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Ordinary differential equations (ODE) are a popular tool to model the spread of infectious diseases, 
yet they implicitly assume an exponential distribution to describe the flow from one infection state 
to another. However, scientific experience yields more plausible distributions where the likelihood 
of disease progression or recovery changes accordingly with the duration spent in a particular 
state of the disease. Furthermore, transmission dynamics depend heavily on the infectiousness 
of individuals. The corresponding nonlinear variation with the time individuals have already 
spent in an infectious state requires more realistic models. The previously mentioned items are 
particularly crucial when modeling dynamics at change points such as the implementation of 
nonpharmaceutical interventions. In order to capture these aspects and to enhance the accuracy 
of simulations, integro-differential equations (IDE) can be used.

In this paper, we propose a generalized model based on integro-differential equations with eight 
infection states. The model allows for variable stay time distributions and generalizes the concept 
of ODE-based models as well as IDE-based age-of-infection models. In this, we include particular 
infection states for severe and critical cases to allow for surveillance of the clinical sector, avoiding 
bottlenecks and overloads in critical epidemic situations.

On the other hand, a drawback of IDE-based models is that efficient numerical solvers are 
not as widely available as for ODE systems and tailored schemes might be needed. We will 
extend a recently introduced nonstandard numerical scheme to solve a simpler IDE-based model. 
This scheme is adapted to our more advanced model and we prove important mathematical 
and biological properties for the numerical solution. Furthermore, we validate our approach 
numerically by demonstrating the convergence rate. Eventually, we also show that our novel 
model is intrinsically capable of better assessing disease dynamics upon the introduction of 
nonpharmaceutical interventions.

1. Introduction

As recently demonstrated by SARS-CoV-2, outbreaks of infectious diseases can put humankind and human societies at immense 
difficulties through highly impacting personal rights and individual health, as well as state economies and public health.
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Mathematical models are an invaluable tool for predicting the spread of infectious diseases and the impact of nonpharmaceutical 
interventions. They provide the basis for developing appropriate mitigation strategies. There are a variety of approaches that can 
be employed. Models based on ordinary differential equations, or more generally ODE-based metapopulation models, are widely 
used [1--5] and can integrate many things such as mobility and waning immunity, see, e.g., [6] or reinfections by novel variants, see, 
e.g., [7]. On a finer scale, agent-based models (ABMs) can be used to model individual courses of disease, see, e.g., [8--12]. However, 
ABMs come with high-computational costs. To overcome these issues, several hybrid approaches have been proposed recently, see, 
e.g., [13,14].

To support decision makers in mitigating infectious disease spread, mathematical models should furthermore be integrated into 
automatic pipelines to provide permanently updated data [15] that are embedded in a visual analytics toolkit; cf. [16].

Models based on ordinary differential equations are especially popular as they are mathematically well understood and suit

able numerical solvers are widely available. However, these models implicitly assume an exponential stay time distribution in the 
compartments which was found unrealistic from an epidemiological point of view [17--21]. The resulting implications can be, e.g., 
underestimated basic reproduction numbers [17] that eventually lead to insufficient mitigation action.

The presented need for more general models that can naturally consider arbitrary stay time distributions leads to integro

differential equations, in particular form also sometimes denoted age-of-infection models [22]. Already in 1927, Kermack and 
McKendrick [23] presented a general model using integro-differential equations. However, their paper is mostly cited for their simple 
ODE model [24]. Recently, different authors formulated age of infection models, see, e.g., [25--29]. However, none of these models 
is as detailed as our presented model in terms of the compartments and the parameters used.

Our aim is to propose a comprehensive model where we explicitly model the number of patients needing hospitalization and 
intensive care, using transition distributions for the differently severe infection states, and demonstrate how it can be used for realistic 
simulations. For the novel model, we extend a numerical scheme based on the approach introduced in [25] to solve our model 
equations. We further show that by using a backwards finite difference scheme in an appropriate way, the original discretization 
scheme can be replaced equivalently by a computationally much more efficient one. We prove certain important mathematical 
and biological properties of the numerical solution such as mass-conservation, positivity-preservation and convergence of solution 
elements to some final size. Furthermore, we validate our approach numerically by demonstrating the convergence rate. Eventually, 
we compare our model to an ODE model for epidemic outbreaks to demonstrate the advancement also in a realistic context.

This paper is structured as follows. In Section 2, we introduce a novel IDE-SECIR-type model. In Section 3, we extend the nonstan

dard numerical scheme to solve our model equations. Thereby, we provide two discretizations which are equivalent under certain 
conditions and finally, we show how the discretized scheme can be initialized from reported case data. In the theoretical results 
in Section 4, we prove that the discretization scheme is mass-conserving and preserves positivity of the solution and some statements 
on the discrete final size. In Section 5, we show the convergence of the numerical scheme and compare the IDE-based model to 
a corresponding ODE-based model with respect to behavior at change points, as well as their prediction of infection dynamics of 
COVID-19. Finally, we will discuss our results, present limitations and provide a conclusion.

2. A novel SECIR-type IDE-based model

In this section, we introduce a generalized age-of-infection SECIR-type model allowing for a-, pre- and symptomatic transmission. 
The model is formulated using integro-differential equations, which is why we call it SECIR-type IDE-based model, or simply IDE 
model.

Fig. 1. Structure of the IDE model. Schematic representation of the compartments and the transitions between the compartments in the IDE model. The states in 
which individuals are infectious are highlighted in red.
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The model uses eight compartments, namely Susceptible (𝑆), for people who have not yet been infected with the disease and can 
therefore still be infected; Exposed (𝐸), who are infected but are not yet infectious to others; Carrier (𝐶), who are infected and infectious 
but do not show symptoms (they may be pre- or asymptomatic); Infected (𝐼), who are infected, infectious and show symptoms; 
Hospitalized (𝐻), who experience a severe development of the disease; In Intensive Care Unit (𝑈 ); Dead (𝐷); and Recovered (𝑅), who 
have gained full immunity. We define  ∶= {𝑆,𝐸,𝐶, 𝐼,𝐻,𝑈,𝑅,𝐷} as the set of compartments. For simplifying the notation, we use 
𝑍 ∈ as indices to state-specific parameters as well as to denote the number of individuals 𝑍(𝑡) at the particular infection state 𝑍
at time 𝑡. The flow chart of the model is given in Fig. 1.

We further define the number of people who enter a specific compartment 𝑧2 ∈ from 𝑧1 ∈ at time 𝑥 by 𝜎𝑧2
𝑧1
(𝑥). These transitions 

or flows are only defined for pairs of consecutive compartments, as shown in Fig. 1. Based on the transitions 𝜎𝑧2
𝑧1
(𝑥), we can define 

our model equations for the compartments as follows

𝑆′(𝑡) = − 𝑆(𝑡) 
𝑁 −𝐷(𝑡)

𝜙(𝑡) 
𝑡 

∫
−∞

𝜉𝐶 (𝑡− 𝑥) 𝜌𝐶 (𝑡− 𝑥)
(
𝜇𝐼

𝐶 𝛾𝐼
𝐶 (𝑡− 𝑥) +

(
1 − 𝜇𝐼

𝐶

)
𝛾𝑅
𝐶 (𝑡− 𝑥)

)
𝜎𝐶

𝐸 (𝑥)

+ 𝜉𝐼 (𝑡− 𝑥) 𝜌𝐼 (𝑡− 𝑥)
(
𝜇𝐻

𝐼 𝛾𝐻
𝐼 (𝑡− 𝑥) +

(
1 − 𝜇𝐻

𝐼

)
𝛾𝑅
𝐼 (𝑡− 𝑥)

)
𝜎𝐼

𝐶 (𝑥) d𝑥,

𝐸(𝑡) =

𝑡 

∫
−∞

𝛾𝐶
𝐸 (𝑡− 𝑥) 𝜎𝐸

𝑆 (𝑥) d𝑥,

𝐶(𝑡) =

𝑡 

∫
−∞

(
𝜇𝐼

𝐶 𝛾𝐼
𝐶 (𝑡− 𝑥) +

(
1 − 𝜇𝐼

𝐶

)
𝛾𝑅
𝐶 (𝑡− 𝑥)

)
𝜎𝐶

𝐸 (𝑥) d𝑥,

𝐼(𝑡) =

𝑡 

∫
−∞

(
𝜇𝐻

𝐼 𝛾𝐻
𝐼 (𝑡− 𝑥) +

(
1 − 𝜇𝐻

𝐼

)
𝛾𝑅
𝐼 (𝑡− 𝑥)

)
𝜎𝐼

𝐶 (𝑥) d𝑥,

𝐻(𝑡) =

𝑡 

∫
−∞

(
𝜇𝑈

𝐻 𝛾𝑈
𝐻 (𝑡− 𝑥) +

(
1 − 𝜇𝑈

𝐻

)
𝛾𝑅
𝐻 (𝑡− 𝑥)

)
𝜎𝐻

𝐼 (𝑥) d𝑥,

𝑈 (𝑡) =

𝑡 

∫
−∞

(
𝜇𝐷

𝑈 𝛾𝐷
𝑈 (𝑡− 𝑥) +

(
1 − 𝜇𝐷

𝑈

)
𝛾𝑅
𝑈 (𝑡− 𝑥)

)
𝜎𝑈

𝐻 (𝑥) d𝑥,

𝑅(𝑡) =

𝑡 

∫
−∞

𝜎𝑅
𝐶 (𝑥) + 𝜎𝑅

𝐼 (𝑥) + 𝜎𝑅
𝐻 (𝑥) + 𝜎𝑅

𝑈 (𝑥) d𝑥,

𝐷(𝑡) =

𝑡 

∫
−∞

𝜎𝐷
𝑈 (𝑥) d𝑥. (1)

The total population (including deaths) is denoted by 𝑁 ∶=
∑

𝑍∈ 𝑍(𝑡) and is supposed to be constant over time. Additionally, 
𝜙(𝑡) ≥ 0 refers to the (bounded) average daily contacts of a person at time 𝑡 and 𝜌𝐶 (𝜏) ∈ [0,1] and 𝜌𝐼 (𝜏) ∈ [0,1] are the average 
transmission probabilities at infection age 𝜏 of individuals in compartments 𝐶 and 𝐼 , respectively. The parameters 𝜉𝐶 (𝜏) ∈ [0,1] and 
𝜉𝐼 (𝜏) ∈ [0,1] denote the mean proportion of individuals in compartments 𝐶 and 𝐼 , respectively, that are not isolated if they have been 
in the respective compartments for time 𝜏 . The parameters 𝜇𝑧2

𝑧1
∈ [0,1] are defined as the expected proportions of people which move 

from compartment 𝑧1 ∈ to 𝑧2 ∈ in the course of their disease. The expression 𝛾𝑧2
𝑧1
(𝜏) with 𝛾𝑧2

𝑧1
∶ℝ→ [0,1] denotes the expected 

proportion of individuals who are still in compartment 𝑧1 on 𝜏 days after entering this compartment and who will eventually move to 
compartment 𝑧2 in the course of the disease. For theoretical purposes, we assume that these functions have the following properties:

• The functions 𝛾𝑧2
𝑧1

are continuously differentiable on (0,∞).
• They are monotonically decreasing with 𝛾𝑧2

𝑧1
(𝜏) = 1 for 𝜏 ≤ 0; in particular, it holds that 𝛾𝑧2

𝑧1
(0) = 1.

• We assume that the expected stay time in compartment 𝑧1 is finite, i.e. that ∫ ∞
0 𝛾

𝑧2
𝑧1
(𝜏) d𝜏 < ∞.

These assumptions imply that lim𝜏→∞ 𝛾
𝑧2
𝑧1
(𝜏) = 0, i.e., that individuals will eventually leave compartment 𝑧1 . The definition of 𝛾𝑧2

𝑧1
together with the above properties implies that there exists a cumulative distribution function (CDF) 𝐹 𝑧2

𝑧1
(𝜏) ∶= 1 − 𝛾

𝑧2
𝑧1
(𝜏) for 𝜏 ∈

ℝ which describes the distribution of the stay time. Consequently, −𝛾
𝑧2
𝑧1

′ ∶ ℝ → ℝ is a probability density function (PDF) that is 
continuous on (0,∞) and satisfies −𝛾

𝑧2
𝑧1

′(𝜏) = 0 for 𝜏 < 0. Note that since 𝛾𝑧2
𝑧1

is monotonically decreasing, it holds that −𝛾
𝑧2
𝑧1

′
is 

nonnegative, i.e., −𝛾
𝑧2
𝑧1

′(𝜏) ≥ 0 for all 𝜏 ∈ℝ.
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Table 1
Description of the parameters used to define the IDE model.

Parameter Description 
𝑁 Total population size. 

𝜙(𝑡) Daily contacts at simulation time 𝑡. 
𝜌𝐶 (𝜏) Transmission risk of Carrier individuals on contact at infection age 𝜏. 
𝜌𝐼 (𝜏) Transmission risk of Infected individuals on contact at infection age 𝜏. 
𝜉𝐶 (𝜏) Proportion of Carrier individuals not isolated at infection age 𝜏. 
𝜉𝐼 (𝜏) Proportion of Infected individuals not isolated at infection age 𝜏. 
𝜇

𝑧2
𝑧1

Expected probability of transition from compartment 𝑧1 to 𝑧2. 
𝛾

𝑧2
𝑧1
(𝜏) Expected proportion of individuals who will be in compartment 𝑧1

on 𝜏 days after entering 𝑧1 and who will eventually move to compartment 𝑧2. 

