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Abstract

In the era of photometry with space-based telescopes, such as CHaracterizing ExOPlanets Satellite, James Webb
Space Telescope, PLAnetary Transits and Oscillations of stars, and Atmospheric Remote-sensing Infrared
Exoplanet Large-survey, the road has opened for detecting subtle distortions in exoplanet transit light curves-
resulting from their non-spherical shape. We investigate the prospects of retrieval of rotational flatness
(oblateness) of exoplanets at various noise levels. We present a novel method for calculating the transit light
curves based on the Gauss–Legendre quadrature. We compare it in the non-rotating limit to the available
analytical models. We conduct injection-and-retrieval tests to assess the precision and accuracy of the retrievable
oblateness values. We find that the light curve calculation technique is about 25% faster than a well-known
analytical counterpart, while still being precise enough. We show that a 3σ oblateness detection is possible for a
planet orbiting bright enough stars, by exploiting a precise estimate on the stellar density obtained e.g., from
asteroseismology. We also show that for noise levels �256 ppm (expressed as point-to-point scatter with a 60 s
exposure time) detection of planetary oblateness is not reliable.

Unified Astronomy Thesaurus concepts: Oblateness (1143); Exoplanets (498); Astronomy data analysis (1858);
Transit photometry (1709)

1. Introduction

Of the nearly 6000 confirmed exoplanets known to date,
more than 4000 have been discovered by observing and
analyzing their transits. This process has been primarily
facilitated by the unrivaled precision of space-based tele-
scopes, such as Kepler (Borucki et al. 2010), Transiting
Exoplanet Survey Satellite (Ricker et al. 2015), and Convec-
tion, Rotation and planetary Transits (Auvergne et al. 2009;
Deleuil et al. 2018). In the future, the PLAnetary Transits and
Oscillations of stars (PLATO; Rauer et al. 2014, 2025) mission
is expected to continue detection of new exoplanets
(Matuszewski et al. 2023). Following the successful launch
of CHaracterizing ExOPlanets Satellite (Benz et al. 2021), and
James Webb Space Telescope (Gardner et al. 2006; McElwain
et al. 2023), characterizing individual planetary systems also
became feasible at an unprecedented level of precision—a

trend expected to be continued with Atmospheric Remote-
sensing Infrared Exoplanet Large-survey (ARIEL; Tinetti
et al. 2018, 2022) in the upcoming decade.
The ultra-precise space-based observations allow for the

observation of the non-spherical nature of certain exoplanets.
These distortions in the idealized spherical shape of objects
may arise as a result of either tidal interactions with the star
(for close-in planets) or due to the rapid rotation of the planet
(also for hot and cool planets). Detecting the tidal distortions
of the planetary shape can be done indirectly by observing the
tidal decay of the orbit either in radial velocities or transit
timing variations (e.g., Csizmadia et al. 2019; Bernabò et al.
2025), or directly by modeling the deformed transit shape
(Akinsanmi et al. 2019; Hellard et al. 2019, 2020; Cassese
et al. 2024) and the phase curve (Akinsanmi et al.
2024a, 2024b).8 The detection of rotational flattening (oblate-
ness) is made possible by calculating the transit of a spheroid
(i.e., the overlap between the circular stellar and elliptical

Publications of the Astronomical Society of the Pacific, 137:084403 (18pp), 2025 August https://doi.org/10.1088/1538-3873/adf259
© 2025. The Author(s). Published by IOP Publishing Ltd on behalf of the Astronomical Society of the Pacific (ASP).

aaaaaaa

Original content from this work may be used under the terms
of the Creative Commons Attribution 4.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

8 Note that the mass ratio of the primary and the secondary objects in a
binary system from the ellipsoidal effect counterpart of the phase curve was
shown to be determinable by Russell (1912), Wilson & Devinney (1971).
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planetary disk). For spherical planets, the analytical model of
Mandel & Agol (2002) is commonly used, due to its speed and
precision. The case of ellipsoidal planets is more computa-
tionally demanding. Szabó et al. (2022) used a brute-force
approach, where the stellar disk is calculated on an
8000 × 8000 pixel disk, and the flux loss during the transit
is given by shifting the planetary disk as a mask across the
transit chord. Bhowmick & Khaire (2024) present a general-
purpose Monte Carlo tool, useful for calculating the transits of
arbitrarily shaped objects. Rein & Ofir (2019) developed a
model that approximates the boundaries with polygons and
calculated the transits accordingly. Cassese et al. (2024), Liu
et al. (2025), Dholakia et al. (2025), and Price et al. (2025) all
constructed models that transform the two-dimensional surface
integrals (where the disk of the planet and the star overlap) to
line integrals using Green’s theorem, which can be solved
efficiently. In this paper, we present a novel method for
calculating the transit light curves, based on the Gauss–
Legendre quadrature (see e.g., Trefethen 2008).

This paper is structured as follows. We provide the
parameterization of the elliptical planetary shape as well as
the basis of the integration used for the transit calculations in
Section 2. In Section 3, we assess the limitations and benefits
of our model by comparing it in the non-oblate limit to the
analytical approach of Mandel & Agol (2002). We conduct a
large-scale injection-and-recovery test on 800 transit light
curves with different oblateness parameters and noise proper-
ties, and present the results in Section 4. Signal-to-noise
criteria for detecting the oblateness are shown in Section 4.3.
We draw our conclusions in Section 5.

2. Transits of an Ellipsoidal Planet

2.1. Ellipsoidal Planetary Shape

Let us assume that due to the rotation of the planet, its shape
can be described perfectly with a biaxial ellipsoid (also known
as a spheroid). In Cartesian coordinates, this can be described as

( )+ + =
A B C

x y z
1, 1

2

2

2

2

2

2

where =A B C and z is the spin axis. During transit, the
light originating from the stellar surface is obscured by the
sky-projected shape of the transiting body along the transit
chord. We define the polar (RPol) and equatorial (REq) radii of
the planet based on its projected shape—an ellipse, where
RPol � REq. We define the oblateness of the planet via

( )=f
R R

R
. 2

Eq Pol

Eq

It can be shown that REq = A and RPol � C. Consequently, the
observable oblateness f is only a lower limit of the true
oblateness, =F A C

A
(see Barnes 2009, for the relationship

between F and f ). The two are equal only when the inclination

of the planetary spin axis with respect to the line of sight is
90°. Given that F cannot be determined from photometry, we
refer to f as the oblateness of the planet. We define the relative
equatorial and polar radii as rPol = RPol/R� and rEq = REq/R�,
respectively. Note that =f

r r

r
Eq Pol

Eq
.

Neglecting tidal forces, the surface of the planet is
conformed to the gravitational potential V as
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where G is the gravitational constant, MP is the planetary mass
and ω is the angular velocity of the planet, which is assumed to
be a rigid body. Rearranging Equation (3), we get

( )= +
r

r

r

GM
1

1

2
. 4

Eq

Pol

2
Eq
3

P

The break-up of a solid body occurs when the equatorial
centrifugal force is greater than the gravitational force (at the
equator). At the break-up velocity, the planet is rotating with
the ωrot,crit, therefore, at the limit, we find (in agreement with
e.g., Berardo & de Wit 2022)
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Substituting the critical angular velocity, = GM
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Equation (4), we find
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Consequently, the largest possible oblateness is =fcrit
1

3
. In

this approach, we neglect the quadrupole moment of the planet
(in contrast with e.g., Berardo & de Wit 2022), thus arriving at
a different critical value of f. We also note that Berardo & de
Wit (2022) apparently provide a lower limit of 0.5 on f
(Equation (5) of Berardo & de Wit 2022).

