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Lidar sensors are increasingly studied for space rendezvous applications, in particular for on-orbit servicing
or active debris removal missions. With their active measurement principle, they provide accurate 3D point
clouds which enable precise pose estimation. While simulated lidar data is relatively simple to generate
under ideal conditions, real lidar point clouds can present high levels of noise and reflections. There is
the need for representative lidar data to train and test pose estimation methods for non-cooperative space
rendezvous scenarios. This work introduces EPOS-Lid, an openly available lidar benchmark dataset for this task.
It comprises a synthetic dataset for training pose estimation methods, and real lidar point clouds collected at the
European Proximity Operations Simulator (EPOS). Further, it is demonstrated with evaluation of benchmark
methods how the datasets can be used for training and testing pose initialization and pose tracking methods.

1. Introduction

The capability to rendezvous with a non-cooperative satellite or a
potentially inactive space debris, is at the center of On-Orbit Servic-
ing (OOS) and Active Debris Removal (ADR) missions. In both cases,
precise relative navigation information is necessary to enable a safe
and precise approach towards the target object. The active satellite
performing the approach is referred to as the chaser. In the last phase of
the rendezvous, e.g. at relative distances below 30 m, the chaser needs
to be able to estimate not only its relative position to the target, but
also its relative attitude.

To estimate its relative position and attitude (pose) to the target au-
tonomously, the chaser is equipped with electro-optical sensors. A first
type of sensors are passive sensors, such as optical cameras, sometimes
in a stereo-configuration, or infrared cameras. While such sensors are
relatively cheap and have low power requirements, they have to handle
the strongly varying light conditions in orbit [1]. In particular, optical
cameras are dependent on the Sunlight illumination to capture images.
They are blind on the night side, and strong reflections can lower the
image quality on the day side [1].

A second type of sensors are active sensors such as Time-of-Flight
(ToF) cameras or lidar (light detection and ranging). While ToF cameras
based on modulated light principles are limited in range [2,3], systems
that use a direct range measurement approach, commonly referred to
as flash lidars, are capable of achieving kilometer-scale ranges and are
frequently employed in space applications [4,5]. Likewise, scanning
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lidars achieve similar ranges, and have been used for space rendezvous
missions such as the first commercial OOS with the Mission Extension
Vehicle (MEV) [6]. Flash or scanning lidars are relatively independent
of the external light conditions, and enable to capture precise 3D point
clouds, making them valuable sensors for relative navigation in close
range [7]. Not all point cloud data is necessarily obtained from a
lidar, but lidar point cloud data presents several advantages due to
the underlying laser scanning technology, in particular: high precision,
robustness to external conditions, and long range. For this reason, this
work focuses on lidar generated point cloud data.

Lidar pose estimation is usually split in two steps, pose initialization
and pose tracking [7,8]. Pose initialization consists in finding a relative
pose of the target when no a priori estimate is available, apart from
a possible coarse estimate of the relative position. Classical methods
for lidar pose initialization rely on polygon matching algorithms [9,
10], feature-based matching [8,11,12], or template matching [13,14].
Instead of hand-crafted descriptors, neural networks have been used
in hybrid algorithms, in combination with polygon matching [15] or
feature-matching methods [16,17]. Finally, direct pose estimation with
neural networks consists in training either a Convolutional Neural
Network (CNN) to estimate a pose from a depth image [18-20], or a
point-based network using directly the lidar point cloud [21].

After initialization, pose tracking aims at estimating the pose over
consecutive point clouds. For tracking, precise alignment of the source
point cloud with a 3D model of the target is achieved with methods
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such as Iterative Closest Point (ICP) [22]. Such methods enable precise
alignment, but require an initial estimate to converge. For the first
point cloud, the initial estimate is computed by a pose initialization
method, and for subsequent point clouds, the tracking solution of the
previous point cloud is used. For pose tracking, ICP or one of its variants
is widely used [2,3,9,13]. Alternatively, to reduce the computational
time, an approach based on a modified NDT algorithm has been pro-
posed [23]. All these methods assume that a 3D model of the target
satellite is available to be matched with the received point clouds. Such
a 3D model is either known before the mission, or is the result of
an inspection flight around the target satellite [24]. Other approaches
consist in performing model-less pose estimation, i.e., in progressively
constructing a point cloud model of the target satellite by aggregating
consecutive lidar scans [25,26].

A key factor for the development, evaluation and comparison of
pose estimation methods is the quality and availability of the data
on which the algorithms are evaluated. To this aim, for camera-based
pose estimation, several image datasets have been published [27-30].
With the advances in image rendering technology, professional render-
ing tools can be tailored for use in spacecraft rendezvous operations.
Proenca and Gao [27] publish URSO, a fully synthetic image dataset
of around 5000 images of the Dragon and Soyuz spacecraft. Likewise,
the SwissCube dataset [28] contains 50 K images of the ClearSpace One
satellite rendered with high-fidelity. Recently, the DLVS3 dataset [31]
has been published, containing an impressive number of 640 K ren-
dered images of the Hubble Space Telescope for pose estimation. Each
image also contains depth information, which can be used as ground
truth but does not model the specifics of depth sensors such as a lidar.

