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Abstract— This work presents a review of the state of the art
in generating three-dimensional models of underwater scenes
with acoustic sensors. For each of the sensor types multibeam
echosounder, forward looking multibeam, sidescan sonar
(conventional and synthetic aperture), the physical properties of
the sensor are investigated, specifically with regards to acoustic
range, range resolution and angular resolution. Secondly, for
each sensor a review is provided on the past and current
strategies to generate or enhance three-dimensional information
from the sensor data. The limitations of these methods are
analyzed and future research fields are identified to maximize
the potential derived from the physical sensor properties.
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I. INTRODUCTION

The mapping of the ocean floors and the survey of
underwater infrastructure have always been important topics
in the maritime world. With the recent rise in geopolitical
tensions as well as the events in the Baltic Sea related to
subsea pipelines and cables in particular, the critical need to
ensure the safety and security of underwater infrastructure has
increased significantly. Current methods struggle to provide
reliable and efficient means to understand complex three-
dimensional underwater scenes. Due to the inaccessibility and
generally lower visibility underwater the data products
required for comprehensive situational awareness can be
difficult to acquire.

For detecting and identifying objects on a flat sea floor,
two-dimensional sonar images are an established solution. In
environments with vertical features like harbors or offshore
energy installations, three-dimensional models are essential to
capture all information needed for a comprehensive
understanding of the scene. These models have to be detailed
and accurate to permit identification of objects, risk analysis
or structural fault assessment and allow safe underwater
navigation.

This work aims at providing an overview about existing
acoustic sensor types and methods which can be used to obtain
high-resolution 3D models of underwater scenes. From the
sensor’s hardware constraints and the existing methods, a
potential for further research is derived and further
investigation into sensor data fusion between multibeam
echosounder (MBES) and sidescan sonar (SSS) is suggested.
To our knowledge this is the only dedicated review paper on
dense underwater 3D reconstruction from acoustic sensors.

The main contributions from this work are

e A brief description of the working principle of
four acoustic underwater sensors MBES, forward
looking sonar (FLS), SSS and synthetic aperture
sonar (SAS) including typical resolutions of
commercially available systems (Section IT)
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e A comprehensive review on methods for dense
3D reconstruction from FLS, SSS and SAS data
(Section IIT)

e  Adiscussion on potential research fields based on
the hardware constraints and the results of the
existing reconstruction methods (Section IV)

Optical technologies like photogrammetry and lidar are
not considered in this paper. They can, under the right
circumstances, produce very detailed models [1] featuring
color information. However, even though efforts are being
made to increase performance in poor water conditions [2],
these techniques cannot be relied upon in most regions where
critical infrastructure is located. These regions tend to be busy,
shallow and close to rivers which are all indicators of low
visibility. For applications with good visibility, [2] gives a
good overview on 3D reconstruction methods based on optical
images. In addition, the authors mention a few selected
acoustical methods, including less frequently used sensor
types such as single beam sonars or mechanical scanning
sonars, which are not discussed in this work, and expand on
optical-acoustic fusion techniques.

II. HARDWARE OVERVIEW

A variety of acoustic sensors are employed for underwater
mapping and object reconstruction, each offering distinct
capabilities and limitations with respect to spatial resolution,
coverage, and dimensionality. The following section provides
an overview of the most commonly used systems—MBES,
FLS, SSS, and SAS—highlighting their key characteristics
and implications for three-dimensional reconstruction tasks.
In Fig. 1, the working principles of these four sensors are
illustrated. While MBES typically acquires data by looking
downward at the scene, FLS, SSS, and SAS observe the scene
from the side. All sensors can, depending on the setup, provide
high range resolutions below 1cm, which in Fig. 1
corresponds to the direction along the sonar beams, depicted
as light-blue cones extending outward from the red sensor
elements.

