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Abstract— This work presents a review of the state of the art 
in generating three-dimensional models of underwater scenes 
with acoustic sensors. For each of the sensor types multibeam 
echosounder, forward looking multibeam, sidescan sonar 
(conventional and synthetic aperture), the physical properties of 
the sensor are investigated, specifically with regards to acoustic 
range, range resolution and angular resolution. Secondly, for 
each sensor a review is provided on the past and current 
strategies to generate or enhance three-dimensional information 
from the sensor data. The limitations of these methods are 
analyzed and future research fields are identified to maximize 
the potential derived from the physical sensor properties.  
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I. INTRODUCTION 
The mapping of the ocean floors and the survey of 

underwater infrastructure have always been important topics 
in the maritime world. With the recent rise in geopolitical 
tensions as well as the events in the Baltic Sea related to 
subsea pipelines and cables in particular, the critical need to 
ensure the safety and security of underwater infrastructure has 
increased significantly. Current methods struggle to provide 
reliable and efficient means to understand complex three-
dimensional underwater scenes. Due to the inaccessibility and 
generally lower visibility underwater the data products 
required for comprehensive situational awareness can be 
difficult to acquire.  

For detecting and identifying objects on a flat sea floor, 
two-dimensional sonar images are an established solution. In 
environments with vertical features like harbors or offshore 
energy installations, three-dimensional models are essential to 
capture all information needed for a comprehensive 
understanding of the scene. These models have to be detailed 
and accurate to permit identification of objects, risk analysis 
or structural fault assessment and allow safe underwater 
navigation. 

This work aims at providing an overview about existing 
acoustic sensor types and methods which can be used to obtain 
high-resolution 3D models of underwater scenes. From the 
sensor’s hardware constraints and the existing methods, a 
potential for further research is derived and further 
investigation into sensor data fusion between multibeam 
echosounder (MBES) and sidescan sonar (SSS) is suggested. 
To our knowledge this is the only dedicated review paper on 
dense underwater 3D reconstruction from acoustic sensors.  

The main contributions from this work are  

• A brief description of the working principle of 
four acoustic underwater sensors MBES, forward 
looking sonar (FLS), SSS and synthetic aperture 
sonar (SAS) including typical resolutions of 
commercially available systems (Section II) 

• A comprehensive review on methods for dense 
3D reconstruction from FLS, SSS and SAS data 
(Section III) 

• A discussion on potential research fields based on 
the hardware constraints and the results of the 
existing reconstruction methods (Section IV) 

Optical technologies like photogrammetry and lidar are 
not considered in this paper. They can, under the right 
circumstances, produce very detailed models [1] featuring 
color information. However, even though efforts are being 
made to increase performance in poor water conditions [2], 
these techniques cannot be relied upon in most regions where 
critical infrastructure is located. These regions tend to be busy, 
shallow and close to rivers which are all indicators of low 
visibility. For applications with good visibility, [2] gives a 
good overview on 3D reconstruction methods based on optical 
images. In addition, the authors mention a few selected 
acoustical methods, including less frequently used sensor 
types such as single beam sonars or mechanical scanning 
sonars, which are not discussed in this work, and expand on 
optical-acoustic fusion techniques. 

II. HARDWARE OVERVIEW 
A variety of acoustic sensors are employed for underwater 

mapping and object reconstruction, each offering distinct 
capabilities and limitations with respect to spatial resolution, 
coverage, and dimensionality. The following section provides 
an overview of the most commonly used systems—MBES, 
FLS, SSS, and SAS—highlighting their key characteristics 
and implications for three-dimensional reconstruction tasks. 
In Fig. 1, the working principles of these four sensors are 
illustrated. While MBES typically acquires data by looking 
downward at the scene, FLS, SSS, and SAS observe the scene 
from the side. All sensors can, depending on the setup, provide 
high range resolutions  below 1 cm, which in Fig. 1 
corresponds to the direction along the sonar beams, depicted 
as light-blue cones extending outward from the red sensor 
elements. 

