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Outline / Info 4#7
DLR

* Who are we?

* Motivation for spatial resolution

* Software aspects: Efficiency and performance

* Metapopulation models with epidemic control application

* Spatially resolved Al-surrogate models for on-the-fly computation
* Agent-based models with some applications

« ,Off-Topic”: Basic model properties and influence on outcomes

* Concluding

- In many places, | will only present a very brief insight into the model or the application and | am happy to discuss more details at any time.
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We care not enough about spatial resolution
Ni1 = Nip = Ni3

e

i DLR

With which strictness to act?

Ni1 > Niep > Nis

Act at all ?
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Aggregated metrics...
« ...only give blurred information and intervention strictness is unclear

« ...donot allow for local action and targeted deployment of limited resources

Post-COVID-era: For many diseases, not enough data for this spatial resolution...
Data will increase substantially with digitisation and digital tools in the next decades
Develop advanced models such that they are ready to use when data is

Pandemic preparedness

Act acall ?




Missing out spatial resolution: some reasons

Aside from data availability, ODE*-SIR-type models are too easy to implement...

e ,inthe end, it will arrive anyway...”

Infected persons

—— With mobility

7000 — Without mobility - If it looks like that, you do not use
6000

oo the degrees of freedom and power in
#000] spatially resolved models
3000 -

2000

1000

0 10 20 30 40 50 60
,you cannot do metapopulation models in a small time frame*

- well, you can...

* ODE: Ordinary differential equations

DLR



Time
v . ©C 1.00
Chances of efficiency and performance @Rust | 101
{c) C++ 1.56
Factor 100-1000 o Ada 185 DLR
(v) Java 1.89
\ Pythong (¢) Chapel 2.14
10° (©) Go 2.83
] (c) Pascal 3.02
(e) Ocaml 3.09
(v) C# 3.14
CUDA single-core (o) {"-’:I Li sp 3.40
_ (c) Haskell 3.55
% 102_5 Java:da' (c) Swift 4.20
8 (c) Fortran 4.20
3 (v) F# 6.30
& (i) JavaSeript 6.52
o Numbag (i) Dart 6.67
o' (v) Racket 11.27
- Fortrang @i (i) Hack 26.99
[ [ (i) PHP 27.64
. (v) Erlang 36.71
(i) Jru 43.44
OOUDA mi-core (0 Tﬂ:?g&ript 46.20
10° 4 - - » (i) Ruby 59.34
10 0 1 10 (i) Perl 65.79
Time to solution (day) {1} P}'thﬂﬂ 71.90
Portegies Zwart, Nature Astronomy (2020) (i) Lua 82.91

Factor 100

= In hardware or other contexts: Would we build solutions for (time) critical tasks that are more than 50 times slower or

use that more energy for the same task?
— Do large-scale models in an efficient and scalable language (at least for the backend: R, python... have other use cases)

Pereira et al., SLE’17 (2017)




Let’s create more interdisciplinary synergies 4#7
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A : Numerical Software
Immunology “ Epidemiology “ Public Health “ T “ Technology “ Inference




Missing out spatial resolution: Reasons and chances 4#7
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Missing out spatial resolution: Reasons and chances
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Missing out spatial resolution: Reasons and chances 4#7
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HOME LISTS - STATISTICS - RESOURCES - ABOUT ~ MEDIA KIT

Home »D0E/NNSA/LLNL »EL Capitan - HPE Cray EX255a, AMD 4th Gen EPYC 24C 1.8GHz...

EL CAPITAN - HPE CRAY EX255A, AMD 4TH GEN EPYC 24C |
1.8GHZ, AMD INSTINCT MI300A, SLINGSHOT-11, TOSS

Site: DOE/NNSA/LLNL

Manufacturer: HFE

Cores: 11,039,616




Missing out spatial resolution: Reasons and chances 4#7
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The List.

HOME LISTS ~ STATISTICS - RESOURCES ~ ABOUT ~ MEDIA KIT

In computational physics, problems with trillions of degrees of freedom are solved*
-  Why shouldn‘t we be able to solve some hundred regions?
- Why shouldn‘t we be able to solve some million agents?

* Gmeiner et al., Journal of Computational Science, 2016.

