DEVELOPING A MODERN BUILD
SYSTEM FOR THE
FRAMEWORK MESSy

deRSE25, 27t February 2025

Sven Goldberg, Melven Rdhrig-Zoéliner

i DLR

1. What is MESSy?

& %

MESSy is ...

a software framework that combines components, which are numerical representations of our Earth system. Examples of

components are atmosphere, land and ocean models, and more.
https://messy-interface.org

= ... an abbreviation: Modular Earth Submodel System
* ... built from ~ 3,500,000 SLOC in Fortran, ~ 500,000 SLOC in C/C++

= More than 50 executables

= .. continuously developed (> 20 years), widely used (2024: 41 publications)
» Supported by DKRZ, LRZ, MPCDF, JSC, terrabyte cooperation (DLR, LRZ)

S. Goldberg and M. Réhrig-Zoéliner, DLR-SC, February 2025

https://messy-interface.org/

2. MESSy‘s previous build system

» Build systems in general: Automate build process
= Compile code
= Configure and build executables/libraries

= MESSy: autoconf build
» Requires configure files and makefiles

-> Two types of verbose files need to be maintained

S. Goldberg and M. Réhrig-Zoéliner, DLR-SC, February 2025

i DLR

3. Why do we want to use CMake? ‘#7
DLR

‘Metric | CMake build autoconf build

LOC (total) ~ 10,000 ~ 100,000
LOC (root files) 650 ~ 11,000
Build time (averaged) 180 s 290 s
CMake/configure 30s 13s
make 150 s 277 s
Recompile time 3.5s 15s

File with many dependecies

* Further advantages
= Qut-of-source build - Different configurations in parallel
= Easy to include new architectures (HPC clusters)
= Easy integration into other software (= More users)
» Interface can be used to directly manipulate options/build variables

S. Goldberg and M. Réhrig-Zoéliner, DLR-SC, February 2025

4. CMake for MESSy — First steps ‘#7
DLR

= |nitial situation:
= Mostly Fortran90 code (partially C/C++), GNU autoconf build system exists

= Start with absolute easiest possible configuration

= How did we know what to build?

= Get overview of mandatory files and libraries for (main) executable
= Use (root) Makefile (= all target)

S. Goldberg and M. Réhrig-Zoéliner, DLR-SC, February 2025

4. CMake for MESSy — Understanding autoconf ‘#7
DLR

HONY: all

u I\/IESSy‘S all target: .rm:::.:jlu::g basemodels

target dependencies
rule

HONY: basemodels .
)ydels: libs recipe

/

* |n the recipe, the Makef1 le of the actual executable (echamb) is called

libs libraries

all basemodels

executable

S. Goldberg and M. Réhrig-Zoéliner, DLR-SC, February 2025

4. CMake for MESSy — Minimal configuration

cmake_minimum_required(VERSION 3.20)
project(MESSy LANGUAGES Fortran C)
set(CMAKE_Fortran_PREPROCESS On)

List (APPEND CMAKE_MODULE_PATH "S${CMAKE_CURRENT_SOURCE_DIR}
set(CMAKE_Fortran_FLAGS "S{CMAKE_Fortran_FLAGS}
add_compile_definitions(MPIOM_13B MESSY)

find_package(MPI REQUIRED COMPONENTS Fortran C)

find_package(NetCDF REQUIRED COMPONENTS Fortran C)

find_package(LAPACK REQUIRED)

Create config.h file needed for echam5/su

configure_file("'${CMAKE_CURRENT_SOURCE_DIR}
${CMAKE_CURRENT_BINARY_DIR} :

include_directories(S{CMAKE_CURRENT_BINARY_DIR})

add_subdirectory(libsrc)
add_subdirectory(messy)
add subdirectorv(mpiom)
Iadd_subdirectory(echams)

