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Outline / Info 

• Who are we?

• Motivation for spatial resolution

• Software aspects: Efficiency and performance

• Metapopulation models with epidemic control application

• Spatially resolved AI-surrogate models for on-the-fly computation

• Agent-based models with some applications

• „Off-Topic“: Basic model properties and influence on outcomes

• Concluding

→ In many places, I will only present a very brief insight into the model or the application and I am happy to discuss more details at any time.
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The team

Institute of Software Technology

Department High-Performance Computing

Predictive Simulation Software

Life and Medical Sciences Institute and 

Bonn Center for Mathematical Life Sciences

Mathematical-Epidemiological Modeling

Main backgrounds:

❖ Applied Mathematics

❖ Computer Science

❖ High-Performance Computing



We care not enough about spatial resolution
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𝑅𝑡,1 = 0.5

𝑅𝑡,2 = 1.1

𝑅𝑡,3 = 4

𝑁𝑡,1 = 𝑁𝑡,2 = 𝑁𝑡,3
𝑅𝑡 = 1.9

𝑁𝑡,1 > 𝑁𝑡,2 > 𝑁𝑡,3

𝑅𝑡 = 0.9

With which strictness to act?

Act at all ?



We care not enough about spatial resolution



We care not enough about spatial resolution

6

𝑅𝑡,1 = 0.5

𝑅𝑡,2 = 1.1

𝑅𝑡,3 = 4

𝑁𝑡,1 = 𝑁𝑡,2 = 𝑁𝑡,3
𝑅𝑡 = 1.9

𝑁𝑡,1 > 𝑁𝑡,2 > 𝑁𝑡,3

𝑅𝑡 = 0.9

With which strictness to act?

Act at all ?

Aggregated metrics… 

• …only give blurred information and intervention strictness is unclear

• …do not allow for local action and targeted deployment of limited resources

 

Post-COVID-era: For many diseases, not enough data for this spatial resolution…

• Data will increase substantially with digitisation and digital tools in the next decades

• Develop advanced models such that they are ready to use when data is

• Pandemic preparedness

 



Missing out spatial resolution: some reasons
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• „in the end, it will arrive anyway…“

• „you cannot do metapopulation models in a small time frame“

Aside from data availability, ODE*-SIR-type models are too easy to implement…

* ODE: Ordinary differential equations

→ If it looks like that, you do not use 

the degrees of freedom and power in 

spatially resolved models

→ well, you can…



Chances of efficiency and performance
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Portegies Zwart, Nature Astronomy (2020)

Pereira et al., SLE’17 (2017)

→ In hardware or other contexts: Would we build solutions for (time) critical tasks that are more than 50 times slower or 
use that more energy for the same task?

→ Do large-scale models in an efficient and scalable language (at least for the backend: R, python… have other use cases)

Factor 100

Factor 100-1000



Software 

Technology

Numerical 

methods

Let‘s create more interdisciplinary synergies

Software 

Technology

Numerical 

methods
Public HealthImmunology Epidemiology Inference
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Missing out spatial resolution: Reasons and chances
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Missing out spatial resolution: Reasons and chances
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Missing out spatial resolution: Reasons and chances

And this is “just“ 2304 CPU cores…
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Missing out spatial resolution: Reasons and chances

And this is “just“ 2304 CPU cores…
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Missing out spatial resolution: Reasons and chances

And this is “just“ 2304 CPU cores…In computational physics, problems with trillions of degrees of freedom are solved*

- Why shouldn‘t we be able to solve some hundred regions?

- Why shouldn‘t we be able to solve some million agents?

 * Gmeiner et al., Journal of Computational Science, 2016.



From simple ODE to metapopulation
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From simple ODE to metapopulation
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Gerstein et al, in preparation, 2025



From simple ODE to metapopulation

21
Gerstein et al, in preparation, 2025



From simple ODE to metapopulation
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Gerstein et al, in preparation, 2025

→ For uniformly distributed cases, the models should return the same output 



From simple ODE to metapopulation: A Graph-ODE alternative
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Kühn et al, Mathematical Biosciences, 2021

• Use a graph with regions 
as nodes

• One edge per, e.g., pair 
(infection state, age group)

• Advance nodes in parallel 
from t to t+0.5 and from 
t+0.5 to t+1

Advantage: 
• Parallelism

Disadvantage: 
• Returning commuters need 

to be approximated
• Theory more complex



ODE vs. Graph-ODE metapopulation
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Gerstein et al, in preparation, 2025/26
Zunker et al, in preparation, 2025/26

Sequential runtime

Henrik ZunkerCarlotta Gerstein



16

Application: Numerical assessment of the “NoCovid” control strategy 

• “NoCovid” is not “ZeroCovid”

• NoCovid: “Controlling the Covid-19 pandemic through Green Zones”

• Test of commuters coming from red zones

• 75 % detection ratio (averaged value for mix of massive deployment of antigen tests plus PCR, RTD-PCR and pool tests)

• Considering different frequencies (daily, twice per week, ...)

