
Technical University of Munich Institute of Flight System Dynamics

Development and Evaluation of a
Full-Stack Path Planner for an Air Taxi

Control Center
–

Entwicklung und Bewertung eines Full-Stack-Pfadplaners für ein
Air-Taxi-Kontrollzentrum

Master’s Thesis

2025-10-01

Author: Sukhbir Singh

Matriculation Number: 03763741

Supervisors: Dominik Heimsch

Dr. Enno Nagel

Examiner: Prof. Dr.-Ing. Florian Holzapfel

Statutory Declaration

Statutory Declaration

I, Sukhbir Singh, declare on oath towards the Institute of Flight System Dynamics of Technical

University of Munich, that I have prepared the present Master’s Thesis independently and with

the aid of nothing but the resources listed in the bibliography.

This thesis has neither as-is nor similarly been submitted to any other university.

Garching, 2025-10-01

Sukhbir Singh

Development and Evaluation of a Full-Stack Path Planner for an Air Taxi Control Center

Sukhbir Singh Page i

Abstract

Abstract

This thesis presents the design and implementation of a scalable and modular path planning

system for airtaxi operations in structured urban airspace (U-space). Leveraging a microservice-

based architecture, the system addresses the complexity of low-altitude corridor navigation

through a global A* path planner and a proposed local planner using potential fields for dy-

namic obstacle avoidance.

Developed in Python and Java SpringBoot with standardized web interfaces, the system sup-

ports future extensions such as real-time obstacle fusion and adaptive replanning. A CesiumJS-

based frontend enables 3D visualization of 4D trajectories. System performance is evaluated

with a focus on scalability and latency, including a breakdown of service-level delays.

By focusing on real-world deployability and modularity, this work contributes to bridging the

gap between U-space theoretical frameworks and operational airtaxi management systems,

drawing on proven microservice principles from UAV domains.

Kurzfassung

Diese Masterarbeit stellt die Entwicklung eines skalierbaren und modularen Pfadplanungssys-

tems für den Betrieb von Lufttaxis im strukturierten urbanen Luftraum (U-Space) vor. Mithilfe ei-

ner mikroservicebasierten Architektur wird die Komplexität der Navigation in niedrig gelegenen

Luftkorridoren durch einen globalen Pfadplaner (A*-Algorithmus) und einen vorgeschlagenen

lokalen Planer auf Basis von Potentialfeldern adressiert.

Die Implementierung erfolgt in Python und Java SpringBoot mit standardisierten Webschnitt-

stellen und ermöglicht Erweiterungen wie Echtzeit-Hindernisfusion und adaptive Neuplanung.

Ein mit CesiumJS entwickeltes Frontend visualisiert die vierdimensionalen Trajektorien in 3D.

Die Systemleistung wird im Hinblick auf Skalierbarkeit und Latenz analysiert.

Durch den Fokus auf reale Einsatzfähigkeit leistet diese Arbeit einen Beitrag zur Überbrückung

der Lücke zwischen theoretischen U-Space-Konzepten und operativen Lufttaxi-Systemen und

greift bewährte Mikroservice-Prinzipien aus UAV-Anwendungen auf.

Development and Evaluation of a Full-Stack Path Planner for an Air Taxi Control Center

Sukhbir Singh Page iii

Table of Contents

Table of Contents

List of Figures vii

List of Tables ix

List of Algorithms xi

Table of Symbols xiii

1 Introduction 1

1.1 Background and Context . 1

1.2 Problem Statement . 1

1.3 Objectives . 2

1.4 Thesis Structure . 2

2 Motivation 3

2.1 Importance of Scalable Path Planning in U-Space 3

2.2 Challenges in Real-Time Multi-UAV Coordination 3

2.3 Role of Microservices in UTM Systems . 3

3 Literature Review 5

3.1 Existing U-Space Architectures . 5

3.2 Microservices in UAV Path Planning . 5

3.3 Path Planning Algorithms (A*, Potential Fields, etc.) 6

3.4 Performance Metrics in Distributed Systems . 6

4 Overview of the Full-Stack Design 9

4.1 Subsystems of the Design . 9

4.2 Operational Flow Summary . 10

5 Scenario and Data Basis 11

5.1 Vertiports . 11

5.2 Graph Representation . 13

6 Path Planning Algorithms 15

6.1 Global A* Algorithm in Air Corridors . 15

6.2 Trajectory Generation Pipeline . 18

6.2.1 Notation and Conventions . 18

6.2.2 Inputs . 18

6.2.3 Waypoint Synthesis . 19

6.2.4 Phase Encoding and Speed Constraints 20

6.2.5 CFMS Integration . 20

6.2.6 Temporal and Spatial Sampling . 20

Development and Evaluation of a Full-Stack Path Planner for an Air Taxi Control Center

Sukhbir Singh Page v

Table of Contents

6.2.7 Exported Data Fields . 20

6.2.8 Algorithm Summary . 21

6.3 Conflict Detection with NDMap . 21

6.4 Conflict Resolution . 23

7 Results 25

7.1 Experimental Setup . 25

7.1.1 Scenario and Data . 25

7.1.2 Planner and Generator Configuration . 25

7.1.3 Evaluation Metrics . 25

7.2 Case Studies: Sample Trajectories . 26

7.2.1 Representative Long-Leg Route . 26

7.2.2 Representative Short-Leg Route . 29

7.3 Conflict Handling . 32

7.3.1 Conflict Detection . 32

7.3.2 Conflict Resolution . 33

7.3.3 Conflict Handling with Interchanged Endpoints 34

7.4 Scalability Evaluation with 100 Trajectories . 35

7.5 Evaluation under Active Conflict Resolution . 38

7.5.1 Processing Strategy . 38

7.5.2 Timing Results . 38

7.5.3 Discussion . 39

8 Conclusions and Future Work 41

8.1 Conclusions . 41

8.2 Future Work . 41

References I

Page vi

Development and Evaluation of a Full-Stack Path Planner for an Air Taxi Control Center

Sukhbir Singh

List of Figures

List of Figures

4–1 High-level architecture of the full-stack design. In the present implementation, the

conflict-checking logic is embedded in the Planner. 10

5–1 Vertiports in Hamburg (anonymized). 11

5–2 Comparison of the corridor network in static map view (left) and interactive Cesium

front-end (right). 12

6–1 Illustration of the A* search on an undirected vertiport corridor graph. The starting

node s and destination node d are connected through intermediate nodes n. 15

6–2 Illustration of conflict resolution via lateral re-routing. 24

7–1 Planned reference trajectory (Trajectory A) from s to d over the Hamburg corridor

network. 26

7–2 Cesium-based visualization of the planned Trajectory A in the front end. Left: full

route; right: take-off segment. 27

7–3 Planned altitude profile H(τ) for Trajectory A (cruise layer near 200 m AGL). 27

7–4 Planned true airspeed (TAS) profile for Trajectory A. 27

7–5 Planned turn-rate profile ψ̇(τ) for Trajectory A (deg/s). 28

7–6 Planned bank-angle profile ϕ(τ) for Trajectory A (deg). 28

7–7 Planned reference trajectory (Trajectory B) from s to d over the Hamburg corridor

network. 30

7–8 Cesium-based visualization of the planned Trajectory B in the front end. Left: full

route; right: take-off segment. 30

7–9 Planned altitude profile H(τ) for Trajectory B (cruise layer near 200 m AGL). 31

7–10 Planned true airspeed (TAS) profile for Trajectory B. 31

7–11 Planned turn-rate profile ψ̇(τ) for Trajectory B (deg/s). 31

7–12 Planned bank-angle profile ϕ(τ) for Trajectory B (deg). 32

7–13 Comparison of conflict detection and resolution using NDMap and rerouting on

planned routes. 33

7–14 Conflict handling for interchanged endpoints on planned routes. The later trajectory

is re-planned to avoid the overlapping corridor. 34

7–15 A* runtime vs. path nodes (count). Example correlation: r ≈ 0.02. 36

7–16 Trajectory generator runtime vs. path nodes (count). Example correlation: r ≈ 0.75. 36

7–17 Histogram of total runtime per trajectory request. 37

7–18 Histogram of trajectory generation runtime per request. 37

7–19 Left: total processing time versus path distance for 13 conflict-free planned trajec-

tories. Right: histogram of total processing times across the same runs. 39

Development and Evaluation of a Full-Stack Path Planner for an Air Taxi Control Center

Sukhbir Singh Page vii

List of Tables

List of Tables

7–1 Summary statistics for the planned reference Trajectory A. 29

7–2 Summary statistics for the planned reference Trajectory B. 32

7–3 Runtime summary over 100 synchronous trajectory requests. 35

Development and Evaluation of a Full-Stack Path Planner for an Air Taxi Control Center

