𝐼 = ∫
1

−1
𝑓(𝑥) d𝑥,

the DE Formulas utilize a variable transformation 𝑥 = 𝛷(𝑢) mapping the boundaries
to infinity, i.e., 𝜙(−∞) = −1 and 𝜙(∞) = 1. That is, the integral reads

𝐼 = ∫
∞

−∞
𝑓(𝛷(𝑢))𝛷′(𝑢) d𝑢. (3.1)

Applying the trapezoidal rule with a step size ℎ to Equation (3.1) yields

𝐼ℎ = ℎ
∞

∑
𝑗=−∞

𝑓(𝛷(𝑗ℎ))𝛷′(𝑗ℎ)

with the abscissae 𝑥𝑗 = 𝛷(𝑗ℎ) and weights 𝑤𝑗 = 𝛷′(𝑗ℎ). To be able to compute the
integrand with a computer, the sum needs to truncated, which gives

𝐼𝑀
ℎ = ℎ

𝑀
∑

𝑗=−𝑀
𝑓(𝛷(𝑗ℎ))𝛷′(𝑗ℎ).

The error ∆𝐼𝑀
ℎ stems from the error 𝐸𝐷 = 𝐼 − 𝐼ℎ due to the discretization and the

error 𝐸𝑇 = 𝐼ℎ − 𝐼𝑀
ℎ caused by truncation of the infinite sum [36]. The best balance

between the discretization error 𝐸𝐷 and the truncation error 𝐸𝑇 is achieved by a
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variable transformation 𝑥 = 𝛷(𝑢), for which the integrand has a double exponential
decay [36, 46]

𝑓(𝛷(𝑢))𝛷′(𝑢) ≈ e− 𝜋
2 e|𝑢| , 𝑢 → ±∞,

giving the DE Formulas their name. The double exponential decay is achieved by
the variable transformation

𝛷(𝑢) = tanh (𝜋
2

sinh(𝑢)) , (3.2)

caused by the derivative decaying as

𝛷′(𝑢) ≈ e− 𝜋
2 e|𝑢| , 𝑢 → ±∞.

The specific variable transformation (3.2) gives the Tanh-sinh quadrature its name.
The total error is roughly estimated as

∣𝐼 − 𝐼𝑀
ℎ ∣ ≈ e−𝐶 𝑀

log(𝑀)

with some 𝐶 > 0 [36]. For the implementation of the Tanh-sinh quadrature, parts
of the package DoubleExponentialFormulas.jl[37] are used and then fit to the
purpose of this work. It estimates the integral iteratively at a level 𝑛 (maximum
of 12 levels used) with a step size ℎ𝑛 = ℎ0/2𝑛 beginning with ℎ0 = 1. After each
iteration the error is estimated and checks whether the desired accuracy is achieved.
If the desired accuracy has been reached, the integration is stopped and continued
with the next level otherwise. This requires a good error estimation, which is not
given in the package and was added manually, to get trustworthy results. For that,
the heuristic error estimation scheme from Reference [1] is used and the following
information is taken from it. The approximated integral at level 𝑘 up to level 𝑛 is
denoted as 𝑆𝑘 and the estimated error 𝐸𝑛 at level 𝑛 then is one if 𝑛 ≤ 2, zero if
𝑆𝑛 = 𝑆𝑛−1 and 10𝑑 otherwise, where 𝑑 = max (𝑑2

1/𝑑2, 2𝑑1, 𝑑3, 𝑑4). The quantities
𝑑𝑖 are given by

𝑑1 = log10 |𝑆𝑛 − 𝑆𝑛−1|
𝑑2 = log10 |𝑆𝑛 − 𝑆𝑛−2|
𝑑3 = log10(𝜖 ⋅ max

𝑗
|𝑤𝑗𝑓(𝑥𝑗)|)

𝑑4 = log10 max(|𝑤𝑙𝑓(𝑥𝑙)|, |𝑤𝑟𝑓(𝑥𝑟)|)

with 𝜖 = 10−𝑝 and 𝑝 as the precision in digits. For this work, 𝑝 = 15 holds. Here, 𝑥𝑙
and 𝑥𝑟 are the closest abscissae to the left and right endpoint, respectively. The term
𝑑2

1/𝑑2 is a multiplicative projection based on the differences between the result at the
current level 𝑛 and the past two levels. The fact that the optimal convergence rate
achievable is quadratic, motivates 2𝑑1. That means that the number of correct digits
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can never be more than double the previous level. The quantity 𝑑3 is motivated by
the fact that the error cannot be less than the current precision 𝜖 times the largest
product of abscissae and weights. The fourth term, 𝑑4, accounts for the truncation.
For this work, this error estimation scheme is slightly modified. The logarithm in
the definitions of the quantities 𝑑𝑖 is dismissed, e.g. 𝑑1 = |𝑆𝑛 − 𝑆𝑛−1| is used instead
𝑑1 = log10 |𝑆𝑛 − 𝑆𝑛−1|. The estimated error then reads 𝐸𝑛 = 𝑑. No problems have
been observed with the modified error estimation scheme so far, which will be backed
up in the benchmarks section (Section 4.4). In order to stop the integration, the
relative error needs to be less than

√
𝜖, where 𝜖 = 2.220 446 049 250 313 ⋅ 10−16 as

the machine epsilon for double precision. That is, 𝐸𝑛 ≤ 𝑆𝑛
√

𝜖 must hold.

3.3 Gradient

Since the used optimizer is a gradient-based optimizer, the gradient of the cost
function in respect to the variational parameters 𝒈 is required. Differentiating the
cost function as in Equation 2.12 in respect to a parameter 𝑔𝑘 yields

∂
∂𝑔𝑘

𝐶(𝒈) = 1
𝑇max

∫
𝑇max

0

1
𝑁𝑂

𝑁𝑂

∑
𝑗=1

∂
∂𝑔𝑘

(⟨ ̂𝒪A
𝑗 ⟩𝑡 − ⟨ ̂𝒪A

𝑗 ⟩0⏟⏟⏟⏟⏟⏟⏟
≔𝛿𝑗(𝑡)

)
2

d𝑡

= 2
𝑇max

∫
𝑇max

0

1
𝑁𝑂

𝑁𝑂

∑
𝑗=1

( ∂
∂𝑔𝑘

⟨ ̂𝒪A
𝑗 ⟩𝑡) 𝛿𝑗(𝑡) d𝑡.

Thus, the derivative of the expectation value of the time evolved observables is
needed, which, using the product rule, is given by

∂
∂𝑔𝑘

⟨ ̂𝒪A
𝑗 ⟩𝑡 = ∂

∂𝑔𝑘
TrA [ ̂𝒪A

𝑗
̂𝑈A(𝒈, 𝑡) ̂𝜌A

̂𝑈†
A(𝒈, 𝑡)]

= TrA [ ̂𝒪A
𝑗 ( ∂

∂𝑔𝑘
̂𝑈A(𝒈, 𝑡)) ̂𝜌A

̂𝑈†
A(𝒈, 𝑡) + ̂𝒪A

𝑗
̂𝑈A(𝒈, 𝑡) ̂𝜌A

∂
∂𝑔𝑘

̂𝑈†
A(𝒈, 𝑡)] . (3.3)

That is, the derivative of the time evolution operator is required, which is not
trivial, since the variational Ansatz in the exponent and its derivative with respect
to the variational parameters do not commute. As a result, the chain rule can
not be applied. As an alternative, finite differences could be used. However, its
computation cost scales as 2𝑁P. Above all, this performs extremely poorly for a
large number of parameters and is not very accurate. The solution to this problem
is the Fréchet derivative.
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3.3 Gradient

3.3.1 Fréchet derivative

The Fréchet derivative is an expression stemming from matrix calculus, which
can be seen as a generalization of scalar and vector calculus (scalar derivatives,
gradients, etc...) to matrices. It is of great importance in e.g. machine learning,
where cost functions of matrix functions often appear and thus, to make use of
gradient-based optimizers, the derivatives of matrix functions are needed. In this
work, the underlying matrix function is the time evolution operator ̂𝑈A, a matrix
exponential, with the variational Anatz as an input. The Fréchet derivative is
formally introduced as the derivative of a matrix function 𝑓 ∶ ℂ𝑛×𝑛 → ℂ𝑛×𝑛 at a
point 𝑋 ∈ ℂ𝑛×𝑛 as a linear mapping

ℂ𝑛×𝑛
ℒ𝑓
−→ ℂ𝑛×𝑛

𝐸 ⟼ ℒ𝑓(𝑋, 𝐸)

s.t. for all 𝐸 ∈ ℂ𝑛×𝑛 [18]

𝑓(𝑋 + 𝐸) − 𝑓(𝑋) − ℒ𝑓(𝑋, 𝐸) = 𝑜(||𝐸||).

That reads, the Fréchet derivative ℒ(𝑋, 𝐸) of 𝑓 at point 𝑋 in the direction of or
acting on 𝐸. The expression ℎ = 𝑜(||𝐸||) means that ||ℎ||/||𝐸|| → 0 as ||𝐸|| → 0 [18].
The usual sum or product rule is still valid. For a good overview of rules for the
Fréchet derivative, the reader is referred to Reference [34]. Another, less formal,
way of thinking is to interpret the Fréchet derivative as a linear operator stemming
from the derivative as a linearization

𝑑𝑓(𝑋) = 𝑓(𝑋 + d𝑋) − 𝑓(𝑋) = ℒ𝑓(𝑋, 𝑑𝑋) + 𝒪(d𝑋2),

dropping higher order terms beyond d𝑋 [22]. The Fréchet derivative of 𝑓(𝑋) = 𝑋2

is then obtained via the product rule

d𝑓(𝑋) = d𝑋2 = d𝑋𝑋 + 𝑋 d𝑋 = ℒ𝑋2(𝑋, 𝑑𝑋).

Generalizing it to the 𝑛-th power yields

d𝑋𝑛 =
𝑛−1
∑
𝑙=0

𝑋𝑙 d𝑋𝑋𝑛−𝑙−1 = ℒ𝑋𝑛(𝑋, 𝑑𝑋).

Applying it to the matrix exponential by expanding it into a power series gives

de𝑋 =
∞

∑
𝑛=0

1
𝑛!

d𝑋𝑛 =
∞

∑
𝑛=0

1
𝑛!

𝑛−1
∑
𝑙=0

𝑋𝑙 d𝑋𝑋𝑛−𝑙−1 = ℒe𝑋(𝑋, 𝑑𝑋).
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3 Implementation and runtime optimization

Finally, the partial derivative of the time evolution operator ̂𝑈A(𝒈, 𝑡) = exp(−i𝐻̂Var
A (𝒈)𝑡)

in respect to the parameters 𝒈 reads

∂
∂𝑔𝑘

̂𝑈A =
∞

∑
𝑛=0

1
𝑛!