2.2. Transit Calculation

The Gauss–Legendre quadrature points are defined via the
zero points of the Legendre polynomials. In a one dimensional
case, the finite integral of a function ( )F x on the closed
interval [a, b] can be calculated as

( ) ( )+
+

=

F Fx dx
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w
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where xi is the ith root of the Legendre polynomial Pn(x). The
weight factors (wi) are defined as
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As an example, for n = 6, the (xi, wi) pairs are listed in Table 1.
Note that ∑iwi = 2, independently of the number of integration
points. The integration is carried out utilizing the INT_2D
function built into IDL, which can perform the computations
using { }n 6, 10, 20, 48, 96 .

In the case of the ellipsoidal planet, the shape of the transiting
object is enclosed via an ellipse. The integration is carried out in
two dimensions, on an n × n basis. The integral of ( )F x y, over
the closed intervals [a, b] and [c, d] can be written as

( ) ( )( )

( )

×
+

+
+

+
= =

F
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b a d c

w w
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We define the coordinate system so that the x-axis coincides
with the major axis ellipse that defines the contour of the sky-
projected spheroid, while the y-axis coincides with the minor axis
(in the orientation of the north pole of the planet). The origin of
the coordinate system is the center of the boundary ellipse.

The coordinates of the integration points along the major
axis of the ellipse can be represented as an n × n matrix:

( )=

…
…

…

=x I xr

x x x
x x x

x x x

r , 10ij

n

n

n

iEq

1 2

1 2

1 2

Eq

where I is the unit matrix and xi is a vector containing all n
roots of the Legendre polynomial Pn(x)9 To derive the yij
coordinates of the integration points, we first need to find
limits corresponding to every xi in the direction of the minor
axis (ylimit,i). Following the equation of the ellipse

( )+ =
x

r

y

r
1, 11i i

2

Eq
2
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2
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2

which leads to

( ) ( )=y r f x1 1 . 12i ilimit, Eq
2

The coordinates are then given as

( )=y y y . 13ij i jlimit,

We note that in Equation (9), the integration limits can be
given as a = −b = rEq, and c = −d = ylimit,i for every xi
coordinate.
The planetary spin axis is not necessarily perpendicular to

the orbital plane. In such a case, two angles are introduced: the
inclination of the spin axis, measured in the line of sight, and
the obliquity (ϑ), measured in the sky plane. The sky-projected
coordinates (Xij and Yij) of the ellipse at time t can therefore be
calculated via a rotational matrix as

( ) ( ) ( ) ( )= +X t x ycos sin 14ij x ij ij

( ) ( ) ( ) ( )= + +Y t x ysin cos , 15ij y ij ij

where δx(t) and δy(t) represent the position of the planetary
center with respect to the center of the apparent stellar disk,
normalized with the stellar radius R�. We show examples of
the Xij, Yij points in Figure 1 for a particular configuration.
In the general case, the planetary orbit is eccentric. Let a/R�, i,

and e denote the scaled semimajor axis, the inclination (with
respect to the line of sight), and the eccentricity of the planetary
orbit, and let v(t) and ω denote its true anomaly and argument
at the pericenter. Following (Csizmadia 2020), the distance
between the sky-projected centers of the planet and the star, δ(t),
is given by

( )

( )

( ( ))
( ( )) ( ( ( ) ))

= +

=
+

+

16

t

a

R

e

e v t
i v t

1

1 cos
1 sin sin .

x y
2 2

2
2 2

We calculate Xij, Yij for all integration points. The distance
of each Xij, Yij point from the stellar center (assuming a
spherical star) in normalized coordinates can be expressed as

( )µ = X Y1 . 17ij ij
2 2

When µ R (i.e., + >X Y 1ij ij
2 2 ), the integration point is

outside the stellar disk (Figure 1). The stellar surface brightness
(Iij) at the Xij, Yij sky-projected coordinates is set to 0 when μ is
not finite. The darkening of the stellar limb is expressed in terms
of the viewing angle γ, measured between the line of sight and
the normal of the stellar surface, as µ=cos . When μ is finite
(i.e., there is overlap between a point Xij, Yij within the boundary
ellipse and the stellar contour), the planet is blocking light from
the stellar surface. The amount of light blocked for any given
point is determined by the darkening of the star’s limb. In the
Transit and Light Curve Modeller (TLCM; Csizmadia 2020),
there are seven different limb darkening laws, which can be
used in these calculations. There is also an option to calculate
without limb darkening. At the point Xij, Yij, the stellar surface
brightness depends on the chosen limb darkening law—the
possibilities are listed in Table 2.

Table 1
Gauss–Legendre Quadrature Points for n = 6 Points

i xi wi

1 −0.932469514203152 0.171324492379170
2 −0.661209386466265 0.360761573048139
3 −0.238619186083197 0.467913934572691
4 +0.238619186083197 0.467913934572691
5 +0.661209386466265 0.360761573048139
6 +0.932469514203152 0.171324492379170

9 For clarity, xkl and xm refer to the individual elements of the matrix or the
vector.
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Figure 1. Gauss–Legendre quadrature points used for the transit light curve calculations of an oblate planet (red ellipsoidal contours) in front of a star (yellow disk).
When µ R, the integration point overlaps with the star, thus it is included in the transit computations (red points). On the other hand, when µ R, the (blue) point
does not block light from the stellar disk. More quadrature points yield more precise light curves as contours of the overlapping areas are sampled better.

Table 2
Stellar Surface Brightness Expressed as a Function of Various Limb Darkening Laws Implemented in TLCM and the Corresponding Transit of an Oblate Planet

Name of Law Iij References Ftransit

No limb darkening 1.0 … 1 − ΔF
Linear 1 − ulin(1 − μ) (1) 1 F

1
ulin

3

Quadratic 1 − ua(1 − μ) − ub(1 − μ)2 (2) 1 F

1
u ua
3

b
6

Power-2 1 − C(1 − μ α) (3)

+

1 F

1
C

2

Logarithmic ( )µ µ µu u1 1 lnlog,1 log,2
(4) 1 F

1
u ulog,1

3

2 log,2

9

Claret-type four parameter law ( )/µ= c1 1j j
j

1
4 2 (5) 1 F

1
c c c c1
5

2
3

3 3
7

4
2

Sing’s law ( )/µ= s1 1j j
j

2
4 2 (6) 1 F

1
s s s2
3

3 3
7

4
2

Square-root ( ) ( )µ µr r1 1 11 2
(7) 1 F

1
r r1
3

2
5

Note. The limb darkening coefficients are denoted by ulin, ua, ub, C, α, /ulog,1 2, cj, sj, and r1/2.
References. (1) Milne (1921), (2) Wade & Rucinski (1985), (3) Hestroffer (1997), (4) Klinglesmith & Sobieski (1970), (5) A. Claret (2004), (6) Sing (2010), (7)
Diaz-Cordoves & Gimenez (1992).
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The viewing angle (or more precisely μ) is calculated only
when ( · ( ))< + r1.1 12

Eq
2. The numerical factor 1.1 is

arbitrarily selected—any number �1 would be acceptable. It’s
purpose is to provide a conservative estimate for the phases
when a transit does occur.