Sukhbir Singh Page ix

List of Algorithms

List of Algorithms

6–1 A* Path Planning in Air Corridors . 17

6–2 Trajectory Generation from A* Path . 21

Development and Evaluation of a Full-Stack Path Planner for an Air Taxi Control Center

Sukhbir Singh Page xi

Table of Symbols

Table of Symbols

Latin Letters

Symbol Description

V set of vertiports (graph nodes)

E set of corridors (graph edges)

s starting vertiport (start node)

d destination vertiport (goal node)

n generic node in the graph

d(u, v) geodesic (Haversine) distance between nodes u, v

g(n) cumulative cost-to-come from s to n

h(n) heuristic cost-to-go from n to d

f(n) A* evaluation function f(n) = g(n) + h(n)

L total path length (km)

T total flight time (s or min)

VTAS true airspeed (m/s)

Vg ground speed (m/s)

Vtakeoff, Vtransition, Vcruise, Vapproach nominal speed profile (m/s) after applying safety factor

ksafety multiplicative safety factor for speed/altitude margins

H altitude (m, MSL)

Hc requested corridor height above ground level (AGL), fixed at 200 m

Habs resulting absolute waypoint altitude hi +Hc (m MSL)

Ḣ climb or descent rate (m/s)

ψ heading angle (deg)

ψ̇ turn rate (deg/s)

ϕ bank angle (deg)

a longitudinal acceleration (m/s2)

status planning outcome code (200=resolved, 409=unresolved)

Greek Letters

Symbol Description

φ latitude (deg)

λ longitude (deg)

τ continuous time variable (s)

α interpolation factor in [0,1] for waypoint generation

∆λmin minimum separation in longitude (deg)

∆φmin minimum separation in latitude (deg)

∆Hmin minimum vertical separation (m)

∆τmin minimum temporal separation (s)

Indices and Sets

Development and Evaluation of a Full-Stack Path Planner for an Air Taxi Control Center

Sukhbir Singh Page xiii

Table of Symbols

Symbol Description

i, j indices of nodes or waypoints

P = [v0, . . . , vn] path returned by A* (sequence of nodes)

W = [w1, . . . , wm] synthesized waypoints (with altitude/speed)

V(vi) coordinate mapping for vertiport vi

T generated 4D trajectory

T ′ sub-sampled trajectory

S separation minima vector in NDMap

Econflict set of corridor edges involved in a detected conflict

Page xiv

Development and Evaluation of a Full-Stack Path Planner for an Air Taxi Control Center

Sukhbir Singh

1 Introduction

1 Introduction

Urban Air Mobility (UAM) is emerging as a key component of future transportation systems,

promising rapid and sustainable aerial connections within and between cities. However, inte-

grating large numbers of electric vertical take-off and landing (eVTOL) vehicles into low-altitude

airspace poses significant operational challenges. To ensure safety, efficiency, and scalability in

such environments, robust path planning and conflict-management capabilities are essential.

This thesis addresses these challenges by designing and evaluating a full-stack, microservice-

based path-planning framework for U-Space air-taxi operations. The framework combines a

global A* planner, a 4D trajectory-generation pipeline, and an embedded conflict-detection/resolution

mechanism, complemented by a CesiumJS-based front end for real-time visualisation. It aims

to provide insights into the scalability, latency, and practical deployment potential of microservice-

oriented U-Space planning systems.

1.1 Background and Context

The rapid development of UAM systems has given rise to novel challenges in managing low-

altitude airspace, especially in densely populated urban environments. U-Space, the European

framework for Unmanned Traffic Management (UTM), proposes a structured, service-oriented

approach to handle the safe and efficient integration of Unmanned Aerial Vehicles (UAVs) into

controlled airspace [1]. A critical component of this framework is the path-planning system,

which must be capable of generating conflict-free, efficient, and constraint-compliant trajecto-

ries in real time for a large number of concurrent missions.

Traditional monolithic path-planning systems can face challenges regarding modularity, scal-

ability, and resilience. Recent advancements in microservices architecture offer a promising

alternative by enabling loosely coupled, independently scalable services that can operate asyn-

chronously [2]. By decoupling planning, verification, and visualisation, such architectures allow

for better system maintenance and higher throughput in distributed UAV operations.

1.2 Problem Statement

Although significant efforts have been made in designing U-Space services, there is a lack

of performance-oriented studies that examine the real-time behaviour of microservice-based

UAV path-planning systems. In particular, the response time under high-load scenarios, the

impact of integrated conflict detection and resolution, and service-level breakdowns remain

underexplored.

Moreover, integrating 4D path planning (including altitude and time dimensions), vehicle-specific

kinematic constraints, and conflict-resolution logic into a unified architecture poses consider-

Development and Evaluation of a Full-Stack Path Planner for an Air Taxi Control Center

Sukhbir Singh Page 1

1 Introduction

able challenges—especially in corridor-based environments typical of U-Space implementa-

tions.

Therefore, this thesis designs and evaluates a modular path-planning system that leverages

microservice principles for robust real-time operation and provides insights into its scalability,

latency, and practical deployment potential.

1.3 Objectives

The main objectives of this thesis are as follows:

• Design and implement a full-stack path-planning framework based on microservice prin-

ciples for U-Space air-taxi operations.

• Integrate a global A* planner with a 4D trajectory-generation pipeline and an embedded

conflict-detection/resolution mechanism.

• Evaluate system performance in terms of scalability, end-to-end latency, and service-level

breakdowns under different traffic loads.

• Visualise 4D trajectories and conflicts using a CesiumJS-based front end for improved

situational awareness.

• Discuss future extensions such as richer resolution strategies (temporal shifts, altitude

changes) and weather/risk-based corridor weighting.

1.4 Thesis Structure

The remainder of this thesis is organised into the following chapters:

• Chapter 3 presents the literature review, summarising existing U-Space concepts, UAV

path-planning algorithms, conflict-management approaches, and microservice architec-

tures.

• Chapter 4 describes the full-stack design of the system, including its main subsystems

and their interactions.

• Chapter 5 outlines the scenario and data basis used in this work, focusing on the Hamburg

vertiport network and corridor model.

• Chapter 6 details the implemented path-planning algorithms and the 4D trajectory-generation

pipeline with integrated conflict detection and resolution.

• Chapter 7 presents the results of the evaluation, including illustrative examples of planned

trajectories as well as the performance and conflict-handling analysis under different

loads.

• Chapter 8 concludes the thesis and discusses future research directions.

Page 2

Development and Evaluation of a Full-Stack Path Planner for an Air Taxi Control Center

Sukhbir Singh

2 Motivation

2 Motivation

2.1 Importance of Scalable Path Planning in U-Space

Urban Air Mobility (UAM) concepts rely on safe and efficient trajectory planning within highly

dynamic and dense low-altitude airspace. The European U-space framework envisions a digital

and service-oriented architecture to enable such operations [3].

A key requirement for this environment is scalability: thousands of trajectory requests may need

to be processed in real time, while ensuring separation minima and maintaining safe operations.

Previous research has shown that trajectory-based operations require computationally efficient

frameworks to handle large volumes of requests without degrading performance [4], [5].

2.2 Challenges in Real-Time Multi-UAV Coordination

Path planning interacts with several other services in the UAM ecosystem. The global plan-

ner provides a feasible route across the corridor network, but this must be complemented by

flight management software capable of synthesizing flyable 4D trajectories [6], conflict detection

modules such as NDMap [7], and path verification services [5].

If these services are tightly coupled in a monolithic architecture, the system risks reduced inter-

operability, higher technical debt, and limited extensibility. Given the diversity of programming

tools and modeling approaches used in these modules, there is a strong need for a framework

that allows independent implementations to interact seamlessly.

2.3 Role of Microservices in UTM Systems

A microservice-based design allows path planning to be implemented as an independent ser-

vice, decoupled from trajectory generation, verification, and conflict detection. This promotes

modularity, extensibility, and ease of maintenance [2], [8].

Such an approach is particularly relevant in the context of U-space, where real-time perfor-

mance and scalability are critical. Evaluating this framework in terms of scalability and latency

is essential to assess its viability for future UAM applications [4].

Finally, the usability of these systems also depends on visualization and stakeholder access.

Different actors (e.g., operators, regulators, or airspace managers) may require different levels

of visibility into the system. Determining which information should be accessible to which user

group remains an open question of both technical and regulatory importance [9].