Multibeam echosounders (MBES) are established sensors 
for mapping the sea floor and in contrast to the other acoustic 
sensors discussed here directly delivers three-dimensional 
data. While their range resolution is below 1 cm for high-
frequency systems, the horizontal resolution is limited 
because it linearly decreases with the distance from the sensor 
to the ensonified region. Minimum values for beamwidth are 
0.5 – 2° which result in footprints of 9 – 35 cm at nadir and 
14 – 50 cm at a 45° incidence angle for a distance of 10 m to 
the insonified region. The MBES technology is generally set 
up so that it can deliver point clouds as a data product. 3D 
surface reconstruction from these point clouds is based on 
traditional algorithms like Poisson surface reconstruction, 2D 



Delaunay triangulation or  the ball pivot algorithm [3–6]. 
Newer techniques have not been explored. Reasons for this 
may be the lack of high-resolution datasets which comes from 
the high cost associated with bringing the relatively bulky 
sensor very close to an object of interest. The smallest devices 
on the market measure 15 – 20 cm in all dimensions due to the 
perpendicular transmitter and receiver arrays. 

Forward looking multibeam sonars (FLS) tend to be 
smaller (e.g. 12 cm × 12 cm × 6 cm) and can produce images 
with resolutions of down to 2 mm in range and 0.4° in 
horizontal beam width, which corresponds to 7 cm at a range 
of 10 m, by utilizing frequencies up to 3 MHz and bandwidths 
up to 375 kHz. The high attenuation of such short frequencies 
leads to limited ranges, making these sonars more suited for 
navigation and detailed inspection than mapping. Vertically, 
these systems typically use beam widths of around 20°. 

With their high horizontal resolution and area coverage 
rate (30 m to 100 m to each side for high-frequency systems), 
sidescan sonars are an established tool for locating and 
identifying objects on the sea floor, but intrinsically provide 
only two-dimensional information. Range resolution is only a 
function of bandwidth (or pulse length), not distance, and can 
be as low as 0.6 cm. Along-track resolution decreases linearly 
with range. High-frequency systems reach resolutions of 
3.5 cm at a range of 10 m. With additional hardware, 
bathymetric information can be collected using 
interferometry, but this technology is physically limited to 
slowly changing terrain and cannot be used for larger vertical 
structures [7].  

Synthetic aperture sonar (SAS) systems are relatively 
costly and large in size (array lengths > 0.5 m) but allow for 
highly efficient area coverage (e.g. 200 m to 300 m to each 
side) at horizontal resolutions between 2 cm × 2 cm and 
5 cm × 5 cm independent from range. As with sidescan sonar, 
interferometry can be used to acquire bathymetric data, but 
similar restrictions apply. Even though recent efforts show 
potential for improving performance [8, 9], vertical 
uncertainties remain at least one order of magnitude higher 
than for multibeam echosounder systems. Additionally, the 
horizontal resolution for 2D imaging is not retained for the 
interferometric data.  

III. 3D RECONSTRUCTION METHODS 
Since FLS, SSS and SAS do not intrinsically provide 3D 
information as the MBES does, there have been several 
different approaches for each sensor to reconstruct this 
information from the 2D images or raw data. They can roughly 

be clustered into voxel-based methods, methods based on the 
shape from shading technique and methods using neural 
networks, with Gaussian splatting and circular SAS standing 
out from the rest. For each of these an overview of the 
methods, the applications and the results is given, also 
highlighting some of the limitations. This review is limited to 
techniques for dense reconstruction where the shape of 
reconstructed objects can be visually inferred from the model 
without prior knowledge. Methods only providing sparse 
information for underwater navigation are not included. 

A. Voxel-based methods 
Most methods for reconstruction of 3D data from FLS images 
are based on some generalized form of space carving [10]. 
The area of interest is modeled as a 3D grid composed of so-
called voxels, the 3D equivalent of pixels. In traditional space 
carving, the voxels are initially considered occupied. For each 
image, it is calculated which voxels contributes to which 
image pixel. Based on the image information for each pixel, 
the probability of occupancy is adjusted for the corresponding 
voxels. The more images from different viewpoints are 
considered, the more is carved away from the model until 
only the actual scene remains. These methods rely on images 
from multiple views which makes the technique particularly 
suited for FLS which captures a full 2D image for every ping, 
in contrast to SSS and SAS, where one image is always 
composed of many successive pings. Therefore, except for 
[11] the methods described in this subsection are all 
developed for FLS data. They are tailored towards 
reconstruction of isolated objects with dimensions between 
10 cm and 1 m which can be investigated with a FLS from all 
sides and from different elevation angles. Typically, the 
sensor is brought very close to the object, leading to images 
with resolutions of few millimeters and models with 
resolutions of few centimeters. The sea floor is, for most 
investigations using this technique, not considered as part of 
the scene and the corresponding voxels are considered 
unoccupied.  
The space carving technique is applied to a variety of objects 
in [12] and [13]. On the FLS image, the leading edge of an 
object is detected, and all voxels inside the beam leading up 
to that edge are classified as empty. In this way, a volume 
discretized with voxels presumed filled at the start is “carved 
out” by multiple views from different directions. The authors 
show that the reconstruction result is highly dependent on the 
choice of viewing angles. 