Multibeam echosounders (MBES) are established sensors
for mapping the sea floor and in contrast to the other acoustic
sensors discussed here directly delivers three-dimensional
data. While their range resolution is below 1 cm for high-
frequency systems, the horizontal resolution is limited
because it linearly decreases with the distance from the sensor
to the ensonified region. Minimum values for beamwidth are
0.5 —2° which result in footprints of 9 — 35 cm at nadir and
14 — 50 cm at a 45° incidence angle for a distance of 10 m to
the insonified region. The MBES technology is generally set
up so that it can deliver point clouds as a data product. 3D
surface reconstruction from these point clouds is based on
traditional algorithms like Poisson surface reconstruction, 2D
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Fig. 1 Working principle of different sonar devices (red) imaging an object (dark) on the sea floor (light grey). High range resolutions in direction
of the fan-shaped beams (light blue) are common to all systems. For MBES, FLS and SSS resolutions perpendicular to range depend on the
beamwidth, for SAS this limitation is overcome by use of overlapping beams. MBES data can be interpreted as a set of 3D points (blue). FLS,

SSS and SAS images are 2D projections of the scene.

Delaunay triangulation or the ball pivot algorithm [3-6].
Newer techniques have not been explored. Reasons for this
may be the lack of high-resolution datasets which comes from
the high cost associated with bringing the relatively bulky
sensor very close to an object of interest. The smallest devices
on the market measure 15 — 20 cm in all dimensions due to the
perpendicular transmitter and receiver arrays.

Forward looking multibeam sonars (FLS) tend to be
smaller (e.g. 12 cm X 12 ¢cm %X 6 cm) and can produce images
with resolutions of down to 2 mm in range and 0.4° in
horizontal beam width, which corresponds to 7 cm at a range
of 10 m, by utilizing frequencies up to 3 MHz and bandwidths
up to 375 kHz. The high attenuation of such short frequencies
leads to limited ranges, making these sonars more suited for
navigation and detailed inspection than mapping. Vertically,
these systems typically use beam widths of around 20°.

With their high horizontal resolution and area coverage
rate (30 m to 100 m to each side for high-frequency systems),
sidescan sonars are an established tool for locating and
identifying objects on the sea floor, but intrinsically provide
only two-dimensional information. Range resolution is only a
function of bandwidth (or pulse length), not distance, and can
be as low as 0.6 cm. Along-track resolution decreases linearly
with range. High-frequency systems reach resolutions of
35cm at a range of 10 m. With additional hardware,
bathymetric  information can be collected using
interferometry, but this technology is physically limited to
slowly changing terrain and cannot be used for larger vertical
structures [7].

Synthetic aperture sonar (SAS) systems are relatively
costly and large in size (array lengths > 0.5 m) but allow for
highly efficient area coverage (e.g. 200 m to 300 m to each
side) at horizontal resolutions between 2 cm X2 cm and
5 cm X 5 cm independent from range. As with sidescan sonar,
interferometry can be used to acquire bathymetric data, but
similar restrictions apply. Even though recent efforts show
potential for improving performance [8, 9], vertical
uncertainties remain at least one order of magnitude higher
than for multibeam echosounder systems. Additionally, the
horizontal resolution for 2D imaging is not retained for the
interferometric data.

III. 3D RECONSTRUCTION METHODS

Since FLS, SSS and SAS do not intrinsically provide 3D
information as the MBES does, there have been several
different approaches for each sensor to reconstruct this
information from the 2D images or raw data. They can roughly

be clustered into voxel-based methods, methods based on the
shape from shading technique and methods using neural
networks, with Gaussian splatting and circular SAS standing
out from the rest. For each of these an overview of the
methods, the applications and the results is given, also
highlighting some of the limitations. This review is limited to
techniques for dense reconstruction where the shape of
reconstructed objects can be visually inferred from the model
without prior knowledge. Methods only providing sparse
information for underwater navigation are not included.

A. Voxel-based methods

Most methods for reconstruction of 3D data from FLS images
are based on some generalized form of space carving [10].
The area of interest is modeled as a 3D grid composed of so-
called voxels, the 3D equivalent of pixels. In traditional space
carving, the voxels are initially considered occupied. For each
image, it is calculated which voxels contributes to which
image pixel. Based on the image information for each pixel,
the probability of occupancy is adjusted for the corresponding
voxels. The more images from different viewpoints are
considered, the more is carved away from the model until
only the actual scene remains. These methods rely on images
from multiple views which makes the technique particularly
suited for FLS which captures a full 2D image for every ping,
in contrast to SSS and SAS, where one image is always
composed of many successive pings. Therefore, except for
[11] the methods described in this subsection are all
developed for FLS data. They are tailored towards
reconstruction of isolated objects with dimensions between
10 cm and 1 m which can be investigated with a FLS from all
sides and from different elevation angles. Typically, the
sensor is brought very close to the object, leading to images
with resolutions of few millimeters and models with
resolutions of few centimeters. The sea floor is, for most
investigations using this technique, not considered as part of
the scene and the corresponding voxels are considered
unoccupied.