(−i𝑡)𝑛 ∂
∂𝑔𝑘

(𝐻̂Var
A )𝑛 (3.4)

=
∞

∑
𝑛=0

1
𝑛!

(−i𝑡)𝑛
𝑛−1
∑
𝑙=0

(𝐻̂Var
A )𝑙 ( ∂

∂𝑔𝑘
𝐻̂Var

A ) (𝐻̂Var
A )𝑛−𝑙−1

= −i𝑡
∞

∑
𝑛=0

1
𝑛!

𝑛−1
∑
𝑙=0

(−i𝑡𝐻̂Var
A )𝑙 ( ∂

∂𝑔𝑘
𝐻̂Var

A ) (−i𝑡𝐻̂Var
A )𝑛−𝑙−1 (3.5)

= −i𝑡ℒe𝑋 (−i𝑡𝐻̂Var
A , ∂

∂𝑔𝑘
𝐻̂Var

A ) . (3.6)

That is, the Fréchet derivative of the matrix exponential at −i𝑡𝐻̂Var
A in the direction

of ∂/∂𝑔𝑘𝐻̂Var
A needs to be computed. The partial derivative of the variational Ansatz

is rather trivial
∂

∂𝑔𝑘
𝐻̂Var

A = ∂
∂𝑔𝑘

∑
𝑖

𝑔𝑖ℎ̂𝑖 = ℎ̂𝑘.

Now, of course, the challenge is to compute the Fréchet derivative. However, there
are exact formulas involving exponentiation of an augmented block triangular matrix
(see Reference [35]), where the augmented vector space is double in size. An even
more enlarged vector space is needed for the method presented in Reference [47]. The
most efficient algorithm, for this purpose, is the algorithm presented in Reference
[35], utilizing the Padé approximation with the scaling and squaring method s.t. the
computation is performed directly on the original vector space, without enlargement
of matrices. For that, the implementation of the package ChainRules.jl[6] is
used.

3.3.2 Gradient in a Forward mode fashion

After having written down the partial derivative of the time evolution operator in
respect to the parameters in Equation (3.6) in terms of the Fréchet derivative, a
final expression for the gradient of the expectation value (Equation (3.3)) can be
found. One last preparation still needs to be done, namely finding the derivative of
the adjoint of the time evolution operator, which is read off as

∂
∂𝑔𝑘

̂𝑈†
A = i𝑡ℒ†

e𝑋 (−i𝑡𝐻̂Var
A , ℎ̂𝑘) . (3.7)
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3.3 Gradient

Inserting both derivatives into Equation (3.3) yields

∂
∂𝑔𝑘

⟨ ̂𝒪A
𝑗 ⟩𝑡 = − i𝑡 TrA [ ̂𝒪A

𝑗 ℒe𝑋 (−i𝑡𝐻̂Var
A , ℎ̂𝑘) ̂𝜌A

̂𝑈†
A]

+ i𝑡 TrA [ ̂𝒪A
𝑗

̂𝑈A ̂𝜌Aℒ†
e𝑋 (−i𝑡𝐻̂Var

A , ℎ̂𝑘)]

= − i𝑡 TrA [ℒe𝑋 (−i𝑡𝐻̂Var
A , ℎ̂𝑘) ̂𝜌A

̂𝑈†
A

̂𝒪A
𝑗 ]

+ i𝑡 Tr∗
A [ℒe𝑋 (−i𝑡𝐻̂Var

A , ℎ̂𝑘) ̂𝜌A
̂𝑈†
A

̂𝒪A
𝑗 ]

=2𝑡 Im {TrA [ℒe𝑋 (−i𝑡𝐻̂Var
A , ℎ̂𝑘) ̂𝜌A

̂𝑈†
A

̂𝒪A
𝑗 ]} , (3.8)

where from line one and two to line three and four, the hermicity of ̂𝜌A and ̂𝒪A
𝑗 ,

the cyclic invariance of the trace and TrA [𝑋] = Tr∗
A [𝑋†] for some square matrix 𝑋

were used. The expressions Tr∗
A and Im {𝑥} denote the complex conjugate of the

trace and the imaginary part of some complex number 𝑥, respectively. Finally, an
expression for the derivative of the expectation value is found. However, the formula
obtained in Equation (3.8) corresponds to a “Forward mode fashion”, since for each
parameter, the Fréchet derivative needs to be computed, and thus, the runtime
will scale strongly linearly with the number of parameters. Again, especially for a
large number of parameters, this is not efficient enough. Since the gradient of a
scalar cost function is sought and the input (the parameters 𝒈) is a vector, the most
efficient approach is a “Reverse mode fashion”.

3.3.3 Gradient in a Reverse mode fashion

Expanding the Fréchet derivative in Equation (3.8) yields

∂
∂𝑔𝑘

⟨ ̂𝒪A
𝑗 ⟩𝑡 = 2𝑡

∞
∑
𝑛=0

1
𝑛!

𝑛−1
∑
𝑙=0

Im {TrA [(−i𝑡𝐻̂Var
A )𝑙ℎ̂𝑘(−i𝑡𝐻̂Var

A )𝑛−𝑙−1 ̂𝜌A
̂𝑈†
A

̂𝒪A
𝑗 ]} .

Now, the trick is to use the cyclic invariance of the trace

∂
∂𝑔𝑘

⟨ ̂𝒪A
𝑗 ⟩𝑡 = 2𝑡

∞
∑
𝑛=0

1
𝑛!

𝑛−1
∑
𝑙=0

Im {TrA [(−i𝑡𝐻̂Var
A )𝑛−𝑙−1 ̂𝜌A

̂𝑈†
A

̂𝒪A
𝑗 (−i𝑡𝐻̂Var

A )𝑙ℎ̂𝑘]}

= 2𝑡 Im {TrA [ℒe𝑋 (−i𝑡𝐻̂Var
A , ̂𝜌A

̂𝑈†
A

̂𝒪A
𝑗 ) ℎ̂𝑘]} .

That is, a Fréchet derivative needs to be computed only one time, namely at the point
−i𝑡𝐻̂Var

A in the direction of ̂𝜌A
̂𝑈†
A

̂𝒪A
𝑗 , independently of the number of parameters.

Still, for each parameter, one additional matrix multiplication and one additional
trace needs to be computed, s.t. the computation time still scales linearly with the
number of parameters. However, in comparison to the Forward mode approach,
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3 Implementation and runtime optimization

the runtime scales very weakly linearly. Summing up every intermediate result, the
complete 𝑘-th entry of the gradient of the cost function reads

∂
∂𝑔𝑘

𝐶(𝒈)

= 4
𝑇max

∫
𝑇max

0

𝑡
𝑁𝑂

𝑁𝑂

∑
𝑗=1

Im {TrA [ℒe𝑋 (−i𝑡𝐻̂Var
A , ̂𝜌A

̂𝑈†
A

̂𝒪A
𝑗 ) ℎ̂𝑘]} 𝛿𝑗(𝑡) d𝑡

= 4
𝑇max𝑁𝑂

∫
𝑇max

0
𝑡 Im {TrA [ℒe𝑋 (−i𝑡𝐻̂Var

A , ̂𝜌A
̂𝑈†
A

̂𝛯A) ℎ̂𝑘]} d𝑡,

where ̂𝛯A = ∑𝑁𝑂
𝑗=1

̂𝒪A
𝑗 𝛿𝑗(𝑡), which can be used, because the Fréchet derivative is

linear in ̂𝒪A
𝑗 , resulting in only one computation of the Fréchet derivative for all

observables instead of one computation for each observable. Finally, the most efficient
approach is found. Its runtime is almost independent of the number of observables
and parameters (it scales very weakly linearly with the number of observables and
parameters, to be exact). Additionally, it does not need any augmented vector
space s.t. everything is limited to the original Hilbert space and all intermediate
calculations, e.g. 𝛿𝑗(𝑡) for all 𝑗, from the cost function can be reused.
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4 Results: Convergence

This chapter provides detailed information about the convergence of the results. It
will be investigated whether it is enough to sample the integrand at a few arbitrary
time points and how strong the influence of the maximum observation time 𝑇max is.
The convergence properties will be demonstrated with the TFIM and both Ansätze,
𝐻̂BW

A and 𝐻̂BWV
A . In the following, only the ratios of parameters will be compared,

since the algorithm does not determine the scale of the optimal parameters (see
Section 2.5). Additionally, benchmarks are included, suggesting that the numerical
methods used are the best for this algorithm.

4.1 Cost function and convergence of the midpoint rule for
the BW-like Ansatz

This section provides an understanding of the cost function and proves that it is not
sufficient to monitor the observables at a few arbitrary time points if the variational
Ansatz cannot reconstruct the exact EH accurately, by using the midpoint rule with
a gradually decreasing time step size ∆𝑡. Throughout this section, the TFIM is
used with 𝑁 = 8, 𝑁A = 4, 𝛤 = 1, OBC and the variational Ansatz 𝐻̂BW

A .
Figure 4.1 shows the behaviour of the cost function in the parameter space around
one minimum in the different directions by plotting 𝒞𝑖 ≔ 𝒞(𝒈opt + 𝜀e𝑖) vs. 𝜀, where
e𝑖 is the unit vector in the 𝑖-th direction in the parameter space. The cost function
was minimized using the Tanh-sinh quadrature. A maximum time of 𝑇max = 20 was
used for both, the minimization and the plots of the cost function landscape. The
cost function shows significant oscillations for a higher time step size of ∆𝑡 = 2,
which vanish as the time step size decreases. At ∆𝑡 = 0.01 the oscillations seem to
be completely disappeared and the landscape looks like the landscape obtained with
the Tanh-sinh quadrature. This could lead to the assumption that the cost function
is converged for ∆𝑡 = 0.01. Additionally, the convexity of the cost function in the
neighbourhood of the obtained minimum is mentionable. Of course, the depicted
landscapes in Figure 4.1 are only slices in a high dimensional parameter space and
statements about the form of the landscape must be made with caution. However,
the landscape was plotted for multiple random points and even 3d-plots were made.
Neither strong oscillations nor discontinuities have been observed. These additional
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Figure 4.1: Slices of the cost function landscape 𝒞𝑖 = 𝒞(𝒈opt + 𝜀e𝑖) in the 𝑖-th
direction of the parameter space around a minimum at 𝒈opt for the Tanh-sinh
quadrature and the midpoint rule with different ∆𝑡. The variable 𝜀 controls how
far the landscape is sampled. The cost function was minimized with the Tanh-sinh
quadrature with 𝑇max = 20, which is also used for the plots.