The flux loss during the transit of an oblate planet can be
calculated as

( )=F
r

w w y I
2

4
. 18

j i
j i i ij

Eq
limit,

Out-of-transit, the stellar flux is given by

( ) ( )µ µ=F L d d , 19D,out of transit

where f is the azimuthal angle, and LD is the surface
brightness at the point (μ, f) including the effect of limb
darkening. The normalized transit light curve is given by

( )=F
F

F
. 20transit

,out of transit

To speed up the calculations, F�,out-of-transit is computed once
for the selected limb-darkening law. The expressions for the
normalized transit light curve are given in Table 2. We only
utilized the quadratic limb darkening law in this work.

Additionally, the transits are characterized by the same
parameters used for the modeling of spherical planets
(Csizmadia 2020): semimajor axis ratio a/R�, the orbital
period P, the time of midtransit T0, and the conjunction
parameter, described as

( ) ( )
( ( ))

( )=
+

b
a

R

e i

e

1 cos

1 sin
, 21

2

which simplifies to the well-known definition of the impact
parameter for circular orbits.

2.3. An Improved Model

Following the helpful suggestions of the referee after the
initial submission, we also tested a revised and improved model
for calculating the transit light curves. According to
Equation (7), the integration points (xi) should cover the entire
interval over which the integration is carried out. Consequently,
the approach presented Section 2.2 does not strictly follow the
basic premises of this integration technique. In our revised
approach, we first calculate the contour of the obscuring part of
the planet (which consists of two arcs for the ingress/egress).
We then distribute the integration points within these newly
estimated boundaries dynamically, so the positions change
according to δ(t). To do this, we divide the the contour of the
planetary disk into evenly spaced units (in polar coordinates),
then the xi integration points can be calculated by interpolating
between the nearest contour points. The ylimit,i points can be
computed by utilizing at the xi points from the contours as well.
The model is demonstrated in Figure 2. We found that

considerable improvements can be achieved by this dynamic
distribution of the quadrature points, however, this comes at the
cost of a runtime increase by two orders of magnitude (on the
same computers). Given that the light curve modelings that are
described below last for ≈1 day, this is not feasible yet. A
possible solution might be the utilization of GPU-based
calculations, however, that is beyond the scope of this work.

3. Performance of the Model

3.1. Limit of Circular Planet

In order to assess the intrinsic limitations of the approach
described in Section 2.2, a good baseline is needed. In the
circular limit, when f = 0 (and thus rEq = rPol = RP), the light
curve should match the output of the well-established analytical
methods introduced by Mandel & Agol (2002). Let us denote
the light curve generated via the numerical calculations
described above as ( )tjnum , and the analytical light curve as

( )tjMA , both sampled at the same tj (discreet) time stamps. In
order to quantify the discrepancies of the numerical model, we
introduce the quantity Δ as the “area under the curve” of the
residuals ( ) ( ) ( )=t t tj j jMA num :

( ) ( ( ) ( )) ( )=
+

=
+

+t t
t t

2
. 22

k

N

k k
k k

1

1

1
1

The definition of Δ is convenient even when dealing with
unevenly sampled data. We note that supersampling the
residuals may be needed (depending on the cadence
(tj+1 − tj) of the light curve), and thus the total number of
points N on which Δ is calculated may exceed the total number
of generated light curve points. This can be achieved via a linear
interpolation. The quantity Δ (measured in, e.g., ppm × h) may
be a useful tool to quantify the discrepancies between any two
light curve models more generally than the case presented here.
We generated light curves with both models using the

parameters listed in Table 3. To assess how each of these
parameters affects the precision of the numerical model, we
conducted three experiments (cases I–III in Table 3). In these, we
created a grid of RP/R� values (case I), a grid of b values (case II)
and a grid of a/R� (and consequently corresponding P values,
case III). In each case, we varied only one of the three basic
transit parameters and measured Δ at each grid point. As the
transits are symmetrical, the time of midtransit (the fourth basic
transit parameter) does not affect the discrepancy between the
two models. The limb darkening coefficients can take on
arbitrary values depending on the star and the observing
bandpass, we therefore elected to keep these the same throughout
the tests. As a consequence of the gravitational interaction
between the two bodies (the star and its companion), the
semimajor axis and the orbital period are not independent
parameters. Assuming the same MP in every case, we can find
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the corresponding P to every a/R� using Kepler’s third law:

( )
( )=

P

73.29

87 day
23

a

R

3

2

3

2 2

and with parameters taken from Table 3.
We calculated the transits on a grid of 17 RP values, 19

different impact parameters, and 20 semimajor axes. We used
n = 96 GL quadrature points for every simulation. The
resultant Δ values are listed in Table 4, and are shown in
Figures 3–5. The dominant factor in the discrepancy between
the analytical and numerical transit calculations is the size of

the planet. This is because the same n number of GL
quadrature points is used to cover a larger surface of the
(limb-darkened) stellar disk, yielding lower precision during
the partial transits (between the first and second contact points,
as well as the third and fourth contact points, Figure 6). We
find a cubic relationship between Δ and RP/R�:

( )( ) ( )= ± 24
R

R
log

1 ppm h
2.914 52 2.955 52 log ,P

as established via a least squares fit (3). The observed Δ values
in case I range over more than two orders of magnitudes, from
9.66 × 10−2 ppm h (at RP = 0.04R�) to 12.7 ppm h (at

Figure 2. Dynamic distribution of the Gauss–Legendre quadrature points used for the transit light curve calculations of an oblate planet, from the improved model.
The overlapping (transiting) area is highlighted in purple.

Table 3
Transit Parameters Used for Simulating Transits of Spherical Planets

Case a/R� P ua ub b RP
(days)

I 73.29 87.0 0.2924 0.2924 0.25 { }…0.04, 0.05, ,0.20
II 73.29 87.0 0.2924 0.2924 { }…0, 0.05, ,0.90 0.08
III { }…5, 10, ,100 { }…1.55, ,138.66 0.2924 0.2924 0.25 0.08
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RP = 0.20R�). As a direct point of comparison, the residuals
shown in Figure 6 show a peak-to-peak amplitude of ≈3.3
ppm, which in this case corresponds to Δ = 0.65 ppm h. The
latter quantity, however, is a better representation of the error

as it also contains information about how many timestamps
have non-zero residuals.
The other explored parameters have a comparably lower

effect on Δ, as in both cases II and III it only spans over one
order of magnitude (Table 4). The Δ –b and Δ–a/R�

relationships (Figures 4 and 5) are not as easy to describe as
with the planet size, however. There appears to be a minimum
in Δ at b ≈ 0.2 (b = 0 can not be shown on a logarithmic
scale), with Δ = 0.58 ppm h. We find

( ) ( )( ) ( )
( ) ( )

=
+

25
b b

b b
log

1.13 29 1.19 29 log if 0.2

1.681 54 0.87 15 log if 0.2.1 ppm h

For the larger b values, the uncertainty term increases linearly
with the increase in b.
In the case of a/R�, we find two distinct patterns (Figure 5)

described by

-1.4 -1.3 -1.2 -1.1 -1.0 -0.9 -0.8 -0.7

-1.0

-0.5

0.0

0.5

1.0

log RP/R*

lo
g
Δ

[ 
p

p
m

 h
]

log
Δ

1 ppmh
= 4.914(52)+ 2.955(52) log

RP

R ∗ 

Figure 3. Discrepancy between the analytical and numerical models for a
given set of transit parameters, with changing RP/R�.
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given set of transit parameters, with changing a/R� (and corresponding P).