The meaning of the parameters is summarized in Table 1. In order to fully describe the model, it is necessary to provide formulas 
for the transitions 𝜎𝑧2

𝑧1
which we will derive in the following. 

We begin by observing that the following relations between the derivatives of the compartments and the flows should hold true. 
This is the case because the change of the compartment sizes is determined by the in- and outflow, which is given by the respective 
transitions. This leads to

𝑆′(𝑡) = −𝜎𝐸
𝑆 (𝑡),

𝐸′(𝑡) = 𝜎𝐸
𝑆 (𝑡) − 𝜎𝐶

𝐸 (𝑡),

𝐶 ′(𝑡) = 𝜎𝐶
𝐸 (𝑡) − 𝜎𝐼

𝐶 (𝑡) − 𝜎𝑅
𝐶 (𝑡),

𝐼 ′(𝑡) = 𝜎𝐼
𝐶 (𝑡) − 𝜎𝐻

𝐼 (𝑡) − 𝜎𝑅
𝐼 (𝑡),

𝐻 ′(𝑡) = 𝜎𝐻
𝐼 (𝑡) − 𝜎𝑈

𝐻 (𝑡) − 𝜎𝑅
𝐻 (𝑡),

𝑈 ′(𝑡) = 𝜎𝑈
𝐻 (𝑡) − 𝜎𝐷

𝑈 (𝑡) − 𝜎𝑅
𝑈 (𝑡),

𝑅′(𝑡) = 𝜎𝑅
𝐶 (𝑡) + 𝜎𝑅

𝐼 (𝑡) + 𝜎𝑅
𝐻 (𝑡) + 𝜎𝑅

𝑈 (𝑡),

𝐷′(𝑡) = 𝜎𝐷
𝑈 (𝑡).

(2)

The derivative of one compartment is calculated by adding the incoming flows and subtracting the outgoing flows. Therefore, we can 
derive the formulas for the transitions by taking the derivative of the formulas for the compartments, as introduced in (1).

To demonstrate the relation between (1) and (2) and derive a formula for the corresponding flows, we only consider compartment 
𝐶 . The results for the remaining compartments and flows can be obtained by analogous computations. A derivation of the equation 
for 𝐶 from (1), employing the Leibniz integral rule, yields the formula

𝐶 ′(𝑡) = d 
d𝑡

⎛⎜⎜⎝
𝑡 

∫
−∞

(
𝜇𝐼

𝐶 𝛾𝐼
𝐶 (𝑡− 𝑥) +

(
1 − 𝜇𝐼

𝐶

)
𝛾𝑅
𝐶 (𝑡− 𝑥)

)
𝜎𝐶

𝐸 (𝑥) d𝑥
⎞⎟⎟⎠

= 𝜇𝐼
𝐶 𝛾𝐼

𝐶 (0) 𝜎
𝐶
𝐸 (𝑡) + 𝜇𝐼

𝐶

𝑡 

∫
−∞

𝛾𝐼
𝐶

′(𝑡− 𝑥) 𝜎𝐶
𝐸 (𝑥) d𝑥

+
(
1 − 𝜇𝐼

𝐶

)
𝛾𝑅
𝐶 (0) 𝜎𝐶

𝐸 (𝑡) +
(
1 − 𝜇𝐼

𝐶

) 𝑡 

∫
−∞

𝛾𝑅
𝐶

′(𝑡− 𝑥) 𝜎𝐶
𝐸 (𝑥) d𝑥.

Using the assumption 𝛾𝑅
𝐶
(0) = 𝛾𝐼

𝐶
(0) = 1, we obtain

𝐶 ′(𝑡) = 𝜎𝐶
𝐸 (𝑡) + 𝜇𝐼

𝐶

𝑡 

∫
−∞

𝛾𝐼
𝐶

′(𝑡− 𝑥) 𝜎𝐶
𝐸 (𝑥) d𝑥+

(
1 − 𝜇𝐼

𝐶

) 𝑡 

∫
−∞

𝛾𝑅
𝐶

′(𝑡− 𝑥) 𝜎𝐶
𝐸 (𝑥) d𝑥.

A comparison of the result with the proposed formula for 𝐶 ′ in (2),

𝐶 ′(𝑡) = 𝜎𝐶
𝐸 (𝑡) − 𝜎𝐼

𝐶 (𝑡) − 𝜎𝑅
𝐶 (𝑡),

along with the incorporation of the definitions of the parameters and the transitions, allows for the assignment

𝐶 ′(𝑡) = 𝜎𝐶
𝐸 (𝑡) + 𝜇𝐼

𝐶

𝑡 

∫
−∞

𝛾𝐼
𝐶

′(𝑡− 𝑥) 𝜎𝐶
𝐸 (𝑥) d𝑥

⏟ ⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟ ⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=∶−𝜎𝐼

𝐶
(𝑡) 

+ 
(
1 − 𝜇𝐼

𝐶

) 𝑡 

∫
−∞

𝛾𝑅
𝐶

′(𝑡− 𝑥) 𝜎𝐶
𝐸 (𝑥) d𝑥

⏟ ⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟ ⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=∶−𝜎𝑅

𝐶
(𝑡) 

.
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The application of this methodology to the remaining compartments yields

𝜎𝐸
𝑆 (𝑡) = −𝑆′(𝑡) = 𝑆(𝑡) 𝜆(𝑡), 𝜎𝐶

𝐸 (𝑡) = −

𝑡 

∫
−∞

𝛾𝐶
𝐸

′(𝑡− 𝑥) 𝜎𝐸
𝑆 (𝑥) d𝑥,

𝜎𝐼
𝐶 (𝑡) = − 𝜇𝐼

𝐶

𝑡 

∫
−∞

𝛾𝐼
𝐶

′(𝑡− 𝑥) 𝜎𝐶
𝐸 (𝑥) d𝑥, 𝜎𝑅

𝐶 (𝑡) = −
(
1 − 𝜇𝐼

𝐶

) 𝑡 

∫
−∞

𝛾𝑅
𝐶

′(𝑡− 𝑥) 𝜎𝐶
𝐸 (𝑥) d𝑥,

𝜎𝐻
𝐼 (𝑡) = − 𝜇𝐻

𝐼

𝑡 

∫
−∞

𝛾𝐻
𝐼

′(𝑡− 𝑥) 𝜎𝐼
𝐶 (𝑥) d𝑥, 𝜎𝑅

𝐼 (𝑡) = −
(
1 − 𝜇𝐻

𝐼

) 𝑡 

∫
−∞

𝛾𝑅
𝐼

′(𝑡− 𝑥) 𝜎𝐼
𝐶 (𝑥) d𝑥,

𝜎𝑈
𝐻 (𝑡) = − 𝜇𝑈

𝐻

𝑡 

∫
−∞

𝛾𝑈
𝐻

′(𝑡− 𝑥) 𝜎𝐻
𝐼 (𝑥) d𝑥, 𝜎𝑅

𝐻 (𝑡) = −
(
1 − 𝜇𝑈

𝐻

) 𝑡 

∫
−∞

𝛾𝑅
𝐻

′(𝑡− 𝑥) 𝜎𝐻
𝐼 (𝑥) d𝑥,

𝜎𝐷
𝑈 (𝑡) = − 𝜇𝐷

𝑈

𝑡 

∫
−∞

𝛾𝐷
𝑈

′(𝑡− 𝑥) 𝜎𝑈
𝐻 (𝑥) d𝑥, 𝜎𝑅

𝑈 (𝑡) = −
(
1 − 𝜇𝐷

𝑈

) 𝑡 

∫
−∞

𝛾𝑅
𝑈

′(𝑡− 𝑥) 𝜎𝑈
𝐻 (𝑥) d𝑥,

(3)

with a force of infection defined as

𝜆(𝑡) = 𝜙(𝑡) 
𝑁 −𝐷(𝑡)

𝑡 

∫
−∞

𝜉𝐶 (𝑡− 𝑥) 𝜌𝐶 (𝑡− 𝑥)
(
𝜇𝐼

𝐶 𝛾𝐼
𝐶 (𝑡− 𝑥) +

(
1 − 𝜇𝐼

𝐶

)
𝛾𝑅
𝐶 (𝑡− 𝑥)

)
𝜎𝐶

𝐸 (𝑥)

+ 𝜉𝐼 (𝑡− 𝑥) 𝜌𝐼 (𝑡− 𝑥)
(
𝜇𝐻

𝐼 𝛾𝐻
𝐼 (𝑡− 𝑥) +

(
1 − 𝜇𝐻

𝐼

)
𝛾𝑅
𝐼 (𝑡− 𝑥)

)
𝜎𝐼

𝐶 (𝑥) d𝑥.

(4)

Remark 2.1. In Appendix A, we show by elementary math operations that the here introduced model is in fact a generalization of 
the ODE-SECIR-type model presented in [30]. The IDE model is formulated for general transition distributions, thus allowing for 
nonexponential stay times.

3. A nonstandard discretization scheme

In the previous section, we have introduced a generalization of a model for infectious disease dynamics from [30]. However, the 
transition to an integro-differential system means that standard numerical ODE solvers cannot be used. In a recent publication [25], the 
authors showed that the application of a trapezoidal rule to discretize the integrals in the model equations does not conserve important 
(biological) properties of the continuous system for discretization step sizes above a certain threshold. The violated properties include 
the monotonicity of 𝑆 and the positivity of the force of infection term 𝜆. To address this issue, the authors proposed a nonstandard 
scheme to solve the 𝑆 equation of an SIR model based on integro-differential equations. In the following, we extend this formula 
to our model compartments and flows as defined in the previous section. In Section 4, we will furthermore prove that the extended 
discretization scheme still conserves essential (biological) properties as desired.

For the discrete approximations to the compartments as defined in (1) (or (2)), the flows as defined in (3) and the force of infection 
term as defined in (4), we use the 𝑥 notation for the respective discretized version of variable 𝑥. For a step size Δ𝑡 > 0, let 𝑡𝑛 ∶= 𝑛 Δ𝑡

for 𝑛 ∈ ℤ define a uniform mesh. We define 𝑎 ∈ ℤ− such that 𝑡𝑎 ≤ 𝑇 , where 𝑇 ∈ ℝ− is a time point at which no infections have 
occurred yet. Such a time point 𝑇 is assumed to be known.

For 𝑛 ∈ℕ0, we define

𝜎𝐸
𝑆 (𝑡𝑛+1) = −𝑆′(𝑡𝑛+1) = 𝑆(𝑡𝑛+1) ̂𝜆(𝑡𝑛), (5)

which is a right endpoint approximation in 𝑆 and a left endpoint approximation in 𝜆. This gives us a nonstandard numerical scheme, 
as proposed in [25]. Together with a backwards finite difference scheme for 𝑆 ′,

𝑆′(𝑡𝑛+1) =
𝑆(𝑡𝑛+1) −𝑆(𝑡𝑛)

Δ𝑡 
, (6)

we obtain

𝑆(𝑡𝑛+1) =
𝑆(𝑡𝑛) 

1 +Δ𝑡 ̂𝜆(𝑡𝑛)
. (7)

The force of infection term is discretized as

𝜆(𝑡𝑛+1) =
𝜙(𝑡𝑛+1) 

𝑁 − 𝐷̂(𝑡𝑛)
Δ𝑡

𝑛 ∑
𝑖=𝑎 

(
𝜉𝐶 (𝑡𝑛+1−𝑖) 𝜌𝐶 (𝑡𝑛+1−𝑖) 

(
𝜇𝐼

𝐶 𝛾𝐼
𝐶 (𝑡𝑛+1−𝑖) + (1 − 𝜇𝐼

𝐶 ) 𝛾
𝑅
𝐶 (𝑡𝑛+1−𝑖)

)
𝜎𝐶

𝐸 (𝑡𝑖+1)
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+ 𝜉𝐼 (𝑡𝑛+1−𝑖) 𝜌𝐼 (𝑡𝑛+1−𝑖) 
(
𝜇𝐻

𝐼 𝛾𝐻
𝐼 (𝑡𝑛+1−𝑖) + (1 − 𝜇𝐻

𝐼 ) 𝛾𝑅
𝐼 (𝑡𝑛+1−𝑖)

)
𝜎𝐼

𝐶 (𝑡𝑖+1)
)

, (8)

which is again a nonstandard discretization by using a rectangular rule with a right endpoint approximation in 𝜎𝐶
𝐸

and 𝜎𝐼
𝐶

and a left 
endpoint approximation in 𝜉𝐶 , 𝜉𝐼 , 𝜌𝐶 , 𝜌𝐼 and 𝛾𝑧2

𝑧1
′

for appropriate 𝑧1 and 𝑧2. The integrals in the formulas for the remaining flows 
will be approximated analogously by employing a nonstandard rectangular rule. We furthermore replace the derivative 𝛾𝑧2

𝑧1
′

by a 
numerical approximation ̂𝛾𝑧2

𝑧1
′
, yet to be defined. Additionally, using (7), this results in the discretized system of flows,

𝜎𝐸
𝑆 (𝑡𝑛+1) =

𝑆(𝑡𝑛) 