A major challenge when training deep learning methods for pose
estimation is achieving Simulation to Reality (Sim2Real) transfer, i.e.,
keeping the same pose estimation performance when evaluating a
model trained on synthetic data on real-world data [32]. To this aim,
hybrid datasets, containing both simulated images and real images,
have been published [29,30,33]. In particular, the SPEED dataset [30]
contains both 15 K simulated images of the Tango spacecraft, based on
the illumination conditions observed in orbit, and around 300 images
of the same satellite gathered at a robotic rendezvous facility. Likewise,
SPEED+ [33] is a great extension of the previous dataset, comprising
around 60 K synthetic images, and nearly 10 K images from the robotic
facility, where particular focus is laid on achieving realistic lightning
conditions. Similarly to his predecessor dataset, SPEED+ is of great
use for comparison and benchmarking of camera-based pose estimation
algorithms [32,34,35]. Likewise, the ENVISAT image datasets contain
both 16 K synthetic images, and 16 K real images gathered at a
hardware-in-the-loop facility [36].

The field of lidar based-pose estimation for spacecraft rendezvous
is also moving towards neural network based methods [17,19-21].
However, to the best of our knowledge, no public datasets for lidar
pose estimation are currently available. To address this need, this
work presents EPOS-Lid — a lidar benchmark dataset for relative space-
craft navigation consisting of both real point clouds collected at the
European Proximity Operations Simulator (EPOS) 2.0, and simulated
point clouds.! The synthetic lidar datasets can be used for training
neural network based pose estimation methods, while the real dataset
serves as a test benchmark. In addition, the datasets acquired during
the rendezvous trajectories at EPOS can be used to test and validate
full relative navigation pipelines, including tracking over consecutive
point clouds. Furthermore, an exemplary pose estimation method is
presented and tested on this dataset, demonstrating that EPOS-Lid can
be used to develop accurate and robust lidar navigation methods.

The remainder of this paper is structured as follows: Section 2
presents the EPOS facility and the lidar simulator used to generate

1 The datasets are openly available under https://www.dlr.de/en/rb/
research-operation/research-projects/flight-dynamics-navigation-and-orbital-
sustainability/on-orbit-servicing/epos-lid-dataset.
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Fig. 1. EPOS facility with two industrial robots. The left one carries a sensor
adapter plate and the right one a mockup of a target satellite.

the real and synthetic datasets, and provides an overview of the pose
estimation methods used in the evaluation. The content of the lidar
datasets is described in Section 3. In Section 4, we present the results
of the pose estimation method trained and evaluated on the presented
benchmark. Finally, Section 5 concludes the paper.

2. Methods
2.1. European Proximity Operations Simulator

2.1.1. Facility

The European Proximity Operations Simulator (EPOS) is a
hardware-in-the-loop testbed for simulation of rendezvous missions or
other close proximity scenarios [37,38]. The facility, located at German
Space Operations Center (GSOC), serves for validation and test of
optical sensors and of guidance, navigation and control systems.

EPOS consists of two industrial robots with each six degrees of
freedom: a KUKA KR100HA (robot 1) mounted on a linear rail-system
of 25 m length and a KUKA KR240-2 (robot 2) mounted on the ground
at one end of the rail. Fig. 1 presents a test scenario used for creation
of the lidar benchmark dataset EPOS-Lid: Robot 1 carries a sensor
adapter plate, where different optical sensors are mounted including
a Livox Mid-40 lidar (see Section 2.1.2). Robot 2 carries a mockup of
an exemplary target satellite with real surface materials such as golden
MLI and solar panels. The sunlight is simulated by a spotlight; two ARRI
floodlights with 5 kW and 12 kW are available at the facility. Robot 2
is surrounded by a black Molton curtain and carpet and the robot’s arm
is wrapped with a Molton fabric.

A PC-based monitoring and control system generates commands
such that the two EPOS robots simulate the desired relative motion
of the two spacecrafts. The relative trajectory depends on the specific
test case or application. Different datasets (see Section 3.1) can be
generated. The EPOS facility can be used for both open and closed
loop simulations. The performance of, for example, a pose estimation
method can be assessed by comparing the pose estimation results with
the robots’ logged trajectory (ground truth).

2.1.2. Lidar sensor

A Livox® Mid-40 sensor is used as close range rendezvous sensor for
the lidar benchmark dataset EPOS-Lid. This sensor is widely employed
in the automotive domain but is also well suited for a rendezvous test
laboratory like EPOS since real space qualified lidar sensors are very
expensive and have long manufacturing and delivery times.

Fig. 2(a) shows the lidar at the EPOS facility, mounted on the sensor
adapter plate of robot 1 which simulates the chaser. The Livox Mid-40
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(b)

Fig. 2. Livox® Mid-40 used as rendezvous lidar for EPOS-Lid; (a) lidar
mounted on one robot of the EPOS facility, (b) scanning pattern of the lidar.

Table 1
Specification parameters of the Livox® Mid-40 lidar [39].
Parameter Value
Dimensions 88 mm x 69 mm X 76 mm
Mass approx. 760 g
Power 10W
Laser wavelength 905 nm
Laser class Class 1 (IEC60825-1)
Detection range 260 m
Field-of-view 38.4 deg
Range precision (16 @ 20 m) 2 cm
Angular precision 0.1 deg

Beam divergence
Point rate

0.28 deg x 0.03 deg
100,000 points/s

has a non-repetitive scan pattern, visualized in Fig. 2(b). Table 1 shows
some technical parameters of the lidar.