Table 4
Values of the Varied Parameters and the Corresponding Δ Values in the Three

Tested Cases of the Spherical Planet

Case I Case II Case III

RP/R�

log
(ppm h) b

log
(ppm h) a/R� P (days)

log
(ppm h)

0.04 −1.02 0.00 0.54 5 1.55 −0.33
0.05 −0.68 0.05 0.48 10 4.38 0.13
0.06 −0.57 0.10 −0.10 15 8.06 0.39
0.07 −0.31 0.15 −0.16 20 12.40 0.47
0.08 −0.19 0.20 −0.23 25 17.33 −0.73
0.09 −0.04 0.25 −0.19 30 22.78 −0.82
0.10 0.14 0.30 −0.10 35 28.71 −0.74
0.11 0.23 0.35 −0.11 40 35.08 −0.67
0.12 0.34 0.40 −0.14 45 41.86 −0.62
0.13 0.45 0.45 0.24 50 49.02 −0.59
0.14 0.52 0.50 −0.03 55 56.56 −0.56
0.15 0.61 0.55 −0.08 60 64.44 −0.55
0.16 0.70 0.60 −0.01 65 72.66 −0.54
0.17 0.85 0.65 0.12 70 81.21 −0.53
0.18 0.87 0.70 0.35 75 90.06 −0.53
0.19 1.01 0.75 0.24 80 99.22 −0.52
0.20 1.10 0.80 0.19 85 108.66 −0.52
⋯ ⋯ 0.85 0.26 90 118.39 −0.52
⋯ ⋯ 0.90 0.40 95 128.39 −0.52
⋯ ⋯ ⋯ ⋯ 100 138.66 −0.51

( ) ( )( ) ( )
( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )
( )

/

/
=

+

+ +

a R

a R
log

1.27 12 1.37 11 log if 20,

0.582 1 0.321 5 log 0.314 5 log 0.021 5 log if 20.
26

a

R

a

R

a

R

a

R

1 ppmh 2 3
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The impact parameter has an effect on the transit depth
(because of the stellar limb darkening) and the transit duration.
However, we do not observe a difference between the transit
depths of fMA and fnum (Figure 6). The parameters varied in
cases II and III have an influence on the transit duration, and
therefore, for a given exposure time (60 s throughout these
tests), there are fewer light curve points during the ingress/
egress of the transit at lower a/R� and higher b. The variability
in the ρ residuals may increase during these phases as a
consequence. On the other hand, at b ≈ 0, the limb-darkened
stellar surface will be sampled at positions where the surface
brightness LD changes rapidly with μ (and consequently the
sky-projected position of the planet)—causing increased
scatter in the residuals. For long-period planets (a/R� ≳ 50),
there is a monotonous decrease in the rate of increase of Δ
with higher periods. This may be caused by the decreasing
change in sky-projected planetary position at each time step,
which in turn results in a more precise sampling of LD during
the critical phases of the transit. A finer a/R� (P) and b grid
may reveal deeper connections between the scatter of the
residuals and the basic transit parameters, however, that is
beyond the scope of this paper.

We note that the intrinsic limitation of the GL integration
appears to be on the order of several ppm in amplitude. This
could be reduced further by increasing the number of
quadrature points; however, even the precision should be
adequate for the detection of oblate planets, as is discussed
below.

3.2. Efficiency

We test the efficiency of the model by comparing fnum light
curves generated with the full range of possible GL integration
points to fMA. The residuals for n ∈ {6, 10, 20, 48, 96}, taken
from case I (Table 3) with RP/R� = 0.08 are shown in
Figure 6. At n = 6 and n = 10, the numerical approach yields
transits that are ≈12 and ≈3 ppm deeper than the baseline
analytical model. Above n = 20, the transit depths are in
excellent agreement between fnum and fMA. The discrepancies
arise during the partial transits (i.e., between the first and
second, and third and fourth contacts). The increased number
of integration points decreases the peak-to-peak amplitude of
the “scatter” in the light curves from ≈203 ppm to ≈4 ppm
(when comparing n = 6 with n = 96). The corresponding Δ
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Figure 6. Difference between the analytical model (fMA) and the numerical model presented here (fMA) for a transit generated with parameters taken from case I
(Table 3) with RP/R� = 0.08, and n ∈ {6, 10, 20, 48, 96} GL quadrature points. The dashed red lines mark the first and fourth contact points, the dashed blue lines
mark the second and third contact points. The peak-to-peak amplitudes of the residuals are shown with gray (for n = 6), orange (n = 10), purple (n = 20), blue
(n = 48), and red (n = 96).
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values also decrease by ≳2 orders of magnitude (Table 5) from
≈151 ppm h to ≈0.65 ppm h. We find that the discrepancy
between the numerical and analytical models can be described
as

( ) ( ) ( )= nlog
1 ppm h

3.672 76 1.974 53 log , 27

which is within 1σ of a quadratic improvement with the
increase in GL quadrature points (Figure 7).

We also measure the runtime τ of a light curve generation.
We model one transit, with a 60 s exposure time, and
parameters taken from case I (Table 3, with RP/R� = 0.08).
We compute the light curves on an 12th Gen Intel Core
i9-12950HX processor. The resultant runtimes are shown in
Table 5. The total runtime increases with

( ) ( ) ( )= + nlog
1 ppm h

0.243 33 0.088 23 log , 28

which is a much weaker relationship than linear. For that
reason, we use n = 96 quadrature points in the simulations
below. We note that n = 48 and in some cases even n = 20
points could yield adequate results. We also note that τ for the
analytical model is 1.142 s on the same processor, which is
≈28% more than even the n = 96 case.

3.3. Comparison with Squishyplanet

In order to assess the performance of our model with respect
to other, analytical frameworks for simulating the transit light
curves of oblate planets, we simulated a transit using
squishyplanet (Cassese et al. 2024) and TLCM. We used the
following parameters: a/R� = 73.29, P = 87 days, ua = ub = 0,
b = 0.24, rEq = 0.069289, f = 0.06693, and ϑ = 30°. The
difference between the two light curves is shown on Figure 8.
The amplitude of the difference between the two light curves is
≈13 ppm. Using the area of the sky-projected ellipse, we can
calculate the effective radius of a spherical planet which would
yield the same transit depth as ·=R R f1eff P . By also
calculating a transit light curve with Reff with the Mandel–Agol
model, we estimate the amplitude of the oblateness signal to be
≈45 ppm in this case—so in theory a detection of >3σ is

feasible with our model. By using Equation (22), we find that
the error term, compared to squishyplanet is Δ ≈ 4.6 ppm × h,
while for the oblateness signal Δ = 21 ppm × h, also implying
the possibility of a >3σ detection.
Barnes & Fortney (2003) found that when modeling the

light transit light curve of an oblate planet with a model for a
spherical planet, a better fit is achieved by modifying the
orbital parameters (primarily the impact parameter) as well as
the planetary radius. This implies that the oblateness signal
seen on Figure 9 is optimistic—in a real-world scenario
without the a priori knowledge of the transit parameters it
would likely be lower leading to lower estimates on δ).