plots are omitted for brevity. It is important to note that the minimum of the cost
function is significantly greater than zero, namely in the vicinity of 2 ⋅ 10−5. Thus
the variational Ansatz is not good enough.
The target values are the optimal variational parameters 𝒈opt, which is why the
convergence can and should be checked in detail via the optimal parameters. Figure
4.2 shows the optimal parameters 𝒈opt normalized to the first parameter 𝑔opt

1 vs. ∆𝑡,
which were obtained by minimizing the cost function for each ∆𝑡 with 𝑇max = 1. The
first parameter is not displayed, since 𝑔opt

1 /𝑔opt
1 = 1. For ∆𝑡 ≥ 0.2, the parameters

show sudden jumps (Figure 4.2(a)) and seem to have converged for ∆𝑡 ≈ 0.1
and smaller. However, zooming in (see Figure 4.2(b),(c) and (d)) shows that the
parameters still steadily increase even for very small ∆𝑡 and all parameters exhibit
the same behaviour. Table 4.1 contains the normalized optimal parameters 𝒈opt/𝑔opt

1
rounded to 15 decimal places obtained via the Tanh-sinh quadrature and the midpoint
rule with different ∆𝑡, again with 𝑇max = 1. As already shown in Figure 4.2 it can
be seen that the optimal parameters obtained with the midpoint rule approach the
optimal parameters calculated with the Tanh-sinh quadrature asymptotically from
below as the time step size ∆𝑡 decreases, except for ∆𝑡 = 10−6, where the ratios
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Figure 4.2: Normalized optimal parameters 𝒈opt/𝑔opt
1 vs. time step size ∆𝑡 for

the midpoint rule over the interval of (a) ∆𝑡 ∈ [2/3, 10−5]. (b),(c) and (d) show
the normalized optimal parameters 𝑔opt

2 /𝑔opt
1 , 𝑔opt

3 /𝑔opt
1 and 𝑔opt

4 /𝑔opt
1 , respectively, for

∆𝑡 ∈ [10−5, ≈ 0.11]. The minimizer was run for each ∆𝑡 with the midpoint rule
and 𝑇max = 1 to obtain 𝒈opt.

Table 4.1: Normalized optimal parameters 𝒈opt/𝑔opt
1 obtained with the midpoint

rule with different ∆𝑡 and the Tanh-sinh quadrature, both with 𝑇max = 1, rounded
to 15 decimal places. The convergence criterium was set to ∇tol = 9 ⋅ 10−17.

method 𝑔opt
2 /𝑔opt

1 𝑔opt
3 /𝑔opt

1 𝑔opt
4 /𝑔opt

1

∆𝑡 = 10−1 3.824 039 596 426 903 5.608 777 483 165 399 5.921 893 959 511 652
∆𝑡 = 10−2 3.835 351 726 582 212 5.632 970 094 804 400 5.941 793 208 331 469
∆𝑡 = 10−3 3.835 421 398 526 617 5.633 117 585 461 839 5.941 909 050 130 465
∆𝑡 = 10−4 3.835 422 093 758 030 5.633 119 057 108 413 5.941 910 205 524 904
∆𝑡 = 10−5 3.835 422 100 710 176 5.633 119 071 824 524 5.941 910 217 078 521
∆𝑡 = 10−6 3.835 422 100 781 501 5.633 119 071 974 829 5.941 910 217 197 190
Tanh-sinh 3.835 422 100 780 429 5.633 119 071 973 224 5.941 910 217 195 280
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4 Results: Convergence

are actually larger than the ratios obtained with the Tanh-sinh quadrature. Table
4.1 shows remarkable results, because for ∆𝑡 = 10−2 the integrand is evaluated 100
times but only two decimal places match the results of the Tanh-sinh quadrature,
while for ∆𝑡 = 10−6 eleven decimal places are in agreement with the Tanh-sinh
quadrature but the integrand is evaluated at 100000 time points. The Tanh-sinh
quadrature shows more efficiency, since it evaluates the integrand only 101 times at
the minimum of the cost function but seems to give very accurate results already.

These remarkable results demonstrate that, to get accurate results for an Ansatz,
which does not reconstruct the exact EH accurately, it is not sufficient to monitor
the observables at a few arbitrary time points and underline the statements in
Section 2.6 that the cost function should not be treated as a discrete sum over
a few time points but rather as an integral over the time domain. The fact that
the ratios obtained with ∆𝑡 = 10−6 are larger than the ratios obtained with the
Tanh-sinh quadrature implies that the midpoint rule overshoots the correct results
with ∆𝑡 = 10−6 or the Tanh-sinh quadrature only delivers an accuracy up to eleven
decimal points in this case. To verify this, the evaluation points for the Tanh-sinh
quadrature were increased multiple times, but the first thirteen decimal places did
not change. A benchmark for the accuracy of the Tanh-sinh quadrature is given
in Section 4.4. Thus, the midpoint rule probably overestimates the optimal ratios
𝒈opt/𝑔opt

1 with ∆𝑡 = 10−6.

4.2 Influence of the maximum observation time for the
BW-like Ansatz

This section will show that no convergence of the parameters in regard to 𝑇max can
be achieved if the variational Ansatz is not accurate enough. For this purpose, the
TFIM with 𝑁 = 8, 𝑁A = 4, 𝛤 = 1, OBC and the variational Ansatz 𝐻̂BW

A is used.
Figure 4.3(a) shows the optimal parameters if 𝑇max is varied. Here, for each 𝑇max a
minimization run was done. Each consecutive run was initialized with the optimal
parameters from the previous run with the previous (higher) 𝑇max. The optimal
parameters clearly exhibit a 1/𝑇max dependence. However, the normalized parameters,
𝑔opt

𝑖 /𝑔opt
1 , are constant for all 𝑇max up to 𝑇max ≈ 45.47 (Figure 4.4(b)). Up until the

aforementioned 𝑇max, the fluctuations in the normalized optimal parameters 𝑔opt
𝑖 /𝑔opt

1

are in the vicinity of 10−12. After 𝑇max ≈ 45.47 (shaded region in Figure 4.5(b)), the
normalized optimal parameters show significantly higher fluctuations, which accounts
to the loss of accuracy in the integration. This tendency can be observed in the cost
function 𝒞(𝒈opt) at its minimum as well (Figure 4.4). Like for the ratios 𝑔opt

𝑖 /𝑔opt
1 ,

the fluctuations of 𝒞(𝒈opt) are in the vicinity of 10−12 before 𝑇max ≈ 45.47, after
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Figure 4.3: (a) Optimal parameters 𝒈opt for each 𝑇max. (b) Optimal parameters
normalized to 𝑔opt

1 . The grey region indicates that the integral is not evaluated
accurately enough for the corresponding maximum integration times 𝑇max.
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4 Results: Convergence

which (shaded region in Figure 4.4), the cost function shows larger fluctuations, too.
Figure 4.5(a) and (b) give an impression how the integrand looks for 𝑇max ≈ 45.47
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Figure 4.5: Integrand 𝑐(𝒈opt, 𝑡) for (a) 𝑇max ≈ 45.47 and (b) 𝑇max = 103 at the
obtained minimum 𝒈opt of the cost function.

and 𝑇max = 103, respectively. For 𝑇max ≈ 45.47 the integrand already exhibits a
large amount of oscillations. However, for 𝑇max = 103, integrating the integrand
seems almost hopeless if it needs to be done in an appropriate computation time.
Now the open question is, how the algorithm and the integrand behave if the
minimization run is initialized with different initial parameters. First of all, it is
important to understand the ∝ 1/𝑇max dependence of the optimal parameters (see
Figure 4.3) in the case of initialization with the optimal parameters of the previous
run. Table 4.2 shows these optimal parameters for a few 𝑇max, which will be
referred to as the higher optimal parameters, 𝒈opt,h , in this section. There, the
same tendency shows up, namely that the higher 𝑇max is, the smaller 𝒈opt,h is. Now,
to understand the ∝ 1/𝑇max dependence and how this translates into the integrand,
Figure 4.6 displays the integrand for these higher optimal parameters 𝒈opt,h with its
corresponding 𝑇max. It becomes apparent that the form of integrand looks exactly
the same, independent of 𝑇max, and it is only stretched if 𝑇max is higher. If the
higher optimal parameters 𝒈opt,h in Table 4.2 are uniformly scaled by a factor and
used as initial parameters for new minimization runs for each 𝑇max, the optimal
parameters are expected to be lower and the integrand is expected to look different
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4.2 Influence of the maximum observation time for the BW-like Ansatz

Table 4.2: Higher optimal parameters 𝒈opt,h for each 𝑇max rounded to three
decimal places, displayed in Figure 4.3, where each run was initialized with the
optimal parameters from the previous run.

𝑇max 𝑔opt,h
1 𝑔opt,h

2 𝑔opt,h
3 𝑔opt,h

4

0.1 38.603 111.311 150.077 156.644
1 3.860 11.131 15.008 15.664

10 0.386 1.113 1.501 1.566
40 0.097 0.278 0.375 0.392
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Figure 4.6: Integrand 𝑐(𝒈opt,h, 𝑡) for higher initial parameters for (a) 𝑇max = 0.1,
(b) 𝑇max = 1, (c) 𝑇max = 10 and (d) 𝑇max = 40. The orange line is the cost
function value 𝒞(𝒈opt,h) at the obtained minimum 𝒈opt,h , i.e., the mean value of
the integrand over the interval 𝑡 ∈ [0, 𝑇max].
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4 Results: Convergence

as well. Table 4.3 shows the optimal parameters 𝒈opt,l, which will be referred to as
the lower optimal parameters. These are obtained by initializing new minimization
runs with the higher optimal parameters 𝒈opt,h, shown in Table 4.3, uniformly scaled
by a factor 10−1, i.e. 𝒈init,l = 10−1𝒈opt,h, where 𝒈init,l are the initial parameters. Still,

Table 4.3: Optimal parameters 𝒈opt,l for each 𝑇max rounded to three decimal
places, where each run was initialized with the higher optimal parameters 𝒈init, h

from Table 4.2 scaled uniformly by a factor 10−1 , i.e. 𝒈init,l = 10−1𝒈opt,h.