1 +Δ𝑡 ̂𝜆(𝑡𝑛)
𝜆(𝑡𝑛), 𝜎𝐶

𝐸 (𝑡𝑛+1) = −Δ𝑡 
𝑛 ∑

𝑖=𝑎 
𝛾̂𝐶

𝐸

′(𝑡𝑛+1−𝑖) ̂𝜎𝐸
𝑆 (𝑡𝑖+1),

𝜎𝐼
𝐶 (𝑡𝑖+1) = − 𝜇𝐼

𝐶 Δ𝑡 
𝑛 ∑

𝑖=𝑎 
𝛾̂𝐼

𝐶

′(𝑡𝑛+1−𝑖) ̂𝜎𝐶
𝐸 (𝑡𝑖+1), 𝜎𝑅

𝐶 (𝑡𝑛+1) = − 
(
1 − 𝜇𝐼

𝐶

)
Δ𝑡

𝑛 ∑
𝑖=𝑎 

𝛾̂𝑅
𝐶

′(𝑡𝑛+1−𝑖) ̂𝜎𝐶
𝐸 (𝑡𝑖+1),

𝜎𝐻
𝐼 (𝑡𝑛+1) = − 𝜇𝐻

𝐼 Δ𝑡
𝑛 ∑

𝑖=𝑎 
𝛾̂𝐻

𝐼

′(𝑡𝑛+1−𝑖) ̂𝜎𝐼
𝐶 (𝑡𝑖+1), 𝜎𝑅

𝐼 (𝑡𝑛+1) = − 
(
1 − 𝜇𝐻

𝐼

)
Δ𝑡

𝑛 ∑
𝑖=𝑎 

𝛾̂𝑅
𝐼

′(𝑡𝑛+1−𝑖) ̂𝜎𝐼
𝐶 (𝑡𝑖+1),

𝜎𝑈
𝐻 (𝑡𝑛+1) = − 𝜇𝑈

𝐻 Δ𝑡
𝑛 ∑

𝑖=𝑎 
𝛾̂𝑈

𝐻

′(𝑡𝑛+1−𝑖) ̂𝜎𝐻
𝐼 (𝑡𝑖+1), 𝜎𝑅

𝐻 (𝑡𝑛+1) = − 
(
1 − 𝜇𝑈

𝐻

)
Δ𝑡

𝑛 ∑
𝑖=𝑎 

𝛾̂𝑅
𝐻

′(𝑡𝑛+1−𝑖) ̂𝜎𝐻
𝐼 (𝑡𝑖+1),

𝜎𝐷
𝑈 (𝑡𝑛+1) = − 𝜇𝐷

𝑈 Δ𝑡
𝑛 ∑

𝑖=𝑎 
𝛾̂𝐷

𝑈

′(𝑡𝑛+1−𝑖) ̂𝜎𝑈
𝐻 (𝑡𝑖+1), 𝜎𝑅

𝑈 (𝑡𝑛+1) = − 
(
1 − 𝜇𝐷

𝑈

)
Δ𝑡

𝑛 ∑
𝑖=𝑎 

𝛾̂𝑅
𝑈

′(𝑡𝑛+1−𝑖) ̂𝜎𝑈
𝐻 (𝑡𝑖+1).

(9)

We observe that the incoming flow of the current time step is required in order to compute the subsequent flows. Therefore, it is 
essential to calculate the flows in the correct sequence.

Once the flows for all time points have been computed, the values for the compartments can be obtained. In the next sections, 
two approaches to the discretization of the compartments will be introduced. The second scheme has the advantage that it is much 
more computationally efficient throughout the simulation and in Theorem 3.1, we show that these discretizations are equivalent if 
we approximate the derivatives of the functions 𝛾𝑧2

𝑧1
using a backwards difference scheme.

3.1. Nonstandard discretization of compartments based on integral formulation

In this section, we will introduce a discretization for the compartments apart from 𝑆 by directly applying the nonstandard rectan

gular rules to the integral model formulation as given in (1). Since this scheme directly discretizes the integral formulation, we will 
denote it as sum discretization.

We distinguish two cases. The first category includes transient or intermediate compartments that individuals are entering and 
leaving, i.e., 𝐸, 𝐶 , 𝐼 , 𝐻 , and 𝑈 . The second category comprises absorbing or dead-end compartments, as 𝑅 and 𝐷, where individuals 
enter but cannot exit.

In the first case, we approximate the integral term by once again employing the nonstandard numerical rectangular rule that we 
previously used in equation (8). Here, we use a right approximation for the flows and a left approximation for 𝛾𝑧2

𝑧1
. In the second 

case, we use a standard right rectangular rule, where we use a right approximation of the respective flows. With this, we obtain the 
discrete approximations for all remaining compartments by

𝐸(𝑡𝑛+1) = Δ𝑡
𝑛 ∑

𝑖=𝑎 
𝛾𝐶
𝐸 (𝑡𝑛+1−𝑖) ̂𝜎𝐸

𝑆 (𝑡𝑖+1),

𝐶(𝑡𝑛+1) = Δ𝑡
𝑛 ∑

𝑖=𝑎 

(
𝜇𝐼

𝐶 𝛾𝐼
𝐶 (𝑡𝑛+1−𝑖) +

(
1 − 𝜇𝐼

𝐶

)
𝛾𝑅
𝐶 (𝑡𝑛+1−𝑖)

)
𝜎𝐶

𝐸 (𝑡𝑖+1),

𝐼(𝑡𝑛+1) = Δ𝑡
𝑛 ∑

𝑖=𝑎 

(
𝜇𝐻

𝐼 𝛾𝐻
𝐼 (𝑡𝑛+1−𝑖) +

(
1 − 𝜇𝐻

𝐼

)
𝛾𝑅
𝐼 (𝑡𝑛+1−𝑖)

)
𝜎𝐼

𝐶 (𝑡𝑖+1),

𝐻̂(𝑡𝑛+1) = Δ𝑡
𝑛 ∑

𝑖=𝑎 

(
𝜇𝑈

𝐻 𝛾𝑈
𝐻 (𝑡𝑛+1−𝑖) +

(
1 − 𝜇𝑈

𝐻

)
𝛾𝑅
𝐻 (𝑡𝑛+1−𝑖)

)
𝜎𝐻

𝐼 (𝑡𝑖+1),

𝑈 (𝑡𝑛+1) = Δ𝑡
𝑛 ∑

𝑖=𝑎 

(
𝜇𝐷

𝑈 𝛾𝐷
𝑈 (𝑡𝑛+1−𝑖) +

(
1 − 𝜇𝐷

𝑈

)
𝛾𝑅
𝑈 (𝑡𝑛+1−𝑖)

)
𝜎𝑈

𝐻 (𝑡𝑖+1),

𝑅(𝑡𝑛+1) = Δ𝑡
𝑛 ∑

𝑖=𝑎 

(
𝜎𝑅

𝐶 (𝑡𝑖+1) + 𝜎𝑅
𝐼 (𝑡𝑖+1) + 𝜎𝑅

𝐻 (𝑡𝑖+1) + 𝜎𝑅
𝑈 (𝑡𝑖+1)

)
,

𝐷̂(𝑡𝑛+1) = Δ𝑡
𝑛 ∑

𝑖=𝑎 
𝜎𝐷

𝑈 (𝑡𝑖+1). (10)
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3.2. Nonstandard discretization of compartments based on flows

Another way to discretize the formulas for the compartments apart from 𝑆 is based on the formulas for the derivatives of the 
compartments in (2). The evaluation of these equations at a discrete time point 𝑡𝑛+1, together with the approximation of the derivative 
of the compartments using a backwards difference scheme and discretizations (9), leads to the following discrete formulas

𝐸(𝑡𝑛+1) = 𝐸(𝑡𝑛) + Δ𝑡 ̂𝜎𝐸
𝑆 (𝑡𝑛+1) − Δ𝑡 ̂𝜎𝐶

𝐸 (𝑡𝑛+1),

𝐶(𝑡𝑛+1) = 𝐶(𝑡𝑛) + Δ𝑡 ̂𝜎𝐶
𝐸 (𝑡𝑛+1) − Δ𝑡 ̂𝜎𝐼

𝐶 (𝑡𝑛+1) − Δ𝑡 ̂𝜎𝑅
𝐶 (𝑡𝑛+1),

𝐼(𝑡𝑛+1) = 𝐼(𝑡𝑛) + Δ𝑡 ̂𝜎𝐼
𝐶 (𝑡𝑛+1) − Δ𝑡 ̂𝜎𝐻

𝐼 (𝑡𝑛+1) − Δ𝑡 ̂𝜎𝑅
𝐼 (𝑡𝑛+1),

𝐻̂(𝑡𝑛+1) = 𝐻̂(𝑡𝑛) + Δ𝑡 ̂𝜎𝐻
𝐼 (𝑡𝑛+1) − Δ𝑡 ̂𝜎𝑈

𝐻 (𝑡𝑛+1) − Δ𝑡 ̂𝜎𝑅
𝐻 (𝑡𝑛+1),

𝑈 (𝑡𝑛+1) = 𝑈 (𝑡𝑛) + Δ𝑡 ̂𝜎𝑈
𝐻 (𝑡𝑛+1) − Δ𝑡 ̂𝜎𝐷

𝑈 (𝑡𝑛+1) − Δ𝑡 ̂𝜎𝑅
𝑈 (𝑡𝑛+1),

𝑅(𝑡𝑛+1) = 𝑅(𝑡𝑛) + Δ𝑡 ̂𝜎𝑅
𝐶 (𝑡𝑛+1) + Δ𝑡 ̂𝜎𝑅

𝐼 (𝑡𝑛+1) + Δ𝑡 ̂𝜎𝑅
𝐻 (𝑡𝑛+1) + Δ𝑡 ̂𝜎𝑅

𝑈 (𝑡𝑛+1),

𝐷̂(𝑡𝑛+1) = 𝐷̂(𝑡𝑛) + Δ𝑡 ̂𝜎𝐷
𝑈 (𝑡𝑛+1).

(11)

It is assumed that the values of the compartments of the previous time step 𝑡𝑛 are known. With this knowledge, we can compute the 
compartments of the current time step 𝑡𝑛+1 by updating the previous compartment values with the flows of the current time step. 
This discretization scheme will be denoted update discretization as it incrementally updates the compartment values in the simulation.

3.3. Connection between sum and update discretizations

In this section and the following theorem, we demonstrate that the sum discretization as outlined in Section 3.1 and the update 
discretization as described in Section 3.2 are equivalent when approximating the derivatives of the functions 𝛾𝑧2

𝑧1
using a backwards 

difference scheme.

Theorem 3.1. Let the derivative of 𝛾𝑧2
𝑧1

for appropriate combinations of 𝑧1, 𝑧2 ∈  be approximated with a backwards difference scheme, 
i.e., let

𝛾̂
𝑧2
𝑧1

′(𝑡𝑖+1) ∶=
𝛾

𝑧2
𝑧1
(𝑡𝑖+1) − 𝛾

𝑧2
𝑧1
(𝑡𝑖)

Δ𝑡 
(12)

for 𝑖 ∈ℤ. Then the sum discretization of the compartments, as defined in (10), is equivalent to the update discretization, as described in (11).

Proof. We begin to show the statement for the compartment 𝐶 . The sum discretization of 𝐶 as stated in (10) is given by

𝐶(𝑡𝑛+1) = Δ𝑡 
𝑛 ∑

𝑖=𝑎 

(
𝜇𝐼

𝐶 𝛾𝐼
𝐶 (𝑡𝑛+1−𝑖) +

(
1 − 𝜇𝐼

𝐶

)
𝛾𝑅
𝐶 (𝑡𝑛+1−𝑖)

)
𝜎𝐶

𝐸 (𝑡𝑖+1).

Calculating the difference of two consecutive time steps using this formula yields

𝐶(𝑡𝑛+1) −𝐶(𝑡𝑛) = Δ𝑡 
𝑛 ∑

𝑖=𝑎 

(
𝜇𝐼

𝐶 𝛾𝐼
𝐶 (𝑡𝑛+1−𝑖) +

(
1 − 𝜇𝐼

𝐶

)
𝛾𝑅
𝐶 (𝑡𝑛+1−𝑖)

)
𝜎𝐶

𝐸 (𝑡𝑖+1)

− Δ𝑡 
𝑛−1 ∑
𝑖=𝑎 

(
𝜇𝐼

𝐶 𝛾𝐼
𝐶 (𝑡𝑛−𝑖) +

(
1 − 𝜇𝐼

𝐶

)
𝛾𝑅
𝐶 (𝑡𝑛−𝑖)

)
𝜎𝐶

𝐸 (𝑡𝑖+1)

= Δ𝑡 
(
𝜇𝐼

𝐶 𝛾𝐼
𝐶 (𝑡0) +

(
1 − 𝜇𝐼

𝐶

)
𝛾𝑅
𝐶 (𝑡0)

)
𝜎𝐶

𝐸 (𝑡𝑛+1)

+ Δ𝑡 
𝑛 ∑

𝑖=𝑎 
𝜇𝐼

𝐶

(
𝛾𝐼
𝐶 (𝑡𝑛+1−𝑖) − 𝛾𝐼

𝐶 (𝑡𝑛−𝑖)
)

𝜎𝐶
𝐸 (𝑡𝑖+1)

+ Δ𝑡 
𝑛 ∑

𝑖=𝑎 

(
1 − 𝜇𝐼

𝐶

)(
𝛾𝑅
𝐶 (𝑡𝑛+1−𝑖) − 𝛾𝑅

𝐶 (𝑡𝑛−𝑖)
)

𝜎𝐶
𝐸 (𝑡𝑖+1).