Manufacturer: HFE

Cores: 11,032,614




From simple ODE to metapopulation 4#7
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Susceptible population
Infected /Infectious population
Total population

Contact rate

= © =2 ~ W

Transmission probability




From simple ODE to metapopulation

d
dt

i DLR




From simple ODE to metapopulation
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From simple ODE to metapopulation 4#7
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dSq 1 I
L= shipmSin - D
dt 2 P ~—
~ ~ - Commuting phase
No commuting phase

h;; : Commuter from region ¢ to j

c . . . ]
dSs; 1 e I° : commuting infectious

dt 2 pP3 ~~
~ ~~ - Commuting phase
No commuting phase

I" : remaining infectious

P, = ihij
j=1
N; = P, _th‘j +Zhj1:

=2 y
dSz 3 1¢ I2 . i JF1 J 71
1@ 5 2pP2 2 N,

N ~ -~ Commuting phase

No commuting phase

Gerstein et al, in preparation, 2025



From simple ODE to metapopulation 4#7
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Gerstein et al, in preparation, 2025



From simple ODE to metapopulation

DLR
- For uniformly distributed cases, the models should return the same output

Basic reproduction numbers for different numbers of regions.

Number of Regions | Model A Model B Model C

4.48161 4816 4.48161
2 4.48161 4.48161
5 4.48161 4.48161
10 4.48161 4.48161
20 4.48161 4 4.48161
50 4.48161 96.67782% 4.48161

Gerstein et al, in preparation, 2025




From simple ODE to metapopulation: A Graph-ODE alternative 4#7
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d.S; 14
° dt o= _¢ psl E  Use a graph with regions

as nodes

* One edge per, e.g., pair
(infection state, age group)

e Advance nodes in parallel
from t to t+0.5 and from
t+0.5 to t+1

Advantage:
* Parallelism

]— Disadvantage:
e g 2 * Returning commuters need
_¢ P2 N to be approximated
2

* Theory more complex

Kihn et al, Mathematical Biosciences, 2021




ODE vs. Graph-ODE metapopulation
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NRW - Simulation Day 10
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Application: Numerical assessment of the “NoCovid” control strategy

DLR
e “NoCovid” is not “ZeroCovid”

* NoCovid: “Controlling the Covid-19 pandemic through Green Zones”

|>100

12

l11,99

0

>100

Four different initial scenarios. Random initial incidence (weekly cases per 100 000
individuals) of 75-150 for 2-20% of the counties and incidence below 10 otherwise

Test of commuters coming from red zones

75 % detection ratio (averaged value for mix of massive deployment of antigen tests plus PCR, RTD-PCR and pool tests)

Considering different frequencies (daily, twice per week, ...)




Application: Numerical assessment of the “NoCovid” control strategy

 TO,T1, T2, T5: No testing, testing once, twice or five times per week DLR
* L:Lockdown
« D1W, D3W: Implementations of interventions with one or three weeks delay

L, T5,D1W L, T5,D3W L, T2,D1W L, T2, D3W

Simulated spread of SARS-CoV-2 cases for one initial scenario of about 18 % red
zones and 8 different strategies. Median result after 30 days of simulation time.

Kiihn et al., BMC Infectious Diseases (2022) Control (2022)
https://doi.org/10.1186/s12879-022-07302-9
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Application: Numerical assessment of the “NoCovid” control strategy
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Scenario (Initial SARS-CoV-2 distribution)

 TO,T1, T2, T5: No testing, testing once, twice or five times per week
|, L+: Lockdown or strict lockdown
 D1W, D3W: Implementations of interventions with one or three weeks delay

Kihn et al., BMC Infectious Diseases (2022)
https://doi.org/10.1186/s12879-022-07302-9
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DLR
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Control (2022)
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ODE-based metapopulation with feedback

mechanism
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Henrik Zunker
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https://doi.org/10.1016/j.chaos.2025.116782

Zunker et al.,

Chaos, Solitons & Fractals (2025)


https://doi.org/10.1016/j.chaos.2025.116782

Extension to travel-time aware Graph-ODE metapopulation

Henrik Zunker

@ Susceptible
® Susceptible

® |Infected
Region i

@ "‘EI T tl :'.;'
T

Zunker et al., PLOS Comp Bio (2024)
https://doi.org/10.1371/journal.pcbi.1012630 Metapop (2024)



https://doi.org/10.1371/journal.pcbi.1012630

Al-based on-the-fly computation
for web applications

DLR

La .
Agatha Schmidt  Henrik Zunker
Graph neural network

e Simulate spatially resolved expert models Input . Output

* Train spatially resolved Al surrogates (Graph Neural
Networks) on expert model‘ outcomes