𝑇max 𝑔opt,l
1 𝑔opt,l

2 𝑔opt,l
3 𝑔opt,l

4

0.1 4.188 16.063 23.592 24.885
1 0.419 1.606 2.359 2.488

10 0.042 0.161 0.236 0.249
40 0.010 0.040 0.059 0.062

the form of the integrand should look exactly the same for all 𝑇max but differs from
the form of integrand for 𝒈opt,h. And this is exactly what happens, as depicted in
Figure 4.7.
If the variational Ansatz is not good enough, dynamics still happen even at the
minimum, and thus, as seen previously in this section, 𝑇max has an influence on the
found solution. If a run with a slightly lower maximum observation time, call it

̄𝑇max, is initialized with the optimal parameters 𝒈opt from the previous run with a
𝑇max = 𝛾 ̄𝑇max, where 𝛾 is bigger than but almost one, the optimizer finds a solution

̄𝒈opt = 𝛾𝒈opt, where the same dynamics happen, but just over a smaller time scale. In
terms of the EH, the relation 𝐻̂Var

A ( ̄𝒈opt) = 𝐻̂Var
A (𝛾𝒈opt) = 𝛾 ∑𝑖 𝑔opt

𝑖 ℎ̂𝑖 = 𝛾𝐻̂Var
A (𝒈)

then holds. That is, the energy scale (strictly speaking, it is an “entanglement
energy scale”, since the eigenvalues of the EH build the ES) is slightly higher by
a factor 𝛾 but the form of the EH is the same, which is why the same dynamics
happen, but just faster, which is monitored over a smaller time scale ̄𝑇max. The
same behaviour can be observed if a consecutive run with ̄𝑇max = 𝑇max/𝛾 is initialized
with the parameters 𝛾𝒈opt, where 𝒈opt is a solution from a run with 𝑇max (see Figure
4.7 and 4.6, and Table 4.3 and 4.2). Here, 𝛾 does not necessarily need to be slightly
smaller or bigger than one but can take any arbitrary positive value.
The optimal parameters, their ratios to be exact, appear to have converged according
to Figure 4.3(b). However, there is still a bias in those results, namely that each
consecutive run was initialized with the optimal parameters from the previous run.
The ratios from the higher parameters 𝒈opt,h and lower parameters 𝒈opt,l differ. For
example in the case of 𝑇max = 1, 𝑔opt,h

5 /𝑔opt,h
1 ≈ 4.058 and 𝑔opt,l

5 /𝑔opt,l
1 ≈ 5.938 hold.

That is, two runs with significantly different initial parameters but the same 𝑇max
yield different ratios of the optimal parameters, which would hint to no convergence
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Figure 4.7: Integrand 𝑐(𝒈opt,l, 𝑡) for lower initial parameters for (a) 𝑇max = 0.1,
(b) 𝑇max = 1, (c) 𝑇max = 10 and (d) 𝑇max = 40. The orange line is the cost
function value 𝒞(𝒈opt,l) at the obtained minimum 𝒈opt,l , i.e., the mean value of
the integrand over the interval 𝑡 ∈ [0, 𝑇max].

of the optimal parameters. To check this, Figure 4.8 shows the ratios of the optimal
parameter vs. 𝑇max. Here, each run was initialized with the same initial parameters,
𝒈opt,h for 𝑇max = 1 from table 4.2. It can be seen that the optimal parameters exhibit
oscillations and are not converged for the displayed 𝑇max. The parameters are not
expected to converge, since dynamics are always present if the variational Ansatz
cannot capture the exact EH. Figure 4.9 shows the minimum of the cost function
for each run. It clearly underlines the statement that the optimal parameters are
not converged.
To conclude, 𝑇max will always have an influence on the optimal parameters s.t. no
convergence will be reached if the Ansatz is not an accurate representation of the
true EH.
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34



4.3 Convergence properties of the BW-violating Ansatz

4.3 Convergence properties of the BW-violating Ansatz

The previous discussions on convergence were made with the BW-violating Ansatz
𝐻̂BW

A , where minimum of the cost function value is finite. This section deals with
the convergence properties if a proper Ansatz is chosen, where the cost function is
numerically zero at its minimum. For this section, the TFIM with 𝑁 = 8, 𝑁A = 4,
OBC, 𝛤 = 1 and the Ansatz 𝐻̂BWV

A is chosen.
The first study concerns the number of observation times, where each run uses
the midpoint rule with different time steps ∆𝑡. Here, 𝑇max = 1 and the initial
parameters 𝒈init = (3 5 8 10 12 14 15)𝑇 as a good initial guess were used for all runs.
It is important to note that the index 𝑖 of a parameter 𝑔𝑖 is not directly related to
the 𝑖-th lattice site for the Ansatz 𝐻̂BWV

A . Table 4.4 shows the optimal parameters

Table 4.4: Optimal parameters normalized to 𝛤 opt
1 for the Ansatz 𝐻̂BWV

A and its
corresponding minimum of the cost function for different time steps ∆𝑡 for the
midpoint rule. All runs were initialized with the same initial parameters.

method 𝐽opt
1,2 /𝛤 opt

1 𝛤 opt
2 /𝛤 opt

1 𝐽opt
2,3 /𝛤 opt

1

∆𝑡 = 0.25 1.965 946 199 367 860 2.864 944 458 808 847 3.666 380 470 827 243
∆𝑡 = 10−1 1.965 946 199 367 813 2.864 944 458 808 732 3.666 380 470 827 035
∆𝑡 = 10−2 1.965 946 199 367 794 2.864 944 458 808 709 3.666 380 470 827 011
∆𝑡 = 10−3 1.965 946 199 367 796 2.864 944 458 808 713 3.666 380 470 827 013
∆𝑡 = 10−4 1.965 946 199 367 799 2.864 944 458 808 718 3.666 380 470 827 019
∆𝑡 = 10−5 1.965 946 199 367 800 2.864 944 458 808 720 3.666 380 470 827 025
Tanh-sinh 1.965 946 199 367 803 2.864 944 458 808 727 3.666 380 470 827 037

𝛤 opt
3 /𝛤 opt

1 𝐽opt
3,4 /𝛤 opt

1 𝛤 opt
4 /𝛤 opt

1 𝒞(𝒈opt)

4.342 962 293 250 305 4.871 649 743 585 922 5.234 439 004 803 615 1.438 ⋅ 10−30

4.342 962 293 250 064 4.871 649 743 585 611 5.234 439 004 803 229 1.135 ⋅ 10−30

4.342 962 293 250 016 4.871 649 743 585 476 5.234 439 004 803 051 5.790 ⋅ 10−31

4.342 962 293 250 017 4.871 649 743 585 489 5.234 439 004 803 071 4.818 ⋅ 10−31

4.342 962 293 250 025 4.871 649 743 585 498 5.234 439 004 803 082 4.564 ⋅ 10−31

4.342 962 293 250 033 4.871 649 743 585 508 5.234 439 004 803 094 4.516 ⋅ 10−31

4.342 962 293 250 049 4.871 649 743 585 528 5.234 439 004 803 114 4.460 ⋅ 10−31

normalized to 𝛤 opt
1 for all different time steps ∆𝑡. It can be seen that all normalized

parameters agree up to twelve decimal places. The second study concerns the
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4 Results: Convergence

influence of the maximum observation time 𝑇max. Here, the Tanh-sinh quadrature
is used and each run uses a different 𝑇max. Each run is initialized with the same
initial parameters as in the first study. Table 4.5 shows the optimal parameters

Table 4.5: Optimal parameters normalized to 𝛤 opt
1 for the Ansatz 𝐻̂BWV

A and its
corresponding minimum of the cost function for different 𝑇max. The Tanh-sinh
quadrature was used to evaluate the cost function. All runs were initialized with
the same initial parameters.

𝑇max 𝐽opt
1,2 /𝛤 opt

1 𝛤 opt
2 /𝛤 opt

1 𝐽opt
2,3 /𝛤 opt

1

0.1 1.965 946 199 360 310 2.864 944 458 793 144 3.666 380 470 804 380
1 1.965 946 199 367 804 2.864 944 458 808 729 3.666 380 470 827 036

10 1.965 946 199 367 801 2.864 944 458 808 722 3.666 380 470 827 032
100 1.965 946 199 367 835 2.864 944 458 808 774 3.666 380 470 827 074

𝛤 opt
3 /𝛤 opt

1 𝐽opt
3,4 /𝛤 opt

1 𝛤 opt
4 /𝛤 opt

1 𝒞(𝒈opt)

4.342 962 293 221 468 4.871 649 743 552 242 5.234 439 004 766 612 1.978 ⋅ 10−30

4.342 962 293 250 046 4.871 649 743 585 524 5.234 439 004 803 110 4.876 ⋅ 10−31

4.342 962 293 250 044 4.871 649 743 585 517 5.234 439 004 803 101 4.013 ⋅ 10−29

4.342 962 293 250 076 4.871 649 743 585 551 5.234 439 004 803 123 4.877 ⋅ 10−27

normalized to 𝛤 opt
1 for all different 𝑇max. All normalized parameters agree up to 13

decimal places, except for 𝑇max = 0.1, where only nine decimal places of the optimal
ratios with 𝑇max = 0.1 agree with the optimal ratios of the runs with higher 𝑇max.
Both results demonstrate a robust behaviour with respect to the number of observa-
tion times and the maximum observation time.
To conclude, the results seem to be converged for all ∆𝑡 and almost all 𝑇max if
the correct Ansatz is chosen. Here, the term “correct Ansatz” refers to an Ansatz
that leads to a cost function that is numerically zero at its minimum, which is the
case for the BW-violating Ansatz for the TFIM as can be seen in table 4.4 and
4.5. The open question now is why the results seem to have converged if the proper
Ansatz is used, although small 𝑇max is used and the cost function is sampled only
at a few time points. If the cost function drops to zero with the correct Ansatz,
the subsystem is constant in time. That is, there are no more dynamics present in
the subsystem at the optimal solution 𝒈opt, which always exists regardless of ∆𝑡
and 𝑇max. If no dynamics are present, then it is completely irrelevant how often
or how long the subsystem is sampled, since it does not change over time. That
is why the algorithm yields converged results for an arbitrary ∆𝑡 or 𝑇max. Thus,
the cost function can be interpreted as a discrete sum up to an arbitrary maximum
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observation time 𝑇max. On the other hand, if an Ansatz, which cannot represent
the true EH, is chosen, the cost function will be finite at the minimum. Thus, even
at the minimum, dynamics will be present s.t. it is not irrelevant how often or how
long the system is sampled. No convergence in regard to 𝑇max can be achieved (see
Section 4.2) and the cost function needs to be interpreted as an integral (see Section
4.1). The remarkable result that the minimum of the cost function is in the vicinity
of 10−30 for the BW-violating Ansatz for the TFIM together with the form of the
parameters will be discussed in Chapter 5. Since it is not known whether an Ansatz
is the correct one, the cost function should still be interpreted as an integral. Thus,
all future calculations will be done with the cost function as an integral.
It needs to be mentioned that one parameter can be fixed throughout the opti-
mization if the Ansatz is good and the cost function drops to zero. Fixing one
parameter effectively fixes the “entanglement energy scale”, which has an influence
on the time scale. But as previously seen, the optimizer always finds a converged
optimal solution if the Ansatz is accurate, regardless of the maximum observation
time. Since it is not known whether the Ansatz is good, no parameter will be fixed
throughout this work.