4. Results

We performed injection-and-retrieval tests on a large
number of light curves with different noise levels and

Table 5
Computational Time (τ) and the Discrepancy between the Analytical and

Numerical Models for the Tested GL Integration Points

n τ log
(s) (ppm h)

6 0.696 2.18
10 0.699 1.69
20 0.704 1.05
48 0.779 0.32
96 0.894 −0.19
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Figure 7. Discrepancy between the analytical and numerical models for a
given set of transit parameters, with changing n number of Gauss–Legendre
quadrature points (top panel). The light curve calculation time is shown on the
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-0.50 -0.25 0.00 0.25 0.50
-6

-4

-2

0

2

4

6

Time since midtransit [days]

φ
T

L
C

M
 -

 φ
sq

u
is

h
yp

la
n
e
t 
[p

p
m

] ϑ = 30
 ◦ 

f = 0.06693

Figure 8. Difference between a transit light curve of an oblate planet
simulated with TLCM and squishyplanet.

9

Publications of the Astronomical Society of the Pacific, 137:084403 (18pp), 2025 August Kálmán et al.



oblateness-related parameters to assess the feasibility of
detecting the non-spherical shape of transiting exoplanets.
We analysed one transit per light curve.

4.1. Parameter Grid

We performed a large-scale test to assess the feasibility of
detecting the oblateness of exoplanets with the the model
described in Section 2.2. We generated transits of oblate planets
using the following transit parameters: a/R� = 73.26, P = 87
days, b = 0.25, and rEq = 0.08. We set the limb darkening at
A = B = 1.3, roughly corresponding to a Solar-like star using
FGS2 (Fine Guidence Sensor) of ARIEL We generated light
curves on a grid of f ∈ {0.03, 0.06, …, 0.30} and
ϑ ∈ {0°, 9°, …, 90°}. This process yielded 100 different
configurations. The transits were generated using n = 96 GL
quadrature points. Let foblate denote the transit light curve of an
oblate planet. Using the area of the sky-projected ellipse, we can
calculate the effective radius of a spherical planet which would
yield the same transit depth as ·=R R f1eff P . Let fMA

denote the transit light curve of a spherical planet with the
radius Reff. According to Equation (22), we can then measure
the effect of oblateness on the transits from on the foblate − fMA

residuals, as Δ will correspond to the distortion caused by the
ellipsoidal shape of the planet (also incorporating the systematic

noise of the model, as discussed in Section 3). The residuals for
two configurations are shown in Figure 9. The measured Δ
values on the f—ϑ grid are shown in Figure 10 and in Table 6.
We tested eight different white noise levels that are

characterized by their σw point-to-point scatter. We used a
grid of σw ∈ {1, 2, 4, …, 256} ppm, for the 60 s exposure time
used in the light curve simulations. As a final layer of the grid,
we also solved these light curves in the presence of red noise
and without it. The time-correlated noise model was chosen as
the Autoregressive Integrated Moving Average clone of a
Hubble Space Telescope observation. The noise model is
described in Section 3.2 of Kálmán et al. (2024). We scaled the
amplitude of the time-correlated noise as presented in Kálmán
et al. (2024) by a factor of 1/10. Each light curve is exactly
one-day long, and is centered on the conjunction of the planet.
We injected a randomly selected segment of the noise model
into the transit light curve. Every one-day long noise model is
chosen independently from the others.
We therefore performed 800 light curve analyzes. Example

light curves for every σw are shown on Figure 11.

4.2. Light Curve Fitting

We analyzed the light curves using n = 96 GL integration
points for every transit, utilizing TLCM. We made use of a
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Figure 9. Difference between the transit light curve of an oblate planet and a spherical planet, for a particular choice of f and ϑ. The shaded regions highlight the
ingress and egress phases of the transit.
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Differential Evolution Markov-Chain Monte Carlo (MCMC;
Ford 2006) process of 10 chains with 10,000 steps each to
explore the parameter space of the transit parameters. If
convergence is not reached within the pre-defined number of
steps, the chain lengths are automatically increased, up to ten
times the original lengths. We identified a degeneracy between
b, f, and ϑ, confirming the findings of Dholakia et al. (2025).
On the one hand, this degeneracy can increase the uncertainty
range of the oblateness-related parameters (also possibly
hiding a detection of the true planetary oblateness). On the
other hand, it can also cause the MCMC algorithm to get stuck
in a local minimum (of the negative log-likelihood), thus
returning with an inaccurate set of parameters.

There is no independent way of measuring the orbital
inclination (and consequently the impact parameter). However,
since both b and a/R� are related to the transit duration (Seager
& Mallén-Ornelas 2003), we found that by placing constraints
on the semimajor axis, the degeneracies can be broken. By
rearranging Kepler’s third law, the semimajor axis can be
expressed as (e.g., Csizmadia 2020):

( ) ( )=
+a

R

P G q1

3
, 29

3 2

where q = MP/M� is the planet-to-star mass ration, and ρ� is
the stellar density. Assuming a well-characterized orbital
period and neglecting the uncertainty in the mass of the planet,
we can write that the relative uncertainty is:

( )
( )=

1

3
. 30

a

R

a

R

Silva Aguirre et al. (2017) found that by utilizing asteroseis-
mology based on Kepler photometry (Borucki et al. 2010), the
mean density of dwarf stars can be determined with a precision
between 0.5% and 2.6%. It is expected that similar levels of
precision can be achieved with PLATO (Rauer et al.
2014, 2025) as well. Consequently, we may assume
Δρ�/ρ� = 0.01, which translates to ( ) ( )/ / / =a R a R
0.0033 according to Equation (30). As a result, we applied a
Gaussian prior on the scaled semimajor axis with a mean of
73.26 and a standard deviation of 0.24. We also placed strict
priors in the limb-darkening coefficients A and B, with standard
deviations of 0.01 in both cases. We note that this trick is valid
strictly for circular orbits. In a more general case, the orbital
eccentricity also has an effect on the transit duration (see e.g.,
Dawson & Johnson 2012), thus it likely further complicates the
parameters recovery. We suggest that the orbital eccentricity
(and the argument of the periastron) also need to be known
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Figure 10. Distortion signal in the transit light curve cause by the oblateness at
every f–ϑ grid point as compared to a circular planet. The distortion Δ is
expressed as the area under the curve of the residuals of an oblate planet and a
circular one with the same effective radius.

Table 6
Distortion Signal (log , Expressed in ppm h) Caused by the Oblateness of the Planet on the f—ϑ Grid

f

ϑ (deg) 0.03 0.06 0.09 0.12 0.15 0.18 0.21 0.24 0.27 0.30

0 1.25 1.53 1.69 1.79 1.87 1.92 1.96 2.00 2.02 2.04
9 1.18 1.46 1.61 1.71 1.79 1.84 1.88 1.91 1.93 1.95
18 1.05 1.32 1.48 1.57 1.64 1.69 1.74 1.77 1.80 1.83
27 1.02 1.31 1.47 1.58 1.66 1.73 1.78 1.82 1.85 1.88
36 1.03 1.32 1.48 1.59 1.68 1.74 1.79 1.83 1.86 1.88
45 1.03 1.30 1.46 1.57 1.64 1.71 1.75 1.79 1.82 1.84
54 1.07 1.36 1.54 1.65 1.75 1.82 1.88 1.93 1.98 2.02
63 1.20 1.49 1.66 1.78 1.87 1.94 1.99 2.04 2.08 2.12
72 1.27 1.56 1.73 1.84 1.93 2.00 2.05 2.10 2.14 2.17
81 1.29 1.58 1.75 1.86 1.95 2.02 2.07 2.12 2.16 2.19
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a priori, from independent observations (e.g., radial velocity
measurements), to facilitate the parameter recovery shown here.