By using 𝛾𝐼
𝐶
(𝑡0) = 𝛾𝐼

𝐶
(0) = 1 and 𝛾𝑅

𝐶
(𝑡0) = 𝛾𝑅

𝐶
(0) = 1, we obtain

𝐶(𝑡𝑛+1) −𝐶(𝑡𝑛) = Δ𝑡 ̂𝜎𝐶
𝐸 (𝑡𝑛+1) + Δ𝑡 

𝑛 ∑
𝑖=𝑎 

𝜇𝐼
𝐶

(
𝛾𝐼
𝐶 (𝑡𝑛+1−𝑖) − 𝛾𝐼

𝐶 (𝑡𝑛−𝑖)
)

𝜎𝐶
𝐸 (𝑡𝑖+1)

+ Δ𝑡 
𝑛 ∑

𝑖=𝑎 

(
1 − 𝜇𝐼

𝐶

) (
𝛾𝑅
𝐶 (𝑡𝑛+1−𝑖) − 𝛾𝑅

𝐶 (𝑡𝑛−𝑖)
)

𝜎𝐶
𝐸 (𝑡𝑖+1).

(13)

Using the formulas (9) for the relevant transitions and applying a backwards difference scheme as in (12), we obtain
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𝜎𝐼
𝐶 (𝑡𝑛+1) = − 𝜇𝐼

𝐶

𝑛 ∑
𝑖=𝑎 

(
𝛾𝐼
𝐶 (𝑡𝑛+1−𝑖) − 𝛾𝐼

𝐶 (𝑡𝑛−𝑖)
)
𝜎𝐶

𝐸 (𝑡𝑖+1)

and

𝜎𝑅
𝐶 (𝑡𝑛+1) = − 

(
1 − 𝜇𝐼

𝐶

) 𝑛 ∑
𝑖=𝑎 

(
𝛾𝑅
𝐶 (𝑡𝑛+1−𝑖) − 𝛾𝑅

𝐶 (𝑡𝑛−𝑖)
)
𝜎𝐶

𝐸 (𝑡𝑖+1).

We insert these formulas into (13) and get

𝐶(𝑡𝑛+1) −𝐶(𝑡𝑛) = Δ𝑡 ̂𝜎𝐶
𝐸 (𝑡𝑛+1) − Δ𝑡 ̂𝜎𝐼

𝐶 (𝑡𝑛+1) − Δ𝑡 ̂𝜎𝑅
𝐶 (𝑡𝑛+1).

Consequently, we have shown that the sum discretization expression for the compartment 𝐶 is equivalent to the update discretization 
from (11). For 𝐼 , 𝐻 and 𝑈 the statement can be shown analogously. The proof for 𝐸 is a simplification of the proof for 𝐶 . The 
equivalence of both discretizations for compartment 𝐷 can directly be seen through

𝐷̂(𝑡𝑛+1) = Δ𝑡 
𝑛 ∑

𝑖=𝑎 
𝜎𝐷

𝑈 (𝑡𝑖+1) = Δ𝑡
𝑛−1 ∑
𝑖=𝑎 

𝜎𝐷
𝑈 (𝑡𝑖+1) + Δ𝑡 ̂𝜎𝐷

𝑈 (𝑡𝑛+1)

= 𝐷̂(𝑡𝑛) + Δ𝑡 ̂𝜎𝐷
𝑈 (𝑡𝑛+1).

Analogously, we obtain the equivalence of both discretizations of 𝑅. □

For the remainder of this paper, we assume that all derivatives of 𝛾𝑧2
𝑧1

are approximated using the backwards difference scheme. 
This allows us to use the update and sum discretization equivalently.

3.4. Initialization of the discretized system

In order to simulate realistic scenarios, we need to feed reported data into our model. Initialization is a nontrivial detail but often 
neglected to be described. In the IDE model, we consider past flows to determine current disease dynamics. Accordingly, we need 
knowledge of the transitions before the start time of our simulation, which must be derived from the actual data. The initialization of 
the IDE model is more challenging than that of ODE models, where only the sizes of the compartments at the start of the simulation 
are necessary. In this section, we assume that daily updated data on cases and deaths are available. For an example on how reported 
data can be used in the case of COVID-19 in Germany, we refer to Section 5.3.

For the sake of simplicity, we assume that testing is symptom-based. In particular, this means that we assume that only symptomatic 
cases are detected. We assume that there is no dark figure, meaning that all symptomatic cases are tested and reported -- otherwise the 
formulas given below could be scaled by a constant or time changing detection ratio. Furthermore, we assume that cases are reported 
as soon as individuals develop symptoms, or in other words as soon as they enter compartment 𝐼 -- again, otherwise, a particular 
delay or a delay distribution could be introduced. With these assumptions, the daily reported cases correspond to the number of 
transitions from 𝐶 to 𝐼 within one day. Analogously, we assume that all deaths are reported. Furthermore, in accordance with the 
possible flows in the model, it is assumed that individuals only die after they have been in the intensive care unit.

In order to use the daily reported case data as input to our model, the model itself must be adapted in the following way. The 
current discretized model evaluates the transitions at discrete time points. However, the data provides information on the number 
of new infections or deaths occurring within a day, thus within a time interval. Consequently, we define the transitions 𝜎𝑧2

𝑧1
(𝑡𝑛)

for matching 𝑧1, 𝑧2 ∈ , that describe the number of individuals transitioning from 𝑧1 to 𝑧2 within the time interval (𝑡𝑛−1, 𝑡𝑛]. The 
transitions 𝜎𝑧2

𝑧1
(𝑡𝑛) are related to the discretized transitions 𝜎𝑧2

𝑧1
(𝑡𝑛), as defined in Section 3, as follows:

𝜎
𝑧2
𝑧1
(𝑡𝑛) =

𝑡𝑛

∫
𝑡𝑛−1

𝜎
𝑧2
𝑧1
(𝑡) 𝑑𝑡 ≈Δ𝑡 ̂𝜎𝑧2

𝑧1
(𝑡𝑛),

where we approximate 𝜎𝑧2
𝑧1

as in Section 3 by 𝜎𝑧2
𝑧1

on the interval (𝑡𝑛−1, 𝑡𝑛] and then approximate the integral with a right rectangular 
rule. With this approximation, we can replace all 𝜎𝑧2

𝑧1
(𝑡𝑛) in the equations in Section 3 by 𝜎𝑧2

𝑧1
(𝑡𝑛) ≈ 𝜎

𝑧2
𝑧1
(𝑡𝑛) ∕Δ𝑡.

The reported case data gives us values for 𝜎𝐼
𝐶
(𝑡𝑛), assuming an interval of one day, i.e., Δ𝑡 = 1. When using smaller time steps, we 

use linear interpolation to obtain intermediate values.

Then, the obtained data allows for the calculation of subsequent flows following compartment 𝐼 , using the equations of the sum 
discretization as presented in (9).

Now, all that is missing are the approximations for the transitions from the compartment 𝑆 to 𝐸 and from 𝐸 to 𝐶 . Here, we use 
a simplification by using the mean stay time of individuals in 𝐶 who will transit to 𝐼 , denoted by 𝑇 𝐼

𝐶
, and shifting 𝜎𝐼

𝐶
accordingly. 

This results in

𝜎𝐶
𝐸 (𝑡𝑖) =

1 
𝜇𝐼

𝐶

𝜎𝐼
𝐶 (𝑡𝑖 + [𝑇 𝐼

𝐶 ]),
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where we round 𝑇 𝐼
𝐶

to the next multiple of Δ𝑡, [𝑇 𝐼
𝐶
], and use that individuals transit from 𝐶 to 𝐼 with probability 𝜇𝐼

𝐶
. Similarly, we 

use the mean stay time of individuals in 𝐸, denoted by 𝑇 𝐶
𝐸

, and shift the flow appropriately, resulting in

𝜎𝐸
𝑆 (𝑡𝑖) =

1 
𝜇𝐼

𝐶

𝜎𝐼
𝐶 (𝑡𝑖 + [𝑇 𝐶

𝐸 + 𝑇 𝐼
𝐶 ]),

where we round 𝑇 𝐶
𝐸
+𝑇 𝐼

𝐶
again to the next multiple of Δ𝑡, [𝑇 𝐶

𝐸
+𝑇 𝐼

𝐶
]. Using the results for ̃𝜎𝐸

𝑆
(𝑡𝑖), we can also compute the flow from 

𝐶 to 𝑅 as in equation (9).

Using this scheme, all flows needed to initialize the model can be derived from the reported data. Note that depending on the 
distribution that is chosen for the transitions, the support of the respective survival function 𝛾𝑧2

𝑧1
may be large to infinite. However, 

the assumption that a single first index case appeared at −∞ < 𝑎 < 0 means that 𝛾𝑧2
𝑧1

only needs to be evaluated for flows down to 𝑎.

In the application, we numerically only evaluate 𝛾𝑧2
𝑧1

on the interval (0, 𝑞), where 𝑞 ∈ ℝ+ is set such that 𝛾𝑧2
𝑧1
(𝑞) > 𝜀 for some 

appropriately selected 𝜀 > 0.

Finally, we set the number of deaths at the simulation start which we assume to be known.

4. Theoretical properties of the numerical solution

In this section, we will show that the discretization scheme(s) preserves important properties of the disease dynamics, such as 
the positivity of all components and flows. Note that, with the assumption of Theorem 3.1, we can use both discretization schemes 
equivalently. In the course of this section, we will make meaningful assumptions regarding transition distributions and parameters.

We begin with three lemmas that are fundamental to the subsequent theorems. The initial proposition demonstrates that the 
discrete scheme is mass-conserving.

Lemma 4.1. Let ̂𝛾𝑧2
𝑧1

′
for suitable combinations 𝑧1, 𝑧2 ∈ be approximated as in Theorem 3.1. Furthermore, let the sum of all compartments 

at time 𝑡0 be equal to the total population

𝑆(𝑡0) +𝐸(𝑡0) +𝐶(𝑡0) + 𝐼(𝑡0) + 𝐻̂(𝑡0) +𝑈 (𝑡0) +𝑅(𝑡0) + 𝐷̂(𝑡0) = 𝑁.

Then, the sum of all compartments is equal to the total population at all subsequent time points 𝑡𝑛, 𝑛 ∈ℕ.

Proof. We show the statement by induction. By assumption, the statement holds for 𝑡0.

Now assume that the statement holds for 𝑡𝑛. The number of individuals in compartment 𝑆 at 𝑡𝑛+1 given by (7) is

𝑆(𝑡𝑛+1) = 𝑆(𝑡𝑛) − Δ𝑡 ̂𝜎𝐸
𝑆 (𝑡𝑛+1);

cf. (5) and (6). By inserting this formula and using of (11), we obtain by summation that

𝑆(𝑡𝑛+1) +𝐸(𝑡𝑛+1) +𝐶(𝑡𝑛+1) + 𝐼(𝑡𝑛+1) + 𝐻̂(𝑡𝑛+1) +𝑈 (𝑡𝑛+1) +𝑅(𝑡𝑛+1) + 𝐷̂(𝑡𝑛+1)

= 𝑆(𝑡𝑛) +𝐸(𝑡𝑛) +𝐶(𝑡𝑛) + 𝐼(𝑡𝑛) + 𝐻̂(𝑡𝑛) +𝑈 (𝑡𝑛) +𝑅(𝑡𝑛) + 𝐷̂(𝑡𝑛)

= 𝑁.

This concludes our proof. □

The following lemma demonstrates that, if the assumptions are satisfied, not all individuals will die.

Lemma 4.2. Let

𝜇𝐼
𝐶 𝜇𝐻

𝐼 𝜇𝑈
𝐻 𝜇𝐷

𝑈 < 1 (14)

as well as Δ𝑡 > 0. Assume that nonnegative transitions 𝜎𝑧2
𝑧1
(𝑡𝑖) for 𝑖 ∈ {𝑎,… , 𝑛} are given for suitable combinations 𝑧1, 𝑧2 ∈  for some 

𝑛 ∈ℕ0 that is fixed but arbitrary.

In addition, we assume

𝐷̂(𝑡0) < 𝑁

as well as

𝑆(𝑡0) +𝐸(𝑡0) +𝐶(𝑡0) + 𝐼(𝑡0) + 𝐻̂(𝑡0) +𝑈 (𝑡0) +𝑅(𝑡0) + 𝐷̂(𝑡0) = 𝑁.

Furthermore, let

𝑍(𝑡𝑛) ≥ 0 (15)

for 𝑍 ∈ ̂ ∶= {𝑆,𝐸,𝐶, 𝐼, 𝐻̂,𝑈,𝑅, 𝐷̂}.
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Then it holds that

𝐷̂(𝑡𝑛) < 𝑁.

This statement also holds as 𝑛 approaches infinity, i.e.,

lim 
𝑛→∞

𝐷̂(𝑡𝑛) < 𝑁.

Proof. Assumption (14) implies that there is at least one 𝑍 ∈ such that 𝜇𝑅
𝑍

> 0. Without loss of generality, we assume that it holds 
𝜇𝑅

𝐶
= 1 − 𝜇𝐼

𝐶
> 0. Given that all transitions are nonnegative, it can be concluded from the equation for 𝑅 in (10) that

𝑅(𝑡𝑛) ≥Δ𝑡 ̂𝜎𝑅
𝐶 (𝑡𝑛). (16)

By (9), 𝜎𝑅
𝐶
(𝑡𝑛) is defined as

𝜎𝑅
𝐶 (𝑡𝑛) = −Δ𝑡

𝑛−1 ∑
𝑖=𝑎 

(
1 − 𝜇𝐼

𝐶

)
𝛾̂𝑅

𝐶

′(𝑡𝑛−𝑖) ̂𝜎𝐶
𝐸 (𝑡𝑖+1).