Development and Evaluation of a Full-Stack Path Planner for an Air Taxi Control Center

Sukhbir Singh Page 3

3 Literature Review

3 Literature Review

3.1 Existing U-Space Architectures

Across Europe, the SESAR Master Plan frames U-space as part of the Digital European Sky

transition to trajectory-based operations (TBO) and a cloud-/data-driven, service-oriented de-

livery model. It sets deployment priorities (SDO5: TBO; SDO8: service-oriented delivery) and

a dedicated U-space 2.0 roadmap, thereby motivating the use of 4D trajectory representations

and interoperable services in this thesis [9].

A complementary comparison of SESAR and FAA NextGen clarifies how negotiated 4D op-

erations use controlled/required times of arrival (CTA/RTA) and time windows to improve pre-

dictability and capacity. Critically for the evaluation in this work, it also catalogues key per-

formance areas and metrics used to assess 4D concepts (e.g., safety, efficiency, capacity,

predictability, controller workload) [10].

Within U-space tactical services, conflict management over 4D grids has been demonstrated:

trajectories are discretized in space–time, and conflicts are detected and resolved iteratively to

minimize deviation from originally filed paths while bounding processing time. These findings

motivate the separation between ‘monitoring’ and ‘resolution’ adopted in the present frame-

work and the preference to preserve operator-intended trajectories [11]. This evidence also

motivates the use of a fixed corridor layer and time-based admission control for the Hamburg

test network considered in this study.

3.2 Microservices in UAV Path Planning

Prototypes of U-space in-flight services show a modular, cloud-hosted stack with distinct com-

ponents for U-space service management, tracking, monitoring, emergency management, and

tactical deconfliction. Implementations frequently employ message-oriented middleware (e.g.,

ROS topics) to decouple services and support scalability. These patterns support the microservice-

based architecture applied in this work, which isolates planning, conformance monitoring, and

conflict handling behind stable interfaces [12].

Front-end & Visualisation (CesiumJS).

For situational awareness and planner debugging, CesiumJS was adopted as a web-native 3D

geospatial engine supporting global WGS-84 rendering, time-dynamic entities (CZML), and 3D

Tiles. In the proposed stack it acts as a thin client for 4D trajectory visualisation (animated

timelines) and live conformance indicators, complementing the microservices without coupling

visual logic to back-end services [13].

Development and Evaluation of a Full-Stack Path Planner for an Air Taxi Control Center

Sukhbir Singh Page 5

3 Literature Review

3.3 Path Planning Algorithms (A*, Potential Fields, etc.)

Search-based planners remain strong baselines for low-altitude small Unmanned Aircraft Sys-

tems (sUAS). A two-stage planner that seeds with A* and then relaxes the path using a chain of

mass–spring–damper elements in a potential field produces collision-free, flyable 3D paths and

naturally embeds timing to avoid co-temporal conflicts—a property leveraged in the conflict-

costing of this work [14].

Evidence for A* design trade-offs in UTM contexts shows that 3D A* can reduce travelled dis-

tance compared to stacked-2D variants (≈6% on a 200 m×200 m×120 m map), but at sub-

stantially higher runtime (9× on average), underscoring the decision in this study to use 3D

search selectively and cache heuristics [15]. Accordingly, this work employs a 2D A* over a

fixed-altitude corridor graph for global planning and delegates vertical and timing constraints

to a separate 4D trajectory generator (Sec. 6.2), achieving a balance between runtime and

trajectory fidelity.

To handle evolving threats, hybrid global–local methods combine learning and reactive fields.

One dynamic approach uses improved Q-learning for global routing and calls an artificial po-

tential field locally when unknown threats emerge between waypoints, successfully re-planning

around new hazards in simulation—supporting the “planner + local-reactor” design choice in

the present study [16].

Finally, recent surveys categorize UAV planners (grid/graph: Dijkstra, A*, D*/LPA/IDA*; sam-

pling: PRM/RRT; optimization/MIP/MPC; bio-inspired/metaheuristics; geometric/Voronoi/DT;

game-theoretic) and map them to environment assumptions (static vs. dynamic), aiding al-

gorithm selection and benchmarking design in this thesis [17].

3.4 Performance Metrics in Distributed Systems

Because the planner runs inside a distributed U-space stack, both algorithmic and system met-

rics are evaluated. From 4D-TBO literature, safety, predictability, and capacity metrics (e.g.,

losses of separation, fulfilled time windows, CTA/RTA accuracy, sector throughput) are adopted

to quantify operational impact [10]. From U-space architectures, service-level metrics such as

planner latency and throughput under load, queuing delays, backpressure behaviour, availabil-

ity/MTBF, and tactical deconfliction processing time inform the performance evaluation [11],

[12].

On the path-planning side, the reported measures include computation time versus instance

size, path length as an energy proxy, smoothness/curvature bounds, re-plan time on dynamic

updates, and conflict- or constraint-violation rates under injected traffic—aligning with A* versus

3D-A* trade-offs and real-time reactivity observed in prior work [14], [15].

Page 6

Development and Evaluation of a Full-Stack Path Planner for an Air Taxi Control Center

Sukhbir Singh

3 Literature Review

These literature-derived metrics guided the evaluation of the Hamburg case (Secs. 7.4 and

7.5), where latency, path length, and conflict-resolution success rates were measured under

different traffic loads.

Development and Evaluation of a Full-Stack Path Planner for an Air Taxi Control Center

Sukhbir Singh Page 7

4 Overview of the Full-Stack Design

4 Overview of the Full-Stack Design

The system comprises four logical functions that together implement the proposed framework:

(i) a WebServer that provides authoritative aeronautical topology (vertiports and the air-corridor

network), (ii) a Planner that computes candidate 4D trajectories over that topology and performs

iterative conflict checks, (iii) an internal conflict-checking module embedded within the Planner

that screens candidate routes against active traffic, and (iv) a U-space Service Provider (USSP)

that validates, authorizes, and supervises the flight-plan lifecycle.

Figure 4–1 illustrates the interactions between these functions. In the present implementation

the conflict-checking logic is not deployed as a separate service but is tightly integrated with the

Planner. The Planner retrieves vertiport and corridor data from the WebServer, incorporates

constraints and active traffic from the USSP, synthesizes a candidate route, and iteratively

checks it against existing traffic. If a conflict is detected, the Planner recomputes the route using

the lateral re-routing strategy described in Sec. 6.4 until a conflict-free trajectory is obtained.

The resulting trajectory is then submitted to the USSP for validation and activation.

4.1 Subsystems of the Design

WebServer (Topology Registry)

Provides the authoritative source of vertiport locations and the corridor graph used for route

generation. It stores vertiport identifiers, names, geographic footprints, elevations, capacities,

and corridor geometries including altitude bands, speed limits, directionality, and optional way-

points or holding points. The WebServer content corresponds to the vertiport/corridor dataset

described in Sec. 5.

Planner with Integrated Conflict Checking

Generates feasible 4D paths on the corridor network subject to aircraft performance and oper-

ational constraints, while also performing iterative conflict checks. It takes as input the topology

from the WebServer, constraints and active traffic from the USSP, and mission specifications

(origin, destination, time window). It produces conflict-free candidate trajectories with proposed

routes, timestamps, and performance annotations. Conflict detection is implemented using

NDMap (Sec. 6.3) embedded within the Planner. Only conflicts with other routes are consid-

ered in this study; geofences and other constraints are outside the present scope.

Development and Evaluation of a Full-Stack Path Planner for an Air Taxi Control Center

Sukhbir Singh Page 9

4 Overview of the Full-Stack Design

USSP (Authorization and Supervision)

Serves as the authoritative decision point for flight-plan validation, authorization, activation,

modification, and termination. It performs strategic deconfliction, policy enforcement, state

transitions, supervision signals, and audit logging. It maintains the authoritative state of active

plans and disseminates updates or notifications that can trigger replanning.

4.2 Operational Flow Summary

1. The Planner fetches topology from the WebServer and constraints/traffic from the USSP.

2. The Planner computes a candidate plan.

3. The Planner’s internal conflict-checking module (NDMap) evaluates the candidate against

active traffic; if a conflict is detected, lateral re-routing is applied until no conflict remains.

4. The conflict-free plan is submitted to the USSP for validation and activation.

5. Updates to constraints or deviations trigger notifications, prompting replanning as needed.

This architecture isolates authoritative aeronautical data (WebServer) from operational autho-

rization (USSP), while integrating conflict checking directly into the Planner to reduce inter-

service latency. It enables repeatable, policy-grounded evaluation of the path planner while

preserving component independence and scalability.

Figure 4–1: High-level architecture of the full-stack design. In the present implementation, the

conflict-checking logic is embedded in the Planner.