Four different initial scenarios. Random initial incidence (weekly cases per 100 000 
individuals) of 75-150 for 2-20% of the counties and incidence below 10 otherwise
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Application: Numerical assessment of the “NoCovid” control strategy 

Kühn et al., BMC Infectious Diseases (2022)

https://doi.org/10.1186/s12879-022-07302-9 

Simulated spread of SARS-CoV-2 cases for one initial scenario of about 18 % red 
zones and 8 different strategies. Median result after 30 days of simulation time.

• T0, T1, T2, T5: No testing, testing once, twice or five times per week
• L: Lockdown
• D1W, D3W: Implementations of interventions with one or three weeks delay

https://doi.org/10.1186/s12879-022-07302-9
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Application: Numerical assessment of the “NoCovid” control strategy 

Kühn et al., BMC Infectious Diseases (2022)

https://doi.org/10.1186/s12879-022-07302-9 

• T0, T1, T2, T5: No testing, testing once, twice or five times per week
• L, L+: Lockdown or strict lockdown
• D1W, D3W: Implementations of interventions with one or three weeks delay

https://doi.org/10.1186/s12879-022-07302-9
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ODE-based metapopulation with feedback 
mechanism

• Integration of spatially resolved human behavior

• Feedback loop based on perceived risk with memory kernel

• Nominal ICU capacity as threshold for regulation measures

• Regulation updates the effective contact rate

https://doi.org/10.1016/j.chaos.2025.116782
Zunker et al., Chaos, Solitons & Fractals (2025)

Henrik Zunker

https://doi.org/10.1016/j.chaos.2025.116782


Extension to travel-time aware Graph-ODE metapopulation
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Zunker et al., PLOS Comp Bio (2024)

https://doi.org/10.1371/journal.pcbi.1012630

Henrik Zunker

https://doi.org/10.1371/journal.pcbi.1012630


AI-based on-the-fly computation 
for web applications
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• Simulate spatially resolved expert models

• Train spatially resolved AI surrogates (Graph Neural 

Networks) on expert model‘ outcomes

Schmidt et al., Submitted (2025) https://arxiv.org/abs/2411.06500

→ Enables low-barrier web access for decision makers 

→ Timely reaction for pandemic mitigation

Henrik ZunkerAgatha Schmidt

https://arxiv.org/abs/2411.06500


Federated learning with differential privacy
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Kerkouche, Zunker et al., Submitted (2025)

https://arxiv.org/abs/2509.14024 

Henrik Zunker

• Centralizing data challenging due to high sensitivity and privacy constraints

• Federated learning train a shared model without centralizing raw data

• Differential privacy ensures protection of private and sensitive data

https://arxiv.org/abs/2509.14024


Agent-based modeling
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• Model individuals (or households) as individual agents

• Computational cost scales (super)linearly with number of agents

• Study and answer research questions on a “microscopic“ level (e.g. individual decisions, test strategies, viral load…)



Agent-based modeling: Testing strategies
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Sascha Korf



ABM: Application to city-scale
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• Approximately 370.000 persons from Brunswick and the surrounding area

• Over 1.3 million trips per day

Sascha Korf



ABM: Advanced testing strategies
• Scenario analysis
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• Symptomatic vs. general testing

Kerkmann, Korf et al., Computers in Biology and Medicine (2025)

https://doi.org/10.1016/j.compbiomed.2025.110269

Sascha Korf
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More symptom-independent testing

https://doi.org/10.1016/j.compbiomed.2025.110269


ABM: Effects of missing transmission chains
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-- Link to come --

Korf et al., Submitted (2025)

Sascha Korf



ABM: Joint ABM-Wastewater model
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Bicker, Tomza, Wallrafen et al., Submitted (2025)
https://doi.org/10.1101/2025.09.25.25336633

“How does can testing-based detection be 
improved by combination with wastewater?” 

Studying the effect of different 
normalization strategies 

for rain events

Detailed insights into 
population and 

wastewater dynamics

Julia Bicker

https://doi.org/10.1101/2025.09.25.25336633


Hybrid agent-metapopulation: Spatial hybrid
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Bicker, Schmieding et al., Infectious Disease Modelling (2025)
https://doi.org/10.1016/j.idm.2024.12.015

▪ Idea: 

▪ Interest in infection spread in particular region

▪ Exclusive availability of data in specific region 

(or computational  resources limited)

▪ Concept:

▪ Agent-based model in region of interest (focus region)

▪ ODE-based models for connected regions

→ Detailed results in focus region while considering 

influence of connected regions in runtime efficient manner

Julia Bicker René Schmieding

https://doi.org/10.1016/j.idm.2024.12.015


Hybrid agent-metapopulation: Temporal hybrid
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▪ Idea: 