It is assumed that the initial calibration from the lidar manufacturer
is already precise, so that the intrinsic calibration parameters of the
lidar are not modified. However, when installed at the robotic facility,
the extrinsic parameters must be calibrated, i.e., it is necessary to
perform the hand-eye calibration of the sensor. This is achieved by
collecting point clouds of the target at different distances and for
different orientations. Since the EPOS facility is calibrated, the relative
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pose of the robots to each other is known precisely, and it is only to
find the pose of the lidar with respect to the robot carrying it, robot 1.

The calibration is achieved by applying a local optimization proce-
dure relying on smoothed NDT registration [23], similar to ICP. Starting
from an initial guess of the hand-eye calibration parameters, these
parameters are refined by simultaneously minimizing the distance of
all captured calibration point clouds to the expected target point cloud.
The only difference with a local point cloud matching method for pose
estimation is which pose is being optimized: Instead of searching the
optimal target pose, the pose of the satellite mock-up with respect to
the robot equipped with the sensor plate is known from the ground
truth data of the facility. The pose being optimized is the pose of the
lidar sensor with respect to the sensor plate.

The Mid-40 sensor is from the automotive domain, not qualified for
space, and has a very specific scanning pattern. However, the underly-
ing laser scanning technology is identical to space-grade sensors. The
lidar will be configured to capture approximately 10 000 points on the
target satellite per scan, see Section 3.1. Such a point density is high
but comparable, for example, with the density of the flash lidar used for
the OSIRIS-REx mission [5], which has a detector array of 128 x 128
pixels. Likewise, a constant number of points per scan is a setting that
is representative of a space scenario, since for example Jena-Optronik
RVS 3000™ scanning lidar [15] can dynamically adapt its field-of-
view to fit the target. Most importantly, the laser rays interact with
the real materials on the target mock-up, as presented in the previous
Section 2.1.1. This enables to observe artifacts in the point cloud data
that are also expected to be observed in space, such as reflections on
the target’s MLI and solar panels. These will be described in Section 3.1.

2.2. High-fidelity lidar simulator

To generate training data in sufficient amount, a high-fidelity lidar
simulator developed in previous work [20,21] is used. The suggested
approach consists in training a neural network for pose estimation
on synthetic data only, and testing it on real lidar data collected at
EPOS. Since the synthetic point clouds differ from the real ones, a loss
in precision in pose estimation might be observed when evaluating a
neural network on real data compared to an evaluation on synthetic
data. This difference is known as the domain gap [33,40]. Trying to
bridge the domain gap and achieving a successful Simulation To Reality
(Sim2Real) transfer is one of the challenges in lidar pose estimation.

There are several reasons for training only on synthetic data, rather
than for example on a mix of synthetic and real data gathered at EPOS.
A lidar simulator allows to quickly generate a large amount of point
clouds in every possible pose configuration. While data collection is
possible at a hardware-in-the-loop facility, achieving the same quantity
and diversity of poses is more challenging in that setting. Also, in
an operational scenario, the geometry of the target satellite might be
unknown, and a 3D model only available after an inspection phase. In
such a case, a lidar simulator enables to generate a dataset and train
a new pose estimation method within very short time, what would not
be possible at a physical facility. Another factor is that the approach
of training only on synthetic data, and testing on real data, enables
to validate that the method is able to generalize to different data. If
the data on which the method is trained was acquired under the same
conditions as the test data, then no guarantee would be provided that
the pose estimation is able to adapt to different conditions, such as the
conditions that might be observed in space.

A detailed description of the lidar simulator is provided in [20]. Its
main characteristics are as follows: The lidar simulator is implemented
as a ray-tracer. The simulator reproduces the characteristics of the
Livox Mid-40 sensor. The rosette scan pattern of the Mid-40 (see Fig.
2(b)) is achieved by a deflection of the ray through two inclined prisms
rotating at different angular rates. This behavior is reproduced in the
simulator following the modeling by [41]. In addition, the reflectivity
of the materials is accounted for. In particular, the solar panels and
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Fig. 3. Overview of the pose initialization and tracking methods evaluated in this work.

Source: Adapted from [21,23].

golden Multi-Layer Insulation (MLI) sheets on the satellite mock-up in-
stalled at EPOS (Fig. 1) are highly reflective. Since the exact reflectivity
properties of these materials are unknown, they can be randomized in
the simulator. To simulate reflection effects and ghost points, double
reflections are also modeled, i.e., the reflection of a ray on a first
surface, which then hits a second surface before coming back. Higher
order reflections (triple or more) are not simulated, for efficiency.
Sensor noise is also modeled, such as range errors and beam divergence
errors [20]. The noise is added according to the sensor specifications
in Table 1. Finally, the simulator accounts for motion blur, i.e., the
relative displacement of the target during the duration of a scan, which
leads to a distorted point cloud. Motion blur is modeled assuming that
the relative motion during the scan time is linear, i.e., that the velocity
and angular rates are constant.