 
Fig. 1  Working principle of different sonar devices (red) imaging an object (dark) on the sea floor (light grey). High range resolutions in direction 
of the fan-shaped beams (light blue) are common to all systems. For MBES, FLS and SSS resolutions perpendicular to range depend on the 
beamwidth, for SAS this limitation is overcome by use of overlapping beams. MBES data can be interpreted as a set of 3D points (blue). FLS, 
SSS and SAS images are 2D projections of the scene. 
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In another approach, 2.5D elevation maps are formed by 
segmentation and classification of the FLS image in object, 
shadow and background regions [12]. Object and shadow 
regions on a 2D grid based on a flat sea floor are assumed 
occupied, background regions unoccupied. The elevation of 
the occupied regions is determined by measuring the shadows 
and again assuming a flat sea floor. 
The method in [13] initializes the probability of a voxel being 
occupied to 0.5 and updates it with every FLS image based 
on probabilities from very basic pixel-wise classification in 
object and noise based on intensity histograms. The 
combination of two orthogonally mounted sonars is explored. 
A 2D occupancy map is built from FLS data in [14], where 
intensities above a certain threshold indicate occupied grid 
elements, intensities below a second threshold (shadows) are 
considered unknown and all others are marked as empty. The 
method is supported by a singlebeam profiling sonar. All grid 
elements up to a detected object are considered empty, the 
element at the detection point is marked as occupied, and all 
elements behind are labeled as unknown. 
An approach similar to space carving is described in [15] and 
[16] where each voxel is assigned the lowest observed 
intensity of multiple views. 
In [11] a voxel-based approach for SSS data is proposed, 
optimizing grid occupancy through a graph representation of 
occupied voxels. Simulative results reconstructing the 
general shape of a slightly sloped sea floor are presented in 
[17, pp. 269-280], comparing different voxel initializations 
qualitatively. In addition to classical space carving, variations 
with an initially unoccupied volume and an initialization 
plane are explored.   

B. Shape from shading  
The idea to apply the shape from shading technique, which 
was initially developed for the 3D reconstruction from 
monocular optical images [18], on sonar images, was 
introduced in 1991 [19, 20].  
The basic principle is an optimization including the following 
steps: 

• model a 3D environment 
• simulate sonar data from that model 
• compare simulated data to real data 
• adjust model 

With shape from shading for SSS or SAS, swath widths of 
several hundred meters can be reconstructed at once. 
Theoretically, the technique allows to take full advantage of 
the sensor resolution, although mostly it is still scaled down 
to allow for faster computation times. Most approaches only 
reconstruct a height map with exactly one elevation value 
corresponding to each coordinate in the horizontal plane. This 
does not allow vertical surfaces or even overhanging 
structures to be reconstructed. Generally, the technique is 
able to reconstruct the gradients of a 3D environment with 
relatively high accuracy, but absolute height estimates are 
less accurate since in the existing variations of the technique, 
only very sparse control points from other data sources are 
used, if any.  
Very sparse multibeam echosounder data with point spacing 
of several hundred meters is used in [20] to initialize the 
modeling of a seamount with SSS data, progressively 
increasing resolution to 50 m × 50 m.  