Page 10

Development and Evaluation of a Full-Stack Path Planner for an Air Taxi Control Center

Sukhbir Singh

5 Scenario and Data Basis

5 Scenario and Data Basis

The path planning framework developed in this work is evaluated in a representative urban

environment: the metropolitan area of Hamburg. This scenario provides a dense network of

potential vertiports connected via corridors and reflects the kinds of challenges expected in

future urban air mobility (UAM) operations.

5.1 Vertiports

Vertiports represent the take-off and landing sites for eVTOL aircraft. In this study, a set of

anonymized vertiport locations within Hamburg is used. Each vertiport may contain one or

more landing pads; for analysis, the average latitude and longitude of all pads is taken as the

node coordinate. Figure 5–1 illustrates the spatial distribution of these vertiports across the

city.

Figure 5–1: Vertiports in Hamburg (anonymized).

Development and Evaluation of a Full-Stack Path Planner for an Air Taxi Control Center

Sukhbir Singh Page 11

5 Scenario and Data Basis

Corridors

Corridors define the available airspace connections between vertiports and are modeled as

undirected edges in the graph G = (V,E). Geometrically, each corridor is represented as a

straight-line segment between two vertiports, and the edge weight d(u, v) corresponds to the

geodesic (great-circle) distance between their coordinates.

For the vertical structure, each corridor is placed at a fixed altitude layer. According to the

European Commission’s U-space Blueprint [3], a reference altitude of 500 ft (approximately

152 m) was adopted for low-level airspace operations. In this work, a constant altitude of 200 m

above ground level is used for the construction of corridors. Each corridor is assigned a uniform

width of 20 m, representing a lateral safety buffer around the nominal centerline.

For visualization and operator interaction, the corridor graph was also rendered in an interactive

Cesium front-end (Fig. 5–2, right). This allows the user to inspect the 3D geometry of the cor-

ridor network, vertical layering, and vertiport locations directly within a web-based interface.

Thus, the corridor model is characterized by the following specifications:

• Shape: straight line between two vertiports;

• Graph representation: undirected edge with weight equal to geodesic distance;

• Altitude: constant 200 m above ground level;

• Width: 20 m.

(a) Constructed corridor network (static map view).

(b) Cesium front-end view of the same corridor

network (3D visualization).

Figure 5–2: Comparison of the corridor network in static map view (left) and interactive Cesium front-end

(right).

Page 12

Development and Evaluation of a Full-Stack Path Planner for an Air Taxi Control Center

Sukhbir Singh

5 Scenario and Data Basis

5.2 Graph Representation

The resulting dataset is an undirected, weighted graph in which nodes correspond to vertiports

and edges represent corridors. Edge weights are given by geodesic distances between node

coordinates. This graph serves as the basis for all path planning experiments in this thesis; the

global A* planner (Sec. 6.1) operates on this graph and uses the notation s (start), n (current

node), and d (destination).

Development and Evaluation of a Full-Stack Path Planner for an Air Taxi Control Center

Sukhbir Singh Page 13

6 Path Planning Algorithms

6 Path Planning Algorithms

6.1 Global A* Algorithm in Air Corridors

For global path planning between vertiports, a graph search approach is adopted. The urban

airspace is modeled as an undirected, weighted graph where nodes represent vertiports and

edges represent available air corridors. The edge weights are given by the geodesic distance

between the connected vertiports, computed using the Haversine formula. The planning ob-

jective is to determine the shortest feasible route between a designated start and destination

vertiport.

Problem Setup

Let

• s ∈ V denote the starting vertiport,

• d ∈ V denote the destination vertiport, and

• n ∈ V denote a generic node (current vertiport) under expansion during the search.

The graph G = (V,E) consists of a finite set of vertiports V and undirected edges E ⊆ V × V ,

each edge (u, v) ∈ E carrying a weight d(u, v) equal to the corridor distance between u and

v.

Illustration of the Search Graph

Figure 6–1: Illustration of the A* search on an undirected vertiport corridor graph. The starting node s and

destination node d are connected through intermediate nodes n.

Development and Evaluation of a Full-Stack Path Planner for an Air Taxi Control Center

Sukhbir Singh Page 15

6 Path Planning Algorithms

Heuristic

To guide the A* search, the geodesic (Haversine) distance between the current vertiport n

and the destination d is used as the heuristic function h(n). Because the Haversine distance

represents the shortest path on the Earth’s surface, it is admissible: the straight-line distance

on the sphere is always less than or equal to the length of any feasible path along the corridor

network.

Let (λ1, φ1) and (λ2, φ2) denote the longitude and latitude (in radians) of the two points re-

spectively. Define ∆φ = φ2 − φ1 and ∆λ = λ2 − λ1. Then the Haversine distance is given

by

dhav = 2R arctan

 √
a√

1− a



, with a = sin2
∆φ

2
+ cosφ1 cosφ2 sin2

∆λ

2
, (6–1)

where R is the Earth’s radius (here R = 6371 km).

Accordingly, the heuristic function becomes

h(n) = dhav

(

coord(n), coord(d)
)

, (6–2)

where coord(v) denotes the geographic coordinates (λ, φ) of vertiport v.

Evaluation Function

The total evaluation score for each node n is defined as

f(n) = g(n) + h(n), (6–3)

where g(n) is the cumulative cost of the best-known path from s to n, and h(n) is the heuristic

estimate of the remaining cost to reach d.

In this context, the cost corresponds to the geodesic distance traveled along the air corridors.

Since the corridor network is assumed to operate at a fixed altitude layer, the planning problem

reduces to two dimensions, and the distance is computed purely in terms of latitude and lon-

gitude. Thus, g(n) accumulates the 2D distances of all corridor segments from the start to the

current node, while h(n) provides the straight-line (Haversine) estimate from the current node

to the destination. The evaluation score f(n) therefore balances the actual distance traveled so

far with an optimistic estimate of the remaining distance, ensuring efficient convergence toward

the destination.

Page 16

Development and Evaluation of a Full-Stack Path Planner for an Air Taxi Control Center

Sukhbir Singh

6 Path Planning Algorithms

Algorithm

The algorithm used is the classical A* search, adapted to the vertiport corridor graph. It main-

tains a priority queue of nodes to be expanded, ordered by their f(n) value.

Algorithm 6–1 A* Path Planning in Air Corridors

Require: Start vertiport s, destination vertiport d, undirected graph G = (V,E) with edge dis-

tances d(u, v), coordinates coord(v)

Ensure: Sequence of vertiports representing the planned route

1: open← ¶s♢ ▷ priority queue with key f(v)

2: came_from← ∅
3: g(s)← 0

4: f(s)← h(s) = Haversine(coord(s), coord(d))

5: while open not empty do

6: current← arg minv∈open f(v)

7: if current = d then

8: return Reconstruct path from came_from

9: end if

10: Remove current from open

11: for all neighbor ∈ neighbors(current) do

12: tentative_g ← g(current) + d(current, neighbor)

13: if tentative_g < g(neighbor) then

14: came_from[neighbor]← current

15: g(neighbor)← tentative_g

16: h(neighbor)← Haversine(coord(neighbor), coord(d))

17: f(neighbor)← g(neighbor) + h(neighbor)

18: Add neighbor to open

19: end if

20: end for

21: end while

22: return failure (no path found)

Output

The algorithm returns the ordered list of vertiports

¶s, v1, v2, . . . , d♢, (6–4)

that the aircraft should traverse. These nodes represent intermediate waypoints along the air

corridor network and form the global reference trajectory for subsequent local planning and

trajectory generation.

Development and Evaluation of a Full-Stack Path Planner for an Air Taxi Control Center

Sukhbir Singh Page 17

6 Path Planning Algorithms

6.2 Trajectory Generation Pipeline

This section describes the generation of four–dimensional (4D) urban air mobility (UAM) trajec-

tories (latitude, longitude, altitude, time).This pipeline interfaces with the C++-based CFMS [6]

system while the planner is implemented in Python, demonstrating the microservice concept of

this work. The pipeline transforms a discrete path over the vertiport network into a kinematically

consistent, phase–annotated trajectory by (i) synthesizing geometric waypoints, (ii) assigning

vertical and speed constraints, and (iii) invoking a modular flight management and 4D trajectory

generation system (CFMS) [6] to densify and time–parameterize the path.

6.2.1 Notation and Conventions

The following symbols and units are used throughout this work:

• Path over the graph: P = [v0, v1, . . . , vn] is the ordered list of vertiports yielded by the

global A* planner (Sec. 6.1), with v0 = s (start) and vn = d (destination).

• Coordinates: each vertiport vi is associated with WGS–84 coordinates V(vi) = (φi, λi, hi)

with latitude φi (degrees), longitude λi (degrees), and pad elevation hi (meters, MSL).