2.3. Benchmark lidar pose estimation method

2.3.1. Pose estimation

To demonstrate that the lidar datasets can be used for training and
evaluation of lidar-based pose estimation, we provide an overview of
the pose initialization and tracking method used as benchmark in this
work. A schematic representation of the logic of the pose initialization
and refinement pipeline is presented in Fig. 3.

As detailed in Section 1, lidar pose estimation is frequently split in
pose initialization, and pose tracking. For pose initialization, no prior
estimate is available. In this work, we perform pose initialization with
a point-based neural network. This method is introduced and described
in detail in [21]. The same overall pose estimation pipeline is used
in this work. For completeness, we recall the main steps of this pose
initialization method.

A point-based neural network directly processes 3D data of the
point cloud. The first step is to center and down-sample the point
cloud, since the network expects a fix input size of the lidar scan.
Centering is performed by computing the trimmed centroid of the point
cloud [20,21]. Compared to a regular centroid, a fraction p = 0.25 of
the highest and lowest outliers in the points cloud are removed, before
computing the centroid of remaining points. This logic enables to filter
out outliers which could negatively impact the position of the centroid.
The input size of the network is set to 1024 point. To down-sample the
point cloud up to only 1024 points, a kd-tree version of the Farthest
Point Sampling (FPS) method is implemented [42]. Compared to a
naive FPS implementation, this enables faster processing on a Central
Processing Unit (CPU). In case the original point cloud contains less
than 1024 points, points are randomly duplicated in the scan to reach
the desired input size. However, since the point clouds captured by the
Livox Mid-40 are dense, this is never the case for the EPOS test data.

After pre-processing, the point cloud is processed by a 3D neural
network, in this case a PointNet++ [43] backbone. Compared to the
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original backbone, the model is optimized for runtime by reducing the
number and size of point clusters used at each clustering step. The
network architecture is detailed in [21]. Afterwards, the feature vector
produced by the neural network is processed by two prediction heads,
one for attitude classification, and the other for position estimation.
The attitude classification accounts for the symmetries of the target,
i.e., it only estimates the attitude corresponding to one of the symmetric
equivalents of the target attitude (see next section, Fig. 4). Finally, since
the point cloud was initially centered, the position estimation delivered
by the neural network is added to the initially estimated position of the
centroid to retrieve the unscaled position estimation. The details of the
training procedure on the EPOS-Lid synthetic datasets are presented in
Section 4.1. An important aspect in the training is the addition of point
cloud specific data augmentation layers, which increase the robustness
of the network to unseen data. As presented in the original work, these
layers comprise jitter, deformation, removal of points, and addition of
outliers in the data.

The initial pose estimate is usually coarse, which is why a pose
refinement method is used afterwards [7,8]. In previous work, we
have developed a pose tracking method based on a modified version
of the NDT algorithm [23]. This method shows better efficiency and
robustness than ICP for satellite pose tracking [23]. The smoothed
NDT tracking algorithm is used in two ways: First, it enables to refine
the initial pose estimate. Second, when considering consecutive point
clouds, the pose initialization only needs to be performed on the
first point cloud. For all subsequent scans, the pose estimate coming
from the previous scan can be used as an initial estimate to start the
tracker [23].

Pose tracking is performed by matching a 3D model of the target
satellite with recorded point clouds. The reference point cloud sampled
from the geometrical model of the target is also provided along with
the datasets, under the name target_model.3d. When using the
smoothed NDT tracker, this reference point cloud is used to compute
a NDT representation of the target. This NDT representation takes the
form of a probabilistic representation, as illustrated on the right in Fig.
3: For each voxel of the 3D space, the distribution of points in this
voxel (represented by a heatmap on the figure) is computed. Next,
starting from an initial guess of its relative pose, the source point
cloud (represented by the white points on the figure) is iteratively
aligned with the target point cloud to maximize its likelihood under
the assumption that it follows the probability distribution of the target
point cloud. The tuning parameters of the NDT algorithm used in
this work (cell size, number of iterations, termination threshold) are
provided in Section 4.1.

2.3.2. Pose error definition for a symmetrical spacecraft

The target spacecraft mounted at EPOS, and considered as a use-case
for the datasets, was presented in Fig. 1. The coordinate frame of the
target is defined in Fig. 4(a). The coordinate frame is centered at the
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(a)

(b)

Fig. 4. (a) Coordinate frame of the target satellite. (b) Symmetries of the target
satellite around the roll axis X, when viewed from the front.
Image source: [21].

center-of-mass of the satellite. The X-axis is defined by the direction
of the front tower of the satellite. The main body of the satellite
has a hexagonal shape. Additionally, three antennas and handlebars
are positioned on the edges of the hexagon. As shown in Fig. 4(a),
the Y-axis of the satellite passes through one of the small antennas
mounted on an edge of the hexagon. Finally, the Z-axis is defined such
that the coordinate frame is orthonormal and follows a right-handed
convention.