The time-correlated noise is modeled using the wavelet-
based algorithm of (Carter & Winn 2009). It is described by
two parameters: σr for the red noise and σw for the white noise.
In TLCM, there is a penalty function which ensures that the
average photometric uncertainty must be equal to σw, to avoid
overfitting (Csizmadia et al. 2023). In addition, we also fitted
for a constant offset, p0. The list of parameters used in the
analysis, as well as their priors, are listed in Table 7.

4.3. Parameter Recovery

We present the precision and accuracy of f and θ on the
8× 10× 10 grid on Figures 12–15. We define a detection of
oblateness (i.e., a transit light curve that cannot be explained
well with a spherical planet) when the fitted oblateness
parameter has a 3σ significance ( f/Δf� 3). Examining
Figures 12–15, we see that this criterion is more easily fulfilled
for higher injected oblateness values. This is because the
differences between the transit curve of a spherical planet and
an oblate planet also increase with higher f values, making the
effect more easily detectable. In the cases with white noise
levels lower than 256 ppm, a 3σ oblateness detection is not
achieved in 141 cases (out of 700). At σw = 256 ppm, a 3σ
detection happened only in 54 cases, suggesting that at this
underlying white noise level, characterizing the oblateness of a
transiting exoplanet is not feasible. The detection is also made

easier when the rotation of the planet is either aligned with, or
perpendicular to its orbital plane. This is because the overall
signal introduced by the oblateness, as characterized by the
residual curve of an oblate planet and a spherical one (following
Equation (22)), is larger at ϑ ≈ 0° or ϑ ≈ 90° (Figure 10).
The degeneracy between b and ϑ, as highlighted in Figure 1,

is taken into account by taking if and only if b < 0. This
way, we preserve the possible inaccurate retrievals of ϑ for a
thorough assessment of the parameter retrieval.
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Figure 11. Example light curves with red noise (bigger panels, blue dots) for ϑ = 63° and f = 0.21 at all 8 σw noise levels. The best-fit transit models are shown with
solid red lines. The residuals are shown on the smaller panels for every noise level. Orange dots show the residuals after the removal of the fitted red noise—ideally
these are characterized by the respective σw standard deviations.

Table 7
Parameters Used in the Analysis of the Light Curves of Oblate Planets

Parameter Prior

P [days], fixed 87
rEq ( )U 0.0, 1.0
b ( )U 1.2, 1.2
a/R� (U 1.0, 199.0) ( )N 73.26, 0.04
tC [days] ( )U 0.01, 0.01
p0 [100 ppm] ( )U 100, 100
f ( )U 0.0, 0.4
ϑ [deg] ( )U 90.0, 90.0
σw [100 ppm] ( )U 0.0, 20000.0
σr [100 ppm] ( )U 0.0, 10000.0
uA ( )U 3.7, 6.3 ( )N 1.30, 0.01
uB ( )U 3.7, 6.3 ( )N 1.30, 0.01

Note. We applied uniform (U ) priors in every case, and in some cases,
Gaussian priors (N ) were also in use.
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The absolute differences between the injected ( finj) and retrieved
oblateness ( f ) values are sorted into groups: f f 0.02inj ,

< f f0.02 0.04inj , < f f0.04 0.06inj , >f finj

0.06. These groups are shown with color-code on Figure 12.
The arising pattern is complex. For noise levels below 256 ppm,

when a 3σ detection is achieved, the retrieved oblateness is
within 0.02 of the truth in 346 instances (out of 559 cases, or
≈62%), within 0.04 at 153 grid positions (≈27%), within 0.06
of the input 41 times (≈7%), and >f f 0.06inj (the
approximate oblateness of Jupiter) is only the case for 19

0
.0

3

0
.0

6

0
.0

9

0
.1

2

0
.1

5

0
.1

8

0
.2

1

0
.2

4

0
.2

7

0
.3

0

f = (REq-RPol)/REq

ϑ
 [

d
e

g
re

e
s
]

0

9

18

27

36

45

54

63

72

81

σw = 2 ppm
0

.0
3

0
.0

6

0
.0

9

0
.1

2

0
.1

5

0
.1

8

0
.2

1

0
.2

4

0
.2

7

0
.3

0

f = (REq-RPol)/REq

ϑ
 [

d
e

g
re

e
s
]

0

9

18

27

36

45

54

63

72

81

σw = 4 ppm

0
.0

3

0
.0

6

0
.0

9

0
.1

2

0
.1

5

0
.1

8

0
.2

1

0
.2

4

0
.2

7

0
.3

0

f = (REq-RPol)/REq

σw = 8 ppm

0
.0

3

0
.0

6

0
.0

9

0
.1

2

0
.1

5

0
.1

8

0
.2

1

0
.2

4

0
.2

7

0
.3

0

f = (REq-RPol)/REq

σw = 16 ppm

0
.0

3

0
.0

6

0
.0

9

0
.1

2

0
.1

5

0
.1

8

0
.2

1

0
.2

4

0
.2

7

0
.3

0

f = (REq-RPol)/REq

σw = 32 ppm

0
.0

3

0
.0

6

0
.0

9

0
.1

2

0
.1

5

0
.1

8

0
.2

1

0
.2

4

0
.2

7

0
.3

0

f = (REq-RPol)/REq

σw = 64 ppm

0
.0

3

0
.0

6

0
.0

9

0
.1

2

0
.1

5

0
.1

8

0
.2

1

0
.2

4

0
.2

7

0
.3

0

f = (REq-RPol)/REq

σw = 128 ppm

0
.0

3

0
.0

6

0
.0

9

0
.1

2

0
.1

5

0
.1

8

0
.2

1

0
.2

4

0
.2

7

0
.3

0

f = (REq-RPol)/REq

σw = 256 ppm

|f-finj| ≤ 0.02
0.02 < |f-finj| ≤ 0.04
0.04 < |f-finj| ≤ 0.06
|f-finj| > 0.06

f/Δf < 3

Figure 12. Accuracy of the retrieved oblateness parameter in the light curve which included red noise, for all eight σw noise levels. Squares in the input f–ϑ grid are
colored based on the accuracy of the fitted f: purple if the retrieved parameter is within 0.02 of the injected value, blue if it is within 0.04, orange when it is within
0.06, and red otherwise. Shading is present when no significant detection of oblateness is made (i.e., when there is no 3σ detection of f ).
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Figure 13. Precision of the retrieved oblateness parameter in the light curve which included red noise, for all eight σw noise levels. Squares in the input f–ϑ grid are
colored based on the precision of the fitted f: purple if the retrieved parameter is within 1σ of the injected value, blue if it is within 2σ, orange when it is within 3σ,
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(3%) of the light curves. In the σw = 256 ppm case, the
recovered f is only in a 0.02 agreement with finj in 21 instances
(0.39%) of the 3σ detection cases, with the discrepancy being
>0.06 in 9 light curves out of 54 (16%).