The approach introduced in [19] is expanded upon in [21], 
where both synthetic and real results from mapping a deep-
sea ridge are presented. The method includes both local and 
global optimization steps that are iteratively applied. 
An approach using step-wise resolution enhancement similar 
to the concept in [20] is described in [22]. The method is 
evaluated qualitatively on real data of relatively flat sea floor 
with ripples, rocks and a pipeline as well as augmented 
objects. Assuming a perfectly straight sensor trajectory, the 
model accommodates the full resolution of the SSS data 
which is 3 cm to 12 cm in this case. The radius of the pipeline 
is estimated at (0.51 ± 0.19) m, compared to a ground truth of 
0.38 m.  
An approach similar to shape from shading techniques is 
presented in [23]. It estimates elevations one ping at a time, 
considering the shadow lengths cast by objects on the sea 
floor. This method is extended in [24] to incorporate 
information from one prior ping, and further applied to SAS 
data in [25]. More detailed discussions and visual examples, 
such as reconstructions of a tire and a shipwreck section, are 
found in [26], though the results are not evaluated 
quantitatively.  
Reference [27] introduces a shape from shading approach 
based on the Lambertian scattering model from [22], using a 
multilayer perceptron (MLP) to encode 3D information. The 
method enables fusion of data from multiple SSS tracks, but 
resolution is constrained by the MLP size, requiring 
downsampling to 64 data points per ping. As a result, only 
larger rocks are reconstructed, and accuracy varies between 
sparse altimeter control points. 
Shape from shading is also performed on SSS images in [28], 
where images are first decomposed into low- and high-
frequency components. This step improves the signal-to-
noise ratio in a dataset containing a shipwreck and different 
sea floor types.  
In contrast to all the previously discussed approaches, [29] 
shows, that shape from shading for sonar data can be 
deployed for modeling truly three-dimensional structures 
including vertical surfaces. A local shape from shading 
method is used to fill in the geometry of pillars whose edges 
have been previously detected and localized. A voxel-based 
approach is employed to fuse the data from multiple frames. 
While simple structures with approximate dimensions of 
0.7 m × 2.0 m are reconstructed using 10 cm voxel sizes, the 
output is limited to small patches of the structure surfaces.  
A similar method for FLS data is presented in [30], where the 
shape from shading technique is applied locally to reconstruct 
simple objects placed on a flat sea floor. As in [29], 
segmentation and classification of the FLS image are used to 
define object boundaries prior to reconstruction. 

C. Neural Networks and Gaussian splatting 
For both small-scale objects imaged with forward-looking 
sonar (FLS) and large-scale areas surveyed with sidescan 
sonar (SSS), data-driven methods employing neural networks 
have demonstrated the potential to reconstruct three-
dimensional information from two-dimensional sonar 
imagery. Although these approaches are, in principle, capable 
of achieving arbitrarily high spatial resolutions, current 
neural network architectures typically require substantial 
downscaling of the input data, particularly for extensive 

5th European Workshop on Maritime Systems Resilience and Security (MARESEC 2025)

DOI: 10.5281/zenodo.17120720



survey regions. The reconstruction quality is highly 
dependent on the characteristics of the training data. 
An additional promising technique originating from the 
optical domain is Gaussian splatting. While this method has 
not yet been applied exclusively to acoustic underwater data, 
preliminary studies in [31] indicate its adaptability for use 
with FLS. 
A convolutional neural network (CNN) is trained in [32] to 
predict elevation angles for each pixel in a FLS image, 
enabling 3D reconstruction from single or very few images. 
For training, the simulator introduced in [22] is used. 
Building on this concept, [33] proposes training a CNN to 
generate front-view depth maps from FLS images. These 
maps correspond to the view an RGB-D camera would 
capture if placed at the same location as the FLS sensor. 
Training data are generated by modeling scenes in Blender, 
and a CycleGAN is used to transform the rendered images to 
resemble real sonar data. Both approaches are evaluated on 
simple geometric shapes ranging from 8 cm to 30 cm in size, 
placed either on the sea floor or suspended in the water 
column. Quantitative evaluations are provided. The models 
exploit the high resolution of a 3 MHz FLS with an 
artificially limited viewing range of 1.5 m, achieving 
resolutions of 3 mm in range and 1 cm to 3 cm in the other 
two spatial dimensions. 
In [34], two CNNs for image-to-image translation are trained 
using MBES and SSS data to predict height profiles from SSS 
imagery alone. The method reconstructs rocks of various 
sizes but is constrained by the resolution of the MBES 
training data and by the downscaling of input images to 
(265 × 265) pixels. Reconstruction accuracy is further 
improved in [35] by incorporating sparse bathymetric data. In 
[36], it is demonstrated that overlapping SSS tracks can be 
fused into a single 3D model, yielding better results than 
reconstruction from a single pass alone. The network is 
extended in [37] by integrating an MLP, similar to the one 
used in [27], to predict environmental gradients. This model 
combines sidescan images, sparse bathymetry, and the output 
of the CNN from [34]. Treating the SSS data as images of 
(64 × 512) pixels allows for a twofold increase in resolution. 
For a swath width of 100 m, this corresponds to 
approximately 20 cm per pixel in the across-track direction 
which is still significantly coarser than the resolution of the 
original SSS data. Furthermore, the method remains 
inherently limited by the resolution of the MBES data used 
for training. 
In [28], a monocular depth estimation network is trained on 
optical data and applied to SSS data. The results exhibit 
substantial faults which fail to be corrected by combining the 
results with those of a shape from shading approach. 

