
deRSE25, 27th February 2025

Sven Goldberg, Melven Röhrig-Zöllner

DEVELOPING A MODERN BUILD 
SYSTEM FOR THE 
FRAMEWORK MESSy

1
S. Goldberg and M. Röhrig-Zöllner, DLR-SC, February 2025



1. What is MESSy?

▪ … an abbreviation: Modular Earth Submodel System

▪ … built from ~ 3,500,000 SLOC in Fortran, ~ 500,000 SLOC in C/C++

▪ More than 50 executables

▪ … continuously developed (> 20 years), widely used (2024: 41 publications)

▪ Supported by DKRZ, LRZ, MPCDF, JSC, terrabyte cooperation (DLR, LRZ)

2
S. Goldberg and M. Röhrig-Zöllner, DLR-SC, February 2025

https://messy-interface.org

https://messy-interface.org/


2. MESSy‘s previous build system

▪ Build systems in general: Automate build process

▪ Compile code

▪ Configure and build executables/libraries

▪ MESSy: autoconf build

▪ Requires configure files and makefiles

→ Two types of verbose files need to be maintained

3
S. Goldberg and M. Röhrig-Zöllner, DLR-SC, February 2025



3. Why do we want to use CMake?
Results for MESSy and general advantages

▪ Further advantages

▪ Out-of-source build → Different configurations in parallel

▪ Easy to include new architectures (HPC clusters)

▪ Easy integration into other software (→ More users)

▪ Interface can be used to directly manipulate options/build variables

4
S. Goldberg and M. Röhrig-Zöllner, DLR-SC, February 2025

Metric CMake build autoconf build

LOC (total) ~ 10,000 ~ 100,000

LOC (root files) 650 ~ 11,000

Build time (averaged) 180 s 290 s

CMake/configure 30 s 13 s

make 150 s 277 s

Recompile time
File with many dependecies

3.5 s 15 s



4. CMake for MESSy – First steps

▪ Initial situation: 

▪ Mostly Fortran90 code (partially C/C++), GNU autoconf build system exists

▪ Start with absolute easiest possible configuration

▪ How did we know what to build?

▪ Get overview of mandatory files and libraries for (main) executable

▪ Use (root) Makefile (→ all target)

5
S. Goldberg and M. Röhrig-Zöllner, DLR-SC, February 2025



4. CMake for MESSy – Understanding autoconf

▪ MESSy‘s all target:

6
S. Goldberg and M. Röhrig-Zöllner, DLR-SC, February 2025

target dependencies

recipe

rule

all basemodels

libs libraries

executable

▪ In the recipe, the Makefile of the actual executable (echam5) is called



4. CMake for MESSy – Minimal configuration
Root CMakeLists.txt

7
S. Goldberg and M. Röhrig-Zöllner, DLR-SC, February 2025



4. CMake for MESSy – Developing the build system
Add configuration options – From autoconf to CMake

▪ Solid basis → Add compile definitions and configuration options

▪ Configure file lists options and defines their behaviour (very verbose)

▪ Example: --enable-ASYNCF

8
S. Goldberg and M. Röhrig-Zöllner, DLR-SC, February 2025

autoconf

CMake

▪ Define CMake option ASYNCF (by default OFF)

▪ Add path and define variables to link against library



5. General aspects and learnings I

▪ CI job in repo to save state and (pFUnit) test framework

▪ Use README-cmake.md, Modulefiles and flagfiles (→ clusters) 

▪ Do not run autoconf and CMake build in same local directory

▪ CMake syntax (string behaviour, structure of function inputs, …)

▪ Often, there is a way to translate autoconf into CMake command

▪ If not: add_custom_target(), add_custom_command(), execute_process()

▪ The detailed CMake documentation is your friend

▪ ‘Trial and error‘ is legitimate approach

▪ MESSy: Work of almost 6 months of FTE

9
S. Goldberg and M. Röhrig-Zöllner, DLR-SC, February 2025



5. General aspects and learnings II
MESSy-specific

▪ Compiling error for MESSy‘s optional guess library

▪ Some libraries bring their own config.h file → Naming conflicts

10
S. Goldberg and M. Röhrig-Zöllner, DLR-SC, February 2025

▪ Fix this, by prepending the path using CMake keyword BEFORE

▪ Usual way to add a (relative) directory for include files to target

▪ BUT: CMake appends all paths → Path to MESSy config.h file found first

▪ Results in compilation error since the file does not contain right information



5. General aspects and learnings III
MESSy-specific

▪ find_package() very powerful to find external packages/libraries

▪ Might still find wrong/unwanted packages sometimes

▪ Example: Loaded module on cluster includes its own NetCDF

▪ Function will find this (unwanted) NetCDF

→ Make use of CMake variable CMAKE_IGNORE_PATH

▪ Append variable by path to module before find_package()

▪ Hint: Store the old value of the variable and reset it after that

11
S. Goldberg and M. Röhrig-Zöllner, DLR-SC, February 2025



6. Conclusion

▪ Quotes by one of the main developers:

▪ Maintenance simplified

▪ Builds are more flexible, yet faster

▪ Developers and users get along very well with new build system

▪ It was worth the effort

12
S. Goldberg and M. Röhrig-Zöllner, DLR-SC, February 2025

Metric CMake build autoconf build

LOC (total) ~ 10,000 ~ 100,000

LOC (root files) 650 ~ 11,000

Build time (averaged) 180 s 290 s

CMake/configure 30 s 13 s

make 150 s 277 s

Recompile time
File with many dependecies

3.5 s 15 s



Thank you for your attention!

Questions?

13
S. Goldberg and M. Röhrig-Zöllner, DLR-SC, February 2025


	Folie 1: Developing a modern build system for The framework MESSy
	Folie 2: 1. What is MESSy?
	Folie 3: 2. MESSy‘s previous build system
	Folie 4: 3. Why do we want to use CMake? Results for MESSy and general advantages
	Folie 5: 4. CMake for MESSy – First steps
	Folie 6: 4. CMake for MESSy – Understanding autoconf
	Folie 7: 4. CMake for MESSy – Minimal configuration Root CMakeLists.txt
	Folie 8: 4. CMake for MESSy – Developing the build system Add configuration options – From autoconf to CMake
	Folie 9: 5. General aspects and learnings I 
	Folie 10: 5. General aspects and learnings II MESSy-specific
	Folie 11: 5. General aspects and learnings III MESSy-specific
	Folie 12: 6. Conclusion
	Folie 13