The space carving technique is applied to a variety of objects
in [12] and [13]. On the FLS image, the leading edge of an
object is detected, and all voxels inside the beam leading up
to that edge are classified as empty. In this way, a volume
discretized with voxels presumed filled at the start is “carved
out” by multiple views from different directions. The authors
show that the reconstruction result is highly dependent on the
choice of viewing angles.
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In another approach, 2.5D elevation maps are formed by
segmentation and classification of the FLS image in object,
shadow and background regions [12]. Object and shadow
regions on a 2D grid based on a flat sea floor are assumed
occupied, background regions unoccupied. The elevation of
the occupied regions is determined by measuring the shadows
and again assuming a flat sea floor.

The method in [13] initializes the probability of a voxel being
occupied to 0.5 and updates it with every FLS image based
on probabilities from very basic pixel-wise classification in
object and noise based on intensity histograms. The
combination of two orthogonally mounted sonars is explored.
A 2D occupancy map is built from FLS data in [14], where
intensities above a certain threshold indicate occupied grid
elements, intensities below a second threshold (shadows) are
considered unknown and all others are marked as empty. The
method is supported by a singlebeam profiling sonar. All grid
elements up to a detected object are considered empty, the
element at the detection point is marked as occupied, and all
elements behind are labeled as unknown.

An approach similar to space carving is described in [15] and
[16] where each voxel is assigned the lowest observed
intensity of multiple views.

In [11] a voxel-based approach for SSS data is proposed,
optimizing grid occupancy through a graph representation of
occupied voxels. Simulative results reconstructing the
general shape of a slightly sloped sea floor are presented in
[17, pp. 269-280], comparing different voxel initializations
qualitatively. In addition to classical space carving, variations
with an initially unoccupied volume and an initialization
plane are explored.

B. Shape from shading

The idea to apply the shape from shading technique, which
was initially developed for the 3D reconstruction from
monocular optical images [18], on sonar images, was
introduced in 1991 [19, 20].
The basic principle is an optimization including the following
steps:

e model a 3D environment

e simulate sonar data from that model

e compare simulated data to real data

e adjust model
With shape from shading for SSS or SAS, swath widths of
several hundred meters can be reconstructed at once.
Theoretically, the technique allows to take full advantage of
the sensor resolution, although mostly it is still scaled down
to allow for faster computation times. Most approaches only
reconstruct a height map with exactly one elevation value
corresponding to each coordinate in the horizontal plane. This
does not allow vertical surfaces or even overhanging
structures to be reconstructed. Generally, the technique is
able to reconstruct the gradients of a 3D environment with
relatively high accuracy, but absolute height estimates are
less accurate since in the existing variations of the technique,
only very sparse control points from other data sources are
used, if any.
Very sparse multibeam echosounder data with point spacing
of several hundred meters is used in [20] to initialize the
modeling of a seamount with SSS data, progressively
increasing resolution to 50 m x 50 m.

The approach introduced in [19] is expanded upon in [21],
where both synthetic and real results from mapping a deep-
sea ridge are presented. The method includes both local and
global optimization steps that are iteratively applied.

An approach using step-wise resolution enhancement similar
to the concept in [20] is described in [22]. The method is
evaluated qualitatively on real data of relatively flat sea floor
with ripples, rocks and a pipeline as well as augmented
objects. Assuming a perfectly straight sensor trajectory, the
model accommodates the full resolution of the SSS data
which is 3 cm to 12 c¢m in this case. The radius of the pipeline
is estimated at (0.51 £ 0.19) m, compared to a ground truth of
0.38 m.

An approach similar to shape from shading techniques is
presented in [23]. It estimates elevations one ping at a time,
considering the shadow lengths cast by objects on the sea
floor. This method is extended in [24] to incorporate
information from one prior ping, and further applied to SAS
data in [25]. More detailed discussions and visual examples,
such as reconstructions of a tire and a shipwreck section, are
found in [26], though the results are not evaluated
quantitatively.