4.4 Benchmarks

This section shows that the used methods for integration and optimization are the
best methods for this kind of problem among all the methods, which are used for
the comparison. The model used is the TFIM with 𝑁 = 8, 𝑁A = 4, OBC and 𝛤 = 1
with the variational Ansatz 𝐻̂BW

A . The first benchmark concerns the integration, for
which only the Gauß-Kronrod quadrature is used for comparison. The reason behind
that is, as already pointed out in Section 3.2, an iterative or adaptive integration
method with a good error estimation is needed. In addition to the Tanh-sinh
quadrature, the only good candidate found for such type of integration problems is
the aforementioned Gauß-Kronrod quadrature. To this end, the implementation
from the package QuadGK.jl[21] is used. In this test, the cost function is computed
25 times at different random parameters 𝒈 between zero and ten and the number
of integrand evaluations is averaged over these 25 different cost function computa-
tions for each 𝑇max. For both, the Tanh-sinh quadrature and the Gauß-Kronrod
quadrature, the maximum relative error is set to the square root of the machine
epsilon for double precision. The results are depicted in Figure 4.10, where the error
bands are given by the standard deviation over the 25 cost function evaluations
with the different random parameters 𝒈. It can be clearly seen that the Tanh-sinh
quadrature outperforms the Gauß-Kronrod quadrature, especially for large 𝑇max. At
𝑇max = 20, the Tanh-sinh quadrature requires ≈ 1950 fewer evaluations on average.
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Figure 4.10: Comparison of the Tanh-sinh and Gauß-Kronrod quadrature. For
each 𝑇max, 25 different random parameters 𝒈 are sampled and the cost function is
evaluated with both quadrature rules. The average number of integrand evaluation
of the 25 samples is plotted together with the standard deviation (error bands).

Only at 𝑇max = 0.5, the Gauß-Kronrod needs fewer integrand evaluations. This
probably amounts to the fact that the Gauß-Kronrod quadrature is implemented as
an adaptive integration method, where the number of integrand evaluation can vary
in arbitrary steps. Meanwhile, the Tanh-sinh quadrature halves the step size, s.t.
the number of integrand evaluations cannot vary arbitrarily, and thus, uses too many
evaluation points for such a small integration interval. Of course, both quadrature
rules should yield the same cost function value for each new parameter set 𝒈. Both
rules showed no deviation greater than ≈ 4.441 ⋅ 10−15 from one another over all
1000 samples, which is a remarkable result, since the Tanh-sinh quadrature clearly
shows more efficiency while the accuracy does not suffer. An additional argument
for the Tanh-sinh quadrature is that the abscissae and the weights are always the
same for all integrands, and thus, the weights and abscissae can be calculated once
at the beginning of a minimization run and can be reused in each iteration. On the
other hand, the adaptivity of the Gauß-Kronrod quadrature requires the abscissae
and weights to be calculated for each new parameters 𝒈.
The second test concerns the optimization algorithm, where the algorithms used

for comparison are Conjugate Gradient (ConjGrad), BFGS and Nelder-Mead (NM),
which are all implemented in the package Optim.jl as well. The maximum in-
tegration time is set to 𝑇max = 1. The first three algorithms are gradient-based,
whereas the Nealder-Mead algorithm is a direct search method and therefore does
not require information about the gradient or Hessian. Initial parameters are chosen
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Figure 4.11: Cost function value vs. number of cost function evaluations in one
minimization run. Random initial parameters are sampled and the cost function is
minimized with the different algorithms. This procedure is done four times (run
one, two, three and four in (a),(b),(c) and (d) respectively). The vertical dotted
lines indicate the points, where the optimizers are converged.

at random and the cost function is minimized with all different algorithms. The
convergence criterium for the gradient-based methods is set to ∇tol = 10−16. NM
uses a so called simplex, which consists of multiple points in the parameter space.
The convergence criterium here is the standard deviation of the cost function value
at these points in the current simplex, since the cost function value at the points
of the simplex should be equal in the vicinity of the minimum. In this test, the
standard deviation is required to be less than 10−16, too. The cost function value vs.
the number of cost function evaluations in one minimization run is shown in Figure
4.11. For all four different initial parameters, the LBFGS algorithm needed the
fewest cost function evaluations, as indicated by the vertical dotted lines. However,
in the fourth run (Figure 4.11(d)), the BFGS and Nelder-Mead algorithms found a
slightly lower minimum (≈ 3 ⋅ 10−5 smaller) than the BFGS and Conjugate Gradient
algorithms. Table 4.6 lists the time it took to minimize the cost function among all
runs for all different algorithms. The minimization was repeated ten times for one
set of initial parameters and the smallest time over these ten repetitions is listed.
In all runs, the LBFGS algorithm won again in terms of runtime. To conclude,
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4 Results: Convergence

Table 4.6: Runtime of the algorithms for the four sets of random initial parameters
(i.e. four different runs).

runtime / s
algorithm run 1 run 2 run 3 run 4
ConjGrad 2.400 3.088 1.898 2.271

BFGS 1.727 1.914 1.625 2.494
LBFGS 0.940 1.372 0.909 1.377

NM 1.873 2.161 1.779 2.505

even tho the LBFGS algorithm did not find the lowest minimum in the fourth run,
the efficiency is very convincing. Additionally, this happened only one out of four
times with random initial parameters. With a good initial guess this should not
happen. The Gradient descent, ADAM and Simulated annealing algorithm have
also been tested but not listed, because their performance were much worse than
the algorithms included in the benchmark. It needs to be mentioned that a model
with only 4 parameters has been used. To get deeper insights into the performance
of the optimization algorithms, a model with significantly more parameters could
prove helpful.
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The previous chapter dealt with the convergence properties of the algorithm, leading
results that are as converged as possible. In this chapter, results in regard to
the accuracy of the variational Ansatz are demonstrated and the explicit form of
the EH as well as the CFT extensions will be discussed. The main result is the
violation of the BW theorem on lattice systems in the XXZ model and the TFIM.
Additionally, results, extrapolated into the thermodynamic limit for the XXZ model,
are presented.

5.1 Violation of the BW theorem

This section shows that there are significant deviations from the BW theorem in
the XXZ model and the TFIM. Additionally, an understanding about the CFT
extensions, introduced in Section 2.4.1, will be provided. In the following, the XXZ
model with ∆ = 0.5 and the TFIM with 𝛤 = 1 will be used with OBC and PBC for
both Ansätze, 𝐻̂BW

A and 𝐻̂BWV
A , together with 𝑁 = 10, 𝑁A = 5 and 𝑇max = 1. The

minimization is run 50 times for the same model but with different random initial
parameters between two and six. Outliers are filtered out, based on the value of
the cost function and the ratios of the optimal parameters. If for example the cost
function value is much larger, or a ratio is negative or deviates several magnitudes
from the expected ratio, the results are not taken into the statistics. The optimal
parameters from the QCFL are compared to the optimal parameters from the cost
function

𝒞comm(𝒈) =
||[ ̂𝜌A, 𝐻̂Var

A (𝒈)]||F
2|| ̂𝜌A||F||𝐻̂Var

A (𝒈)||F
,

which measures the commutativity of the exact RDM and the variational Ansatz.
The notation ||𝑋||𝐹 with some 𝑛 × 𝑚 matrix 𝑋 denotes the Frobenius norm of 𝑋
defined as[15]

||𝑋||F = (
𝑛

∑
𝑖=1

𝑚
∑
𝑗=1

|𝑥𝑖𝑗|2)

1
2

.

Here, 𝑛 = 𝑚 = 2𝑁A holds. No filtering of outliers is done with the results of the
aforementioned commutator as a cost function 𝒞comm(𝒈).
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5 Results: Physics

5.1.1 TFIM

If the Ansatz 𝐻̂BW
A is used in the case of OBC, the ratio 𝑔opt

2 /𝑔opt
1 obtained with

the QCFL shows good agreement with the ratio obtained via the commutator
(Figure 5.1(a)), exhibiting an absolute difference of 0.0237 ± 0.1037. However, the
third, fourth and fifth ratios deviate more with an absolute difference of up to
1.1021 ± 0.2858. A linear rise near the entanglement cut can be observed and
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Figure 5.1: 50 runs with different random initial parameters for the TFIM
with the Ansatz 𝐻̂BW

A . (a) The optimal parameters from the QCFL and from
the commutator (Comm.) as a cost function for the case of OBC and (c) the
corresponding cost function value at the minimum of all 50 runs of the QCFL. (b)
and (d) show the same for PBC. The errorbars are given by the standard deviation
of the 50 runs and the red points in the cost, (c) and (d), indicate outliers from the
QCFL, which were not taken into account in (a) and (b). The dashed lines are fits
in accordance to the CFT extensions in Equation (2.6) and (2.7) to guide the eye.

bending in accordance to the second CFT extension (Equation (2.7)) becomes
apparent. In the case of PBC, the optimal parameters exhibit large deviations
from the parameters obtained via the commutator and do not follow the first
CFT extension (Equation 2.6) but rather a triangular form, while the parameters
yielded with the commutator do show the behaviour predicted by the first CFT
extension (Figure 5.1(b)). The maximum difference of the ratios obtained via the
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5.1 Violation of the BW theorem

QCFL and the commutator is given by the third ratio, 𝑔opt
3 /𝑔opt

1 , and takes the value
2.894 852 ± 0.000 028. In both cases, especially in the case of PBC, the standard
deviation is very small, indicating the minimizer almost always finds the same
solution. This statement is supported by the cost function value at its minimum
agreeing in almost all runs (Figure 5.1(c),(d)). No errorbars are depicted for the
ratios obtained with the commutator as a cost function, since no standard deviation
is larger than 4 ⋅ 10−5 for both, OBC and PBC. On the other hand, if the Ansatz
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Figure 5.2: 50 runs with different random initial parameters for the TFIM
with the Ansatz 𝐻̂BWV

A . (a) The optimal parameters from the QCFL and from
the commutator (Comm.) as a cost function for the case of OBC and (c) the
corresponding cost function value at the minimum of all 50 runs of the QCFL. (b)
and (d) show the same for PBC. The red points in the cost, (c) and (d), indicate
outliers, which were not taken into account in (a) and (b).