• Altitude variables: In this study, corridors are modelled at a fixed absolute altitude layer

of Hcorridor = 200 m above mean sea level, independent of individual pad elevations. All

cruise waypoints are therefore generated at this fixed altitude:

Habs = Hcorridor (6–5)

while take-off and landing waypoints use the actual pad elevation hi, and intermediate

climb/descent waypoints interpolate between hi and Hcorridor.

• Time: continuous time is denoted by τ (seconds). This symbol is used consistently in

equations to represent elapsed time along a trajectory.

• Geodesic distance: d(u, v) is the great-circle distance between two coordinates (Haver-

sine).

• Linear interpolation: lerp(a, b, α) := a+ (b− a)α, for α ∈ [0, 1].

6.2.2 Inputs

The following inputs are used for the trajectory generation stage:

• Path P = [v0, v1, . . . , vn] from A* (Sec. 6.1).

• Vertiport map V : vi 7→ (φi, λi, hi) (deg, deg, m MSL).

• Requested cruise height Hc (AGL), default 200 m.

• UAM speed profile with safety margin.

To ensure that the generated 4D trajectory remains flyable even under moderate disturbances

(e.g. wind gusts, small deviations, or delayed responses), the nominal speeds used in this

Page 18

Development and Evaluation of a Full-Stack Path Planner for an Air Taxi Control Center

Sukhbir Singh

6 Path Planning Algorithms

study are derived from the aircraft’s maximum performance values multiplied by a safety factor

sf ∈ (0, 1). For the reference UAM vehicle the maximum performance limits are

Vtakeoff,max = 0 m/s, Vtransition,max = 20 m/s,

Vcruise,max = 30 m/s, Vapproach,max = 20 m/s.

Applying a safety factor of sf = 0.75 yields the nominal speeds adopted in the planning pro-

cess:

Vtakeoff = sf Vtakeoff,max = 0 m/s, Vtransition = sf Vtransition,max = 15 m/s,

Vcruise = sf Vcruise,max = 25 m/s, Vapproach = sf Vapproach,max = 15 m/s.

These safety-factored speeds are used as the target values for the UAM_takeoff, cruise and

UAM_landing phases when annotating the waypoints.

6.2.3 Waypoint Synthesis

Given P , the waypoint generator produces an ordered list W = [w1, . . . , wm] where each way-

point is

wk = ¶φk, λk, Hk, id, (optional) speed_reduction♢. (6–6)

The construction logic is as follows:

1. Initial takeoff point: at (φ0, λ0, h0).

2. Mid–climb point: along the initial bearing v0 → v1 at α = 0.3 of the segment, with altitude

Hclimb = h0 + 0.6 (Habs − h0). (6–7)

3. Cruise nodes at internal vertiports: for each vi, i = 1, . . . , n− 1, altitude is set to Habs.

4. Pre–landing descent point: along vn−1 → vn at α = 0.7 with

Hdescent = hn + 0.7 (Habs − hn). (6–8)

This intermediate waypoint provides a clear transition from cruise altitude to the terminal

approach. It produces a two-stage vertical profile (cruise → descent → landing) that

smooths vertical-rate changes, yields more realistic trajectories, and leaves adequate

horizontal distance for deceleration and stabilization before touchdown. The value α = 0.7

is a simple, tunable heuristic chosen to begin the descent early enough for comfortable

flare and speed control while preserving lateral fidelity.

5. Final landing point: at (φn, λn, hn).

Development and Evaluation of a Full-Stack Path Planner for an Air Taxi Control Center

Sukhbir Singh Page 19

6 Path Planning Algorithms

6.2.4 Phase Encoding and Speed Constraints

Each waypoint is annotated with a nominal flight phase and target speed:

UAM_takeoff Initial (pad) waypoint, executed at the takeoff speed Vtakeoff.

cruise Mid–climb, internal cruise nodes, and descent–initiation nodes, with Vtransition applied

at climb/descent anchors and Vcruise along the en-route segments.

UAM_landing Final (pad) waypoint, with the speed set to 0 m/s (stationary at landing).

6.2.5 CFMS Integration

The waypoint list is converted to the CFMS input structure:

• (φ, λ) converted from degrees to radians.

• Altitudes expressed in meters MSL (using Habs for cruise waypoints).

• Phase and speed fields set as above; the global context specifies the aircraft type CFMS_UAMcopter,

cruise height Hc, and cruise speed Vcruise.

CFMS [6] then generates a dense 4D trajectory T = ¶(φ(τ), λ(τ), H(τ), τ, . . .)♢ that satisfies

the kinematic profile and phase schedule.

6.2.6 Temporal and Spatial Sampling

To reduce data volume, the CFMS output is uniformly sub–sampled to at most M = 500

points:

indexi =



i (N − 1)

M − 1



, i = 0, . . . ,M − 1, (6–9)

with N original samples; the first and last samples are always retained.

6.2.7 Exported Data Fields

Each trajectory is represented as a sequence of sampled data points of the form

¶φ, λ,H, t,TAS, Vg, ϕ, Ḣ, ψ̇, flight_phase♢, (6–10)

where:

• φ – latitude of the sample point (deg).

• λ – longitude of the sample point (deg).

• H – altitude above mean sea level (m).

• t – elapsed time since the start of the trajectory (s); denoted by τ in the equations.

• TAS – true airspeed (m/s): the speed of the vehicle relative to the surrounding air.

• Vg – ground speed (m/s): magnitude of the velocity vector relative to the ground.

Page 20

Development and Evaluation of a Full-Stack Path Planner for an Air Taxi Control Center

Sukhbir Singh

6 Path Planning Algorithms

• ϕ – bank angle (deg): roll about the longitudinal axis; zero is wings-level.

• Ḣ – climb rate (m/s): time derivative of altitude; positive in climb, negative in descent.

• ψ̇ – turn rate (deg/s): rate of change of the ground-track angle. In coordinated flight it can

be approximated by

ψ̇ =
g tanϕ

Vg

, (6–11)

where g is gravitational acceleration (m/s2).

• flight_phase – label indicating the nominal phase of flight: UAM_takeoff (departure and

climb), cruise (en-route), UAM_landing (approach and landing), or other (any intermedi-

ate or internal phase).

6.2.8 Algorithm Summary

Algorithm 6–2 Trajectory Generation from A* Path

Require: Path P = [v0, . . . , vn], vertiport map V, cruise height Hc (AGL)

Ensure: Subsampled, phase–annotated 4D trajectory T ′

1: Habs ← h0 +Hc ▷ constant cruise layer above departure pad

2: W ← synthesize_waypoints(P,V, Habs)

3: annotate phases and speeds in W (UAM_takeoff, cruise, UAM_landing)

4: WCFMS ← convert_to_CFMS(W) ▷ radians; altitudes in m MSL

5: T ← CFMS_generate_trajectory(WCFMS)

6: T ′ ← uniform_subsample(T ,M = 500)

7: export T ′ as JSON ¶φ, λ,H, t, . . . ♢

Consistency with Global Planning.

The global A* planner (Sec. 6.1) minimizes 2D geodesic distance over the corridor graph at a

fixed altitude layer. The trajectory pipeline respects this assumption by assigning a constant

cruise height Hc (AGL) along the route and applying geodesic distances only for horizontal

planning.

6.3 Conflict Detection with NDMap

The following section is a summarized version of the NDMap conflict detection method pre-

sented in [7], adapted to the requirements of this work.

Overview

In this work, conflicts are detected using NDMap configured in four dimensions (λ, φ,H, τ), i.e.,

longitude [deg], latitude [deg], altitude [m], and time [s]. NDMap indexes submitted trajectories

Development and Evaluation of a Full-Stack Path Planner for an Air Taxi Control Center

Sukhbir Singh Page 21

6 Path Planning Algorithms

in this 4D space and, for a newly inspected trajectory, efficiently identifies portions of previously

submitted trajectories that come within user-defined separation minima. This enables very fast

screening suitable for near real-time admission control.

Inputs and Configuration

Each trajectory is represented as an ordered sequence of sampled four-dimensional points

(λ, φ,H, τ) ∈ [−180◦, 180◦]× [−90◦, 90◦]× [0, 100000] m× [0, 86400] s,

where λ is longitude (deg), φ is latitude (deg), H is altitude above mean sea level (m), and τ is

time (s).

Separation requirements are encoded as a vector

S =
(

∆λmin, ∆φmin, ∆Hmin, ∆τmin

)

, (6–12)

which sets the minimum allowed spacing in each dimension and parameterizes the detector’s

resolution. In this study,

S =
(

0.002◦, 0.004◦, 300 m, 90 s
)

,

corresponding respectively to minimum separations in longitude (deg), latitude (deg), altitude

(m), and time (s). A minimum inter-conflict interval of 2 s is applied to merge very closely

spaced detections.