Reference [27] introduces a shape from shading approach
based on the Lambertian scattering model from [22], using a
multilayer perceptron (MLP) to encode 3D information. The
method enables fusion of data from multiple SSS tracks, but
resolution is constrained by the MLP size, requiring
downsampling to 64 data points per ping. As a result, only
larger rocks are reconstructed, and accuracy varies between
sparse altimeter control points.

Shape from shading is also performed on SSS images in [28],
where images are first decomposed into low- and high-
frequency components. This step improves the signal-to-
noise ratio in a dataset containing a shipwreck and different
sea floor types.

In contrast to all the previously discussed approaches, [29]
shows, that shape from shading for sonar data can be
deployed for modeling truly three-dimensional structures
including vertical surfaces. A local shape from shading
method is used to fill in the geometry of pillars whose edges
have been previously detected and localized. A voxel-based
approach is employed to fuse the data from multiple frames.
While simple structures with approximate dimensions of
0.7 m x 2.0 m are reconstructed using 10 cm voxel sizes, the
output is limited to small patches of the structure surfaces.

A similar method for FLS data is presented in [30], where the
shape from shading technique is applied locally to reconstruct
simple objects placed on a flat sea floor. As in [29],
segmentation and classification of the FLS image are used to
define object boundaries prior to reconstruction.

C. Neural Networks and Gaussian splatting

For both small-scale objects imaged with forward-looking
sonar (FLS) and large-scale areas surveyed with sidescan
sonar (SSS), data-driven methods employing neural networks
have demonstrated the potential to reconstruct three-
dimensional information from two-dimensional sonar
imagery. Although these approaches are, in principle, capable
of achieving arbitrarily high spatial resolutions, current
neural network architectures typically require substantial
downscaling of the input data, particularly for extensive
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survey regions. The reconstruction quality is highly
dependent on the characteristics of the training data.

An additional promising technique originating from the
optical domain is Gaussian splatting. While this method has
not yet been applied exclusively to acoustic underwater data,
preliminary studies in [31] indicate its adaptability for use
with FLS.

A convolutional neural network (CNN) is trained in [32] to
predict elevation angles for each pixel in a FLS image,
enabling 3D reconstruction from single or very few images.
For training, the simulator introduced in [22] is used.
Building on this concept, [33] proposes training a CNN to
generate front-view depth maps from FLS images. These
maps correspond to the view an RGB-D camera would
capture if placed at the same location as the FLS sensor.
Training data are generated by modeling scenes in Blender,
and a CycleGAN is used to transform the rendered images to
resemble real sonar data. Both approaches are evaluated on
simple geometric shapes ranging from 8 cm to 30 cm in size,
placed either on the sea floor or suspended in the water
column. Quantitative evaluations are provided. The models
exploit the high resolution of a 3 MHz FLS with an
artificially limited viewing range of 1.5 m, achieving
resolutions of 3 mm in range and 1 cm to 3 cm in the other
two spatial dimensions.

In [34], two CNNs for image-to-image translation are trained
using MBES and SSS data to predict height profiles from SSS
imagery alone. The method reconstructs rocks of various
sizes but is constrained by the resolution of the MBES
training data and by the downscaling of input images to
(265 x 265) pixels. Reconstruction accuracy is further
improved in [35] by incorporating sparse bathymetric data. In
[36], it is demonstrated that overlapping SSS tracks can be
fused into a single 3D model, yielding better results than
reconstruction from a single pass alone. The network is
extended in [37] by integrating an MLP, similar to the one
used in [27], to predict environmental gradients. This model
combines sidescan images, sparse bathymetry, and the output
of the CNN from [34]. Treating the SSS data as images of
(64 x 512) pixels allows for a twofold increase in resolution.
For a swath width of 100m, this corresponds to
approximately 20 cm per pixel in the across-track direction
which is still significantly coarser than the resolution of the
original SSS data. Furthermore, the method remains
inherently limited by the resolution of the MBES data used
for training.

In [28], a monocular depth estimation network is trained on
optical data and applied to SSS data. The results exhibit
substantial faults which fail to be corrected by combining the
results with those of a shape from shading approach.