𝐻̂BWV
A is used, the optimal parameters obtained via the QCFL match perfectly

with the parameters obtained via the commutator for both, OBC and PBC (see
Figure 5.2(a),(b)). The ratios obtained via the QCFL and the commutator as a
cost function exhibit a maximum deviation of (1.2665 ± 5.8603) ⋅ 10−9 for OBC
and PBC. In addition to the perfect match, after filtering out the outliers, the
standard deviation of each parameter obtained via the QCFL is in the vicinity of
10−14, indicating that there is one good solution, while the ratios obtained via the
commutator are no greater than 6 ⋅ 10−9, which is why no errorbars are depicted.
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5 Results: Physics

The two outliers in Figure 5.2(d) account to significantly different ratios of the
optimal parameters, e.g. 𝛤 opt

3 /𝛤 opt
1 ≈ −2.88 ⋅ 10−17. What is very remarkable is

that the cost function value at its minimum is in the vicinity of 10−30. Comparing
it to the minimum of the cost function of ≈ 10−5 for the BW-like Ansatz, 𝐻̂BW

A ,
underlines the fact that the Ansatz 𝐻̂BWV

A works much better. This means that the
BW theorem does not hold for the TIFM with 𝛤 = 1. Additionally, as can be seen,
the only corrections to the BW theorem are that there is not just one parameter per
lattice, but two. Further corrections such as long range interactions or higher-body
interactions are not needed, since the cost function is already numerically zero at
its minimum.

5.1.2 XXZ model
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Figure 5.3: 50 runs with different random initial parameters for the XXZ model
with the Ansatz 𝐻̂BW

A . (a) The optimal parameters from the QCFL and from
the commutator (Comm.) as a cost function for the case of OBC and (c) the
corresponding cost function value at the minimum of all 50 runs of the QCFL. (b)
and (d) show the same for PBC. The errorbars are given by the standard deviation
of the 50 runs and the red points in the cost, (c) and (d), indicate outliers from the
QCFL, which were not taken into account in (a) and (b). The dashed lines are fits
in accordance to the CFT extensions in Equation (2.6) and (2.7) to guide the eye.
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5.1 Violation of the BW theorem

The optimal parameters exhibit huge standard deviations in the case of the XXZ
model with OBC and the BW-like Ansatz 𝐻̂BW

A (Figure 5.3(a)), with a standard
deviation of up to 11.6. The differences of the optimal ratios obtained via the QCFL
and the commutator range from 1.3111 ± 6.6087 (𝑔opt

3 /𝑔opt
1 ) up to 2.5180 ± 12.6613

(𝑔opt
4 /𝑔opt

1 ). In the case of PBC, these differences range from (0.0857 ± 2.0805) ⋅ 10−6

(𝑔opt
5 /𝑔opt

1 ) up to 0.1602 ± 0.7895 (𝑔opt
2 /𝑔opt

1 ) (Figure 5.3(b)). Again, the linear rise
near the entanglement cut and bending at the right border becomes appearent in
the case of OBC, while the symmetric behaviour can be observed if the composite
system obeys PBC. However, the large standard deviation indicate that there
many suboptimal or local minima, which are found by the optimizer. Since the
minimum of the cost function is far from zero, namely 𝒞(𝒈opt) ≈ 10−7 (OBC)
and 𝒞(𝒈opt) ≈ 5 ⋅ 10−6 (PBC) (Figure 5.3(c),(d)), these local minima are not the
real solution. This means that there are, again, corrections to the BW theorem.
Figure 5.4(a),(b) show the optimal parameters after filtering obtained with the
Ansatz 𝐻̂BWV

A for OBC and PBC, respectively. The parameters obtained with the
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Figure 5.4: 50 runs with different random initial parameters for the XXZ model
with the Ansatz 𝐻̂BWV

A . (a) The optimal parameters from the QCFL and from
the commutator (Comm.) as a cost function for the case of OBC and (c) the
corresponding cost function value at the minimum of all 50 runs of the QCFL. (b)
and (d) show the same for PBC. The red points in the cost, (c) and (d), indicate
outliers, which were not taken into account in (a) and (b).
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5 Results: Physics

QCFL match the parameters obtained with the commutator very well, exhibiting a
maximum deviation of 0.0078 ± 0.0011. For OBC and PBC, the standard deviations
of the ratios obtained via the QCFL over the 50 runs, after filtering out, and the
ratios obtained via the commutator are no greater than 2 ⋅ 10−3, s.t. no error bars
given in Figure 5.4(a),(b). Remarkably, in the case of OBC, the parameters only
deviate slightly from the BW theorem. That is, the ratios of the coupling in the
𝑥- and 𝑦-direction, and the coupling in 𝑧-direction, 𝐽XX,opt

𝑖,𝑖+1 /𝐽Z,opt
𝑖,𝑖+1 , is 1.0219 ± 0.0005

at most, which agrees up to one decimal place with the BW theorem, predicting
a ratio of one. The deviation of the parameters from the BW theorem in the case
of PBC is similar. However, the deviation from the BW theorem is not negligible,
underlined by the drop in the cost function value by approximately three (OBC)
and two (PBC) orders of magnitude if the BW-violating Ansatz is used (see Figure
5.4(c),(d)). Although the cost function is noticeably lower with the Ansatz 𝐻̂BWV

A
and parameters obtained via the QCFL and the commutator match very well, the
minimum of the cost function is still 𝒞(𝒈opt) ≈ 10−10 and 𝒞(𝒈opt) ≈ 10−8 for OBC
and PBC, respectively. That means, on top of multiple parameters per lattice site,
additional corrections to the BW theorem need to be taken into account. That is,
long range interactions and more-body interactions need to be included into the
variational Ansatz. Long range interactions included in the Ansatz 𝐻̂BWV

A for the
XXZ model are discussed in the next section.
To conclude, the algorithm approximately finds the progression of the optimal
parameters predicted by the CFT extensions. In case of OBC the linear rise at
the entanglement cut and the bending at the right border could be found. The
systems with PBC exhibit the symmetric behaviour of the optimal parameters with
linear rises at both entanglement cuts. The main finding in this section is that there
are significant corrections to the BW theorem, signalling that the BW theorem is
violated for lattice systems. For the TFIM, instead of a deformed Hamiltonian, the
real EH needs two parameters per site, but no additional corrections are needed.
On the other hand, the XXZ model needs additional long range or more-body
interactions on top of the two parameters per site.

5.2 Long range corrections in the XXZ model

One implication of the BW theorem is that if the system Hamiltonian contains only
nearest neighbour interactions, then the EH will, too. However, it was already shown
that the BW theorem is not exact on lattices. Besides more than one variational
parameter per lattice site, long range interactions as further corrections to the BW
theorem for the XXZ model will be investigated. The XXZ model with OBC is used
exactly as in the previous section (Section 5.1) and it will be examined how much
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5.2 Long range corrections in the XXZ model

further the cost function can be minimized. The variational Ansatz, together with
the corrections 𝐻̂corr

A , reads

𝐻̂Var
A = 𝐻̂BWV

A + 𝐻̂corr
A

=
𝑟max

∑
𝑟=1

𝑁𝐴−𝑟

∑
𝑖=1

(𝐽XX
𝑖,𝑖+𝑟 (𝑋𝑖𝑋𝑖+𝑟 + 𝑌𝑖𝑌𝑖+𝑟) + 𝐽Z

𝑖,𝑖+𝑟∆𝑍𝑖𝑍𝑖+𝑟) ,

where {𝐽XX
𝑖,𝑖+𝑟, 𝐽Z

𝑖,𝑖+𝑟} act as variational parameters. The quantity 𝑟max determines the
maximum range of interaction. Every term beyond 𝑟 = 1 is a part of the long range
interactions, and thus, part of the corrections. The optimal parameters from Section
5.1 of the BW-violating Ansatz 𝐻̂BWV

A are used for initialization of the parameters
for 𝑟 = 1. All long range couplings (beyond 𝑟 = 1) are initialized to zero, as these are
expected to be small. Table 5.1 lists the optimal parameters for a run with 𝑟max = 4,

Table 5.1: Optimal parameters {𝐽XX
𝑖,𝑖+𝑟, 𝐽Z

𝑖,𝑖+𝑟} including all long range interactions
for 𝑟max = 4 rounded to five decimal places.

𝑟 = 1 𝑟 = 2 𝑟 = 3 𝑟 = 4
𝐽XX

1,1+𝑟 0.843 46 0.005 56 0.001 25 0.003 22
𝐽Z

1,1+𝑟 0.882 05 0.048 18 0.044 73 0.047 37
𝐽XX

2,2+𝑟 1.623 81 −0.008 05 0.002 66
𝐽Z

2,2+𝑟 1.637 85 0.011 11 0.026 54
𝐽XX

3,3+𝑟 2.322 76 0.067 28
𝐽Z

3,3+𝑟 2.326 81 0.097 54
𝐽XX

4,4+𝑟 2.843 32
𝐽Z

4,4+𝑟 2.680 56

i.e., all long range terms included. It can be seen that the corrections are at least
one magnitude smaller in comparison to the parameters for 𝑟 = 1. Additionally,
the parameters exhibit antiferromagnetic behaviour (positive parameters) and one
antiferromagnetic coupling can be seen, although only antiferromagnetic couplings
are included in the system Hamiltonian. The parameters show, as expected, a decay
with the range of interaction 𝑟. Of course, if the variational Ansatz contains long
range corrections, the found solution should represent the exact EH better, and
thus, the cost function value at the minimum should be lower, which is exactly the
case, as can be seen in Figure 5.5, where the minimizer was run for all possible
maximum interactions ranges 𝑟max. The case 𝑟max = 1 corresponds to the absence
of any long range corrections. It needs to be mentioned that convergence problems
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Figure 5.5: Cost function 𝒞(𝒈opt) at the found solution vs. the maximum range
of interaction 𝑟max included in the correction term.

were present for 𝑟max = 3 and 𝑟max = 4. The infinity norm of the gradient was in
the vicinity of 10−14 most of the time, and thus, the optimization procedure was
very slow. After 100000 iterations, the minimization run has been terminated.
To conclude, the XXZ model, in case of PBC and ∆ = 0.5, needs long range
interaction included in the variational Ansatz to reconstruct the exact EH. With the
help of long range corrections, the minimum of the cost function could be reduced
by approximately five orders of magnitude.

