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 A B S T R A C T

Lidar sensors are increasingly studied for space rendezvous applications, in particular for on-orbit servicing 
or active debris removal missions. With their active measurement principle, they provide accurate 3D point 
clouds which enable precise pose estimation. While simulated lidar data is relatively simple to generate 
under ideal conditions, real lidar point clouds can present high levels of noise and reflections. There is 
the need for representative lidar data to train and test pose estimation methods for non-cooperative space 
rendezvous scenarios. This work introduces EPOS-Lid, an openly available lidar benchmark dataset for this task. 
It comprises a synthetic dataset for training pose estimation methods, and real lidar point clouds collected at the 
European Proximity Operations Simulator (EPOS). Further, it is demonstrated with evaluation of benchmark 
methods how the datasets can be used for training and testing pose initialization and pose tracking methods.
1. Introduction

The capability to rendezvous with a non-cooperative satellite or a 
potentially inactive space debris, is at the center of On-Orbit Servic-
ing (OOS) and Active Debris Removal (ADR) missions. In both cases, 
precise relative navigation information is necessary to enable a safe 
and precise approach towards the target object. The active satellite 
performing the approach is referred to as the chaser. In the last phase of 
the rendezvous, e.g. at relative distances below 30 m, the chaser needs 
to be able to estimate not only its relative position to the target, but 
also its relative attitude.

To estimate its relative position and attitude (pose) to the target au-
tonomously, the chaser is equipped with electro-optical sensors. A first 
type of sensors are passive sensors, such as optical cameras, sometimes 
in a stereo-configuration, or infrared cameras. While such sensors are 
relatively cheap and have low power requirements, they have to handle 
the strongly varying light conditions in orbit [1]. In particular, optical 
cameras are dependent on the Sunlight illumination to capture images. 
They are blind on the night side, and strong reflections can lower the 
image quality on the day side [1].

A second type of sensors are active sensors such as Time-of-Flight
(ToF) cameras or lidar (light detection and ranging). While ToF cameras 
based on modulated light principles are limited in range [2,3], systems 
that use a direct range measurement approach, commonly referred to 
as flash lidars, are capable of achieving kilometer-scale ranges and are 
frequently employed in space applications [4,5]. Likewise, scanning 
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lidars achieve similar ranges, and have been used for space rendezvous 
missions such as the first commercial OOS with the Mission Extension 
Vehicle (MEV) [6]. Flash or scanning lidars are relatively independent 
of the external light conditions, and enable to capture precise 3D point 
clouds, making them valuable sensors for relative navigation in close 
range [7]. Not all point cloud data is necessarily obtained from a 
lidar, but lidar point cloud data presents several advantages due to 
the underlying laser scanning technology, in particular: high precision, 
robustness to external conditions, and long range. For this reason, this 
work focuses on lidar generated point cloud data.

Lidar pose estimation is usually split in two steps, pose initialization 
and pose tracking [7,8]. Pose initialization consists in finding a relative 
pose of the target when no a priori estimate is available, apart from 
a possible coarse estimate of the relative position. Classical methods 
for lidar pose initialization rely on polygon matching algorithms [9,
10], feature-based matching [8,11,12], or template matching [13,14]. 
Instead of hand-crafted descriptors, neural networks have been used 
in hybrid algorithms, in combination with polygon matching [15] or 
feature-matching methods [16,17]. Finally, direct pose estimation with 
neural networks consists in training either a Convolutional Neural 
Network (CNN) to estimate a pose from a depth image [18–20], or a 
point-based network using directly the lidar point cloud [21].

After initialization, pose tracking aims at estimating the pose over 
consecutive point clouds. For tracking, precise alignment of the source 
point cloud with a 3D model of the target is achieved with methods 
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such as Iterative Closest Point (ICP) [22]. Such methods enable precise 
alignment, but require an initial estimate to converge. For the first 
point cloud, the initial estimate is computed by a pose initialization 
method, and for subsequent point clouds, the tracking solution of the 
previous point cloud is used. For pose tracking, ICP or one of its variants 
is widely used [2,3,9,13]. Alternatively, to reduce the computational 
time, an approach based on a modified NDT algorithm has been pro-
posed [23]. All these methods assume that a 3D model of the target 
satellite is available to be matched with the received point clouds. Such 
a 3D model is either known before the mission, or is the result of 
an inspection flight around the target satellite [24]. Other approaches 
consist in performing model-less pose estimation, i.e., in progressively 
constructing a point cloud model of the target satellite by aggregating 
consecutive lidar scans [25,26].

A key factor for the development, evaluation and comparison of 
pose estimation methods is the quality and availability of the data 
on which the algorithms are evaluated. To this aim, for camera-based 
pose estimation, several image datasets have been published [27–30]. 
With the advances in image rendering technology, professional render-
ing tools can be tailored for use in spacecraft rendezvous operations. 
Proenca and Gao [27] publish URSO, a fully synthetic image dataset 
of around 5000 images of the Dragon and Soyuz spacecraft. Likewise, 
the SwissCube dataset [28] contains 50 K images of the ClearSpace One 
satellite rendered with high-fidelity. Recently, the DLVS3 dataset [31] 
has been published, containing an impressive number of 640 K ren-
dered images of the Hubble Space Telescope for pose estimation. Each 
image also contains depth information, which can be used as ground 
truth but does not model the specifics of depth sensors such as a lidar.