The target spacecraft presents some symmetries, which makes an
unequivocal estimation of its attitude impossible. First, the main body
has a hexagonal shape. However, the antennas enable to discern more
details: As shown in Fig. 4(b), the three antennas enable to discrim-
inate between some orientations of the hexagon. Still, the spacecraft
geometry model is invariant by a rotation by +120 deg (or +2x/3 rad)
around its roll axis X. Therefore, given a certain attitude of the target
R, defined as the rotation matrix which transforms a quantity expressed
in the target coordinate frame into a quantity expressed in the lidar
coordinate frame, it is considered that two additional attitudes are sym-
metrically equivalent. These attitudes are RR x(27/3) and RR x(—2x/3),
where the rotation matrix around the axis X with an angle « is defined
as:

1 0 0
Ry(@)=[0 cosa -—sina @
0 sina cosa

The pre-multiplication of the reference rotation R by a rotation of
+27/3 rad around the roll axis corresponds to the symmetrical equiva-
lents for this target geometry, as illustrated in Fig. 4(b).

The objective of the lidar-based navigation is to minimize the
position and attitude error between the ground truth and the estimates
of the method. Let (R,p) be the real attitude matrix and position of
the target. As previously, the attitude is the target attitude relative to
the lidar coordinate frame, and the position the relative position of the
target to the lidar. Consider an estimate of these two quantities (R, p),
originating from a pose estimation method. The position error between
the real and estimated position is simply:

Cpos = 15— I @)

For the attitude, the usual distance function measuring the angular
error between two attitudes is:

—T
tr(R R) -1
“Epot),

However, this attitude distance measure is not adapted to the case
of a symmetrical spacecraft. Indeed, in this case, the attitudes R and
‘RRy (27 /3) would be distant from 2z /3, while they are considered sym-
metrically equivalent for the spacecraft illustrated in Fig. 4. Therefore,
the attitude error for the symmetrical spacecraft is defined in this work

d(R, R) = arccos < 3)
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Table 2

Number of point clouds per dataset.
Dataset I I 111 v v VI
#PCs 2483 1253 1302 2428 1868 501

as the minimum distance between the estimated attitude, and one of
the three symmetrical equivalents of the ground truth attitude:

€, = min (d(ﬁ, R).d (RRX(%”),R) .d (ERX(‘TZ”),R)) , )

Together, ¢,,, and ¢,, enable to measure the precision of a pose

estimate for this symmetrical spacecraft.
3. Datasets
3.1. EPOS datasets

The datasets are publicly available!. Each point cloud is stored in a
file named {number}.3d, where {number} represents a changing
numerical identifier. For instance, 0000.3d, 0500.3d, and 1000.3d
correspond to different point clouds captured at different instances. The
point cloud data is represented in the lidar coordinate system, where
the first column corresponds to the X-coordinate, the second column
corresponds to the Y-coordinate, and the third column corresponds to
the Z-coordinate. For a practical example of how to use and visualize
the dataset, including a conversion script and viewing instructions,
see Appendix.

Corresponding to each point cloud file, there exists a ground truth
file with the same identifier but in the format {number}.pose,
e.g. 0000.pose, 0500.pose, and 1000.pose. The ground truth file con-
tains the estimated pose of the target at the end of scan time in the
lidar coordinate frame. The structure of this file is as follows:

+ The first line represents the timestamp in seconds, corresponding
to the Guidance, Navigation and Control (GNC) system time. For
tracking purposes, the difference between consecutive timestamps
provides information about the temporal spacing of point clouds,
which can be used to estimate motion, such as changes in position
and orientation over time.

The second line contains the position of the target, expressed
in the lidar coordinate frame, represented as a three-dimensional
vector.

The third line specifies the orientation of the target using a
quaternion in the format (g, g, 4, q;), where g; is the scalar com-
ponent, and (g, 4y, q,) are the vector components. This rotation is
the rotation from the target, to the lidar coordinate frame.

There are six datasets containing real lidar point clouds collected
at EPOS. The number of point clouds in each dataset is given in
Table 2. The number of points in each captured point cloud remains
nearly constant (~10,000 points) across all datasets. This consistency is
achieved through an adaptive framerate strategy, which dynamically
adjusts the lidar framerate to maintain a stable point count per scan.
The front and side view of the point cloud 1000.3d from Dataset II is
in Fig. 5.

The target mockup at EPOS has surface properties similar to those of
a real satellite, and it was illuminated by a 5 kW sunspot, replicating
realistic lighting conditions encountered in space environments. As a
result, some point clouds in all three datasets may contain erroneous
points due to specular and multiple reflections from the mockup’s sur-
faces. These inaccurate points are represented by blue dots in Fig. 6. Re-
taining these points in the EPOS-Lid benchmark is essential for testing
the robustness and reliability of algorithms under realistic conditions.

The chaser maintains a controlled viewing elevation and azimuth
angle while the target tumbles, allowing different surfaces to be ob-
served passively over time. Additionally, the relative distance decreases
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(b)

Fig. 5. Point cloud 1000.3d from Dataset II taken by the Livox® Mid-40 lidar
at EPOS. (a) Front view (b) Side view.

Fig. 6. Point cloud 0639.3d from Dataset III with erroneous points. (For
interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

—— Chaser Path
—— Azimuth
Elevation
X Chaser (LVLH origin)
X Target Position

f

Z

Fig. 7. Setup sketch for data collection in chaser’s LVLH coordinate frame.

as the chaser gradually approaches the target during the tumbling mo-
tion. The setup for data collection is illustrated in the LVLH coordinate
frame of the chaser in Fig. 7.