5.3 Comparison of the Entanglement spectra

This section compares the universal ratios (see Equation (2.10)) of the variational
solutions of the two previous sections, since the ES (equivalently the universal ratios)
is the quantity of main interest. For the universal ratios, 𝛼0 = 1 and 𝛼1 = 5 is used.
The BW-violating Ansatz 𝐻̂BWV

A appeared to be exact for the TFIM with OBC and
𝛤 = 1 (see Section 5.1). Thus, only the universal ratios from the BW-like Ansatz
𝐻̂BW

A and BW-violating Ansatz 𝐻̂BWV
A will be compared. Since the Ansatz 𝐻̂BWV

A
is not exact for the XXZ model for OBC and ∆ = 0.5, the universal ratios of the
BW-violating Ansatz with all long range corrections (𝑟max = 4) (see Section 5.2)
will be taken into account. The exact ES is computed by diagonalizing the exact
EH, given by 𝐻̂A = − ln ( ̂𝜌A), exactly.
In the case of the TFIM, the low-lying universal ratios match the exact universal
ratios better if the BW-violating Ansatz is used, as expected (see Figure 5.6(a),(b)).
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5.3 Comparison of the Entanglement spectra

In contrast, in the higher part of the spectrum, the universal ratios obtained via
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Figure 5.6: (a) Universal ratios and (b) deviations from the exact universal ratios
for the BW-like Ansatz 𝐻̂BW

A (BW) and BW-violating Ansatz 𝐻̂BWV
A (BWV) in

the TFIM.

variation show significant deviations from the exact universal ratios (Figure 5.6(b)).
This is mostly a numerical artifact, which is due to the double precision used. The
RDM contains (eigen-)values, which are so small s.t. they cannot be captured
with double precision accurately. Since the ES (and thus the universal ratios) is
obtained by taking the logarithm of the RDM, the lowest eigenvalues of the RDM are
mapped to the highest universal ratios. Thus, to compare the universal ratios, only
the first ten universal ratios are taken into account. The first ten universal ratios
exhibit a mean absolute deviation from the exact universal ratios of ∆𝜅BW

𝛼 = 0.0253
and ∆𝜅BWV

𝛼 = 0.0071 for the Ansatz 𝐻̂BW
A and 𝐻̂BWV

A , respectively. That is, the
low-lying spectrum (here, the first ten universal ratios) is reconstructed more than
three times more accurately on average if the BW-violating Ansatz is used.
The universal ratios in the case of the XXZ model are given in Figure 5.7(a). As can
be seen in Figure 5.7(b), the low-lying spectrum is not significantly better recon-
structed if the Ansatz 𝐻̂BWV

A or the Ansatz 𝐻̂BWV
A with all long range corrections is

used. For comparison, two additional measures are listed here, which involve the
RDM on subsystem A obtained through the minimization

̂𝜌Var
A = 1

Tr [e−𝐻̂Var
A (𝒈opt)]

e−𝐻̂Var
A (𝒈opt).

The first measure is the trace distance

𝒯( ̂𝜌A, ̂𝜌Var
A ) = 1

2
Tr [√( ̂𝜌A − ̂𝜌Var

A )† ( ̂𝜌A − ̂𝜌Var
A ) ] = 1

2
Tr [√( ̂𝜌A − ̂𝜌Var

A )2 ] ,
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Figure 5.7: (a) Universal ratios and (b) deviations from the exact universal ratios
for the BW-like Ansatz 𝐻̂BW

A (BW), BW-violating Ansatz 𝐻̂BWV
A (BWV) and the

BW-violating Ansatz with all long range corrections (BWV+corr) in the XXZ
model.

which measures how close two quantum states are and ranges from 0 (identical
states) to 1 (maximally distant states) [38]. The last equality holds since both
density matrices are hermitian. The second measure utilizes the commutator of ̂𝜌A
and ̂𝜌Var

A

ℱ( ̂𝜌A, ̂𝜌Var
A ) =

||[ ̂𝜌A, ̂𝜌Var
A ]||F

2|| ̂𝜌A||F|| ̂𝜌Var
A ||F

, (5.1)

which, again, ranges from 0 (completely commuting) to 1 (maximally non-commutative)
[7]. This measure is included, since the cost function is based on the commutativity
of the variational Ansatz and the exact RDM. Table 5.2 lists the mean of the

Table 5.2: All included measures to compare the accuracy of the variational An-
sätze, BW-like Ansatz (BW), BW-violating Ansatz (BWV) and the BW-violating
Ansatz with all long range corrections (BWV+corr) for the XXZ model.

Ansatz ∆𝜅𝛼 𝒯( ̂𝜌A, ̂𝜌Var
A ) ℱ( ̂𝜌A, ̂𝜌Var

A ) 𝒞(𝒈opt)
BW 0.013 09 0.007 51 4.173 79 ⋅ 10−4 3.550 22 ⋅ 10−7

BWV 0.012 56 0.019 83 9.321 76 ⋅ 10−5 5.768 21 ⋅ 10−10

BWV+corr 0.028 87 0.030 30 1.373 17 ⋅ 10−6 1.945 40 ⋅ 10−15

absolute deviations of the first ten universal ratios from the exact universal ratios
∆𝜅𝛼 , the trace distance 𝒯( ̂𝜌A, ̂𝜌Var

A ), the norm of the commutator ℱ( ̂𝜌A, ̂𝜌Var
A ) and

the cost function value at its minimum 𝒞(𝒈opt). It can be seen that ℱ( ̂𝜌A, ̂𝜌Var
A )
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5.4 TFIM and XXZ model across the phase diagram

is lower if the Ansatz 𝐻̂BWV
A is used and the lowest if the long range corrections

are included. This is in agreement with the cost function value, which shows the
same trend. This observation makes sense, since the cost function is based on the
commutativity of the exact RDM and the variational Ansatz. However, the trace
distance is the highest for the Ansatz 𝐻̂BWV

A with long range interactions included
and the lowest for the BW-like Ansatz 𝐻̂BW

A . Thus, the universal ratios are not
reconstructed more accurately with the Ansatz 𝐻̂BWV

A with long range interactions,
since the trace distance is a measure for how close two quantum states are.

5.4 TFIM and XXZ model across the phase diagram

This section investigates the TFIM and XXZ model across the respective phase
diagrams to analyse how the algorithm performs when the systems are not critical
and whether the algorithm can indicate the critical points or specific phases. Both
physical models obey OBC and the chain lengths are varied, while 𝑁 = 2𝑁A always
holds. The Ansatz 𝐻̂BWV

A is used without any other corrections for both models
and the maximum integration time is set to 𝑇max = 1.
Figure 5.8 shows the minimum of the cost function for varying the transverse field
strength �in the TFIM. At 𝛤 = 0 the minimum of the cost function is below 10−29

Γ

0.0 0.5 1.0 1.5 2.0

𝒞
(𝒈

op
t )

10 − 10

10 − 15

10 − 20

10 − 25

10 − 30

NA = 3

NA = 4

NA = 5

NA = 6

NA = 7

Figure 5.8: Minimum of the cost function in dependence on the transveral field
strength 𝛤 for the TFIM.
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5 Results: Physics

for all 𝑁A. Assuming the exact EH takes the form

𝐻̂A =
𝑁A−1

∑
𝑖=1

̃𝐽𝑖,𝑖+1𝑍𝑖𝑍𝑖+1,

at 𝛤 = 0, the exact EH always commutes with the variational Ansatz, since only the
Pauli matrix 𝑍 occurs in both, the exact EH and the variational Ansatz. That is,
the cost function is numerically zero. The second eye-catching point is 𝛤 = 1, where
the cost function drops near zero again. This is due to the fact that the quantum
phase transition, in the thermodynamic limit, is at exactly at that point.
The minimum of the cost function has three interesting points in the case of the XXZ
model, namely ∆ = −1, ∆ = 0 and ∆ = 1 (see Figure 5.9). The abrupt decrease
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Figure 5.9: Minimum of the cost function in dependence on the anisotropy ∆ for
the XXZ model.

of the minimum at ∆ = −1 can be explained by the first order phase transition
occurring. For ∆ < −1 the ground state of the XXZ model is a simple product state
with all spins pointing in the same direction, and thus, no entanglement is present in
the composite system. The second order phase transition can be recognized by the
cusp-like behaviour of the cost function at ∆ = 1. For 𝑁A = 3, the BW-violating
Ansatz works very well, since the cost function value at its minimum is below 10−30

except at ∆ = −0.95, where 𝒞(𝒈opt) ≈ 10−19 holds. For ∆ ≤ −1, the couplings in
the 𝑧-direction match the couplings in the 𝑥- and 𝑦-direction very accurately up to
at least thirteen digits for all 𝑁A.
To conclude, the algorithm delivers indications for the quantum phase transitions
and classical states. Additionally, the accuracy of the BW-violating Ansatz varies
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5.5 Violation of the BW theorem in the XXZ model in the thermodynamic limit

across the phase diagram. Thus, for certain values of 𝛤 and ∆, where the cost
function is very large at its minimum, the variational Ansatz needs to be adjusted.

5.5 Violation of the BW theorem in the XXZ model in the
thermodynamic limit

This section shows the violation of the BW theorem in the XXZ model in the
thermodynamic limit (TDL). The idea was initialized by Reference [39], where it
was theoretically shown that the BW theorem is violated in the XXZ model in the
TDL. A global minus sign is included in the Hamiltonian, the system obeyed PBC
and the anisotropy was set to ∆ = −0.5

𝐻̂XXZ = −
𝑁

∑
𝑖=1

(𝑋𝑖𝑋𝑖+1 + 𝑌𝑖𝑌𝑖+1 + ∆𝑍𝑖𝑍𝑖+1) . (5.2)

It was stated that the couplings of the Ansatz 𝐻̂BWV
A obeyed a ratio of 𝐽XX

𝑖,𝑖+1/𝐽Z
𝑖,𝑖+1 ≈ 1.1

instead of, predicted by the BW theorem, 𝐽XX
𝑖,𝑖+1/𝐽Z

𝑖,𝑖+1 = 1. No long range or more-
body interactions are taken into account, because the authors in Reference [39]
mentioned that these contributions are more than one order of magnitude smaller
than the contributions of the nearest neighbour coupling of two spins. To obtain
the couplings 𝐽XX

𝑖,𝑖+1 and 𝐽Z
𝑖,𝑖+1 in the TDL, the procedure is the following:

1. Extract the ground state of the system Hamiltonian (Equation 5.2) for different
lattice sizes 𝑁 (up to 𝑁 = 29 could have been achieved with the Lancos
algorithm).

2. Construct the RDM with the ground state obtained in step one for a subsystem
chain length 𝑁A.

3. Run the algorithm with the BW-violating Ansatz 𝐻̂BWV
A with 𝐽XX

𝑖,𝑖+1 and 𝐽Z
𝑖,𝑖+1

as variational parameters for the different RDMs for each composite system
size 𝑁 from step 2 for a subsystem chain length 𝑁A.