The relative differences between the fitted and input
oblateness are shown on Figure 13, color-coded according to
their z scores. When considering the 3σ oblateness detections
at all noise levels, we see a 1σ agreement between finj and f in
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Figure 14. Accuracy of the retrieved obliquity parameter in the light curve which included red noise, for all eight σw noise levels. Squares in the input f–ϑ grid are
colored based on the accuracy of the fitted ϑ: purple if the retrieved parameter is within 5° of the truth, blue if it is within 10°, orange when it is within 15°, and red
otherwise. Shading is present when no significant detection of oblateness is made (i.e., when there is no 3σ detection of f ).

0
.0

3

0
.0

6

0
.0

9

0
.1

2

0
.1

5

0
.1

8

0
.2

1

0
.2

4

0
.2

7

0
.3

0

f = (REq-RPol)/REq

ϑ
 [

d
e

g
re

e
s
]

0

9

18

27

36

45

54

63

72

81

σw = 2 ppm

0
.0

3

0
.0

6

0
.0

9

0
.1

2

0
.1

5

0
.1

8

0
.2

1

0
.2

4

0
.2

7

0
.3

0

f = (REq-RPol)/REq

ϑ
 [

d
e

g
re

e
s
]

0

9

18

27

36

45

54

63

72

81

σw = 4 ppm

0
.0

3

0
.0

6

0
.0

9

0
.1

2

0
.1

5

0
.1

8

0
.2

1

0
.2

4

0
.2

7

0
.3

0

f = (REq-RPol)/REq

σw = 8 ppm

0
.0

3

0
.0

6

0
.0

9

0
.1

2

0
.1

5

0
.1

8

0
.2

1

0
.2

4

0
.2

7

0
.3

0

f = (REq-RPol)/REq

σw = 16 ppm

0
.0

3

0
.0

6

0
.0

9

0
.1

2

0
.1

5

0
.1

8

0
.2

1

0
.2

4

0
.2

7

0
.3

0

f = (REq-RPol)/REq

σw = 32 ppm

0
.0

3

0
.0

6

0
.0

9

0
.1

2

0
.1

5

0
.1

8

0
.2

1

0
.2

4

0
.2

7

0
.3

0

f = (REq-RPol)/REq

σw = 64 ppm

0
.0

3

0
.0

6

0
.0

9

0
.1

2

0
.1

5

0
.1

8

0
.2

1

0
.2

4

0
.2

7

0
.3

0
f = (REq-RPol)/REq

σw = 128 ppm

0
.0

3

0
.0

6

0
.0

9

0
.1

2

0
.1

5

0
.1

8

0
.2

1

0
.2

4

0
.2

7

0
.3

0

f = (REq-RPol)/REq

σw = 256 ppm

(ϑ-ϑinj)/Δϑ < 1
1 < (ϑ-ϑinj)/Δϑ < 2
2 < (ϑ-ϑinj)/Δϑ < 3
(ϑ-ϑinj)/Δϑ > 3

f/Δf < 3

Figure 15. Precision of the retrieved obliquity parameter in the light curve which included red noise, for all eight σw noise levels. Squares in the input f–ϑ grid are
colored based on the precision of the fitted θ: purple if the retrieved parameter is within 1σ of the injected value, blue if it is within 2σ, orange when it is within 3σ,
and red otherwise. Shading is present when no significant detection of oblateness is made (i.e., when there is no 3σ detection of f ).
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426 light curves (≈70%), a 2σ agreement in 152 cases
(≈25%), z = 3 in 27 instances (≈4%), and a more than 3σ
discrepancy in only 8 cases (≈1%). The low number of �2σ
disagreements between the input and recovered values (even
when a 3σ detection is not achieved) suggests a robust
uncertainty estimation of f.

The absolute differences between the injected (ϑinj) and
retrieved (ϑ) obliquities are again divided into four categories:

°5inj , ° < °5 10inj , ° < °10 15inj ,
> °15inj . The color-coded accuracy of ϑ over the

entire grid of parameters in shown on Figure 14. For noise
levels below 256 ppm, 413 transits (out of the 559 with 3σ
oblateness detections) allow for the recovery of ϑ with �5°
accuracy, corresponding to ≈74%. We note that the divisions
used to asses the accuracy of both the oblateness and obliquity
parameters is arbitrary.

The precision of the retrieved ϑ parameters with respect
to the injected ϑinj parameters is divided into four groups
based on the retrieved z-scores (Figure 15). At every
noise level, out of the 613 cases where a 3σ detection of
oblateness was achieved, in 407 analyzes (≈66%), the
retrieved ϑ is in agreement with ϑinj within the estimated
uncertainties. In 160 light curves (≈26%), we find a 2σ
agreement, 3σ agreement is found in 35 cases (≈6%), and a
discrepancy >3σ happens at 11 grid positions (≈2%).
Similarly to the case of the oblateness, the low number of

>2σ discrepancies suggest a robust uncertainty estimation for
the oblateness.
We also show that the 3σ detection of oblateness depends on

the input oblateness itself. A significant detection of oblateness
with finj = 0.03 is only achieved in 8 cases (10%), however,
these fitted f values are in a >2σ discrepancy with finj. For
Jupiter-like oblateness, we have a detection rate of 27.5% (22
cases), and in 11 of these, the retrieve oblateness agrees with
finj within the estimated uncertainties, while the retrieved
obliquities have a �1σ agreement in 15 out of these 22 light
curves. Saturn-like input oblateness values (≈0.09) can be
detected at 47 grid points (≈59%). The fitted f and ϑ values
agree within 1σ of their injected counterparts in 31 and 30
cases out of these 47, respectively. At f = 0.12, a 3σ oblateness
detection is achieved at 68 grid points (85%) when including
all noise levels. Excluding σw = 256 ppm, the detection rate
increases to 90%.
We show the distribution of the fitted a/R�, b, and rEq

values in Figure 16, compiled for all 800 light curves. The
absolute deviations (Figure 16, top row) are calculated by
subtracting the input values (73.26, 0.25, and 0.08, for the
three parameters, respectively) from the retrieved values. The
relative deviations (Figure 16) are then calculated as the ratio
of the absolute deviations and the estimated uncertainties for
every parameter, in every light curve. The median of the
distribution of the semimajor axes is 0.012, with a
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corresponding standard deviation of 0.049. In total, 762
retrieved a/R� values are within 0.01 of the injected semimajor
axis. For the impact parameter, we find the median of the
absolute deviations to be −0.0009, and a standard deviation of
0.0035, after accounting for the ϑ–b degeneracy (Figure 1).
We also find that 796 retrieved values are between 0.24 and
0.26. For the equatorial radius, the median of the distribution is
0.0001, accompanied by a standard deviation of 0.0015. In 791
cases, the fitted rEq is within 0.005 of the input value of 0.08.
In the ideal case, we expect the standard deviation of the
distribution of the relative discrepancies to be 1 (see Kálmán
et al. 2023, for more details). In the distributions seen in
Figure 16, the standard deviations of the relative distributions
are 0.21, 0.29, and 1.07 for a/R�, b, and rEq, respectively. This
implies that in the first two cases, the uncertainties are
overestimated, likely as a consequence of the degeneracy
between the two parameters and the oblateness. We show an
example of the correlation between a/R� and b in Figure 17.
We find Pearson’s r = 0.988 in that particular case, suggesting
very high degeneracy between the two parameters. This is a
well-known degeneracy in transit modeling (see e.g., Csizma-
dia et al. 2011). For rEq, the uncertainties are estimated
correctly. We utilize the Shapiro–Wilk test for normality
(Shapiro & Wilk 1965) to compare all six distributions to
Gaussian ones. If the resultant p-values are small, we can
reject the null-hypothesis that the underlying parameters are
drawn from a normal distribution. We expect that from a large-
enough data set, these distributions will behave asymptotically
normally, if there are no autocorrelated effects in the residuals
and if there are no degeneracies between the parameters. The
wavelet-based noise filtering insures that the autocorrelated
effects are negligible. If there are degeneracies between the
parameters, we expect that the uncertainties are enlarged, so
these distributions will be narrower than Gaussian distribu-
tions. Therefore, high p-values imply that there are degen-
eracies between the parameters. The analysis of the p-values

(shown on Figure 16) suggests that only the distribution of the
relative rEq values are compatible with a Gaussian distribution.