A major challenge when training deep learning methods for pose 
estimation is achieving Simulation to Reality (Sim2Real) transfer, i.e., 
keeping the same pose estimation performance when evaluating a 
model trained on synthetic data on real-world data [32]. To this aim, 
hybrid datasets, containing both simulated images and real images, 
have been published [29,30,33]. In particular, the SPEED dataset [30] 
contains both 15 K simulated images of the Tango spacecraft, based on 
the illumination conditions observed in orbit, and around 300 images 
of the same satellite gathered at a robotic rendezvous facility. Likewise, 
SPEED+ [33] is a great extension of the previous dataset, comprising 
around 60 K synthetic images, and nearly 10 K images from the robotic 
facility, where particular focus is laid on achieving realistic lightning 
conditions. Similarly to his predecessor dataset, SPEED+ is of great 
use for comparison and benchmarking of camera-based pose estimation 
algorithms [32,34,35]. Likewise, the ENVISAT image datasets contain 
both 16 K synthetic images, and 16 K real images gathered at a 
hardware-in-the-loop facility [36].

The field of lidar based-pose estimation for spacecraft rendezvous 
is also moving towards neural network based methods [17,19–21]. 
However, to the best of our knowledge, no public datasets for lidar 
pose estimation are currently available. To address this need, this 
work presents EPOS-Lid – a lidar benchmark dataset for relative space-
craft navigation consisting of both real point clouds collected at the 
European Proximity Operations Simulator (EPOS) 2.0, and simulated 
point clouds.1 The synthetic lidar datasets can be used for training 
neural network based pose estimation methods, while the real dataset 
serves as a test benchmark. In addition, the datasets acquired during 
the rendezvous trajectories at EPOS can be used to test and validate 
full relative navigation pipelines, including tracking over consecutive 
point clouds. Furthermore, an exemplary pose estimation method is 
presented and tested on this dataset, demonstrating that EPOS-Lid can 
be used to develop accurate and robust lidar navigation methods.

The remainder of this paper is structured as follows: Section 2 
presents the EPOS facility and the lidar simulator used to generate 

1 The datasets are openly available under https://www.dlr.de/en/rb/
research-operation/research-projects/flight-dynamics-navigation-and-orbital-
sustainability/on-orbit-servicing/epos-lid-dataset.
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Fig. 1. EPOS facility with two industrial robots. The left one carries a sensor 
adapter plate and the right one a mockup of a target satellite.

the real and synthetic datasets, and provides an overview of the pose 
estimation methods used in the evaluation. The content of the lidar 
datasets is described in Section 3. In Section 4, we present the results 
of the pose estimation method trained and evaluated on the presented 
benchmark. Finally, Section 5 concludes the paper.

2. Methods

2.1. European Proximity Operations Simulator

2.1.1. Facility
The European Proximity Operations Simulator (EPOS) is a

hardware-in-the-loop testbed for simulation of rendezvous missions or 
other close proximity scenarios [37,38]. The facility, located at German 
Space Operations Center (GSOC), serves for validation and test of 
optical sensors and of guidance, navigation and control systems.

EPOS consists of two industrial robots with each six degrees of 
freedom: a KUKA KR100HA (robot 1) mounted on a linear rail-system 
of 25 m length and a KUKA KR240-2 (robot 2) mounted on the ground 
at one end of the rail. Fig.  1 presents a test scenario used for creation 
of the lidar benchmark dataset EPOS-Lid: Robot 1 carries a sensor 
adapter plate, where different optical sensors are mounted including 
a Livox Mid-40 lidar (see Section 2.1.2). Robot 2 carries a mockup of 
an exemplary target satellite with real surface materials such as golden 
MLI and solar panels. The sunlight is simulated by a spotlight; two ARRI 
floodlights with 5 kW and 12 kW are available at the facility. Robot 2 
is surrounded by a black Molton curtain and carpet and the robot’s arm 
is wrapped with a Molton fabric.

A PC-based monitoring and control system generates commands 
such that the two EPOS robots simulate the desired relative motion 
of the two spacecrafts. The relative trajectory depends on the specific 
test case or application. Different datasets (see Section 3.1) can be 
generated. The EPOS facility can be used for both open and closed 
loop simulations. The performance of, for example, a pose estimation 
method can be assessed by comparing the pose estimation results with 
the robots’ logged trajectory (ground truth).

2.1.2. Lidar sensor
A Livox® Mid-40 sensor is used as close range rendezvous sensor for 

the lidar benchmark dataset EPOS-Lid. This sensor is widely employed 
in the automotive domain but is also well suited for a rendezvous test 
laboratory like EPOS since real space qualified lidar sensors are very 
expensive and have long manufacturing and delivery times.

Fig.  2(a) shows the lidar at the EPOS facility, mounted on the sensor 
adapter plate of robot 1 which simulates the chaser. The Livox Mid-40 

https://www.dlr.de/en/rb/research-operation/research-projects/flight-dynamics-navigation-and-orbital-sustainability/on-orbit-servicing/epos-lid-dataset
https://www.dlr.de/en/rb/research-operation/research-projects/flight-dynamics-navigation-and-orbital-sustainability/on-orbit-servicing/epos-lid-dataset
https://www.dlr.de/en/rb/research-operation/research-projects/flight-dynamics-navigation-and-orbital-sustainability/on-orbit-servicing/epos-lid-dataset
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Fig. 2. Livox® Mid-40 used as rendezvous lidar for EPOS-Lid; (a) lidar 
mounted on one robot of the EPOS facility, (b) scanning pattern of the lidar.