The target’s pose is provided in the lidar coordinate frame, which is
related to the chaser’s LVLH frame through a transformation obtained
via calibration. While the LVLH frame describes the relative motion,
the lidar frame serves as the sensor’s local reference for measurements.
Table 3 presents the azimuth, elevation, and relative distance range for
each dataset accordingly.

Dataset I and IV capture an azimuthal motion, transitioning from
90° to 55° and back to 90°, with a fixed elevation of 0°, and a range
reducing from 17 m to 3 m. In Dataset II a one-way azimuthal shift from
90° to 70° is performed, maintaining the same elevation and a range
of 20 m to 4 m. Dataset III focuses on a constant azimuth of 70° and
an elevated viewing angle of 30°, with the range similarly reducing
from 20 m to 4 m. In Dataset V and VI the distance reduces with a
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Table 3
Azimuth, elevation and relative distance.

Dataset Azimuth [deg] Elevation [deg] Range [m]
1 90-55-90 0 17 to 3
I 90-70 0 20 to 4
111 70 30 20 to 4
v 90-55-90 0 17 to 3
v 55 0 8to3
VI 55 0 15t0 9
20 —— Dataset |
—— Dataset Il
—_ ——— Dataset Il
E 15 - Dataset IV
g Dataset V
S Dataset VI
10
a
"]
Qo
<s
0
0 200 400 600 800 1000 1200 1400

Time [s]

Fig. 8. Absolute distance over time between chaser and client during dataset
record.

constant azimuthal shift of 55° from 8 m to 3 m and from 15 m to
9 m respectively. The progression of the absolute distance over time
can be seen in Fig. 8. The relative distance between the chaser and
target decreases using a straight-line approach. During an azimuth and
elevation shift, the absolute distance between the target and the chaser
remains constant. Although Dataset III and Dataset V have a shorter
recording duration than Dataset II, they contain more point clouds due
to the higher number of close-up shots. This is due to the adaptive
framerate strategy, which affects the number of recorded point clouds.

In all datasets, the target has the same mass of 500 kg. The inertia
tensor is I = diag(600, 500,500) kg m?, defined in the target coordi-
nate system, as shown in Fig. 4(a). Differences in the initial angular
velocity result in distinct tumbling behaviors. The Dataset I with initial
angular velocity ®; = [2.0,0.2,0]°/s has a more constrained motion,
primarily around the X axis. The Dataset II and Dataset III with w, =
[1.5,1.0,0]°/s have a more significant tumbling motion and therefore
contain a wider variety of target poses. In the remaining datasets, the
target performs a high-rate rotation about the X axis only, with angular
velocity w; = [5,0,0]°/s for Dataset IV and w, = [8,0,0]°/s for Dataset
V and VI, presenting a more challenging scenario for pose estimation.
For all scenarios, it is considered that the target is uncontrolled and
freely tumbling, i.e., not subject to any angular acceleration. Its motion
is thus entirely defined by its initial angular velocity. Other cases, for
example fuel leaks leading to perturbing angular accelerations, are not
considered in the datasets.

3.2. Synthetic training dataset

The lidar simulator presented in Section 2.2 is used to generate a
synthetic dataset for training of pose estimation methods. The synthetic
dataset of EPOS-Lid contains in total 100,000 point clouds, which are
split in two subsets:

+ Synthetic training dataset: Contains 80,000 point clouds used for
training;

« Synthetic validation dataset: Contains 20,000 point clouds used
for validation, i.e., for comparing and tuning different models
trained on the training dataset.

These datasets are provided together with the real EPOS datasets, and
are available for download'. The pose and point cloud format are
identical to the format for the real lidar datasets.



L. Renaut et al.

(©
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Fig. 9. Point clouds from the synthetic training dataset, captured for different
poses, material properties and lidar scan times. Warm colors correspond to
points closer to the sensor. (a) Point cloud number 1600; (b) Point cloud
number 2400; (c) Point cloud number 2600; (d) Point cloud number 2700.
(For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

The synthetic datasets form a loose collection of point clouds,
i.e., each point cloud is generated for a new relative position selected
at random, not corresponding to a trajectory related to the previous
point cloud. Therefore, the timestamp of each synthetic point cloud is
not relevant, and set to zero in each pose file. For each point cloud,
the relative range between the sensor and the target’s center of mass
is selected at random following a uniform distribution between 2 m
and 25 m. The target is not perfectly centered in the lidar’s field-of-
view: The angular error between the sensor’s principal direction and
the direction to the target’s center of mass follows a normal distribution
with a standard deviation such that 3¢ equal the sensor’s half field-of-
view (see Table 1). The attitude of the target satellite is also selected
at random, such that the distribution in the attitude space is uniform.

For simulating motion blur, the relative velocities over a scan are
selected following a uniform distribution bounded by a maximum of
3 cm/s and 5 deg/s. As for the real EPOS datasets, the pose in each
ground truth file corresponds to the pose at the end of the scan time.
The scan time is chosen to correspond to the settings of the adaptive
framerate used in the EPOS experiments. It varies randomly around a
value depending on the distance to the target, such that the point clouds
contain in average approximately 10,000 points, but with potentially
varying point cloud density.