5. Discussion and Conclusion

We present a novel numerical approach for modeling the
transit light curves of exoplanets whose shape is described by a
biaxial ellipsoid due to their rapid rotation, following the
recent surge of analytical methods (Cassese et al. 2024;
Dholakia et al. 2025; Liu et al. 2025). We utilize the Gauss–
Legendre quadrature, as described in Section 2.2 for calculat-
ing the overlapping area between a the sky-projected contour
(an ellipse) of the planet and a spherical star. This approach is
then made available as a new module of TLCM
(Csizmadia 2020).
In order to assess the efficiency and limitations of the model

described in Section 2.2, we compare it in the non-rotating
(i.e., spherical) case to the well-established analytical approach
of Mandel & Agol (2002). At larger n number of integration
points, the difference between the two methods is limited to
the ingress and egress phases of the transit (Figure 6), where
the residuals have a peak-to-peak amplitude on the order of
several ppm. We introduce the “area under the curve of the
residuals” quantity (Δ) to obtain a more robust quantification
of the difference between two light curves generated with
different methods. In the specific cases tested in Section 3,
measuring Δ provides a more in-depth understanding of the
inherent noise that is the side effect of the numerical
integration. We find that the error in accuracy is related to
the volume of the planet ( rEq

3 , Figure 3), but the other
basic transit parameters, the scaled semimajor axis, and the
impact parameter (Figures 5, 4), have more complex
corresponding error terms. From the grid-based tests (shown in
Table 3), we find that the minimal Δ of our numerical method
can be achieved at a/R� ≈ 30 and b ≈ 0.25 (for the given 60 s
exposure time) suggesting one possible sweet spot for planning
observations of planets with potentially detectable oblateness.
We also show that the (as expected) the accuracy of the

model increases with an increase in the n number of
integration points. This can be expressed both in the terms
of the peak-to-peak amplitude of the residuals (Figure 6) and
Δ (Figure 7). Based on the assessment of the area under the
curve of the residuals as it relates to the number of integration
points, we find that Δ ∝ n−2, as expected of a two-dimensional
integration. In addition, we demonstrate that the runtime of our
numerical model is ∝n0.1, and that it is ≈20% faster than the
baseline method of Mandel & Agol (2002) for n = 96.
We conduct a large-scale study to test the feasibility of

retrieving the two parameters used in describing the transit of
an oblate planet: the sky-projected oblateness ( f ) and the sky-
projected obliquity (ϑ). This is done by defining a grid of f and
ϑ values (yielding 100 different configurations, Section 4.1),
computing the transit light curves with n = 96, adding white
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Figure 17. Posterior distribution in the b–a/R� space from the f = 0.06,
ϑ = 9° case.
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noise where the standard deviation is taken from the
σw = {2, 4, 8, 16, 32, 64, 128, 256} ppm grid, and finally
injecting time-correlated noise. Example light curves are
shown in Figure 11, used to demonstrate the noise levels.
We then proceeded all 800 light curves with TLCM, by setting
n = 96 integration points. The precision and accuracy of the
retrieved oblateness and obliquity is shown on Figures 12–15.
We utilize the prior knowledge of limb darkening, and place
tight Gaussian priors on the two parameters describing in.
Additionally, we also rely on the precise knowledge of the
mean stellar density (Silva Aguirre et al. 2017) which may be
obtainable via asteroseismology with PLATO (Rauer et al.
2014, 2025), to constrain the scaled semimajor axis
(Equation (30)). Even with these prior assumptions, we find
that oblateness values below those of Jupiter ( f ≈ 0.06) is not
retrievable at 3σ with the method described here at any noise
level. We also find that the oblateness and obliquity are
detectable more easily for parallel or perpendicular projected
spin–orbit angles.

We show that Saturn-like oblateness values ( f ≈ 0.09) are
detectable in ≈59% of the tested cases, and when a detection is
made, the retrieved oblateness and obliquity is in a 1σ
agreement with the truth in ≈66% and ≈64% of the modeled
light curves. We find that at higher oblateness ( f� 0.15) and
lower noise (σw < 64 ppm) values, a significant detection of
oblateness is guaranteed under the assumptions presented
above. In these cases, the parameter retrieval is both precise
and accurate. At σw = 128 ppm, and especially at σw = 256
ppm, even for the higher oblateness values, the fitted f and ϑ
values are less accurate, but are still precise, highlighting the
robust uncertainty estimation in TLCM.

We find that the wavelet-based noise handling algorithm of
Carter & Winn (2009), as implemented in TLCM (Csizmadia
2020; Csizmadia et al. 2023), is capable of accounting for the
inherent noise of the analysis seen during the ingress and
egress phases of a transit (Figure 6), thus negating one of the
most prominent drawbacks of the light curve calculations
described in Section 2.2.

The time-correlated noise was selected in an independent,
random way for every light curve. Consequently, more
problematic structures in it (such as the σw = 8 ppm case from
Figure 11) may degrade the precision and accuracy of the
retrieved parameters. This is an unavoidable drawback of the
test conducted here. For a more robust extrapolation of the
parameter stability, a bootstrapping-like (or a Monte Carlo-
like) process could be applied for each individual grid point,
similarly to the work of Kálmán et al. (2023).

The accuracy and precision plots in Figures 12–15 can also
serve as a lookup table for analyzes of real observations. The
noise levels can readily be scaled to the current 60 s point-to-
point scatter for various instruments and number of transits
(see e.g., Hellard et al. 2019), however, one also has to ensure
that there are sufficient observations during the ingress and

egress of the planet (where the oblateness signal is the
strongest) to be able to carry out the light curve modeling. If a
3σ detection of oblateness is achieved, one can then tell by
looking at Figures 12–15 how reliable the retrieved parameters
and their uncertainties are, or how close they may be to the
underlying phenomena.
Further possible improvements can be achieved via the usage

of the Love numbers of exoplanets. The fluid Love number k2
can be measured via transit timing variations and radial velocity
technique (Csizmadia et al. 2019; Bernabò et al. 2024, 2025). The
Love number h2 has the biggest effect on the planetary shape and
in case of hydrostatic equilibrium h2 = 1 + k2. The parameter h2
specifies the shape deformation of the planet (Hellard et al. 2019)
leaving only the obliquity as a free parameter.
Finally, we note that for a real detection of oblateness, a

bright, quiet, Sun-like star is needed, for which the density can
be measured with sufficiently high precision.
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