Table 1
Specification parameters of the Livox® Mid-40 lidar [39].
 Parameter Value  
 Dimensions 88 mm × 69 mm × 76 mm 
 Mass approx. 760 g  
 Power 10 W  
 Laser wavelength 905 nm  
 Laser class Class 1 (IEC60825-1)  
 Detection range 260 m  
 Field-of-view 38.4 deg  
 Range precision (1𝜎 @ 20 m) 2 cm  
 Angular precision 0.1 deg  
 Beam divergence 0.28 deg × 0.03 deg  
 Point rate 100,000 points/s  

has a non-repetitive scan pattern, visualized in Fig.  2(b). Table  1 shows 
some technical parameters of the lidar.

It is assumed that the initial calibration from the lidar manufacturer 
is already precise, so that the intrinsic calibration parameters of the 
lidar are not modified. However, when installed at the robotic facility, 
the extrinsic parameters must be calibrated, i.e., it is necessary to 
perform the hand-eye calibration of the sensor. This is achieved by 
collecting point clouds of the target at different distances and for 
different orientations. Since the EPOS facility is calibrated, the relative 
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pose of the robots to each other is known precisely, and it is only to 
find the pose of the lidar with respect to the robot carrying it, robot 1.

The calibration is achieved by applying a local optimization proce-
dure relying on smoothed NDT registration [23], similar to ICP. Starting 
from an initial guess of the hand-eye calibration parameters, these 
parameters are refined by simultaneously minimizing the distance of 
all captured calibration point clouds to the expected target point cloud. 
The only difference with a local point cloud matching method for pose 
estimation is which pose is being optimized: Instead of searching the 
optimal target pose, the pose of the satellite mock-up with respect to 
the robot equipped with the sensor plate is known from the ground 
truth data of the facility. The pose being optimized is the pose of the 
lidar sensor with respect to the sensor plate.

The Mid-40 sensor is from the automotive domain, not qualified for 
space, and has a very specific scanning pattern. However, the underly-
ing laser scanning technology is identical to space-grade sensors. The 
lidar will be configured to capture approximately 10 000 points on the 
target satellite per scan, see Section 3.1. Such a point density is high 
but comparable, for example, with the density of the flash lidar used for 
the OSIRIS-REx mission [5], which has a detector array of 128 × 128 
pixels. Likewise, a constant number of points per scan is a setting that 
is representative of a space scenario, since for example Jena-Optronik 
RVS 3000TM scanning lidar [15] can dynamically adapt its field-of-
view to fit the target. Most importantly, the laser rays interact with 
the real materials on the target mock-up, as presented in the previous 
Section 2.1.1. This enables to observe artifacts in the point cloud data 
that are also expected to be observed in space, such as reflections on 
the target’s MLI and solar panels. These will be described in Section 3.1.

2.2. High-fidelity lidar simulator

To generate training data in sufficient amount, a high-fidelity lidar 
simulator developed in previous work [20,21] is used. The suggested 
approach consists in training a neural network for pose estimation 
on synthetic data only, and testing it on real lidar data collected at 
EPOS. Since the synthetic point clouds differ from the real ones, a loss 
in precision in pose estimation might be observed when evaluating a 
neural network on real data compared to an evaluation on synthetic 
data. This difference is known as the domain gap [33,40]. Trying to 
bridge the domain gap and achieving a successful Simulation To Reality
(Sim2Real) transfer is one of the challenges in lidar pose estimation.

There are several reasons for training only on synthetic data, rather 
than for example on a mix of synthetic and real data gathered at EPOS. 
A lidar simulator allows to quickly generate a large amount of point 
clouds in every possible pose configuration. While data collection is 
possible at a hardware-in-the-loop facility, achieving the same quantity 
and diversity of poses is more challenging in that setting. Also, in 
an operational scenario, the geometry of the target satellite might be 
unknown, and a 3D model only available after an inspection phase. In 
such a case, a lidar simulator enables to generate a dataset and train 
a new pose estimation method within very short time, what would not 
be possible at a physical facility. Another factor is that the approach 
of training only on synthetic data, and testing on real data, enables 
to validate that the method is able to generalize to different data. If 
the data on which the method is trained was acquired under the same 
conditions as the test data, then no guarantee would be provided that 
the pose estimation is able to adapt to different conditions, such as the 
conditions that might be observed in space.

A detailed description of the lidar simulator is provided in [20]. Its 
main characteristics are as follows: The lidar simulator is implemented 
as a ray-tracer. The simulator reproduces the characteristics of the 
Livox Mid-40 sensor. The rosette scan pattern of the Mid-40 (see Fig. 
2(b)) is achieved by a deflection of the ray through two inclined prisms 
rotating at different angular rates. This behavior is reproduced in the 
simulator following the modeling by [41]. In addition, the reflectivity 
of the materials is accounted for. In particular, the solar panels and 
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Fig. 3. Overview of the pose initialization and tracking methods evaluated in this work.
Source: Adapted from [21,23].
golden Multi-Layer Insulation (MLI) sheets on the satellite mock-up in-
stalled at EPOS (Fig.  1) are highly reflective. Since the exact reflectivity 
properties of these materials are unknown, they can be randomized in 
the simulator. To simulate reflection effects and ghost points, double 
reflections are also modeled, i.e., the reflection of a ray on a first 
surface, which then hits a second surface before coming back. Higher 
order reflections (triple or more) are not simulated, for efficiency. 
Sensor noise is also modeled, such as range errors and beam divergence 
errors [20]. The noise is added according to the sensor specifications 
in Table  1. Finally, the simulator accounts for motion blur, i.e., the 
relative displacement of the target during the duration of a scan, which 
leads to a distorted point cloud. Motion blur is modeled assuming that 
the relative motion during the scan time is linear, i.e., that the velocity 
and angular rates are constant.