Output

For each conflicting pair involving the inspected trajectory, NDMap returns one or more conflict

time intervals

[τstart, τend],

expressed in seconds on the scenario time axis. These intervals constitute the primary output

consumed by the deconfliction/scheduling logic in this work.

Performance Characteristics

According to the NDMap documentation [7], runtimes are on the order of milliseconds per

trajectory on commodity hardware, with reported averages of a few milliseconds per object

for national- to continental-scale datasets. The implementation exhibits near-linear scaling with

dataset size and tunable trade-offs between runtime and memory via configuration parameters,

which supports near real-time screening in the intended UAM use case.

Summary. NDMap consumes sampled 4D trajectories together with separation minima S and

produces conflict time intervals [τstart, τend] for any violations. The detector’s low latency and

Page 22

Development and Evaluation of a Full-Stack Path Planner for an Air Taxi Control Center

Sukhbir Singh

6 Path Planning Algorithms

favorable scaling make it appropriate for iterative, online conflict checks within the planning

pipeline described in this thesis.

6.4 Conflict Resolution

Conflict detection with NDMap (Sec. 6.3) identifies spatio-temporal overlaps between a newly

proposed candidate trajectory and the set of already submitted trajectories. To ensure conflict-

free operation, conflict resolution is applied directly within the path planning loop of this work.

Resolution Strategy

In this study, conflict resolution is realized through lateral re-routing. The principle is to dis-

courage the reuse of route segments that are involved in conflicts and to force the planner to

search for an alternative path through the corridor network.

1. A candidate path is computed using the global A* planner (Sec. 6.1).

2. The corresponding trajectory is generated and checked against existing traffic using NDMap.

3. If a conflict is detected, the edges of the corridor graph that belong to the conflicting

candidate route are penalized by assigning them effectively infinite weight, i.e.,

d(u, v) := ∞, ∀ (u, v) ∈ Econflict,

which removes them from further consideration by A*.

4. A* is re-executed on the modified graph to find an alternative route that avoids the dis-

couraged edges.

5. This process is repeated iteratively until NDMap no longer reports conflicts.

Properties

This integrated resolution approach has the following characteristics:

• Simplicity: implemented as an extension of the global A* search without requiring addi-

tional modules.

• Determinism: the iterative penalization guarantees that once all conflicting edges are

discouraged, the resulting solution is conflict-free (if a feasible route exists).

• Cost trade-off: since conflicts are avoided by forbidding certain edges, the resulting route

may be longer than the original candidate, reflecting a trade-off between efficiency and

safety.

• Scalability: the conflict detection and re-routing loop can be repeated for successive

trajectory submissions, enabling online admission control in multi-UAV settings.

Development and Evaluation of a Full-Stack Path Planner for an Air Taxi Control Center

Sukhbir Singh Page 23

6 Path Planning Algorithms

Scope of this Work

Although other resolution mechanisms such as temporal shifting or vertical maneuvering are

possible, the present work focuses exclusively on lateral re-routing within the corridor graph.

This allows for a modular and scalable demonstration of how conflict detection (via NDMap)

and path planning (via A*) can be tightly integrated in a unified framework.

s n1 n2 d

n3

(a) Initial candidate path (green).

s n1 n2 d

n3

(b) Conflict edges penalized (red), re-routed

path (blue dashed).

Figure 6–2: Illustration of conflict resolution via lateral re-routing.

Page 24

Development and Evaluation of a Full-Stack Path Planner for an Air Taxi Control Center

Sukhbir Singh

7 Results

7 Results

This chapter presents the results of the path planning framework developed in this work. It re-

ports representative trajectories between selected vertiports in the Hamburg scenario (Sec. 5),

the associated kinematic profiles (true airspeed, turn rate, altitude, bank angle), geometric

properties of the paths, and computational performance for planning and trajectory generation

(Secs. 6.1 and 6.2). A dedicated section (Sec. 7.3) demonstrates conflict detection outcomes

using NDMap (method in Sec. 6.3).

All trajectories and profiles shown in this chapter are planned (reference) 4D trajectories pro-

duced by the pipeline, i.e., the intended paths to be followed by the aircraft; they are not simu-

lation runs.

7.1 Experimental Setup

7.1.1 Scenario and Data

The experiments are conducted on the Hamburg vertiport network described in Sec. 5, with

corridors modeled as undirected edges at a constant altitude layer of 200 m AGL and width

20 m. Nodes correspond to vertiports (averaged pad coordinates); edges are weighted by

geodesic distance.

7.1.2 Planner and Generator Configuration

• Global planner: A* on the undirected corridor graph (Sec. 6.1), with Haversine heuristic

h(n) and evaluation function f(n) = g(n) + h(n).

• Trajectory generator: CFMS-based 4D trajectory synthesis (Sec. 6.2) with cruise height

Hc = 200 m (AGL), speed profile (Vtakeoff, Vtransition, Vcruise, Vapproach).

7.1.3 Evaluation Metrics

The following metrics are reported for each run:

• Path geometry: number of legs, total length L (km).

• Timing: total flight time T (s), average TAS.

• Kinematics: TAS profile, altitude compliance w.r.t. Hc, peak bank angle max ϕ, peak turn

rate max ψ̇.

• Compute: A* runtime and trajectory generation time.

Development and Evaluation of a Full-Stack Path Planner for an Air Taxi Control Center

Sukhbir Singh Page 25

7 Results

7.2 Case Studies: Sample Trajectories

This section presents representative trajectories between selected vertiport pairs. For each

case, s denotes the starting vertiport and d the destination.

7.2.1 Representative Long-Leg Route

Trajectory A was selected as a representative case because it contains one of the longest legs

in the Hamburg network. This results in a comparatively high total path length and flight time.

Furthermore, the extended initial leg allows the UAM vehicle sufficient time to transition from

take-off into the corridor network, stabilizing its climb and entering the cruise segment more

gradually. This makes Trajectory A well-suited for evaluating the performance of the global

planner and the consistency of the generated cruise profile.

Route Overview

Figure 7–1: Planned reference trajectory (Trajectory A) from s to d over the Hamburg corridor network.

Front-end Visualization (Cesium)

Figure 7–2 shows the planned Trajectory A rendered in the Cesium-based web client. The

left view displays the full 3D corridor context of the route, while the right view zooms in on the

departure phase to highlight the take-off and initial climb segment.

Page 26

Development and Evaluation of a Full-Stack Path Planner for an Air Taxi Control Center

Sukhbir Singh

7 Results

(a) Planned route (Trajectory A): full 3D corridor

context.

(b) Planned route (Trajectory A): zoom on take-off

and initial climb.

Figure 7–2: Cesium-based visualization of the planned Trajectory A in the front end. Left: full route; right:

take-off segment.

Kinematic Profiles

Figure 7–3: Planned altitude profile H(τ) for Trajectory A (cruise layer near 200 m AGL).

Figure 7–4: Planned true airspeed (TAS) profile for Trajectory A.

Development and Evaluation of a Full-Stack Path Planner for an Air Taxi Control Center

Sukhbir Singh Page 27

7 Results

Figure 7–5: Planned turn-rate profile ψ̇(τ) for Trajectory A (deg/s).

Figure 7–6: Planned bank-angle profile φ(τ) for Trajectory A (deg).

Interpretation of bank angle and turn-rate profiles (CFMS).

At each turn waypoint, the inbound and outbound ground tracks define the required course

change ∆χ and the turn direction. CFMS then synthesizes a dynamically feasible turn using

the aircraft performance limits (maximum load factor and bank-rate limit) at the current ground-

speed Vg (speed over ground, i.e., the magnitude of the ground-relative velocity vector) [6]. The

constructed turn has three phases: bank-up, constant-bank arc, and bank-down. A bank-rate

bound ϕ̇max shapes the transients; if the transients would exceed the geometric corner, CFMS

reduces the allowable bank to fit the fillet.

The bank ceiling is set by the maximum load factor nmax under coordinated-turn assumptions:

ϕmax = arccos



1

nmax



. (7–1)

The instantaneous turn rate follows coordinated-turn kinematics:

ψ̇(t) =
g tan

(

ϕ(t)
)

Vg(t)
, (7–2)

Page 28

Development and Evaluation of a Full-Stack Path Planner for an Air Taxi Control Center

Sukhbir Singh

7 Results

so, for a given Vg, the largest achievable turn rate is

ψ̇max =
g tan(ϕmax)

Vg

. (7–3)

Consistency check for reported peaks. Using the study’s typical value nmax = 1.1 (small

UAS),

ϕmax ≈ arccos



1

1.1



≈ 24.6◦, (7–4)

which is consistent with the observed max ϕ ≈ 24.0◦. At a representative transitional ground-

speed Vg ≈ 15 m/s,

ψ̇max ≈
9.81 tan(24◦)

15
rad/s

≈ 0.29 rad/s ≈ 16.7◦/s,

(7–5)

matching the reported max ψ̇ ≈ 16.68◦/s. (When CFMS’s simplified point-to-point routine is

used, a capped constant turn rate may be applied instead of the full filleted turn.)