We distinguish between two cases:

1. Assume that there exists an index 𝑖 ∈ {𝑎,… , 𝑛− 1} such that

−𝛾̂𝑅
𝐶

′(𝑡𝑛−𝑖) ̂𝜎𝐶
𝐸 (𝑡𝑖+1) > 0.

This directly implies 𝑅(𝑡𝑛) > 0, see equation (16). The application of Lemma 4.1 together with assumption (15) leads to the 
conclusion that it holds 𝐷̂(𝑡𝑛) < 𝑁 .

When 𝑛 is approaching infinity, we can apply the same argument and obtain

lim 
𝑛→∞

𝑅(𝑡𝑛) > 0.

This implies

lim 
𝑛→∞

𝐷̂(𝑡𝑛) ≤ 𝑁 − lim 
𝑛→∞

𝑅(𝑡𝑛) < 𝑁.

2. Assume that there exists no index 𝑖 ∈ {𝑎,… , 𝑛− 1} such that

−𝛾̂𝑅
𝐶

′(𝑡𝑛−𝑖) ̂𝜎𝐶
𝐸 (𝑡𝑖+1) > 0.

(i) Either there exists some 𝑖 such that 𝜎𝐶
𝐸
(𝑡𝑖+1) > 0. This implies that −𝛾̂𝑅

𝐶

′(𝑡𝑛−𝑖) = 0. We observe that 𝛾𝑅
𝐶

is not constant on 
(0,∞). This implies that there exists at least one 𝑗 ∈ ℕ such that −𝛾𝑅

𝐶
′(𝑡𝑗 ) > 0. For simplicity, we only consider the case 

with one such index 𝑗; in the case of multiple such indices, one can extend the argument analogously.

In the here considered case of 𝜎𝐶
𝐸
(𝑡𝑖+1) > 0 and −𝛾̂𝑅

𝐶

′(𝑡𝑛−𝑖) = 0, it holds that 𝑛 − 𝑖 ≠ 𝑗. This means that there is some 
nontrivial flow from 𝐸 to 𝐶 at 𝑡𝑖+1 but the respective individuals are still remaining in compartment 𝐶 or they have already 
transitioned to 𝑅 at time 𝑡𝑛 as the approximated change from 𝐶 to 𝑅 is zero. More precisely, either it holds 𝑛− 𝑖 < 𝑗 which 
implies 𝐶(𝑡𝑛) > 0, or else it holds 𝑛− 𝑖 > 𝑗 which implies 𝑅(𝑡𝑛) > 0. With (15) and Lemma 4.1 it follows that 𝐷̂(𝑡𝑛) < 𝑁 .

As 𝑛 approaches infinity, the inequality 𝑛 − 𝑖 < 𝑗 does not hold for 𝑖 ∈ {𝑎,… , 𝑛 − 1} for 𝑛 large enough. Hence, if it 
holds ̂𝜎𝐶

𝐸
(𝑡𝑖+1) > 0 and −𝛾̂𝑅

𝐶

′(𝑡𝑛−𝑖) = 0 for 𝑖 ∈ {𝑎,… , 𝑛−1}, we have 𝑛− 𝑖 > 𝑗 and thus 𝑅(𝑡𝑛) > 0. In other words, if 𝑛 is large 
enough, all individuals have already transitioned to compartment 𝑅 at time 𝑡𝑛 which implies

lim 
𝑛→∞

𝑅(𝑡𝑛) > 0,

and thus

lim 
𝑛→∞

𝐷̂(𝑡𝑛) < 𝑁.

(ii) If there exists no such 𝑖, then we have 𝜎𝐶
𝐸
(𝑡𝑖+1) = 0 for all 𝑖 ∈ {𝑎,… , 𝑛 − 1}. This implies that there has been no flow from 

𝐸 to 𝐶 until 𝑡𝑛. Thus, we have

𝑍(𝑡𝑛) = 𝑍(𝑡0)

for all subsequent compartments 𝑍 ∈ {𝐶,𝐼, 𝐻̂,𝑈,𝑅, 𝐷̂}. By assumption, it holds 𝐷̂(𝑡0) < 𝑁 and consequently 𝐷̂(𝑡𝑛) < 𝑁 .

When 𝑛 is approaching infinity, we can apply the same argument and obtain

lim 
𝑛→∞

𝐷̂(𝑡𝑛) = 𝐷(0) < 𝑁. □
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To proof Theorem 4.5, one more lemma is needed.

Lemma 4.3. Let Δ𝑡 > 0 be arbitrary but fixed and ̂𝛾𝑧2
𝑧1

′
be the backwards difference approximation of 𝛾𝑧2

𝑧1
′
. Then there exists an 𝑀 ∈ℝ such 

that

∞ ∑
𝑛=0 

−𝛾̂
𝑧2
𝑧1

′(𝑡𝑛+1) ≤ 𝑀 < ∞.

Proof. We start by using the backwards difference approximation as in (12) and obtain

∞ ∑
𝑛=0 

−𝛾̂
𝑧2
𝑧1

′(𝑡𝑛+1) = lim 
𝐾→∞

𝐾∑
𝑛=0 

−𝛾̂
𝑧2
𝑧1

′(𝑡𝑛+1)

= lim 
𝐾→∞

𝐾∑
𝑛=0 

−
𝛾

𝑧2
𝑧1
(𝑡𝑛+1) − 𝛾

𝑧2
𝑧1
(𝑡𝑛)

Δ𝑡 

= − 1 
Δ𝑡

(
lim 

𝐾→∞
𝛾

𝑧2
𝑧1
(𝑡𝐾+1) − 𝛾

𝑧2
𝑧1
(𝑡0)

)
= 1 

Δ𝑡
≤ 𝑀 < ∞,

where we used that 1 − 𝛾
𝑧2
𝑧1

is a CDF which implies that 𝛾𝑧2
𝑧1

converges to zero. □

The following theorem demonstrates that the discretization scheme preserves important properties of the disease dynamics re

garding positivity and boundedness. Our theorem generalizes the corresponding part of Theorem 3.4 of [25].

Theorem 4.4. Let

𝜇𝐼
𝐶 𝜇𝐻

𝐼 𝜇𝑈
𝐻 𝜇𝐷

𝑈 < 1

and Δ𝑡 > 0 be arbitrary but fixed. Assume that nonnegative transitions ̂𝜎𝑧2
𝑧1
(𝑡𝑖) for 𝑖 ∈ {𝑎,… ,0} are given for suitable combinations 𝑧1, 𝑧2 ∈. 

Let it hold that

0 ≤ 𝑍(𝑡0) ≤ 𝑁

for 𝑍 ∈ ̂∖{𝐷̂} as well as

0 ≤ 𝐷̂(𝑡0) < 𝑁 (17)

and

𝑆(𝑡0) +𝐸(𝑡0) +𝐶(𝑡0) + 𝐼(𝑡0) + 𝐻̂(𝑡0) +𝑈 (𝑡0) +𝑅(𝑡0) + 𝐷̂(𝑡0) = 𝑁.

Let 𝜎𝑧2
𝑧1
(𝑡𝑛), 𝑍(𝑡𝑛) with 𝑍 ∈ ̂, and 𝜆(𝑡𝑛) for 𝑛 ∈ℕ0 be the discrete solutions to our model as defined in (7), (8), (9) and (10).

Then the following statements hold for all 𝑛∈ ℕ0:

• 𝜎
𝑧2
𝑧1
(𝑡𝑛) is nonnegative for all suitable combinations 𝑧1, 𝑧2 ∈,

• 0 ≤ 𝑍(𝑡𝑛) ≤ 𝑁 for 𝑍 ∈ ̂, in particular 𝐷̂(𝑡𝑛) < 𝑁 , and

• 𝜆(𝑡𝑛) is nonnegative.

Proof. We prove the statements by induction and start by showing the properties for 𝑛 = 0.

• The values 𝜎𝑧2
𝑧1
(𝑡0) are nonnegative by assumption for all suitable 𝑧1, 𝑧2 ∈. In addition, the statement on the compartment sizes 

holds by assumption.

• As defined in (8), 𝜆(𝑡0) depends on the transitions 𝜎𝐶
𝐸
(𝑡𝑖) and 𝜎𝐼

𝐶
(𝑡𝑖) for 𝑖 ∈ {𝑎,… ,0} which are nonnegative by assumption. 

Assumption (17) implies 𝑁 − 𝐷̂(𝑡0) > 0. Since all other factors in 𝜆(𝑡0) are nonnegative as well, it follows that 𝜆(𝑡0) ≥ 0.

Now assume that the properties hold for the time points 𝑡0,… , 𝑡𝑛.

• We argue analogously to [25] that it holds

𝑆(𝑡𝑛+1) =
𝑆(𝑡𝑛) 

1 +Δ𝑡 ̂𝜆(𝑡𝑛)
≥ 0, (18)
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since by assumption 𝑆(𝑡𝑛) ≥ 0 and 𝜆(𝑡𝑛) ≥ 0.

• This also leads to the bound

𝜎𝐸
𝑆 (𝑡𝑛+1) = 𝑆(𝑡𝑛+1) 𝜆(𝑡𝑛) ≥ 0.

By looking at the equations in (9), we observe that in consequence, all other transitions are nonnegative as well since 𝛾𝑧2
𝑧1

is 
monotonously decreasing and thus for the derivative it holds that ̂𝛾𝑧2

𝑧1
′ ≤ 0.

• It follows with (10) that all remaining approximations to compartments 𝑍 ∈ ̂∖{𝑆} are nonnegative at 𝑡𝑛+1 since all transitions 
as well as all 𝛾𝑧2

𝑧1
are nonnegative and we have 0 ≤ 𝜇

𝑧2
𝑧1

≤ 1 for all valid transitions.

• As we know from Lemma 4.1 that∑
𝑍∈̂

𝑍(𝑡𝑛+1) = 𝑁

and since we obtained 𝑍(𝑡𝑛+1) ≥ 0 for all 𝑍 ∈ ̂, we conclude that it holds 𝑍(𝑡𝑛+1) ≤ 𝑁 for 𝑍 ∈ ̂.

• Since all compartments at time point 𝑡𝑛+1 as well as the necessary transitions are nonnegative, we can apply Lemma 4.2 to obtain 
that 𝐷̂(𝑡𝑛+1) < 𝑁 .

• In particular, the previous observation implies 𝑁 − 𝐷̂(𝑡𝑛+1) > 0. Since all other factors in the force of infection term are nonneg

ative, we conclude that 𝜆(𝑡𝑛+1) ≥ 0. □

In the following theorem, we will discuss how our numerical solutions behave in the limit. This is a generalization of the remaining 
statements of Theorem 3.4 in [25].

Theorem 4.5. Let all the assumptions from Theorem 4.4 hold.

Additionally, we assume the transitions 𝜎𝑧2
𝑧1
(𝑡𝑖) for 𝑖 ∈ {𝑎,… ,0} are bounded for suitable combinations 𝑧1, 𝑧2 ∈ . Furthermore, we 

assume that there exists an 𝑀 < ∞ such that

∞ ∑
𝑖=0 

𝜉𝐶 (𝑡𝑖+1) 𝜌𝐶 (𝑡𝑖+1)
(
𝜇𝐼

𝐶 𝛾𝐼
𝐶 (𝑡𝑖+1) + (1 − 𝜇𝐼

𝐶 ) 𝛾
𝑅
𝐶 (𝑡𝑖+1)

) ≤ 𝑀 < ∞ (19)

and

∞ ∑
𝑖=0 

𝜉𝐼 (𝑡𝑖+1) 𝜌𝐼 (𝑡𝑖+1)
(
𝜇𝐻

𝐼 𝛾𝐻
𝐼 (𝑡𝑖+1) + (1 − 𝜇𝐻

𝐼 ) 𝛾𝑅
𝐼 (𝑡𝑖+1)

) ≤ 𝑀 < ∞ (20)

for all 𝑛 ∈ℕ0. Note that this is trivially satisfied if 𝜉𝐶 , 𝜉𝐼 , 𝜌𝐶 , and 𝜌𝐼 have finite support in the infection age or vanish sufficiently fast.

Let 𝜎𝑧2
𝑧1
(𝑡𝑛), 𝑍(𝑡𝑛) with 𝑍 ∈ ̂, and 𝜆(𝑡𝑛) for 𝑛 ∈ℕ0 be the discrete solutions to our model as defined in (7), (8), (9) and (10).

Then the following statements hold:

1. The sequence (𝑆(𝑡𝑛))𝑛∈ℕ0
is nonincreasing and it holds

lim 
𝑛→∞

𝑆(𝑡𝑛) = 𝑆∞(Δ𝑡).

2. The sequences (𝜎𝑧2
𝑧1
(𝑡𝑛))𝑛∈ℕ0

are bounded and it holds

lim 
𝑛→∞

𝜎
𝑧2
𝑧1
(𝑡𝑛) = 0.

3. The sequence (𝜆(𝑡𝑛))𝑛∈ℕ0
is bounded and it holds

lim 
𝑛→∞

𝜆(𝑡𝑛) = 0.

4. The sequences (𝑅(𝑡𝑛))𝑛∈ℕ0
and (𝐷̂(𝑡𝑛))𝑛∈ℕ0

are nondecreasing and it holds

lim 
𝑛→∞

𝑅(𝑡𝑛) = 𝑅∞(Δ𝑡) and lim 
𝑛→∞

𝐷̂(𝑡𝑛) = 𝐷̂∞(Δ𝑡).