2.3. Benchmark lidar pose estimation method

2.3.1. Pose estimation
To demonstrate that the lidar datasets can be used for training and 

evaluation of lidar-based pose estimation, we provide an overview of 
the pose initialization and tracking method used as benchmark in this 
work. A schematic representation of the logic of the pose initialization 
and refinement pipeline is presented in Fig.  3.

As detailed in Section 1, lidar pose estimation is frequently split in 
pose initialization, and pose tracking. For pose initialization, no prior 
estimate is available. In this work, we perform pose initialization with 
a point-based neural network. This method is introduced and described 
in detail in [21]. The same overall pose estimation pipeline is used 
in this work. For completeness, we recall the main steps of this pose 
initialization method.

A point-based neural network directly processes 3D data of the 
point cloud. The first step is to center and down-sample the point 
cloud, since the network expects a fix input size of the lidar scan. 
Centering is performed by computing the trimmed centroid of the point 
cloud [20,21]. Compared to a regular centroid, a fraction 𝑝 = 0.25 of 
the highest and lowest outliers in the points cloud are removed, before 
computing the centroid of remaining points. This logic enables to filter 
out outliers which could negatively impact the position of the centroid. 
The input size of the network is set to 1024 point. To down-sample the 
point cloud up to only 1024 points, a kd-tree version of the Farthest 
Point Sampling (FPS) method is implemented [42]. Compared to a 
naive FPS implementation, this enables faster processing on a Central 
Processing Unit (CPU). In case the original point cloud contains less 
than 1024 points, points are randomly duplicated in the scan to reach 
the desired input size. However, since the point clouds captured by the 
Livox Mid-40 are dense, this is never the case for the EPOS test data.

After pre-processing, the point cloud is processed by a 3D neural 
network, in this case a PointNet++ [43] backbone. Compared to the 
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original backbone, the model is optimized for runtime by reducing the 
number and size of point clusters used at each clustering step. The 
network architecture is detailed in [21]. Afterwards, the feature vector 
produced by the neural network is processed by two prediction heads, 
one for attitude classification, and the other for position estimation. 
The attitude classification accounts for the symmetries of the target, 
i.e., it only estimates the attitude corresponding to one of the symmetric 
equivalents of the target attitude (see next section, Fig.  4). Finally, since 
the point cloud was initially centered, the position estimation delivered 
by the neural network is added to the initially estimated position of the 
centroid to retrieve the unscaled position estimation. The details of the 
training procedure on the EPOS-Lid synthetic datasets are presented in 
Section 4.1. An important aspect in the training is the addition of point 
cloud specific data augmentation layers, which increase the robustness 
of the network to unseen data. As presented in the original work, these 
layers comprise jitter, deformation, removal of points, and addition of 
outliers in the data.

The initial pose estimate is usually coarse, which is why a pose 
refinement method is used afterwards [7,8]. In previous work, we 
have developed a pose tracking method based on a modified version 
of the NDT algorithm [23]. This method shows better efficiency and 
robustness than ICP for satellite pose tracking [23]. The smoothed 
NDT tracking algorithm is used in two ways: First, it enables to refine 
the initial pose estimate. Second, when considering consecutive point 
clouds, the pose initialization only needs to be performed on the 
first point cloud. For all subsequent scans, the pose estimate coming 
from the previous scan can be used as an initial estimate to start the 
tracker [23].

Pose tracking is performed by matching a 3D model of the target 
satellite with recorded point clouds. The reference point cloud sampled 
from the geometrical model of the target is also provided along with 
the datasets, under the name target_model.3d. When using the 
smoothed NDT tracker, this reference point cloud is used to compute 
a NDT representation of the target. This NDT representation takes the 
form of a probabilistic representation, as illustrated on the right in Fig. 
3: For each voxel of the 3D space, the distribution of points in this 
voxel (represented by a heatmap on the figure) is computed. Next, 
starting from an initial guess of its relative pose, the source point 
cloud (represented by the white points on the figure) is iteratively 
aligned with the target point cloud to maximize its likelihood under 
the assumption that it follows the probability distribution of the target 
point cloud. The tuning parameters of the NDT algorithm used in 
this work (cell size, number of iterations, termination threshold) are 
provided in Section 4.1.

2.3.2. Pose error definition for a symmetrical spacecraft
The target spacecraft mounted at EPOS, and considered as a use-case 

for the datasets, was presented in Fig.  1. The coordinate frame of the 
target is defined in Fig.  4(a). The coordinate frame is centered at the 
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Fig. 4. (a) Coordinate frame of the target satellite. (b) Symmetries of the target 
satellite around the roll axis 𝑋, when viewed from the front.
Image source: [21].

center-of-mass of the satellite. The 𝑋-axis is defined by the direction 
of the front tower of the satellite. The main body of the satellite 
has a hexagonal shape. Additionally, three antennas and handlebars 
are positioned on the edges of the hexagon. As shown in Fig.  4(a), 
the 𝑌 -axis of the satellite passes through one of the small antennas 
mounted on an edge of the hexagon. Finally, the 𝑍-axis is defined such 
that the coordinate frame is orthonormal and follows a right-handed 
convention.