Finally, since the exact material properties of the target are un-
known, they are randomized and assigned a new value for each syn-
thetic point cloud. This approach is known as domain randomiza-
tion [44]. Through randomization, it is likely that the envelope in
which the material properties are randomized contains the real values.
For more details on the modeling of the reflectivity and specular
characteristics of each material, we refer to [20]. Point clouds from the
synthetic training datasets are shown in Fig. 9. On these point clouds,
the scan pattern of the Livox lidar (see Fig. 2(b)) is clearly visible.
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4. Pose estimation results

In this work, only the results of our pose estimation method are
presented, but we encourage researchers developing different pose
estimation methods to assess their results on the EPOS-Lid datasets.
This will enable a common base for algorithm comparison and devel-
opement. In the following, the methodology and metrics used for our
evaluation is detailed. The pose initialization method is evaluated on
each point cloud of Datasets II and III of EPOS-Lid, which contain a wide
variety of relative attitudes and distances. The pose tracking method is
evaluated on Dataset I of EPOS-Lid, since it corresponds to a fly-around
and approach trajectory which might correspond to the scenario of a
real rendezvous mission.

4.1. Pose initialization

The pose initialization method presented in Section 2.3 is trained on
the synthetic training dataset of EPOS-Lid. Since the synthetic dataset
is smaller than the dataset used to train the same model in previous
work [21], the number of epochs is increased to 175. All other training
parameters remain unchanged, including a batch size of 32, the Adam
optimizer with an initial learning rate of 1e—3 and cosine decay, the
data augmentation procedure, and a dropout rate of 0.3 in the top layer.
The tuning of these training parameters is achieved by monitoring the
evolution of the model performance on the synthetic validation dataset
of EPOS-Lid.

After training, the models are evaluated on the real EPOS lidar
datasets. The evaluation of the pose initialization results is performed
on Datasets II and III of EPOS-Lid, since these datasets were recorded
specifically to contain a wide variety of relative poses for testing initial-
ization methods. As in [21], the PointNet++ backbone is modified to be
optimized for runtime, and the results presented here are the results of
the runtime optimized model. This model achieves real-time capabil-
ity when evaluated on the CPU of onboard representative computing
hardware. Each point cloud of the Datasets II and III is processed in
isolation, i.e., the raw point cloud is passed to the pose initialization
method, without an initial pose estimate. As in previous work [21],
the pose initialization is followed by a refinement step with smoothed
NDT [23]. The settings for the smoothed NDT refinement step are:
a voxel grid size and a maximum point-to-cell distance of 7.5 cm, a
maximum number of 30 iterations, and a termination threshold once
the pose increment is lower than 0.05 deg and 1 mm.

The distribution of position errors (Eq. (2)) and attitude errors
(Eq. (4)) is presented in Fig. 10. For both boxplots, the blue box
represents the interquartile values, and the orange line the median. The
whiskers extend to the 5th and 95th percentile, and outliers are marked
by the black crosses. From Fig. 10(a), it is seen that all position errors
are below 9 cm. The distribution of attitudes, in Fig. 10(b), presents
more outliers. Amongst the 2555 point clouds of Datasets II and III,
the attitude estimation error e,, is higher than 3 deg for only 13 of
them. This corresponds to an error percentage of 0.51%.

We now analyze more in detail these error cases of the pose ini-
tialization method. Out of the 13 error cases, for which the angular
error of the method is above 3 deg, 12 correspond to Dataset II and
only one to Dataset III. From these errors, approximately the half (6)
correspond to an angular error of the pose estimation between 50 deg
and 60 deg. This is also observable in the distributions of Fig. 10(b).
Such an error indicates that the pose estimation method has been
mislead by the symmetries of the target’s hexagonal shape, see Fig. 4.
Indeed, a hexagon is invariant by a rotation of +60 deg. Thus in cases
where the small antennas which would enable to discriminate between
these poses are not clearly distinguishable (again, see Fig. 4), the
method estimates an attitude which can be erroneous by +60 deg. The
remaining error cases are less straightforward to explain. Yet, it stands
out that all these errors happen in very close range, for experiment
times above 880 s, which corresponds to relative distances between the
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Fig. 10. Pose errors when evaluating the pose initialization followed by the
NDT refinement step to every point cloud of Datasets II and III: (a) Distribution
of position errors ¢,,,; (b) Distribution of attitude errors ¢,,. (For interpretation
of the references to color in this figure legend, the reader is referred to the
web version of this article.)

Table 4

Initialization errors (median and 99th percentile) when using the neural
network based initialization followed by smoothed NDT on all point clouds
of Datasets II and III.

Position error [cm] Attitude error [deg]

99th %ile Median 99th %ile

8.69

Median

2.62 1.04 1.96

target and chaser satellite below 6 m, see Fig. 8. An explanation is that
in very close range, the target is only partially in the field-of-view, so
that fewer features of its shape are observable in the point cloud.