Reference [31] shows that Gaussian splatting, a 3D 
reconstruction technique from the optical domain [38] that 
has gained very strong traction recently, can be adapted for 
use with FLS images. After fusion with optical data, an object 
with dimensions between few centimeters and few 
decimeters is reconstructed as a point cloud with high 
resolution but with a lot of noise. The use of sonar data only 
is not investigated. Gaussian splatting stores information 
about the scene as a collection of 3D gaussians with different 
properties. Images can then be rendered very efficiently by 
simple transformations called splatting.  

D. Circular SAS 
Circular SAS is a technique where a target is captured from 
all sides by moving the sensor in a circle around the target 
[39–43]. With a three-dimensional trajectory like a spiral or 
multiple circles with different heights, this technique can be 
used for 3D modelling with very fine detail.  In contrast to 
the algorithms discussed above, the 3D model is not 
reconstructed from 2D images but from raw sonar data.  
In [44] it is shown, that the vertical beamforming from 
interferometric SAS processing can, after multiple alignment 
steps, be used to reconstruct 3D objects from multiple circular 
scans in different heights or with different radii. Results are 
shown where munitions, an oil barrel and an aluminum 
cylinder with dimensions between 15 cm and 90 cm are 
reconstructed with such high detail in some cases that a rope 
and some material boundaries of dimensions around 1 cm are 
discernable.  
In [45] a neural rendering framework similar to neural 
radiance fields (NeRF) from the optical domain [46] is 
introduced and compared to classical SAS processing using 
coherent backpropagation. Both approaches are used to 
reconstruct complex figurines with total dimensions of about 
20 cm and features with sizes below 1 cm with a circular SAS 
in air in a laboratory environment. Additionally, a cinder 
block and a cylinder with estimated dimensions between 
25 cm and 100 cm and features with sizes of few centimeters 
are reconstructed using a bistatic Sediment Volume Search 
Sonar with frequencies around 30 kHz. 

IV. SUGGESTED RESEARCH FIELDS 
As outlined in Section II, MBES exhibit physical and 

functional characteristics that complement those of the other 
commonly used acoustic sensors. MBES provide high-
resolution measurements in the vertical direction and deliver 
reliable three-dimensional point clouds. In contrast, the sensor 
types FLS, SSS and SAS acquire high-resolution data laterally 
and produce two-dimensional images that lack intrinsic depth 
information. While gradients in the third dimension can be 
inferred from these 2D imaging sensors, reconstructed depths 
exhibit high uncertainties. Given these complementary 
strengths and weaknesses, there is strong motivation to pursue 
further research into acoustic sensor data fusion methods. 
Combining the precise and explicitly three-dimensional depth 
measurements of MBES with the high-resolution lateral 
imaging capabilities of FLS, SSS, or SAS may lead to more 
robust and detailed 3D reconstructions of underwater 
environments. 

FLS, when combined with volumetric reconstruction 
techniques such as space carving, and SAS in circular SAS 
configurations, are particularly suited for the reconstruction of 
isolated objects that can be imaged from multiple directions. 
Typical targets are of sizes between 10 cm and 1 m and can be 
reconstructed well enough to discern features as small as 1 cm. 
In scenarios involving such small, isolated targets that are 
accessible from all sides, it becomes unclear in which cases 
MBES can be deployed sufficiently close to contribute 
meaningful additional data but not so close that it could 
perform the reconstruction alone. Conversely, SSS is highly 
effective for surveying larger or more complex structures, 
offering area coverage rates that exceed, but remain 
comparable to, those of MBES. Additionally, SSS-based 
reconstructions, whether using shape from shading techniques 
or data-driven approaches such as neural networks, typically 
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operate with one or a limited number of passes and do not 
necessarily require views from all sides.  

In conclusion, the complementarity in spatial resolution 
and the comparable survey characteristics motivate further 
investigation into the fusion of SSS and MBES data to 
leverage the strengths of both systems for enhanced 3D 
reconstruction of underwater infrastructure. Currently 
available reconstruction algorithms for SSS are mostly based 
on the shape from shading technique. It has been shown in 
literature that this method can benefit from sparse 3D data 
from other sensors, but an integration with dense MBES data 
as from a survey of special or exclusive order according to 
IHO Standard S-44 [47] which corresponds to resolutions of 
10 cm to 20 cm [48] has yet to be investigated. 
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