The target spacecraft presents some symmetries, which makes an 
unequivocal estimation of its attitude impossible. First, the main body 
has a hexagonal shape. However, the antennas enable to discern more 
details: As shown in Fig.  4(b), the three antennas enable to discrim-
inate between some orientations of the hexagon. Still, the spacecraft 
geometry model is invariant by a rotation by ±120 deg (or ±2𝜋∕3 rad) 
around its roll axis 𝑋. Therefore, given a certain attitude of the target 
𝑅, defined as the rotation matrix which transforms a quantity expressed 
in the target coordinate frame into a quantity expressed in the lidar 
coordinate frame, it is considered that two additional attitudes are sym-
metrically equivalent. These attitudes are 𝑅𝑅𝑋 (2𝜋∕3) and 𝑅𝑅𝑋 (−2𝜋∕3), 
where the rotation matrix around the axis 𝑋 with an angle 𝛼 is defined 
as: 

𝑅𝑋 (𝛼) =
⎛

⎜

⎜

⎝

1 0 0
0 cos 𝛼 − sin 𝛼
0 sin 𝛼 cos 𝛼

⎞

⎟

⎟

⎠

. (1)

The pre-multiplication of the reference rotation 𝑅 by a rotation of 
±2𝜋∕3 rad around the roll axis corresponds to the symmetrical equiva-
lents for this target geometry, as illustrated in Fig.  4(b).

The objective of the lidar-based navigation is to minimize the 
position and attitude error between the ground truth and the estimates 
of the method. Let (𝑅,𝝆) be the real attitude matrix and position of 
the target. As previously, the attitude is the target attitude relative to 
the lidar coordinate frame, and the position the relative position of the 
target to the lidar. Consider an estimate of these two quantities (𝑅,𝝆), 
originating from a pose estimation method. The position error between 
the real and estimated position is simply: 

𝜖𝑝𝑜𝑠 = ‖𝝆 − 𝝆‖ . (2)

For the attitude, the usual distance function measuring the angular 
error between two attitudes is: 

𝑑(𝑅,𝑅) = arccos

(

tr(𝑅
𝑇
𝑅) − 1
2

)

. (3)

However, this attitude distance measure is not adapted to the case 
of a symmetrical spacecraft. Indeed, in this case, the attitudes 𝑅 and 
𝑅𝑅𝑋 (2𝜋∕3) would be distant from 2𝜋∕3, while they are considered sym-
metrically equivalent for the spacecraft illustrated in Fig.  4. Therefore, 
the attitude error for the symmetrical spacecraft is defined in this work 
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Table 2
Number of point clouds per dataset.
 Dataset I II III IV V VI  
 #PCs 2483 1253 1302 2428 1868 501 

as the minimum distance between the estimated attitude, and one of 
the three symmetrical equivalents of the ground truth attitude: 

𝜖𝑎𝑡𝑡 = min
(

𝑑(𝑅,𝑅) , 𝑑
(

𝑅𝑅𝑋 (
2𝜋
3
), 𝑅

)

, 𝑑
(

𝑅𝑅𝑋 (
−2𝜋
3

), 𝑅
))

. (4)

Together, 𝜖𝑝𝑜𝑠 and 𝜖𝑎𝑡𝑡 enable to measure the precision of a pose 
estimate for this symmetrical spacecraft.

3. Datasets

3.1. EPOS datasets

The datasets are publicly available1. Each point cloud is stored in a 
file named {number}.3d, where {number} represents a changing 
numerical identifier. For instance, 0000.3d, 0500.3d, and 1000.3d 
correspond to different point clouds captured at different instances. The 
point cloud data is represented in the lidar coordinate system, where 
the first column corresponds to the 𝑋-coordinate, the second column 
corresponds to the 𝑌 -coordinate, and the third column corresponds to 
the 𝑍-coordinate. For a practical example of how to use and visualize 
the dataset, including a conversion script and viewing instructions, 
see Appendix.

Corresponding to each point cloud file, there exists a ground truth 
file with the same identifier but in the format {number}.pose, 
e.g. 0000.pose, 0500.pose, and 1000.pose. The ground truth file con-
tains the estimated pose of the target at the end of scan time in the 
lidar coordinate frame. The structure of this file is as follows:

• The first line represents the timestamp in seconds, corresponding 
to the Guidance, Navigation and Control (GNC) system time. For 
tracking purposes, the difference between consecutive timestamps 
provides information about the temporal spacing of point clouds, 
which can be used to estimate motion, such as changes in position 
and orientation over time.

• The second line contains the position of the target, expressed 
in the lidar coordinate frame, represented as a three-dimensional 
vector.

• The third line specifies the orientation of the target using a 
quaternion in the format (𝑞𝑠, 𝑞𝑥, 𝑞𝑦, 𝑞𝑧), where 𝑞𝑠 is the scalar com-
ponent, and (𝑞𝑥, 𝑞𝑦, 𝑞𝑧) are the vector components. This rotation is 
the rotation from the target, to the lidar coordinate frame.

There are six datasets containing real lidar point clouds collected 
at EPOS. The number of point clouds in each dataset is given in 
Table  2. The number of points in each captured point cloud remains 
nearly constant (∼10,000 points) across all datasets. This consistency is
achieved through an adaptive framerate strategy, which dynamically 
adjusts the lidar framerate to maintain a stable point count per scan. 
The front and side view of the point cloud 1000.3d from Dataset II is 
in Fig.  5.

The target mockup at EPOS has surface properties similar to those of 
a real satellite, and it was illuminated by a 5 kW sunspot, replicating 
realistic lighting conditions encountered in space environments. As a 
result, some point clouds in all three datasets may contain erroneous 
points due to specular and multiple reflections from the mockup’s sur-
faces. These inaccurate points are represented by blue dots in Fig.  6. Re-
taining these points in the EPOS-Lid benchmark is essential for testing 
the robustness and reliability of algorithms under realistic conditions.

The chaser maintains a controlled viewing elevation and azimuth 
angle while the target tumbles, allowing different surfaces to be ob-
served passively over time. Additionally, the relative distance decreases 
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Fig. 5. Point cloud 1000.3d from Dataset II taken by the Livox® Mid-40 lidar 
at EPOS. (a) Front view (b) Side view.