4. CMake for MESSy — Developing the build system ‘#7
DLR

» Solid basis = Add compile definitions and configuration options
= Configure file lists options and defines their behaviour (very verbose)

autoconf

= Example: --enable-ASYNCF L ook

ASYNCF_DEF=
LIBSRCS+=
MESSY_LIB+=

» Define CMake option ASYNCF (by default OFF)

» Add path and define variables to link against library

mptimﬁ{ﬁS?NEF
if (ASYNCF)
add_subdirectory(libsrc/async- fortran)

cet(ASYNCF COMPILE_DEF)
11 t(APPEND MESSYLIBS OPTIONAL Fortran async threads fortran)

S. Goldberg and M. Réhrig-Zoliner, DLR-SC, February 2025

5. General aspects and learnings | 4#7
DLR

* Cl job in repo to save state and (pFUnit) test framework

= Use README-cmake . md, Modulefiles and flagfiles (= clusters)
* Do not run autoconf and CMake build in same local directory

» CMake syntax (string behaviour, structure of function inputs, ...)

= Often, there Is a way to translate autoconf into CMake command

= |f not: add_custom_target(), add_custom_command(), execute_process()
* The detailed CMake documentation is your friend

* “Trial and error’ is legitimate approach
» MESSy: Work of almost 6 months of FTE

S. Goldberg and M. Réhrig-Zoliner, DLR-SC, February 2025

5. General aspects and learnings |l ‘#7
DLR

= Compiling error for MESSy's optional guess library
= Some libraries bring their own config. h file > Naming conflicts

» Usual way to add a (relative) directory for include files to target

directories(guess PUBLIC framework)

= BUT: CMake appends all paths - Path to MESSy conf1ig. h file found first
= Results in compilation error since the file does not contain right information
» Fix this, by prepending the path using CMake keyword BEFORE

iirectories(guess BEFORE PUBLIC framework)

S. Goldberg and M. Réhrig-Zoliner, DLR-SC, February 2025

5. General aspects and learnings Il ‘#7
DLR

* find_package () very powerful to find external packages/libraries
= Might still find wrong/unwanted packages sometimes
» Example: Loaded module on cluster includes its own NetCDF

* Function will find this (unwanted) NetCDF
- Make use of CMake variable CMAKE_IGNORE_PATH

= Append variable by path to module before find_package ()
= Hint: Store the old value of the variable and reset it after that

S. Goldberg and M. Réhrig-Zoliner, DLR-SC, February 2025

6. Conclusion ‘#7
DLR

» Quotes by one of the main developers:
= Maintenance simplified
» Builds are more flexible, yet faster
» Developers and users get along very well with new build system
= |t was worth the effort

‘Metric || CMake build autoconf build

LOC (total) ~ 10,000 ~ 100,000
LOC (root files) 650 ~ 11,000
Build time (averaged) 180 s 290 s
CMake/configure 30s 13s
make 150 s 277s
Recompile time 3.5s 15s

File with many dependecies

S. Goldberg and M. Réhrig-Zoéliner, DLR-SC, February 2025

i DLR

Thank you for your attention!

Questions?

S. Goldberg and M. Réhrig-Zoliner, DLR-SC, February 2025

	Folie 1: Developing a modern build system for The framework MESSy
	Folie 2: 1. What is MESSy?
	Folie 3: 2. MESSy‘s previous build system
	Folie 4: 3. Why do we want to use CMake? Results for MESSy and general advantages
	Folie 5: 4. CMake for MESSy – First steps
	Folie 6: 4. CMake for MESSy – Understanding autoconf
	Folie 7: 4. CMake for MESSy – Minimal configuration Root CMakeLists.txt
	Folie 8: 4. CMake for MESSy – Developing the build system Add configuration options – From autoconf to CMake
	Folie 9: 5. General aspects and learnings I
	Folie 10: 5. General aspects and learnings II MESSy-specific
	Folie 11: 5. General aspects and learnings III MESSy-specific
	Folie 12: 6. Conclusion
	Folie 13