Summary Statistics

Table 7–1: Summary statistics for the planned reference Trajectory A.

Points 500

Total time T (s) 1802.71

Total time T (min) 30.05

Total distance L (km) 32.13

Mean TAS (m/s) 17.88

Peak bank angle max ϕ (deg) 24.01

Peak turn rate max ψ̇ (deg/s) 16.68

Peak climb rate max Ḣ (m/s) 6.10

7.2.2 Representative Short-Leg Route

Trajectory B was chosen to illustrate the behavior of the system when the initial leg is relatively

short. In this case, the UAM vehicle has limited horizontal distance available during the first

segment, requiring it to execute a circular turning maneuver in order to gain sufficient altitude

and align with the required waypoint. This scenario highlights the interaction between climb

dynamics and network geometry, making it a complementary test case to Trajectory A.

Development and Evaluation of a Full-Stack Path Planner for an Air Taxi Control Center

Sukhbir Singh Page 29

7 Results

Route Overview

Figure 7–7: Planned reference trajectory (Trajectory B) from s to d over the Hamburg corridor network.

Front-end Visualization (Cesium)

Figure 7–8 shows the planned Trajectory B in the Cesium-based front end. The left panel

displays the full 3D route, while the right panel zooms into the departure phase, illustrating the

short initial leg and the early turning manoeuvre required to reach the first waypoint.

(a) Planned route (Trajectory B): full 3D corridor

context.

(b) Planned route (Trajectory B): zoom on take-off

and initial turning manoeuvre.

Figure 7–8: Cesium-based visualization of the planned Trajectory B in the front end. Left: full route; right:

take-off segment.

Page 30

Development and Evaluation of a Full-Stack Path Planner for an Air Taxi Control Center

Sukhbir Singh

7 Results

Kinematic Profiles

Figure 7–9: Planned altitude profile H(τ) for Trajectory B (cruise layer near 200 m AGL).

Figure 7–10: Planned true airspeed (TAS) profile for Trajectory B.

Figure 7–11: Planned turn-rate profile ψ̇(τ) for Trajectory B (deg/s).

Development and Evaluation of a Full-Stack Path Planner for an Air Taxi Control Center

Sukhbir Singh Page 31

7 Results

Figure 7–12: Planned bank-angle profile φ(τ) for Trajectory B (deg).

Summary Statistics

Table 7–2: Summary statistics for the planned reference Trajectory B.

Points 500

Total time T (s) 819.81

Total time T (min) 13.66

Total distance L (km) 13.79

Mean TAS (m/s) 16.67

Peak bank angle max ϕ (deg) 24.01

Peak turn rate max ψ̇ (deg/s) 16.68

Peak climb rate max Ḣ (m/s) 6.63

7.3 Conflict Handling

In this section, the ability of the framework to detect and resolve conflicts is demonstrated.

Two representative trajectories were selected within the Hamburg corridor network (trajectory

HAM → WILH and trajectory TTNB → HOHE), whose initially planned routes overlap spatially and

temporally. This setup provides a suitable test case for illustrating both the detection of a conflict

and its subsequent resolution through lateral re-routing.

7.3.1 Conflict Detection

The candidate routes were submitted to the NDMap conflict detection module (Sec. 6.3), which

evaluates trajectory pairs in four-dimensional space (longitude, latitude, altitude, time). Fig-

ure 7–13a shows the initially planned routes, with the overlapping edge segment highlighted

in red. NDMap reported a conflict interval [τstart, τend] = [654.2 s, 664.8 s], indicating that both

UAM trajectories would occupy the same corridor segment within a temporal overlap of approx-

imately 10.6 s.

Page 32

Development and Evaluation of a Full-Stack Path Planner for an Air Taxi Control Center

Sukhbir Singh

7 Results

(a) Initial planned routes for HAM → WILH and

TTNB → HOHE; the overlapping planned corridor

segment (conflict) is marked in red.

(b) Re-planned conflict-free route for TTNB → HOHE;

the revised planned path avoids the previously

conflicting corridor.

Figure 7–13: Comparison of conflict detection and resolution using NDMap and rerouting on planned

routes.

7.3.2 Conflict Resolution

To resolve the detected conflict, the integrated rerouting strategy within the path planning frame-

work (Sec. 6.1) was applied. Edges involved in the conflict were temporarily penalized by

assigning infinite cost in the corridor graph, effectively discouraging their selection in subse-

quent planning iterations. A new A* search was then performed for the affected trajectory

(TTNB → HOHE), yielding a longer but conflict-free path. The outcome is shown in Fig. 7–13b,

where the rerouted trajectory bypasses the overlapping corridor segment, thereby eliminating

the temporal and spatial conflict.

Summary

This case study demonstrates the integrated conflict handling approach of the framework: con-

flicts are detected via NDMap (Sec. 6.3), and if present, the route is adaptively recomputed

by modifying corridor edge weights and re-running A* search (Sec. 6.1). Although this may

increase the total distance and travel time, the resulting trajectory is conflict-free, supporting

safe and scalable multi-UAM operations within the Hamburg scenario.

Development and Evaluation of a Full-Stack Path Planner for an Air Taxi Control Center

Sukhbir Singh Page 33

7 Results

7.3.3 Conflict Handling with Interchanged Endpoints

A second case study considers two trajectories with interchanged start and end vertiports:

trajectory HARB → TTNB and trajectory TTNB → HARB. In the initial planning stage, both trajec-

tories select the same shortest route, leading to a complete overlap of the corridor segment

between the two vertiports. This results in an unavoidable spatial and temporal conflict when

both plans are submitted simultaneously.

Conflict Detection and Resolution

Figure 7–14 compares the initial conflicting routes (left) with the resolved case (right). NDMap

(Sec. 6.3) flagged the overlapping corridor segment (red) as a conflict, with simultaneous occu-

pancy intervals for both trajectories. To resolve this, the integrated rerouting strategy (Sec. 6.1)

was applied: the conflicting edge was penalized by assigning it infinite cost, and a new A*

search was run for the later-submitted trajectory (TTNB → HARB). The new solution yields

the second-shortest path in the network, which avoids the overlapping corridor and ensures

conflict-free operation.

(a) Initial planned routes for interchanged

endpoints: both planned paths overlap

completely on the shortest corridor segment

(conflict).

(b) Re-planned conflict-free route for TTNB → HARB

along the second-shortest corridor path,

eliminating overlap.

Figure 7–14: Conflict handling for interchanged endpoints on planned routes. The later trajectory is

re-planned to avoid the overlapping corridor.

Page 34

Development and Evaluation of a Full-Stack Path Planner for an Air Taxi Control Center

Sukhbir Singh

7 Results

Summary

This case demonstrates the robustness of the rerouting mechanism in situations where direct

shortest paths are infeasible due to complete overlap. By enforcing the second-shortest path

in the graph, the framework maintains safety while preserving operational feasibility in dense

urban networks.

7.4 Scalability Evaluation with 100 Trajectories

To assess the computational scalability of the proposed framework, a batch of 100 synchronous

trajectory requests was processed. In this setup, each request was completed before the next

one was started. Independent pairs of take-off and landing vertiports were randomly selected,

and successful trajectories were used for evaluation. Conflict detection and resolution mecha-

nisms were disabled in this experiment to isolate the baseline computational performance.

Summary Statistics

The mean and standard deviation of the measured runtimes across the 100 test cases are

summarized in Table 7–3. The 100 cases used distinct pairs of take-off and landing vertiports

within the Hamburg vertiport network employed in this study, whose corridor graph was fully

connected. Because conflict resolution was disabled for this evaluation and the graph con-

nectivity guaranteed a path between any pair, all 100 planned trajectories were successfully

generated.

Table 7–3: Runtime summary over 100 synchronous trajectory requests.

Metric Mean (ms) Std (ms)

Total time 162.92 38.38

Trajectory generation 151.43 38.06

A* path finding 0.41 1.21

Scatter Plot Analysis

Figure 7–15 shows the relationship between A* runtime and path nodes (count). No meaning-

ful correlation was observed (e.g., r ≈ 0.02), confirming that A* search latency is essentially

independent of the number of nodes traversed. In contrast, Fig. 7–16 demonstrates a strong

positive correlation (e.g., r ≈ 0.75) between path nodes (count) and trajectory generation time,

consistent with the generator’s per-segment workload.