Fig. 6. Point cloud 0639.3d from Dataset III with erroneous points.  (For 
interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.)

Fig. 7. Setup sketch for data collection in chaser’s LVLH coordinate frame.

as the chaser gradually approaches the target during the tumbling mo-
tion. The setup for data collection is illustrated in the LVLH coordinate 
frame of the chaser in Fig.  7.

The target’s pose is provided in the lidar coordinate frame, which is 
related to the chaser’s LVLH frame through a transformation obtained 
via calibration. While the LVLH frame describes the relative motion, 
the lidar frame serves as the sensor’s local reference for measurements. 
Table  3 presents the azimuth, elevation, and relative distance range for 
each dataset accordingly.

Dataset I and IV capture an azimuthal motion, transitioning from 
90◦ to 55◦ and back to 90◦, with a fixed elevation of 0◦, and a range 
reducing from 17 m to 3 m. In Dataset II a one-way azimuthal shift from 
90◦ to 70◦ is performed, maintaining the same elevation and a range 
of 20 m to 4 m. Dataset III focuses on a constant azimuth of 70◦ and 
an elevated viewing angle of 30◦, with the range similarly reducing 
from 20 m to 4 m. In Dataset V and VI the distance reduces with a 
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Table 3
Azimuth, elevation and relative distance.
 Dataset Azimuth [deg] Elevation [deg] Range [m] 
 I 90→55→90 0 17 to 3  
 II 90→70 0 20 to 4  
 III 70 30 20 to 4  
 IV 90→55→90 0 17 to 3  
 V 55 0 8 to 3  
 VI 55 0 15 to 9  

Fig. 8. Absolute distance over time between chaser and client during dataset 
record.

constant azimuthal shift of 55◦ from 8 m to 3 m and from 15 m to 
9 m respectively. The progression of the absolute distance over time 
can be seen in Fig.  8. The relative distance between the chaser and 
target decreases using a straight-line approach. During an azimuth and 
elevation shift, the absolute distance between the target and the chaser 
remains constant. Although Dataset III and Dataset V have a shorter 
recording duration than Dataset II, they contain more point clouds due 
to the higher number of close-up shots. This is due to the adaptive 
framerate strategy, which affects the number of recorded point clouds.

In all datasets, the target has the same mass of 500 kg. The inertia 
tensor is 𝐈 = diag(600, 500, 500) kg m2, defined in the target coordi-
nate system, as shown in Fig.  4(a). Differences in the initial angular 
velocity result in distinct tumbling behaviors. The Dataset I with initial 
angular velocity 𝜔1 = [2.0, 0.2, 0]◦∕s has a more constrained motion, 
primarily around the 𝑋 axis. The Dataset II and Dataset III with 𝜔2 =
[1.5, 1.0, 0]◦∕s have a more significant tumbling motion and therefore 
contain a wider variety of target poses. In the remaining datasets, the 
target performs a high-rate rotation about the 𝑋 axis only, with angular 
velocity 𝜔3 = [5, 0, 0]◦∕s for Dataset IV and 𝜔4 = [8, 0, 0]◦∕s for Dataset 
V and VI, presenting a more challenging scenario for pose estimation. 
For all scenarios, it is considered that the target is uncontrolled and 
freely tumbling, i.e., not subject to any angular acceleration. Its motion 
is thus entirely defined by its initial angular velocity. Other cases, for 
example fuel leaks leading to perturbing angular accelerations, are not 
considered in the datasets.

3.2. Synthetic training dataset

The lidar simulator presented in Section 2.2 is used to generate a 
synthetic dataset for training of pose estimation methods. The synthetic 
dataset of EPOS-Lid contains in total 100,000 point clouds, which are 
split in two subsets:

• Synthetic training dataset: Contains 80,000 point clouds used for 
training;

• Synthetic validation dataset: Contains 20,000 point clouds used 
for validation, i.e., for comparing and tuning different models 
trained on the training dataset.

These datasets are provided together with the real EPOS datasets, and 
are available for download1. The pose and point cloud format are 
identical to the format for the real lidar datasets.
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Fig. 9. Point clouds from the synthetic training dataset, captured for different 
poses, material properties and lidar scan times. Warm colors correspond to 
points closer to the sensor. (a) Point cloud number 1600; (b) Point cloud 
number 2400; (c) Point cloud number 2600; (d) Point cloud number 2700. 
(For interpretation of the references to color in this figure legend, the reader 
is referred to the web version of this article.)

The synthetic datasets form a loose collection of point clouds, 
i.e., each point cloud is generated for a new relative position selected 
at random, not corresponding to a trajectory related to the previous 
point cloud. Therefore, the timestamp of each synthetic point cloud is 
not relevant, and set to zero in each pose file. For each point cloud, 
the relative range between the sensor and the target’s center of mass 
is selected at random following a uniform distribution between 2 m 
and 25 m. The target is not perfectly centered in the lidar’s field-of-
view: The angular error between the sensor’s principal direction and 
the direction to the target’s center of mass follows a normal distribution 
with a standard deviation such that 3𝜎 equal the sensor’s half field-of-
view (see Table  1). The attitude of the target satellite is also selected 
at random, such that the distribution in the attitude space is uniform.

For simulating motion blur, the relative velocities over a scan are 
selected following a uniform distribution bounded by a maximum of 
3 cm/s and 5 deg/s. As for the real EPOS datasets, the pose in each 
ground truth file corresponds to the pose at the end of the scan time. 
The scan time is chosen to correspond to the settings of the adaptive 
framerate used in the EPOS experiments. It varies randomly around a 
value depending on the distance to the target, such that the point clouds 
contain in average approximately 10,000 points, but with potentially 
varying point cloud density.