Proof. 1. Similar to [25], this property follows from Theorem 4.4:

1 +Δ𝑡 ̂𝜆(𝑡𝑛) ≥ 1 ⇒ 𝑆(𝑡𝑛+1) =
𝑆(𝑡𝑛) 

1 +Δ𝑡 ̂𝜆(𝑡𝑛)
≤ 𝑆(𝑡𝑛).

The sequence (𝑆(𝑡𝑛))𝑛∈ℕ0
is monotonously decreasing and bounded by zero from below, see (18). Hence, the sequence is conver

gent and there exists 𝑆∞(Δ𝑡) ≥ 0 such that
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lim 
𝑛→∞

𝑆(𝑡𝑛) = 𝑆∞(Δ𝑡).

2. With (5) and (6), it holds

𝜎𝐸
𝑆 (𝑡𝑛+1) =

𝑆(𝑡𝑛) −𝑆(𝑡𝑛+1)
Δ𝑡 

.

For 𝑛 →∞ it follows that

lim 
𝑛→∞

𝜎𝐸
𝑆 (𝑡𝑛+1) = lim 

𝑛→∞

𝑆(𝑡𝑛) −𝑆(𝑡𝑛+1)
Δ𝑡 

= 0, (21)

since Δ𝑡 is fixed and the sequence (𝑆(𝑡𝑛))𝑛∈ℕ0
is convergent; see item 1 above. Since (𝜎𝐸

𝑆
(𝑡𝑛))𝑛∈ℕ0

converges, the sequence is also 
bounded.

We continue by showing that

𝜎𝐶
𝐸 (𝑡𝑛+1) = −Δ𝑡

𝑛 ∑
𝑖=𝑎 

𝛾̂𝐶
𝐸

′(𝑡𝑛+1−𝑖) 𝜎𝐸
𝑆 (𝑡𝑖+1)

converges to zero as well for 𝑛 →∞. To simplify the notation, we define

𝑥𝑛 ∶=
𝑛 ∑

𝑖=𝑎 
−𝛾̂𝐶

𝐸

′(𝑡𝑛+1−𝑖) 𝜎𝐸
𝑆 (𝑡𝑖+1) =

𝑛−𝑎 ∑
𝑖=0 

−𝛾̂𝐶
𝐸

′(𝑡𝑖+1) 𝜎𝐸
𝑆 (𝑡𝑛+1−𝑖).

Let us recall here that 𝑎 < 0 and −𝛾̂𝐶
𝐸

′(𝑡𝑖) ≥ 0 for all 𝑖 ∈ ℕ since 𝛾𝐶
𝐸

is monotonously decreasing. From Theorem 4.4, we already 
know that 𝜎𝐸

𝑆
(𝑡𝑖) ≥ 0 for all 𝑖 ∈ℕ. In addition, by Lemma 4.3, there exists 𝐾 ∈ℝ such that

∞ ∑
𝑖=0 

−𝛾̂𝐶
𝐸

′(𝑡𝑖+1) ≤ 𝐾 < ∞. (22)

Since 𝜎𝐸
𝑆
(𝑡𝑖) is bounded and nonnegative, it exists 0 < 𝐿 < ∞ such that

𝜎𝐸
𝑆 (𝑡𝑖) < 𝐿 for all 𝑖 ≥ 𝑎. (23)

Now, let 𝜀 > 0 be arbitrary but fixed. We choose 𝑁(𝜀) > 0 such that for all 𝑄 > 𝑁(𝜀) + 𝑎 it holds that

𝑄−𝑎 ∑
𝑖=𝑁(𝜀)

−𝛾̂𝐶
𝐸

′(𝑡𝑖+1) <
𝜀 
2𝐿

. (24)

Such an 𝑁(𝜀) exists due to (22).

We consider 𝑥𝑄 for such a 𝑄 > 𝑁(𝜀) + 𝑎,

𝑥𝑄 =
𝑄−𝑎∑
𝑖=0 

−𝛾̂𝐶
𝐸

′(𝑡𝑖+1) 𝜎𝐸
𝑆 (𝑡𝑄+1−𝑖)

=
𝑁(𝜀)−1∑

𝑖=0 
−𝛾̂𝐶

𝐸

′(𝑡𝑖+1) 𝜎𝐸
𝑆 (𝑡𝑄+1−𝑖)

⏟ ⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟ ⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=∶ 𝑆1

+
𝑄−𝑎 ∑

𝑖=𝑁(𝜀)
−𝛾̂𝐶

𝐸

′(𝑡𝑖+1) 𝜎𝐸
𝑆 (𝑡𝑄+1−𝑖)

⏟ ⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟ ⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=∶ 𝑆2

.

We will estimate the summands 𝑆1 and 𝑆2 of 𝑥𝑄 separately.

For 𝑆2, we observe that for any 𝑄 > 𝑁(𝜀) + 𝑎 it holds that

𝑆2 =
𝑄−𝑎 ∑

𝑖=𝑁(𝜀)
−𝛾̂𝐶

𝐸

′(𝑡𝑖+1) 𝜎𝐸
𝑆 (𝑡𝑄+1−𝑖) < 𝐿 

𝑄−𝑎 ∑
𝑖=𝑁(𝜀)

−𝛾̂𝐶
𝐸

′(𝑡𝑖+1) <
𝜀 
2

(25)

where we are using (23) and (24).

Now we consider the summand

𝑆1 =
𝑁(𝜀)−1∑

𝑖=0 
−𝛾̂𝐶

𝐸

′(𝑡𝑖+1) 𝜎𝐸
𝑆 (𝑡𝑄+1−𝑖). (26)

Note that it holds 𝑄+ 1 − 𝑖 ∈ {𝑄+ 2 −𝑁(𝜀),… ,𝑄+ 1} for 𝑖 ∈ {0,… ,𝑁(𝜀) − 1}.

We choose 𝑄1(𝜀) such that for all 𝑞 > 𝑄1(𝜀) the estimate

𝜎𝐸
𝑆 (𝑡𝑞) <

𝜀 
2𝐾

(27)
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is satisfied. There exists such a 𝑄1(𝜀) since 𝜎𝐸
𝑆

converges to zero; see (21). We set

𝑄(𝜀) ∶= 𝑄1(𝜀) +𝑁(𝜀). (28)

For all 𝑄 > 𝑄(𝜀), it holds that

𝑄+ 2 −𝑁(𝜀) > 𝑄1(𝜀) +𝑁(𝜀) + 2 −𝑁(𝜀) > 𝑄1(𝜀).

This implies

𝜎𝐸
𝑆 (𝑡𝑄+1−𝑖) <

𝜀 
2𝐾

, (29)

for 𝑖 ∈ {0,… ,𝑁(𝜀) − 1}, compare (26) and (27).

Finally, we obtain

𝑆1 =
𝑁(𝜀)−1∑

𝑖=0 
−𝛾̂𝐶

𝐸

′(𝑡𝑖+1) 𝜎𝐸
𝑆 (𝑡𝑄+1−𝑖)

⏟ ⏞⏞⏞⏟ ⏞⏞⏞⏟
< 𝜀 

2𝐾

≤ 𝜀 
2𝐾

𝑁(𝜀)−1∑
𝑖=0 

−𝛾̂𝐶
𝐸

′(𝑡𝑖+1)

⏟ ⏞⏞⏞⏞⏞⏞⏞⏞⏟ ⏞⏞⏞⏞⏞⏞⏞⏞⏟
≤𝐾 

≤ 𝜀 
2𝐾

𝐾 = 𝜀 
2

, (30)

where we first use (29) and afterward (22).

For any 𝑄 > 𝑄(𝜀), it holds 𝑄 > 𝑁(𝜀) + 𝑎 since 𝑎 < 0 and (28). Hence, for any 𝑄 > 𝑄(𝜀) we obtain

𝑥𝑄 =
𝑄−𝑎∑
𝑖=0 

−𝛾̂𝐶
𝐸

′(𝑡𝑖+1) 𝜎𝐸
𝑆 (𝑡𝑄+1−𝑖) = 𝑆1 + 𝑆2 <

𝜀 
2
+ 𝜀 

2
= 𝜀

by using (25) and (30).

Altogether we have shown that for any 𝜀 > 0 there exists a 𝑄(𝜀) with 𝑥𝑄 < 𝜀 for all 𝑄 > 𝑄(𝜀), i.e., it holds that 𝑥𝑄 → 0 for 
𝑄 →∞.

It follows that

lim 
𝑛→∞

𝜎𝐶
𝐸 (𝑡𝑛+1) = Δ𝑡 𝑥𝑛 = 0 (31)

and that the sequence (𝜎𝐶
𝐸
(𝑡𝑛))𝑛∈ℕ0

is also bounded.

Analogously, it can be proven that all other transitions are bounded and converge to zero.

3. The statement on 𝜆 can be proven analogously to the previous item 2. To do this, we make the following observations.

• With the assumptions (19) and (20), we obtain the analogous statement to (22).

• From item 2, above, we know that

lim 
𝑖→∞

𝜎𝐶
𝐸 (𝑡𝑖) = 0,

lim 
𝑖→∞

𝜎𝐼
𝐶 (𝑡𝑖) = 0

and that these sequences are bounded.

With Lemma 4.2 we can deduce that lim𝑖→∞(𝑁 − 𝐷̂(𝑡𝑖))−1 is bounded. By assumption, the parameter 𝜙(𝑡) is bounded. Hence, we 
can apply the proof structure from before to the force of infection term 𝜆 to obtain the statement.

4. Since all transitions are nonnegative, the discretizations for the compartments 𝑅 and 𝐷 in (11) indicate that the sequences 
(𝑅(𝑡𝑛))𝑛∈ℕ0

and (𝐷̂(𝑡𝑛))𝑛∈ℕ0
are nondecreasing. By Theorem 4.4, we already know that both sequences are bounded from above, 

which implies convergence. □

5. Numerical results

In this section, we will first demonstrate the numerical convergence order of our nonstandard discretization scheme. Then, we 
show how a standard ODE and our newly introduced IDE model behave at change points and for a COVID-19 inspired scenario. The 
presented IDE model and numerical experiments were implemented in C++ as a part of our high performance modular epidemics 
simulation software MEmilio [31].

5.1. Order of convergence

We start with examining the convergence order of the discretization method that we derived in Section 3.

In order to determine the order of convergence, we can use the property that the continuous IDE model reduces to an ODE model 
under a special choice of parameters, see also Appendix A. Our parameter selection can be found in Appendix B. We use the solution of 
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Fig. 2. Convergence of IDE model for compartments (left) and transitions (right). Relative error of the simulation results of the IDE model with different time 
step sizes compared with numerical results of the ODE model with a step size Δ𝑡 = 10−6 (ground truth) for the compartments (left) and the transitions (right). A linear 
function is plotted to compare the slope of the errors.

the corresponding ODE model solved with high precision as ground truth. In particular, we solve the ODE model using a Runge-Kutta 
scheme of fifth order with a fixed time step of Δ𝑡 = 10−6 for 𝑡 ∈ [0,70] and denote the solution (either compartment or flow size) 
𝑢∗

ODE
. The IDE model is solved with different time steps Δ𝑡 and the results are compared with those of the ODE model to calculate the 

convergence order of the numerical scheme. To initialize the IDE model, we need transitions from the past. For this, we compute the 
respective transitions for 𝑡 ∈ [0,35] based on the results from the ODE simulation and use these for the initialization of the IDE model 
to make both models comparable. The simulation results of the IDE models and the ODE model are compared on the time interval 
starting at 𝑡 = 35 until 𝑡max = 70. To compare the results, we calculate the relative error in ‖ ⋅ ‖2-norm, i.e.,

𝑒𝑟𝑟rel ∶=
‖‖‖𝑢̂IDE − 𝑢∗

ODE

‖‖‖2‖‖‖𝑢∗
ODE

‖‖‖2
for each flow 𝑢̂IDE ∈ {𝜎𝑧2

𝑧1
for appropriate 𝑧1, 𝑧2 ∈ } and for each compartment 𝑢̂IDE ∈ ̂ obtained with the IDE model and where 

𝑢∗
ODE

represents the corresponding solution of the ODE model. Here, we use a discrete 𝐿2-norm that is defined by

‖𝑢‖2 =(
Δ𝑡

∑
𝑖 

𝑢2(𝑡𝑖)

) 1
2

and we evaluate the simulation results at the time points 𝑡𝑖 ∈ [35,70]. The results are depicted in Fig. 2. We observe linear convergence 
for all transitions and all compartments. This is consistent with the results of Messina et al. [25] who derived a convergence order of 
one for compartment 𝑆 and their nonstandard numerical scheme.

5.2. Model behavior at change points

This section presents a comparison of the behavior at change points of the IDE and ODE models. Change points may occur in 
response to the implementation or lifting of nonpharmaceutical interventions. To analyze these dynamics, we use epidemiological 
parameters that are realistic for SARS-CoV-2. The parameters for the ODE and the IDE model are described in Appendix C, including 
the stay time distributions used for the IDE model. The parameters are inferred using the results of [9] and [30]. Both models are 
initialized such that the number of new transmissions is constant at the beginning of the simulation. The contact rate is set accordingly. 
To model the implementation or lifting of nonpharmaceutical interventions, the contact rate is halved or doubled, respectively, in 
both models after two days. The simulation results for a simulation period of 12 days are shown in Fig. 3 in form of the daily new 
transmissions. The IDE model is solved with step size Δ𝑡 = 10−2 and the ODE model with a Runge-Kutta scheme with the same fixed 
step size.

