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Ammonia on site: Separating charge generation
from dark N, reduction on tailored TiO, aerogels
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TiO, Aerogels FP1: synthesis optimization
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 specific surface area of up to 600 m? g

e controllable crystallinity from amorphous
to 100%

* tunable phase
composition:
mainly anatase
and up to 42%
of brookite

e adjustable porous structure and pore size
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iradiation irradiation « photonic characterization
* adapted process parameters
* 3.8 % total photon absorption
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Work PaCkage 1 Research Questions \ Work package 2

How to modify TiO,-based materials for an increased efficiency of photocharging?
Which material properties determine the activity of dark N, reduction?
Which reactor types enable efficient photocharging and subsequent N, reduction? | , systematic studies of charging conditions with
Which reaction conditions enable efficient photocharging and N, reduction? Y. different “waste” hole scavengers

Aerogel tailoring for application Photocharging, dark N, reduction

 mechanical stability: introducing spacers and
scaffolding techniques to achieve stable monoliths,
beads, films and mats e studying temperature (photothermal) effects

* fixation: developing deposition techniques for * investigating wavelength dependence, especially in
aerogel films on conductive substrates cycling experiments

e upscaling: investigating the influence of batch size
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and introducing continuous production methods | 595 pmote_ B oty
* band gap tuning: doping with metals and non-metals 2
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Apfel/Giusto/Oschatz > ;rgtlgﬁacl)s er 2. development of upscaling and shaping procedures ﬁg‘?
. 3. synthesis and characterization of photochargable TiO,-fibers with adjustable properties S .
Klemm/Krtiger/Risch ® electrocatalysis 4. systematic study of influence of reaction conditions on different materials for |* Comparing aerogels with electrospun nanofibers
Jacob/Sharp/Zhang »  Comnecting photocharging and nitrogen reduction efficiency * Nanofibers will also be provided for gas phase
Streb/Zioconbal . 5. development and characterization of liquid- and gas-phase photocharging and N, photocharging and NRR: Open cell structure of
trebizlegenbalg catalysis reduction reactors the fiber mats beneficial compared to aerogels?
Browne/Exner/Oschatz p  Porous Liquids 6. kinetic and reactor modeling for photocharging and nitrogen reduction .
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PEC benchmarking 3
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* Is it possible to reduce CO, with photocharged OBFR Photoreactor Gas-phase Photoreactor FITZES ST G Dynamic and static
TiO, aerogels? [K‘“e“‘;la’;d 'l‘eac"”] photoelectrochemical methods
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* Thus, is it possible to simultaneously reduce
CO, and N,, to form urea? Liquid-phase solar Model-supported optimization Gas-phase photocharging
Compare gas phase vs. liquid phase operation. g tocharging reactors of process conditions reactor
 Study influence of CO,/N, ratio, total system
pressure, aerogel loading/mass, * oscillatory baffled flatbed reactor e kinetic and reactor models e systematic studies based on preliminary results from FP1
degree of initial photocharging, operation for efficient solar photocharging  model-guided optimization * investigating photocharging time, photon flux/photon
mode, reactor type etc. * online monitoring of photocharging irradiance, aerogel/fiber mats, and filling height
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