Finally, since the exact material properties of the target are un-
known, they are randomized and assigned a new value for each syn-
thetic point cloud. This approach is known as domain randomiza-
tion [44]. Through randomization, it is likely that the envelope in 
which the material properties are randomized contains the real values. 
For more details on the modeling of the reflectivity and specular 
characteristics of each material, we refer to [20]. Point clouds from the 
synthetic training datasets are shown in Fig.  9. On these point clouds, 
the scan pattern of the Livox lidar (see Fig.  2(b)) is clearly visible.
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4. Pose estimation results

In this work, only the results of our pose estimation method are 
presented, but we encourage researchers developing different pose 
estimation methods to assess their results on the EPOS-Lid datasets. 
This will enable a common base for algorithm comparison and devel-
opement. In the following, the methodology and metrics used for our 
evaluation is detailed. The pose initialization method is evaluated on 
each point cloud of Datasets II and III of EPOS-Lid, which contain a wide 
variety of relative attitudes and distances. The pose tracking method is 
evaluated on Dataset I of EPOS-Lid, since it corresponds to a fly-around 
and approach trajectory which might correspond to the scenario of a 
real rendezvous mission.

4.1. Pose initialization

The pose initialization method presented in Section 2.3 is trained on 
the synthetic training dataset of EPOS-Lid. Since the synthetic dataset 
is smaller than the dataset used to train the same model in previous 
work [21], the number of epochs is increased to 175. All other training 
parameters remain unchanged, including a batch size of 32, the Adam 
optimizer with an initial learning rate of 1e−3 and cosine decay, the 
data augmentation procedure, and a dropout rate of 0.3 in the top layer. 
The tuning of these training parameters is achieved by monitoring the 
evolution of the model performance on the synthetic validation dataset 
of EPOS-Lid.

After training, the models are evaluated on the real EPOS lidar 
datasets. The evaluation of the pose initialization results is performed 
on Datasets II and III of EPOS-Lid, since these datasets were recorded 
specifically to contain a wide variety of relative poses for testing initial-
ization methods. As in [21], the PointNet++ backbone is modified to be 
optimized for runtime, and the results presented here are the results of 
the runtime optimized model. This model achieves real-time capabil-
ity when evaluated on the CPU of onboard representative computing 
hardware. Each point cloud of the Datasets II and III is processed in 
isolation, i.e., the raw point cloud is passed to the pose initialization 
method, without an initial pose estimate. As in previous work [21], 
the pose initialization is followed by a refinement step with smoothed 
NDT [23]. The settings for the smoothed NDT refinement step are: 
a voxel grid size and a maximum point-to-cell distance of 7.5 cm, a 
maximum number of 30 iterations, and a termination threshold once 
the pose increment is lower than 0.05 deg and 1 mm.

The distribution of position errors (Eq. (2)) and attitude errors 
(Eq. (4)) is presented in Fig.  10. For both boxplots, the blue box 
represents the interquartile values, and the orange line the median. The 
whiskers extend to the 5th and 95th percentile, and outliers are marked 
by the black crosses. From Fig.  10(a), it is seen that all position errors 
are below 9 cm. The distribution of attitudes, in Fig.  10(b), presents 
more outliers. Amongst the 2555 point clouds of Datasets II and III, 
the attitude estimation error 𝜖𝑎𝑡𝑡 is higher than 3 deg for only 13 of 
them. This corresponds to an error percentage of 0.51%.

We now analyze more in detail these error cases of the pose ini-
tialization method. Out of the 13 error cases, for which the angular 
error of the method is above 3 deg, 12 correspond to Dataset II and 
only one to Dataset III. From these errors, approximately the half (6) 
correspond to an angular error of the pose estimation between 50 deg 
and 60 deg. This is also observable in the distributions of Fig.  10(b). 
Such an error indicates that the pose estimation method has been 
mislead by the symmetries of the target’s hexagonal shape, see Fig.  4. 
Indeed, a hexagon is invariant by a rotation of ±60 deg. Thus in cases 
where the small antennas which would enable to discriminate between 
these poses are not clearly distinguishable (again, see Fig.  4), the 
method estimates an attitude which can be erroneous by ±60 deg. The 
remaining error cases are less straightforward to explain. Yet, it stands 
out that all these errors happen in very close range, for experiment 
times above 880 s, which corresponds to relative distances between the 



L. Renaut et al. Acta Astronautica 238 (2026) 414–423 
Fig. 10. Pose errors when evaluating the pose initialization followed by the 
NDT refinement step to every point cloud of Datasets II and III: (a) Distribution 
of position errors 𝜖𝑝𝑜𝑠; (b) Distribution of attitude errors 𝜖𝑎𝑡𝑡.  (For interpretation 
of the references to color in this figure legend, the reader is referred to the 
web version of this article.)

Table 4
Initialization errors (median and 99th percentile) when using the neural 
network based initialization followed by smoothed NDT on all point clouds 
of Datasets II and III.
 Position error [cm] Attitude error [deg]
 Median 99th %ile Median 99th %ile  
 2.62 8.69 1.04 1.96  

target and chaser satellite below 6 m, see Fig.  8. An explanation is that 
in very close range, the target is only partially in the field-of-view, so 
that fewer features of its shape are observable in the point cloud.