4. Plot the ratios of the obtained parameters 𝐽XX
𝑖,𝑖+1/𝐽XX

1,2 and 𝐽Z
𝑖,𝑖+1/𝐽XX

1,2 vs. 1/𝑁

(even 𝑁) and 1/𝑁2 (odd 𝑁) and extrapolate for 1/𝑁 → 0, i.e., into the TDL.

5. Repeat step two to four for different subsystem chain lengths 𝑁A.

This procedure is done once for odd and once for even 𝑁 and the previously
mentioned settings together with 𝑇max = 5 are used in the following two subsections,
to see whether this algorithm can reproduce the findings in Reference [39]. Odd
and even 𝑁 are treated separately, since the optimal parameters exhibit a different

53



5 Results: Physics

dependence on 𝑁 if 𝑁 is odd or even. The subsystem chain length ranges from
𝑁A = 4 to 𝑁A = 7. To measure the deviation from the BW theorem, the quantity

𝜃𝑖 =
𝐽XX

𝑖,𝑖+1

𝐽Z
𝑖,𝑖+1

− 1 (5.3)

is defined, which will be referred to as the discrepancy. All runs were initialized
with a good initial guess.

5.5.1 Odd number of lattice sites in the composite system

Figure 5.10 shows the obtained optimal parameters normalized to 𝐽XX
1,2 vs. 1/𝑁2

for 𝑁A = 7. The index 𝑖 indicates the lattice site and the solid lines are the
corresponding fits. For brevity, the plots for other 𝑁A are omitted. A linear fit was
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Figure 5.10: Optimal parameters 𝐽𝑋𝑋
𝑖,𝑖+1 and 𝐽𝑍

𝑖,𝑖+1 normalized to 𝐽XX
1,2 vs. 1/𝑁2

for each lattice site 𝑖 in the subsystem A for 𝑁A = 7. The solid lines are linear fits.

used
𝐽𝛺

𝑖,𝑖+1

𝐽XX
1,2

(𝑁) = 𝑝1
1

𝑁2 + 𝑝2, 𝛺 = XX, Z (5.4)

where 𝑝1 and 𝑝2 act as parameters for the fit. The optimal parameters normalized
to 𝐽XX

1,2 extrapolated in to the TDL (𝑁 → ∞) then are

𝐽𝛺
𝑖,𝑖+1

𝐽XX
1,2

(𝑁 → ∞) = 𝑝2, 𝛺 = XX, Z.
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5.5 Violation of the BW theorem in the XXZ model in the thermodynamic limit

Finally, the extrapolated parameters normalized to 𝐽XX
1,2 are given in Figure 5.11,

where the solid lines are there to guide the eye and take the quadratic form ∝ 𝑖𝑁A−𝑖
𝑁A

,

as suggested by the conformal extension ̂𝐻CFT3
A (see Equation 2.8), although the

CFT extensions apply only to the BW theorem. No error bars are given, since the
propagated estimated uncertainties of the parameters of the fit (see Equation (5.4))
are not larger than than 2 ⋅ 10−3. The gap between the 𝑥- and 𝑦-couplings, and
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Figure 5.11: Optimal parameters 𝐽𝑋𝑋
𝑖,𝑖+1 and 𝐽𝑍

𝑖,𝑖+1 normalized to 𝐽XX
1,2 extrapolated

into the TDL vs. the lattice site 𝑖 in units of the subsystem chain length 𝑙 for each
number of sites 𝑁A in the subsystem A.

the 𝑧-couplings can be seen. Table 5.3 lists the mean value of the discrepancies, as

Table 5.3: The mean value of the discrepancies as defined in Equation (5.3) in
the TDL for each subsystem size 𝑁A.

𝑁A
̄𝜃𝑖

4 0.0443 0.0002±
5 0.0326 0.0006±
6 0.0224 0.0004±
7 0.0154 0.0006±

defined in Equation (5.3), over the lattice sites 𝑖 for all subsystem lattice sizes 𝑁A
in the TDL. The errors given in Table 5.3 are the propagated errors, stemming from

55



5 Results: Physics

the estimated uncertainties of the fit.

5.5.2 Even number of lattice sites in the composite system

Figure 5.12 shows the obtained optimal parameters normalized to 𝐽XX
1,2 vs. 1⁄N for

𝑁A = 7. For even number of lattice sites 𝑁 in the composite system, the fit function
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Figure 5.12: Optimal parameters 𝐽𝑋𝑋
𝑖,𝑖+1 and 𝐽𝑍

𝑖,𝑖+1 normalized to 𝐽XX
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𝑁A = 7. The solid lines are fits according to Equation (5.5).

is chosen as
𝐽𝛺

𝑖,𝑖+1

𝐽XX
1,2

(𝑁) = 𝑝1e
𝑝2
𝑁 + 𝑝3, 𝛺 = XX, Z, (5.5)

where 𝑝1, 𝑝2, 𝑝3 and 𝑝4 act as parameters for the fit, which turned out to work well,
as can be seen in Figure 5.12. The optimal parameters extrapolated in to the TDL
(𝑁 → ∞) then are

𝐽𝛺
𝑖,𝑖+1

𝐽XX
1,2

(𝑁 → ∞) = 𝑝1 + 𝑝3, 𝛺 = XX, Z

and are depicted in Figure 5.13. The propagated errors stemming from the estimated
uncertainties of the fit are not displayed, since no error is bigger than 3 ⋅10−3. Again,
differences between 𝐽XX

𝑖,𝑖+1 and 𝐽Z
𝑖,𝑖+1 can be seen. The discrepancies, as defined in
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5.5 Violation of the BW theorem in the XXZ model in the thermodynamic limit

Table 5.4: The mean value of the discrepancies as defined in Equation (5.3) in
the TDL for each subsystem size 𝑁A.

𝑁A
̄𝜃𝑖

4 0.0459 0.0021±
5 0.0383 0.0017±
6 0.0271 0.0014±
7 0.0199 0.0020±
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Figure 5.13: Optimal parameters 𝐽𝑋𝑋
𝑖,𝑖+1 and 𝐽𝑍

𝑖,𝑖+1 normalized to 𝐽XX
1,2 extrapolated

into the TDL vs. the lattice site 𝑖 in units of the subsystem chain length 𝑙 for each
number of sites 𝑁A in the subsystem A.
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Equation (5.3), are given in Table 5.4. Like in the case of odd 𝑁, the discrepancies
decrease as 𝑁A increases.
To conclude, a discrepancy could have been observed in the TDL. However, instead
of the discrepancies of ≈ 0.1 from Reference [39], the discrepancies found with the
algorithm of this work are two to five times lower, depending on the subsystem
chain length 𝑁A. To reach the same result, long range or many-body corrections
could be included.
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6 Summary and outlook

The algorithm presented in Reference [26] delivers a good way to obtain the En-
tanglement Hamiltonian of lattice systems, which is very difficult to determine
otherwise. The algorithm was successfully implemented for this work, resulting in a
well documented and optimized j u l i a package. The main goal of the package is to be
easily extensible to other lattice models and to be easy to use with as few as possbile
lines of code for the user. At first, the derivation of the correct formula for the
gradient was a challenge, but with the concept of the Fréchet derivative, an exact
expression was found and the gradient is implemented in an efficient Reverse mode
approach. Additionally, the optimal integration and optimization algorithm for this
problem was identified through benchmarking. Thus, the EH can be obtained with
minimal runtime.
The main goal of this thesis was to provide a fundamental understanding about the
convergence properties. Huge improvements in regard to convergence of the results
could be achieved. On the one hand, a new interpretation of the cost function
has been employed. Instead of monitoring observables at a few arbitrary time
points, i.e., interpreting the cost function as a discrete sum, the cost function is
promoted to a continuous integral over the time domain. The convergence of the
optimal parameters, at least in respect to the number of observation times, was
observed systematically with that improvement. An efficient numerical integration
method, the Tanh-sinh quadrature, is used to evaluate the cost function. In addition
to the number of observation times, the convergence in respect to the maximum
observation time has been investigated. It could be shown that no convergence can
be achieved if the variational Ansatz is not capable of reconstructing the exact EH
accurately, while the optimal parameters converge perfectly for a good variational
Ansatz, where the maximum observation time and the number of observation times
are irrelevant. With the aforementioned investigations of convergence, results for
the actual form of the EH could be yielded. The main result of this work is that
there are significant corrections to the BW theorem. With a modified version of the
variational Ansatz, the BW-violating Ansatz 𝐻̂BWV

A , it was possible to push down
the cost funtion to numerically zero. Furthermore, the violation of the BW theorem
in the XXZ model could be shown in the TDL.
A useful property of the algorithm is that, with the help of the BW-violating Ansatz,
the phase diagram could be investigated and interesting regimes and points across
the phase diagram were signaled by a drop of the cost function. Classical states, i.e.
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6 Summary and outlook

simple product states, and phase transitions could be recognized. Additionally, the
applicability of the conformal extensions of the BW theorem was investigated by
tuning the Hamiltonian parameters in such a way that the systems exhibit quantum
critical behavior for OBC and PBC. For the OBC, a bending, as the second CFT
extension suggests, was observed. Especially the results for the PBC were satisfying,
since the parameters accurately matched the expectation of a symmetric behavior,
predicted by the second CFT extension. Even for the BW-violating Ansatz, such
bending and symmetry could be observed.

In this work, only {𝑍𝑖𝑍𝑖+1|1 ≤ 𝑖 < 𝑁A−1} were used as observables. The comparison
of different observables would be of interest. Most of the runtime is spent on matrix
multiplication, especially with dense matrices. This presents a huge hurdle in regard
to computation time due to the exponential scaling of the Hilbert space dimension,
leading to an exponential scaling of the computation time with the number of spins
in the subsystem. The scaling prohibits studying larger subsystem sizes. One way
to simulate larger system sizes is porting the implementations from the CPU onto
GPUs.
A further outlook is to tackle the problem with the ES, which is the target quantity.
Although long range corrections were included in the variational Ansatz 𝐻̂BWV

A for
the XXZ model and the minimum of the cost function decreased, the exact ES was
not reconstructed more accurately. The problem was identified by using the trace
distance as an accuracy measure. Although the norm of the commutator of the
variational Ansatz and the exact RDM was smaller, the trace distance increased.
This could mean that the eigenbasis of the exact RDM is reconstructed better, while
the eigenvalues are not. That is, the applicability of the algorithm to learn the
eigenvalues can be questioned. As the algorithm targets the commutator of the
exact EH and the variational Ansatz, the eigenbasis is correctly captured by the
algorithm, but the eigenvalues might not be correctly reproduced. To make accurate
statements, further investigations are needed. Finally, the higher ES cannot be learnt
with double precision, since very small values cannot be accurately represented by
the used double precision. On the one hand, a higher precision could prove helpful.
On the other hand, this would increase the computation time even more.
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