—> Enables low-barrier web access for decision makers
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Schmidt et al., Submitted (2025) https://arxiv.org/abs/2411.06500



https://arxiv.org/abs/2411.06500

Federated learning with differential privacy

« Centralizing data challenging due to high sensitivity and privacy constraints

» Federated learning train a shared model without centralizing raw data

« Differential privacy ensures protection of private and sensitive data

A

Daily new cases - 2022
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Kerkouche, Zunker et al., Submitted (2025)
https://arxiv.org/abs/2509.14024
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Agent-based modeling

* Model individuals (or households) as individual agents

* Computational cost scales (super)linearly with number of agents

i DLR

* Study and answer research questions on a “microscopic” level (e.g. individual decisions, test strategies, viral load...)
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Algorithm 1: Trip-based agent-based simulation

1
2
3
4

o

L1 eR
while t <1{,_.. do
for each localion do

L Execute agents’ interactions

for each agent do
L Perform individual movement

L+ 1+ At




Agent-based modeling: Testing strategies

Testing Scheme 1

/ﬂ\ Work & School

[ ]
0 - 65 years
W/O Symptoms
March 1st to 20

Antigen Tests

100% Probability

3 days valid

Testing Strategy

Testing Scheme 2

/ﬂ\ Work & School
[ ]
0 - 65 years
Symptomatic
March 1st to 20

PCR Tests
100% Probability

3 days valid

Testing Scheme 3
Social Events
All ages
All states
Every day

Antigen-Tests

50% Probability

1 week valid

Before potential movement to work

Sascha Korf

i DLR

After potential movement to work
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ABM: Application to city-scale ﬂ 4#7
DLR

Sascha Korf

* Approximately 370.000 persons from Brunswick and the surrounding area

* Over 1.3 million trips per day




Number of tests

ABM: Advanced testing strategies

» Scenario analysis
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Sascha Korf

« Symptomatic vs. general testing
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Kerkmann, Korf et al., Computers in Biology and Medicine (2025)
https://doi.org/10.1016/|.compbiomed.2025.110269

ABM (2025)
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ABM: Effects of missing transmission chains
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-- Link to come --

Korf et al., Submitted (2025)



ABM: Joint ABM-Wastewater model

C INSIDe
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Hybrid agent-metapopulation: Spatial hybrid

i DLR

Julia Bicker René Schmieding

= |dea:
= Interest in infection spread in particular region

= Exclusive availability of data in specific region
(or computational resources limited)

= Concept:
= Agent-based model in region of interest (focus region)

= ODE-based models for connected regions

— Detailed results in focus region while considering
influence of connected regions in runtime efficient manner

Bicker, Schmieding et al., Infectious Disease Modelling (2025)
https://doi.org/10.1016/j.idm.2024.12.015
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Hybrid agent-metapopulation: Temporal hybrid “%7,\

i DLR

Julia Bicker René Schmieding

= |dea: Y

* Low case numbers:
High stochasticity and individual behavior is important

* High case numbers:
Individual behavior is less influential and single simulation to ts
outcomes are close to averaged results

= Concept:
Switch between agent-based and ODE-based model during the simulation
according to a threshold value

— Capture stochasticity and individual behavior when necessary for accurate
outcomes while using runtime advantage when possible

Bicker, Schmieding et al., Infectious Disease Modelling (2025)
https://doi.org/10.1016/j.idm.2024.12.015
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Proof-of-concept spatial hybrid model
DLR

= Setup: 8000 agents, 1% of population initially infected
= Focus region: ; = (—0,0) X (0, )

= Transmission rate in 0, = (0, o0) X (0, ©) correspondingto Ry = 2.4

= Transmission rate in other regions corresponding to Ry = 0.8
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Bicker, Schmieding et al., Infectious Disease Modelling (2025)
https://doi.org/10.1016/j.idm.2024.12.015
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Proof-of-concept spatial hybrid model

E DLR

Julia Bicker René Schmieding

= Spatial-hybrid has same scaling behavior like ABM
= For 400 agents: Runtime of spatial-hybrid 1 order of magnitude lower than for ABM

= For 40,000 agents: Spatial-hybrid reduces runtime by 98%

—=— ABM —<— PDMM —e— Spatial Hybrid

1051

‘8'!: 104

o 5
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- ]

g 10%

8.. E ]
= 10%4

...as.t‘s

Hybrid (2025) 10—12 ///
10—22

104

Bicker, Schmieding et al., Infectious Disease Modelling (2025)
https://doi.org/10.1016/j.idm.2024.12.015
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i DLR