To compare this benchmark method with future models, we suggest 
comparing two metrics, given the distribution of position errors 𝜖𝑝𝑜𝑠, 
and of attitude errors 𝜖𝑎𝑡𝑡. The first metric is the median value of these 
errors, which indicates the precision of the method. The second metric 
is the upper 99th percentile of the errors. This percentile enables to 
quantify the robustness of the pose initialization, which is essential 
for a critical application like pose estimation during space rendezvous. 
We argue that demonstrating that 99% of the pose estimates lie below 
a certain error threshold is a good measure to certify or evaluate a 
pose estimation method. These two metrics for the benchmark pose 
initialization method are presented in Table  4.

4.2. Pose tracking

The pose tracking evaluation is performed on the Dataset I of EPOS-
Lid. For the first point cloud of this dataset, the pose is initialized 
with the initialization method presented in Section 4.1. Afterwards, for 
all subsequent point clouds, tracking is performed with the smoothed 
NDT method. As in [23], the tracking is coupled with a motion filter. 
For each new point cloud, the initial pose estimate to start the NDT 
refinement is provided by the current prediction of the filter.

The results of the pose tracking on Dataset I are presented in Fig. 
11. The results are the raw results of the smoothed NDT tracker, not the 
filtered results. The position error, presented in Fig.  11(a), is around 
5 cm during the fly-around phase, before decreasing to around 3 cm 
during the approach. The maximum value error is reached during the 
fly-around, with a position error of 7.04 cm. The attitude error of the 
pose estimation is presented in Fig.  11(b). The maximum angular error 
of 2.71 deg is reached at the beginning of the tracking.
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Fig. 11. Tracking results on EPOS-Lid Dataset I over time: (a) Position error 
𝜖𝑝𝑜𝑠; (b) Attitude error 𝜖𝑎𝑡𝑡.

Table 5
Tracking errors (median and 99th percentile) when using smoothed NDT to 
track the target pose on the consecutive point clouds of Dataset I.
 Position error [cm] Attitude error [deg]
 Median 99th %ile Median 99th %ile  
 2.24 6.41 1.36 2.48  

To quantitatively evaluate the pose tracking results, the same metric 
as for the pose initialization is used, i.e., the median and 99th percentile 
values of the distributions of position and attitude errors is evaluated. 
These values are presented in Table  5.

5. Conclusion

This work presented EPOS-Lid, an openly available lidar dataset for 
pose estimation in non-cooperative rendezvous scenarios. The datasets 
comprise a synthetic and real part. The synthetic data is generated with 
a high fidelity lidar simulator, and can be used to train and validate 
neural network based pose estimation methods. The real datasets are 
collected at EPOS, and are meant to test lidar-based pose initialization 
and tracking methods. Importantly, the target satellite considered in 
this work is symmetric, such that a metric accounting for the symme-
tries is introduced for evaluating the pose estimation accuracy. Bench-
mark methods for pose estimation are presented to demonstrate the 
usability of the datasets. To ensure consistency in future evaluations, 
it is encouraged to use the same comparison metrics.
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These datasets mark an effort to standardize and accelerate the 
development of lidar based pose estimation methods for space ren-
dezvous. However, the sensor used in this work is a sensor from the 
automotive domain, since no space-grade lidar sensors was available 
at the EPOS facility at the time of this research. Future datasets might 
be recorded with a more representative lidar sensor, and possibly a 
different target satellite.
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Appendix. Practical usage

Each point cloud file in our dataset is provided in a simple ASCII 
text format with the extension .3d. Each file contains one 3D point 
per line with three floating-point values. There is no header. All values 
are in meters. For example, the beginning of a point cloud (2462.3d) 
from Dataset I looks like:

1.3660 0.0350 -0.0490
1.3660 0.0330 -0.0470
1.3660 0.0310 -0.0450
...

To support practical use, we provide the following Python script 
in Listing 1, which converts a .3d file into a standard .pcd file. 
The standard .pcd file can be visualized using open-source tools such 
as pcl_viewer from the Point Cloud Library (PCL) [45], or further 
processed using any PCL-compatible pipeline.

import numpy as np

def convert_to_pcd(input_file, output_file):
points = np.loadtxt(input_file)
with open(output_file, ’w’) as f:

f.write("# .PCD v0.7 - Point Cloud Data file
format\n")

f.write("VERSION 0.7\n")
f.write("FIELDS x y z\n")
f.write("SIZE 4 4 4\n")
f.write("TYPE F F F\n")
f.write("COUNT 1 1 1\n")
f.write(f"WIDTH {len(points)}\n")
f.write("HEIGHT 1\n")
f.write("VIEWPOINT 0 0 0 1 0 0 0\n")
f.write(f"POINTS {len(points)}\n")
f.write("DATA ascii\n")
for p in points:

f.write(f"{p[0]} {p[1]} {p[2]}\n")

# Example usage
convert_to_pcd("2462.3d", "2462.pcd")

Listing 1: Python function to convert a .3d point cloud to the PCL 
.pcd format.
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To use this tool, the PCL library must be installed on the system. 
Installation instructions and source code are available at: pointclouds.
org [Accessed: 3 July 2025]. After converting one file format to another 
one, the file can be visualized by calling:

pcl_viewer 2462.pcd

Listing 2: Command for visualization of the converted point cloud 
using PCL.

The datasets presented in this paper are intended to support a wide 
range of applications, including 3D point cloud registration, tracking, 
and pose estimation. We provide raw point cloud data in .3d format 
along with corresponding ground truth annotations in .pose files. 
As the dataset is designed to be adaptable to different research goals, 
we do not include a fixed evaluation script. Instead, users are encour-
aged to develop their own benchmarking pipelines tailored to their 
specific algorithms and use cases. Although the dataset is provided 
in .3d format, users working with ROS can easily create their own 
scripts to convert the files into sensor_msgs/PointCloud2 mes-
sages or package them into ROS bag files, depending on their specific 
application needs.
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