• Low case numbers: 

High stochasticity and individual behavior is important

• High case numbers: 

Individual behavior is less influential and single simulation 

outcomes are close to averaged results

▪ Concept:

Switch between agent-based and ODE-based model during the simulation 

according to a threshold value

→ Capture stochasticity and individual behavior when necessary for accurate 

outcomes while using runtime advantage when possible

Julia Bicker René Schmieding

Bicker, Schmieding et al., Infectious Disease Modelling (2025)
https://doi.org/10.1016/j.idm.2024.12.015

https://doi.org/10.1016/j.idm.2024.12.015


Proof-of-concept spatial hybrid model
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▪ Setup: 8000 agents, 1% of population initially infected 

▪ Focus region: Ω1 = −∞, 0 × (0,∞)

▪ Transmission rate in Ω2 = 0,∞ × 0,∞ corresponding to 𝑅0 = 2.4

▪ Transmission rate in other regions corresponding to 𝑅0 = 0.8

Julia Bicker René Schmieding

Bicker, Schmieding et al., Infectious Disease Modelling (2025)
https://doi.org/10.1016/j.idm.2024.12.015

https://doi.org/10.1016/j.idm.2024.12.015


Proof-of-concept spatial hybrid model
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▪ Spatial-hybrid has same scaling behavior like ABM

▪ For 400 agents: Runtime of spatial-hybrid 1 order of magnitude lower than for ABM

▪ For 40,000 agents: Spatial-hybrid reduces runtime by 98%

Julia Bicker René Schmieding

Bicker, Schmieding et al., Infectious Disease Modelling (2025)
https://doi.org/10.1016/j.idm.2024.12.015

https://doi.org/10.1016/j.idm.2024.12.015
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Basic model properties
(without spatial resolution for now)



Impact of distributions on epidemic peaks

• Distributions have impact on epidemic peaks and 

timings

• Literature sometimes mentions over- / 

underestimation by exponential distribution

• Situation is highly complex and no general rule

44

https://doi.org/10.1016/j.matcom.2025.07.045 

Plötzke et al., Mathematics and Computers in Simulation (2025)

Anna WendlerLena Plötzke

Different Erlang/Gamma distributions

https://doi.org/10.1016/j.matcom.2025.07.045
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Integro-differential equation-based (IDE) model

Advantages:

• Possibility to capture more realistic 

modeling assumptions than ODE models

• Parameters can be made dependent on time 

since infection, e.g. mean infectivity

• Can include history of disease dynamics 

when initializing

Disadvantages:

• Only few numerical solvers available; not as 

efficient as ODE solvers

• Data on distributions not widely available

• Assumption of (to some extent) 

homogenous and well-mixed population

• Simple ODE models are restricted to exponential stay time distributions                                     

→ not realistic according to literature

• First generalization: Use of Linear Chain Trick allows Erlang distributed stay times

• Full flexibility: Models based on integro-differential equations (IDEs) allow arbitrary stay time 

distribution

Anna Wendler



IDE application

• Lognormal distributions according to data on 

COVID-19 in IDE model 

• Corresponding exponential distributions in ODE 

model

• Epidemic peaks differ with respect to size and 

timing

→ Distribution assumption has impact on 

simulation results and thus on basis for mitigation 

action

• Numerical scheme preserves biological 

properties and converges linearly 
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https://doi.org/10.1016/j.amc.2025.129636 

Wendler et al., Applied Mathematics and 

Computation (2025)

Anna Wendler

https://doi.org/10.1016/j.amc.2025.129636


A high performance Modular EpideMIcs 
simuLatIOn software

• 20 active pull requests (12 merged) 

• 31 active issues (22 closed) 

• 18 active authors

Activity (on main) August 2025

Software & Unit Tests

• C++: ca. 650 (2023: ca. 300)

• Python: ca. 230 (2023: ca. 200)

Contributors

• 2024: 20

• Overall: 41

47



What applications are next (and new)?

• To some extent: RSV, Influenza, highly pathogenic avian influenza (HPAI)

• Post-acute infection syndromes (PAIS), in particular Long Covid/PCC

• Aerosol modeling and transmission chains

• Extension of AI surrogate models

• Model the spread of a foot-and-mouth disease outbreaks

• affected animals: cattle, sheep, pigs

• Test out different interventions measures with respect 

to financial and workforce constraints

• Use a graph for the transport network and 

stochastic models for each herd (180.000 nodes)

• Use spatial information to represent disease spread

along other transmission paths
48

Kilian Volmer

with
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March 18-20, 2026

Workshop:

Multiscale Infectious 

Disease Modeling



Thanks to our funders! / Thank you for your attention! 
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Questions / Exchange ? → Martin.Kuehn@DLR.de
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