Reference [31] shows that Gaussian splatting, a 3D
reconstruction technique from the optical domain [38] that
has gained very strong traction recently, can be adapted for
use with FLS images. After fusion with optical data, an object
with dimensions between few centimeters and few
decimeters is reconstructed as a point cloud with high
resolution but with a lot of noise. The use of sonar data only
is not investigated. Gaussian splatting stores information
about the scene as a collection of 3D gaussians with different
properties. Images can then be rendered very efficiently by
simple transformations called splatting.

D. Circular SAS

Circular SAS is a technique where a target is captured from
all sides by moving the sensor in a circle around the target
[39-43]. With a three-dimensional trajectory like a spiral or
multiple circles with different heights, this technique can be
used for 3D modelling with very fine detail. In contrast to
the algorithms discussed above, the 3D model is not
reconstructed from 2D images but from raw sonar data.

In [44] it is shown, that the vertical beamforming from
interferometric SAS processing can, after multiple alignment
steps, be used to reconstruct 3D objects from multiple circular
scans in different heights or with different radii. Results are
shown where munitions, an oil barrel and an aluminum
cylinder with dimensions between 15cm and 90 cm are
reconstructed with such high detail in some cases that a rope
and some material boundaries of dimensions around 1 cm are
discernable.

In [45] a neural rendering framework similar to neural
radiance fields (NeRF) from the optical domain [46] is
introduced and compared to classical SAS processing using
coherent backpropagation. Both approaches are used to
reconstruct complex figurines with total dimensions of about
20 cm and features with sizes below 1 cm with a circular SAS
in air in a laboratory environment. Additionally, a cinder
block and a cylinder with estimated dimensions between
25 c¢cm and 100 cm and features with sizes of few centimeters
are reconstructed using a bistatic Sediment Volume Search
Sonar with frequencies around 30 kHz.

IV. SUGGESTED RESEARCH FIELDS

As outlined in Section II, MBES exhibit physical and
functional characteristics that complement those of the other
commonly used acoustic sensors. MBES provide high-
resolution measurements in the vertical direction and deliver
reliable three-dimensional point clouds. In contrast, the sensor
types FLS, SSS and SAS acquire high-resolution data laterally
and produce two-dimensional images that lack intrinsic depth
information. While gradients in the third dimension can be
inferred from these 2D imaging sensors, reconstructed depths
exhibit high uncertainties. Given these complementary
strengths and weaknesses, there is strong motivation to pursue
further research into acoustic sensor data fusion methods.
Combining the precise and explicitly three-dimensional depth
measurements of MBES with the high-resolution lateral
imaging capabilities of FLS, SSS, or SAS may lead to more
robust and detailed 3D reconstructions of underwater
environments.

FLS, when combined with volumetric reconstruction
techniques such as space carving, and SAS in circular SAS
configurations, are particularly suited for the reconstruction of
isolated objects that can be imaged from multiple directions.
Typical targets are of sizes between 10 cm and 1 m and can be
reconstructed well enough to discern features as small as 1 cm.
In scenarios involving such small, isolated targets that are
accessible from all sides, it becomes unclear in which cases
MBES can be deployed sufficiently close to contribute
meaningful additional data but not so close that it could
perform the reconstruction alone. Conversely, SSS is highly
effective for surveying larger or more complex structures,
offering area coverage rates that exceed, but remain
comparable to, those of MBES. Additionally, SSS-based
reconstructions, whether using shape from shading techniques
or data-driven approaches such as neural networks, typically
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operate with one or a limited number of passes and do not
necessarily require views from all sides.

In conclusion, the complementarity in spatial resolution
and the comparable survey characteristics motivate further
investigation into the fusion of SSS and MBES data to
leverage the strengths of both systems for enhanced 3D
reconstruction of underwater infrastructure. Currently
available reconstruction algorithms for SSS are mostly based
on the shape from shading technique. It has been shown in
literature that this method can benefit from sparse 3D data
from other sensors, but an integration with dense MBES data
as from a survey of special or exclusive order according to
IHO Standard S-44 [47] which corresponds to resolutions of
10 cm to 20 cm [48] has yet to be investigated.
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