To compare this benchmark method with future models, we suggest
comparing two metrics, given the distribution of position errors ¢,
and of attitude errors ¢,,. The first metric is the median value of these
errors, which indicates the precision of the method. The second metric
is the upper 99th percentile of the errors. This percentile enables to
quantify the robustness of the pose initialization, which is essential
for a critical application like pose estimation during space rendezvous.
We argue that demonstrating that 99% of the pose estimates lie below
a certain error threshold is a good measure to certify or evaluate a
pose estimation method. These two metrics for the benchmark pose
initialization method are presented in Table 4.

4.2. Pose tracking

The pose tracking evaluation is performed on the Dataset I of EPOS-
Lid. For the first point cloud of this dataset, the pose is initialized
with the initialization method presented in Section 4.1. Afterwards, for
all subsequent point clouds, tracking is performed with the smoothed
NDT method. As in [23], the tracking is coupled with a motion filter.
For each new point cloud, the initial pose estimate to start the NDT
refinement is provided by the current prediction of the filter.

The results of the pose tracking on Dataset I are presented in Fig.
11. The results are the raw results of the smoothed NDT tracker, not the
filtered results. The position error, presented in Fig. 11(a), is around
5 cm during the fly-around phase, before decreasing to around 3 cm
during the approach. The maximum value error is reached during the
fly-around, with a position error of 7.04 cm. The attitude error of the
pose estimation is presented in Fig. 11(b). The maximum angular error
of 2.71 deg is reached at the beginning of the tracking.
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Fig. 11. Tracking results on EPOS-Lid Dataset I over time: (a) Position error
(b) Attitude error ¢

Spos; art*

Table 5

Tracking errors (median and 99th percentile) when using smoothed NDT to
track the target pose on the consecutive point clouds of Dataset I.

Attitude error [deg]
Median
1.36

Position error [cm]

99th %ile
6.41

99th %ile
2.48

Median
2.24

To quantitatively evaluate the pose tracking results, the same metric
as for the pose initialization is used, i.e., the median and 99th percentile
values of the distributions of position and attitude errors is evaluated.
These values are presented in Table 5.

5. Conclusion

This work presented EPOS-Lid, an openly available lidar dataset for
pose estimation in non-cooperative rendezvous scenarios. The datasets
comprise a synthetic and real part. The synthetic data is generated with
a high fidelity lidar simulator, and can be used to train and validate
neural network based pose estimation methods. The real datasets are
collected at EPOS, and are meant to test lidar-based pose initialization
and tracking methods. Importantly, the target satellite considered in
this work is symmetric, such that a metric accounting for the symme-
tries is introduced for evaluating the pose estimation accuracy. Bench-
mark methods for pose estimation are presented to demonstrate the
usability of the datasets. To ensure consistency in future evaluations,
it is encouraged to use the same comparison metrics.
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These datasets mark an effort to standardize and accelerate the
development of lidar based pose estimation methods for space ren-
dezvous. However, the sensor used in this work is a sensor from the
automotive domain, since no space-grade lidar sensors was available
at the EPOS facility at the time of this research. Future datasets might
be recorded with a more representative lidar sensor, and possibly a
different target satellite.
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Appendix. Practical usage

Each point cloud file in our dataset is provided in a simple ASCII
text format with the extension .3d. Each file contains one 3D point
per line with three floating-point values. There is no header. All values
are in meters. For example, the beginning of a point cloud (2462.3d)
from Dataset I looks like:

1.3660 0.0350 -0.0490
1.3660 0.0330 -0.0470
1.3660 0.0310 -0.0450

To support practical use, we provide the following Python script
in Listing 1, which converts a .3d file into a standard .pcd file.
The standard .pcd file can be visualized using open-source tools such
as pcl_viewer from the Point Cloud Library (PCL) [45], or further
processed using any PCL-compatible pipeline.

import numpy as np

def convert_to_pcd(input_file, output_file):
points = np.loadtxt (input_file)
with open(output_file, ) as f:
f.write(
)
.write( )
.write( )
.write( )
.write( )
.write( )
.write(f )
.write( )
.write( )
.write(f )
.write( )
or p in points:
f.urite(f )

Fh bh Fh Fh Fh Fh Hh Hh Hh Hh b

# Example usage
convert_to_pcd( s )

Listing 1: Python function to convert a . 3d point cloud to the PCL
.pcd format.
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To use this tool, the PCL library must be installed on the system.
Installation instructions and source code are available at: pointclouds.
org [Accessed: 3 July 2025]. After converting one file format to another
one, the file can be visualized by calling:

pcl_viewer 2462.pcd

Listing 2: Command for visualization of the converted point cloud
using PCL.

The datasets presented in this paper are intended to support a wide
range of applications, including 3D point cloud registration, tracking,
and pose estimation. We provide raw point cloud data in .3d format
along with corresponding ground truth annotations in .pose files.
As the dataset is designed to be adaptable to different research goals,
we do not include a fixed evaluation script. Instead, users are encour-
aged to develop their own benchmarking pipelines tailored to their
specific algorithms and use cases. Although the dataset is provided
in .3d format, users working with ROS can easily create their own
scripts to convert the files into sensor_msgs/PointCloud?2 mes-
sages or package them into ROS bag files, depending on their specific
application needs.
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