Firstly, we note that, as expected, the change in the contact rate is immediately observable in the new transmissions and a 
doubling/halving of the daily new transmissions occurs in both simulation results. Afterward, we note that the ODE model responds 
more quickly to changes in the contact rate, while the predicted new transmissions in the IDE model remain constant for a period of 
time. This lag time observed for the IDE model is a realistic phenomenon. For example, Dey et al. [32] or Guglielmi et al. [33] found 
a nontrivial lag time between the implementation of a nonpharmaceutical intervention and the change in the case data. In contrast 
to the ODE model, the IDE model naturally incorporates this time delay. After the delay, the slope appears to be steeper in the IDE 
than in the ODE model. In summary, it can be stated that the different assumptions regarding the stay time distributions result in 
notable differences in the behavior at change points.
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Fig. 3. Daily new transmissions at change points. Comparison of the simulation results for the daily new transmissions of the ODE and the IDE model for a halving 
(left) or doubling (right) of the contact rate 𝜙(𝑡) after two simulation days.

5.3. A COVID-19 inspired real scenario

In this section, we demonstrate that the newly introduced IDE model can be used to predict realistic infection dynamics. To do 
this, we are looking at the spread of the COVID-19 disease in Germany in October 2020. The simulation results of the IDE model 
are compared with interpolated reported data as well as with simulation results obtained using an appropriate ODE model. The 
reported data is processed in the following way. For simplicity, we assume in the explanation below that Δ𝑡 = 1, i.e., we assume 
that the considered time points correspond to days. In the implementation, a smaller step size is used and the data is interpolated 
correspondingly.

As in Section 3.4, we assume that the reported cases correspond to the mildly symptomatic individuals. In [34], confirmed cases 
are reported cumulatively. We denote them by ΣI, RKI. We can infer 𝜎𝐼

𝐶
from the reported data by

𝜎𝐼
𝐶 (𝑡𝑛) = ΣI, RKI(𝑡𝑛) − ΣI, RKI(𝑡𝑛 − 1).

With this we can initialize the flows of the IDE model as described in Section 3.4.

Now, we explain how we use the reported data to obtain the number of new transmissions, mildly symptomatic individuals as 
well as deaths. We will compare our simulation results to these values.

The number of new transmissions at time 𝑡𝑛 is obtained by

𝜎𝐸
𝑆,rep

(𝑡𝑛) =
1 

𝜇𝐼
𝐶

(
ΣI, RKI(𝑡𝑛 + 𝑇 𝐼

𝐶 + 𝑇 𝐶
𝐸 ) − ΣI, RKI(𝑡𝑛 + 𝑇 𝐼

𝐶 + 𝑇 𝐶
𝐸 − 1)

)
,

where we assume that it takes individuals exactly 𝑇 𝐶
𝐸
+ 𝑇 𝐼

𝐶
days from getting infected to developing symptoms. The reported data is 

interpolated linearly in between two time steps if necessary.

To compute the number of individuals in compartment 𝐼 , we assume that a share of 𝜇𝐻
𝐼

individuals stays exactly 𝑇 𝐻
𝐼

days in 
compartment 𝐼 and the remaining share of 1 − 𝜇𝐻

𝐼
stays exactly 𝑇 𝑅

𝐼
days in compartment 𝐼 . This leads to

𝐼rep(𝑡𝑛) = 𝜇𝐻
𝐼

(
ΣI, RKI(𝑡𝑛) − Σ𝐼,RKI(𝑡𝑛 − 𝑇 𝐻

𝐼 )
)
+
(
1 − 𝜇𝐻

𝐼

)(
ΣI, RKI(𝑡𝑛) − Σ𝐼,RKI(𝑡𝑛 − 𝑇 𝑅

𝐼 )
)
.

Deaths are reported with the date when the infection is assumed to have taken place. To extrapolate the date of death, we shift the 
reported data (denoted by 𝐷RKI) according to the mean stay times, i.e.,

𝐷rep(𝑡𝑛) = 𝐷RKI(𝑡𝑛 − 𝑇 𝐻
𝐼 − 𝑇 𝑈

𝐻 − 𝑇 𝐷
𝑈 ),

where 𝐷RKI(𝑡) is the subset of deceased patients from ΣI, RKI(𝑡). Once more, we interpolate linearly when required. The above extrap

olation is also used to infer the number of deaths at the simulation start needed for the initialization of the IDE model, cf. Section 3.4. 
To compare the number of patients in intensive care units to real data, we use reported intensive care patients directly [35].

The parameters described in Appendix C are again utilized. We use again a step size of Δ𝑡 = 10−2 for the IDE model and solve 
the ODE model with a fifth order Runge-Kutta scheme with constant step size Δ𝑡. The IDE model is initialized using reported data 
as described in Section 3.4. The initial compartment sizes of the ODE model are set to the sizes calculated using the IDE model to 
make both models comparable. We choose Oct 1, 2020 as the start date and simulate for 45 days, as this period was significant in 
the pandemic and the data situation on the number of cases comparatively good. As it is hard to measure the contact rate accurately 
in every time period, the contact rate 𝜙(𝑡) is set such that the daily new transmissions of the simulation results are consistent to the 
reported data at the beginning of the simulation.
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Fig. 4. Simulation results for COVID-19 in Germany from Oct 1, 2020, onwards. Comparison of extrapolated real data with the simulation results of the IDE and 
the ODE model. The results are shown for the number of daily new transmissions (top left), the number of mildly symptomatic individuals (top right), the number of 
patients in intensive care units (bottom left) and the number of deaths (bottom right).

We use the same contact rate for both model types and introduce a contact reduction at the time when a drop in the reported data 
can also be detected; for details see the appendix. This factor is determined on the basis of [30] and corresponds approximately to 
the strength of the nonpharmaceutical measures applied there for the fall.

The simulation results obtained for the described scenario are depicted in Fig. 4. The reported data are very well predicted by the 
IDE model regarding daily new transmissions, number of mildly infected individuals as well as ICU patients. The ODE model tends to 
underestimate the reported data. Our proposed IDE model seems to be well suited for modeling realistic scenarios. Only the number 
of deaths appears to be underestimated by the IDE model as well. This could be explained through the fact that in our model, we 
only allowed individuals to die in intensive care units, see also Fig. 1 or that, in fact, mild cases might have gone unseen and that 
matching the simulation results to reported data underestimates upcoming deaths.

6. Discussion

Models for infectious disease dynamics always use implicit or explicit assumptions on the dynamic process. As exponential stay 
times have been found to be unrealistic by different authors [17--21], we proposed a model based on integro-differential equations 
that allows for modeling of more realistic stay time distributions. However, for many diseases the true stay time distributions are 
unknown or, at least in the beginning of a pandemic, difficult to get good estimations of. While this poses a heavy limitation on 
the advancement given here, in the worst case, our model reduces to the mostly used ODE model forms. However, in the COVID-19 
scenario we found that the results based on data published rather early in the pandemic, led to good results of the IDE model without 
the need of extensive fitting. The deviations in deaths could be explained by a certain number of undetected infections, to which 
we have not fitted the model. Let us note that, by default, we would also expect our model to constantly overestimate reported ICU 
numbers as deaths in our model are only possible from ICU.

Furthermore, epidemiological parameters are highly dependent on age and mobility processes can become drivers of the spread, 
see e.g. [30]. In our simulations we averaged over age-dependent parameters by using the respective proportion of the age group 
compared to the total population to simulate with a model without age resolution. In Fig. 5, one can see that the age distribution 
of the (confirmed) cases heavily depends on the time period under consideration. Hence, the appropriate average value had to be 
fitted differently for different simulation periods. To further enhance model accuracy, age groups need to be included into the model. 
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Fig. 5. Share of considered population in respective age groups. For dates Jun 1, 2020, and Oct 1, 2020, we consider the number of confirmed cases between 
𝑇 𝐻

𝐼
+ 𝑇 𝑈

𝐻
+ 𝑇𝑈 and 𝑇 𝐻

𝐼
+ 𝑇 𝑈

𝐻
days before these dates. This corresponds to the individuals that we expect to be in compartment 𝑈 at time 𝑡0 . We use data on the 

confirmed cases of COVID-19 in Germany provided by [34]. Above, the proportion per age group of these confirmed cases is depicted. For comparison, the proportion 
of each age group in the total population in Germany as reported in [36] is shown.

Implementing spatial resolution allows for modeling the impact of local implementations of nonpharmaceutical interventions and 
mobility across counties. These aspects will be the subject of further research.

7. Conclusion

In this paper, we introduced a detailed model based on integro-differential equations (IDE) that allows the consideration of 
arbitrary stay time distributions. The proposed model is a generalization of an ODE model, which is restricted to exponentially 
distributed stay times. We further extended a nonstandard numerical scheme to solve the resulting equations of the IDE model. 
We provided theoretical results for the numerical solution scheme, proving that important biological properties regarding, e.g., 
positivity and boundedness, are preserved. Furthermore, we examined the behavior in the limit of the numerical solution and provided 
theoretical results. Numerically, we demonstrated a linear convergence rate for all considered solution elements -- which is consistent 
with the results of [25] for the Susceptible compartment.

To demonstrate the importance of choosing appropriate stay time distributions when modeling epidemic outbreaks, we compared 
our proposed IDE model with a corresponding ODE model. The model behavior is compared at change points and in a COVID-19 
inspired real scenario. We observed significant differences in both cases. In contrast to the ODE model, the IDE model shows a realistic 
delay time after changing the contact rate. This confirms findings of the literature, where a delay between the implementations of 
nonpharmaceutical interventions and their effect on the case data was observed. In the COVID-19 scenario, we found that the results 
based on the IDE model lead to more accurate predictions than the ODE model. This shows the benefit of using realistic stay time 
distributions compared to restricting oneself to exponential stay time distributions.

We are optimistic that our modeling approach as well as the nonstandard numerical solution scheme to preserve important 
mathematical-biological properties can easily be adapted to other infectious diseases such as, e.g., Influenza.
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Appendix A. Relation between IDE and ODE model

In this section, we show that our proposed model using integro-differential equations is indeed a generalization of the ODE model 
as proposed in [30] if stay times of the ODE model were only dependent on the starting compartment, i.e., for instance, 𝑇𝐶 = 𝑇 𝐼

𝐶
= 𝑇 𝑅

𝐶
. 

In the following, we show that using exponential distributions to describe the transitions between compartments in the IDE model 
yields the corresponding simplification to the ODE model.

The ODE-SECIR model of [30] without age resolution is given by

𝑆′(𝑡) = − 𝑆(𝑡) 
𝑁 −𝐷(𝑡)

𝜙(𝑡) 𝜌 
(
𝜉𝐶 𝐶(𝑡) + 𝜉𝐼 𝐼(𝑡)

)
,

𝐸′(𝑡) = 𝑆(𝑡) 
𝑁 −𝐷(𝑡)

𝜙(𝑡) 𝜌 
(
𝜉𝐶 𝐶(𝑡) + 𝜉𝐼 𝐼(𝑡)

)
− 1 

𝑇𝐸
𝐸(𝑡),

𝐶 ′(𝑡) = 1 
𝑇𝐸

𝐸(𝑡) − 1 
𝑇𝐶

𝐶(𝑡),

𝐼 ′(𝑡) =
𝜇𝐼

𝐶

𝑇𝐶
𝐶(𝑡) − 1 

𝑇𝐼
𝐼(𝑡),

𝐻 ′(𝑡) =
𝜇𝐻

𝐼

𝑇𝐼
𝐼(𝑡) − 1 

𝑇𝐻
𝐻(𝑡),

𝑈 ′(𝑡) =
𝜇𝑈

𝐻

𝑇𝐻
𝐻(𝑡) − 1 

𝑇𝑈
𝑈 (𝑡),

𝑅′(𝑡) =
1 − 𝜇𝐼

𝐶

𝑇𝐶
𝐶(𝑡) +

1 − 𝜇𝐻
𝐼

𝑇𝐼
𝐼(𝑡) +

1 − 𝜇𝑈
𝐻

𝑇𝐻
𝐻(𝑡) +

1 − 𝜇𝐷
𝑈

𝑇𝑈
𝑈 (𝑡),

𝐷′(𝑡) =
𝜇𝐷

𝑈

𝑇𝑈
𝑈 (𝑡),

(A.1)

where 𝑇𝑧1
is the average stay time in compartment 𝑧1 ∈ and the meaning of the other parameters is as before. Note that [30] allowed 

setting stay times dependent on start and destination compartment 𝑧1 and 𝑧2. However, if 𝑇 𝑧2
𝑧1

and 𝑇 𝑧3
𝑧1

differ for 𝑧2 ≠ 𝑧3, then 𝜇𝑧2
𝑧1

looses its meaning as probability since the Markov property of the system does not consider transition histories. The parameter 𝜉𝐼

has been denoted 𝛽 in [30] and 𝜉𝐶 had only been mentioned in [4], as it was set to one in the prior publications.