Basic model properties
(without spatial resolution for now)




Impact of distributions on epidemic peaks

« Distributions have impact on epidemic peaks and LenaPlotzke  Anna Wendler
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Relative deviation from ODE model result
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Relative deviation from ODE model result

« Situation is highly complex and no general rule
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Figure T: Relative difference in daily new transmissions around change points. Relative comparison of the daily
new transmissions of different LCT models compared to a simple ODE model around change points. The contact rate é(t) is
halved (left) or doubled (right) after the second simulation day. Further notation as in Fig. B
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contact rate is set such that R.g(0) = 2 (left) or Reg(0) = 4 (right). Further notation as in Fig. E
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Integro-differential equation-based (IDE) model

« Simple ODE models are restricted to exponential stay time distributions Anna Wendler
—> not realistic according to literature

* First generalization: Use of Linear Chain Trick allows Erlang distributed stay times

« Full flexibility: Models based on integro-differential equations (IDEs) allow arbitrary stay time

distribution
Advantages: Disadvantages:
» Possibility to capture more realistic * Only few numerical solvers available; not as
modeling assumptions than ODE models efficient as ODE solvers
« Parameters can be made dependent on time  Data on distributions not widely available
since infection, e.g. mean infectivity » Assumption of (to some extent)
« Can include history of disease dynamics homogenous and well-mixed population

when initializing



IDE application

o L EPA
5.0
2.5 1 . . : 0 . . :

» Lognormal distributions according to data on le6 Le6 infected

COVID-19 in IDE model
» Corresponding exponential distributions in ODE

- -A °
0.0 A 0

1le6 Hospitalized 1e5 ICU

>

model Anna Wendler

Number of individuals
o —
o N

le7 Recovered 1le5 Dead

» Epidemic peaks differ with respect to size and

f\§
\

timing |
— Distribution assumption has impact on T B e e e m e
] . . o . Simulation time [days] —— ODE
simulation results and thus on basis for mitigation — IbE

action
* Numerical scheme preserves biological
properties and converges linearly

https://doi.org/10.1016/j.amc.2025.129636
Wendler et al., Applied Mathematics and

Computation (2025) IDE (2025)
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@@“@ A high performance Modular EpideMlics
2 (&) § simulLatlOn software
@ [} DLR
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- Uses efficient C++ models in background
~ Allows low barrier access to MEmilio

. 20 active pull requests (12 merged)
. 31 active issues (22 closed)
. 18 active authors

Software & Unit Tests
7I . C++: ca. 650 (2023: ca. 300)
WESID BayesFlow ' "ABC . Python: ca. 230 (2023: ca. 200)




What applications are next (and new)?

DLR
» To some extent: RSV, Influenza, highly pathogenic avian influenza (HPAI)

» Post-acute infection syndromes (PAIS), in particular Long Covid/PCC
» Aerosol modeling and transmission chains
» Extension of Al surrogate models

» Model the spread of a foot-and-mouth disease outbreaks

- affected animals: cattle, sheep, pigs

Kilian Volmer

to financial and workforce constraints

with

FRIEDRICH-LOEFFLER-INSTITUT

FLI

Bundesforschungsinstitut fiir Tiergesundheit
Federal Research Institute for Animal Health

» Use a graph for the transport network and

 Test out different interventions measures with respect J"f 'H\ ™
it
R

stochastic models for each herd (180.000 nodes)

» Use spatial information to represent disease spread

along other transmission paths




2" Bonn Conference on
Mathematical Life Sci

"DATE:
arch 16-19 2026

:ju/‘E\ ______

Workshop.
Multiscale Infectious et k.
Disease Modeling <«

March 18-20, 2026

Mathematical Biology e Blomformatlcs/Omlcs Analys:s
Modelling of the Tumor Microenvironment e Infectious Disease Modelling
Single-Cell Analysis ® Modelling of Cellular Pathways e Modelling of Organoids etc. S%olker Lannert 7. Universitat Bonn
. ‘BH IN
s. ‘Mw];

B @& LIFE

49 riEal https://www.bcml.uni-bonn.de/bemis2 UNIVERSITAT



Gefordertdurch: @ =0 e BN N BB BB 02 CEFORDERTVO
* Bundesministerium FUND * Bundesministerium
2F | fiir Digitales f Bld g

und Verkehr

. Das Startkapital fiir die Mobilitdt 4.0

With funding from the:

wemiorz gY@y @[ v

UNIVERSITAT

Thanks to our funders! / Thank you for your attention!
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