To verify that the IDE model (1) reduces to the ODE model (A.1) under a certain choice of parameters, we first set 𝜉𝐶 (𝜏) = 𝜉𝐶 , 
𝜉𝐼 (𝜏) = 𝜉𝐼 and 𝜌𝐶 (𝜏) = 𝜌𝐼 (𝜏) = 𝜌 in the IDE model. For the transition distributions, we choose

𝛾
𝑧2
𝑧1
(𝜏) = exp(− 1 

𝑇𝑧1

𝜏), (A.2)

regardless of 𝑧2 and where 𝑇𝑧1
is the mean stay time in compartment 𝑧1 as introduced for the ODE model. Here,

1 − 𝛾
𝑧2
𝑧1
(𝜏) = 1 − exp(− 1 

𝑇𝑧1

𝜏)

is indeed a CDF, i.e., the CDF function of the exponential distribution with parameter (𝑇𝑧1
)−1. Hence, this choice for 𝛾𝑧2

𝑧1
is valid for 

the IDE model. Note that

𝛾
𝑧2
𝑧1

′(𝜏) = − 1 
𝑇𝑧1

exp(− 1 
𝑇𝑧1

𝜏) = − 1 
𝑇𝑧1

𝛾
𝑧2
𝑧1
(𝜏). (A.3)

Based on these assumptions, we have, e.g., 𝛾𝐼
𝐶
= 𝛾𝑅

𝐶
, so that the stay time distribution in compartment 𝐶 is identical for all individuals. 

The same holds for the subsequent compartments.

We will now demonstrate that, under the specified parameterization of the IDE model, the aforementioned model is in fact 
equivalent to the ODE model. The equation for 𝑆′ will serve as a starting point. With the chosen parameters, we obtain

𝑆′(𝑡)
(1)
= − 𝑆(𝑡) 

𝑁 −𝐷(𝑡)
𝜙(𝑡) 

𝑡 

∫
−∞

𝜉𝐶 (𝑡− 𝑥) 𝜌𝐶 (𝑡− 𝑥)
(
𝜇𝐼

𝐶 𝛾𝐼
𝐶 (𝑡− 𝑥) +

(
1 − 𝜇𝐼

𝐶

)
𝛾𝑅
𝐶 (𝑡− 𝑥)

)
𝜎𝐶

𝐸 (𝑥)
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+ 𝜉𝐼 (𝑡− 𝑥) 𝜌𝐼 (𝑡− 𝑥)
(
𝜇𝐻

𝐼 𝛾𝐻
𝐼 (𝑡− 𝑥) +

(
1 − 𝜇𝐻

𝐼

)
𝛾𝑅
𝐼 (𝑡− 𝑥)

)
𝜎𝐼

𝐶 (𝑥) d𝑥

= − 𝑆(𝑡) 
𝑁 −𝐷(𝑡)

𝜙(𝑡) 𝜌 
(
𝜉𝐶

𝑡 

∫
−∞

(
𝜇𝐼

𝐶 𝛾𝐼
𝐶 (𝑡− 𝑥) +

(
1 − 𝜇𝐼

𝐶

)
𝛾𝑅
𝐶 (𝑡− 𝑥)

)
𝜎𝐶

𝐸 (𝑥) d𝑥

+ 𝜉𝐼

𝑡 

∫
−∞

(
𝜇𝐻

𝐼 𝛾𝐻
𝐼 (𝑡− 𝑥) +

(
1 − 𝜇𝐻

𝐼

)
𝛾𝑅
𝐼 (𝑡− 𝑥)

)
𝜎𝐼

𝐶 (𝑥) d𝑥
)

(1)
= − 𝑆(𝑡) 

𝑁 −𝐷(𝑡)
𝜙(𝑡) 𝜌 

(
𝜉𝐶 𝐶(𝑡) + 𝜉𝐼 𝐼(𝑡)

)
.

Hence, we get the equation for 𝑆′ of the ODE model once we show that the equations for compartments 𝐶 and 𝐼 of the IDE model 
coincide with those of the ODE model.

We proceed by inserting our chosen transition distribution into the equation for 𝐸 of the IDE model and demonstrating that it 
reduces to the corresponding equation of the ODE model. First, we make the observation that, using (A.3), the flow 𝜎𝐶

𝐸
(𝑡) can be 

expressed as

𝜎𝐶
𝐸 (𝑡) = −

𝑡 

∫
−∞

𝛾𝐶
𝐸

′(𝑡− 𝑥) 𝜎𝐸
𝑆 (𝑥) d𝑥 = 1 

𝑇𝐸

𝑡 

∫
−∞

𝛾𝐶
𝐸 (𝑡− 𝑥) 𝜎𝐸

𝑆 (𝑥) d𝑥

= 1 
𝑇𝐸

𝐸(𝑡).

(A.4)

Therefore, through (2), it holds that

𝐸′(𝑡) = 𝜎𝐸
𝑆 (𝑡) − 𝜎𝐶

𝐸 (𝑡)

= −𝑆′(𝑡) − 1 
𝑇𝐸

𝐸(𝑡).

For compartment 𝐶 , we start again with an observation on the respective transitions 𝜎𝐼
𝐶

and 𝜎𝑅
𝐶

. Note that inserting (A.3) yields

𝜎𝐼
𝐶 (𝑡) = −

𝑡 

∫
−∞

𝛾𝐼
𝐶

′(𝑡− 𝑥) 𝜇𝐼
𝐶 𝜎𝐶

𝐸 (𝑥) d𝑥 =
𝜇𝐼

𝐶

𝑇𝐶

𝑡 

∫
−∞

𝛾𝐼
𝐶 (𝑡− 𝑥) 𝜎𝐶

𝐸 (𝑥) d𝑥

=
𝜇𝐼

𝐶

𝑇𝐶
𝐶(𝑡),

(A.5)

and

𝜎𝑅
𝐶 (𝑡) = −

𝑡 

∫
−∞

𝛾𝑅
𝐶

′(𝑡− 𝑥)
(
1 − 𝜇𝐼

𝐶

)
𝜎𝐶

𝐸 (𝑥) d𝑥 =
1 − 𝜇𝐼

𝐶

𝑇𝐶

𝑡 

∫
−∞

𝛾𝑅
𝐶 (𝑡− 𝑥) 𝜎𝐶

𝐸 (𝑥) d𝑥

=
1 − 𝜇𝐼

𝐶

𝑇𝐶
𝐶(𝑡).

(A.6)

By applying (A.4), (A.5) and (A.6) to compartment 𝐶 from equation (2), we get

𝐶 ′(𝑡) = 𝜎𝐶
𝐸 (𝑡) − 𝜎𝐼

𝐶 (𝑡) − 𝜎𝑅
𝐶 (𝑡)

= 1 
𝑇𝐸

𝐸(𝑡) −
𝜇𝐼

𝐶

𝑇𝐶
𝐶(𝑡) −

1 − 𝜇𝐼
𝐶

𝑇𝐶
𝐶(𝑡) = 1 

𝑇𝐸
𝐸(𝑡) − 1 

𝑇𝐶
𝐶(𝑡).

The results obtained regarding the compartment 𝐶 and the associated transitions 𝜎𝐼
𝐶

and 𝜎𝑅
𝐶

can be equally applied to the remaining 
compartments. By doing so, we can find the equations for the remaining compartments of the ODE model analogously. In particular, 
the equations for the compartments 𝐶 and 𝐼 are identical for the ODE and the IDE model. This implies that the equations for 𝑆′ of 
the models coincide under the given assumptions. This demonstrates that the ODE model is indeed a special case of the IDE model.

Appendix B. Parameters used to demonstrate the convergence order of the IDE model

In this section, we present the parameters that have been used to demonstrate the convergence order of the IDE model. The 
parameters are intended to be chosen such that the continuous versions of the ODE and the IDE models are equivalent. Note that these 
parameters are not intended to model a realistic scenario, but to numerically compare IDE and ODE models. The epidemiological 
parameters used for the ODE and the IDE model are depicted in Table B.2. For the IDE model, we use appropriate exponentially 
distributed stay times, compare also Appendix A. This means, that we choose
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Table B.2

Epidemiological parameters used to examine the convergence or

der. This choice of parameters is not intended to model a realistic 
scenario and is applied to both the IDE and the ODE model.

𝑇𝐸 1.4 𝜇𝐼
𝐶

0.5 𝜙 1.0
𝑇𝐶 1.2 𝜇𝐻

𝐼
0.5 𝜌 1.0

𝑇𝐼 0.3 𝜇𝑈
𝐻

0.5 𝜉𝐶 1.0
𝑇𝐻 0.3 𝜇𝐷

𝑈
0.5 𝜉𝐼 1.0

𝑇𝑈 0.3

Table C.4

Transition probabilities for COVID-19. The 
probabilities are calculated using [30, Ta

ble 2] and [9, Table 2] and are used for both 
model types.

Transition probability Value 
𝜇𝐼

𝐶
0.793099

𝜇𝐻
𝐼

0.078643
𝜇𝑈

𝐻
0.173176

𝜇𝐷
𝑈

0.387803

𝛾
𝑧2
𝑧1
(𝜏) = exp(− 1 

𝑇𝑧1

𝜏)

with values 𝑇𝑧1
from Table B.2 for appropriate 𝑧1 ∈, see also (A.2). Furthermore, we choose the parameters 𝜉𝐶 , 𝜉𝐼 , 𝜌𝐶 , and 𝜌𝐼 to 

be constant so that we have

𝜉𝐶 (𝜏) = 𝜉𝐶 , 𝜉𝐼 (𝜏) = 𝜉𝐼 and 𝜌𝐶 (𝜏) = 𝜌𝐼 (𝜏) = 𝜌

for all 𝜏 > 0. Using these parameters, the continuous versions of both models are equivalent. The initial distribution vector

(𝑆0,𝐸0,𝐶0, 𝐼0,𝐻0,𝑈0,𝑅0,𝐷0) = (9945,20,20,3,1,1,10,0)

is used to initialize the ODE model. 

Appendix C. Parameters to model SARS-CoV-2 dynamics

In the following section, we specify the parameters that we use for the IDE and the ODE model to simulate the dynamics of 
SARS-CoV-2 over a selected time horizon in Germany. We mainly use the results from [9] and [30] and adapt them to our required 
parameters if necessary.

We need to specify stay time distributions for the IDE model, which are depicted in Table C.3. The results are directly taken 
from [9, Table 1] and are repeated here for the sake of completeness and adapted to our notation. 

Table C.3

Stay time distributions for COVID-19. The notation is 
to be understood in such a way that 𝛾𝑧2

𝑧1
with 𝑧1 , 𝑧2 ∈

follows the corresponding survival function of the log

normal distribution with the parameters (mean, stan

dard deviation). See also [9, Table 1].

Survival function Distribution 
𝛾𝐶
𝐸

lognormal(4.5, 1.5) 
𝛾𝐼
𝐶

lognormal(1.1, 0.9) 
𝛾𝑅
𝐶

lognormal(8.0, 2.0) 
𝛾𝐻
𝐼

lognormal(6.6, 4.9) 
𝛾𝑅
𝐼

lognormal(8.0, 2.0) 
𝛾𝑈
𝐻

lognormal(1.5, 2.0) 
𝛾𝑅
𝐻

lognormal(18.1, 6.3) 
𝛾𝐷
𝑈

lognormal(10.7, 4.8) 
𝛾𝑅
𝑈

lognormal(18.1, 6.3) 

The transition probabilities are calculated using [30, Table 2]. Since the values there are given per age group, we weight the 
values with the relative share of the age group in the total population in order to obtain an average value. The weighting is based 
on the data from [36] for 2020. The value 𝜇𝐷

𝑈
is calculated using [9, Table 2] as with this value, the simulation results better match 

the reported data. The source specifies the infection fatality ratio instead of 𝜇𝐷
𝑈

. We can derive our required value from the specified 
ones by division and weight afterwards again by the relative share of the age group in the total population.

The values resulting from the calculation are shown in Table C.4. 
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Table C.5

Average stay time in the compartments for 
COVID-19. These mean stay times are used in 
the ODE model and are calculated using the 
means of the distributions in Table C.3 and 
the probabilities in Table C.4.

Mean stay time Value 
𝑇𝐸 4.5
𝑇𝐶 2.527617
𝑇𝐼 7.889900
𝑇𝐻 15.225278
𝑇𝑈 15.230258

In the IDE model, we have stay time distributions for the compartments depending on which compartment they are transitioning 
to in the future. In the ODE model, we do not have this distinction and only have one mean stay time for the respective compartment. 
Consequently, we set the mean stay times for the compartments of the ODE model by computing a weighted average using the 
calculated transition probabilities from Table C.4 and the respective mean stay times from the IDE model as given in Table C.3. The 
result can be found in Table C.5.

The transmission probability is assumed to be constant over time and is set to 𝜌𝐶 = 𝜌𝐼 = 0.0733271. This value is calculated 
using [30, Table 2] and again weighted by the share of the age group in the total population of Germany. Additionally, we set 𝜉𝐶 = 1
and 𝜉𝐼 = 0.3, which are also constant over time. That means, we assume nonsymptomatic individuals to not isolate. For symptomatic 
individuals, we expect them to isolate more frequently.

For simulating change points as described in Section 5.2, we set the initial contact rate to 𝜙(𝑡) = 3.114219 which results in a 
constant number of new transmissions in the beginning of the simulation. After two days, we double/half the contact rate.

In the COVID-19 inspired real scenario, we set the initial contact rate 𝜙(𝑡) = 7.69129 for Oct 1, 2020. To simulate the implemen

tation of NPIs, we decrease the contact rate to 𝜙(𝑡) = 3.51782 on Oct 24, 2020.

Data availability

The MEmilio repository is publicly available under https://github.com/SciCompMod/memilio. All model functionality is avail

able with MEmilio v1.2.1 https://zenodo.org/records/13341171. A detailed description on how to reproduce the simulation results 
presented in this paper, in addition to the complete set of plot files, is accessible at https://github.com/SciCompMod/memilio-

simulations.
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