Development and Evaluation of a Full-Stack Path Planner for an Air Taxi Control Center

Sukhbir Singh Page 35

7 Results

Figure 7–15: A* runtime vs. path nodes (count). Example correlation: r ≈ 0.02.

Figure 7–16: Trajectory generator runtime vs. path nodes (count). Example correlation: r ≈ 0.75.

Runtime Distributions

The distribution of total processing time across the 100 runs is shown in Fig. 7–17, with values

concentrated in the 120 ms to 260 ms range. The distribution of trajectory generation runtimes

(Fig. 7–18) shows a similar pattern, confirming that trajectory generation is the dominant con-

tributor to total latency.

Page 36

Development and Evaluation of a Full-Stack Path Planner for an Air Taxi Control Center

Sukhbir Singh

7 Results

Figure 7–17: Histogram of total runtime per trajectory request.

Figure 7–18: Histogram of trajectory generation runtime per request.

Discussion

These results demonstrate that the A* stage contributes negligibly to total latency, with mean

runtimes well below 1 ms across the sampled path sizes. In contrast, trajectory generation dom-

inates the runtime and increases with the number of path nodes (and thus legs to synthesize).

Overall processing times of roughly 160 ms per request indicate that the framework can support

real-time urban air mobility (UAM) trajectory planning in a synchronous, single-request setting.

Scaling to parallel, high-volume scenarios will require further evaluation under active conflict

detection and resolution.

Development and Evaluation of a Full-Stack Path Planner for an Air Taxi Control Center

Sukhbir Singh Page 37

7 Results

7.5 Evaluation under Active Conflict Resolution

In addition to the synchronous evaluation without conflict detection and resolution (Sec. 7.4), the

framework was further assessed under active conflict handling. Fifteen random takeoff–landing

pairs were selected from the Hamburg corridor network. For each path request, the conflict

detection module (Sec. 6.3) and the lateral re-routing strategy (Sec. 7.3) were engaged. This

setup allows measuring the combined latency of A* search, trajectory generation, and any

re-planning iterations required to produce a conflict-free trajectory.

7.5.1 Processing Strategy

All 15 trajectory requests were processed synchronously, i.e. each request was completed

before the next one started. This mode isolates the latency of the path-planning pipeline without

concurrent scheduling effects. If NDMap detected a conflict, the edges involved were penalized

and A* was re-run (Sec. 7.3), which may yield longer paths and increased runtimes. Two cases

could not be resolved by lateral re-routing alone and remained in conflict, indicating that an

alternative strategy (e.g. altitude change or departure delay) would be necessary.

7.5.2 Timing Results

Across the 13 successfully resolved trajectories, the total end-to-end latency (from path request

to final 4D trajectory) exhibited a wide spread:

• Count: 13 trajectories,

• Mean total time: 5286.19 ms,

• Standard deviation: 8003.16 ms.

Two effects plausibly contribute to this variance: (i) the statistics are based on a small sample

(n = 13), which makes the estimate of dispersion sensitive to a few long-running cases; and

(ii) part of the measured duration includes inter-service I/O overhead, since trajectory samples

are exchanged via intermediate files rather than through an in-process interface.

Figure 7–19 shows the scatter plot of total time versus path distance for these trajectories.

A positive correlation r = 0.76 indicates that longer paths tend to require more processing

time, reflecting both increased trajectory-generation cost and additional A* iterations in some

cases.

Page 38

Development and Evaluation of a Full-Stack Path Planner for an Air Taxi Control Center

Sukhbir Singh

7 Results

Figure 7–19: Left: total processing time versus path distance for 13 conflict-free planned trajectories.

Right: histogram of total processing times across the same runs.

7.5.3 Discussion

Compared to the evaluation without conflict resolution (Sec. 7.4), both the mean latency and

its variance are markedly higher under active conflict handling. This is expected, as each

detected conflict triggers additional A* searches with modified edge weights (Sec. 7.3), po-

tentially increasing path length and computation time. The two unresolved cases underscore

the need for more flexible resolution mechanisms—such as altitude assignment, departure de-

lay, or risk-map based edge re-weighting—to handle complex conflicts where lateral re-routing

alone cannot find a feasible solution.

This evaluation thus highlights the trade-off between safety and responsiveness: while lat-

eral re-routing enables automatic deconfliction in many scenarios, its runtime cost scales with

graph complexity and the number of iterations required. The observed variance is further in-

fluenced by the small sample size and by the current file-based exchange between services;

tighter in-process coupling (e.g., integrating CFMS into the planner) would plausibly reduce

such overhead.

Development and Evaluation of a Full-Stack Path Planner for an Air Taxi Control Center

Sukhbir Singh Page 39

8 Conclusions and Future Work

8 Conclusions and Future Work

8.1 Conclusions

This thesis has presented the design, implementation, and evaluation of a microservice-based

path planning framework for urban air mobility (UAM) operations. By decomposing the sys-

tem into independent services, the planner was able to integrate heterogeneous components

implemented in different languages and tools—namely, the A* global planner (Python), the

CFMS trajectory generator (C++), and the NDMap conflict detection module (C++). This mod-

ular design demonstrates the potential of microservices for building scalable and extensible

architectures for U-space operations.

The framework was evaluated using a representative vertiport and corridor network modeled

over the metropolitan area of Hamburg. Experiments focused on quantifying delays at differ-

ent processing stages, including A* path finding, trajectory generation, and overall end-to-end

response time. Results showed that:

• The A* path finding step contributed negligibly to the total delay, with runtimes consistently

below 1 ms.

• Trajectory generation dominated the computational cost, with runtimes scaling linearly

with path distance.

• The total processing time per trajectory request was on the order of 200 ms, demonstrat-

ing the feasibility of near real-time operation for single-request scenarios.

• Conflict detection and resolution were successfully demonstrated using NDMap, with lat-

eral rerouting as the chosen strategy to avoid overlapping trajectories.

Overall, the system provides a primitive but functional prototype of a path planner for UAM

operations, highlighting both the feasibility and the challenges of integrating multiple specialized

modules into a unified framework.

8.2 Future Work

While the present study establishes a foundation, several extensions are necessary to bring

the framework closer to realistic deployment:

Enhanced Conflict Resolution

The current work focused exclusively on lateral rerouting through penalization of conflicting

edges in the corridor graph. Future extensions should include additional resolution strategies

such as:

Development and Evaluation of a Full-Stack Path Planner for an Air Taxi Control Center

Sukhbir Singh Page 41

8 Conclusions and Future Work

• Temporal deconfliction: delaying departure times to avoid simultaneous use of a corri-

dor.

• Vertical deconfliction: assigning different altitude layers to conflicting trajectories.

• Hybrid strategies: combining lateral, temporal, and vertical maneuvers to balance effi-

ciency and safety.

Complex Airspace Modeling

The current corridor network was static, uniform in altitude, and of fixed width. Future studies

should incorporate:

• Multiple altitude layers with dynamic assignment,

• Variable corridor widths depending on traffic density or risk,

• More realistic urban scenarios with larger networks and higher traffic volumes.

Incorporation of External Factors

To better approximate real-world operations, future versions should integrate:

• Weather effects: wind, turbulence, and no-fly zones affecting edge weights and feasibil-

ity.

• Risk maps: penalizing corridors near sensitive areas (schools, hospitals, etc.) to reflect

societal and regulatory constraints.

• Dynamic re-weighting: adjusting corridor costs in real time based on environmental and

operational factors.

Aircraft Performance Models

The present study employed simplified kinematic constraints. For improved fidelity, future work

should model:

• Performance envelopes specific to different eVTOL types,

• More detailed climb, descent, and turn dynamics,

• Energy consumption models for battery-electric aircraft.

Scalability and Multi-Agent Evaluation

The synchronous evaluation with 100 independent trajectory requests provided baseline per-

formance characteristics. Future studies should investigate:

• Asynchronous and parallel trajectory requests at scale,

Page 42

Development and Evaluation of a Full-Stack Path Planner for an Air Taxi Control Center

Sukhbir Singh

8 Conclusions and Future Work

• End-to-end system latency under high traffic densities.

In summary, this thesis demonstrates that a microservice-based approach to UAM path plan-

ning is both technically feasible and computationally efficient for baseline scenarios. Expanding

the framework with more advanced conflict resolution strategies, richer airspace and aircraft

models, and larger-scale evaluations will be critical steps toward enabling safe, scalable, and

realistic integration of UAM operations into the future air traffic management ecosystem.

Development and Evaluation of a Full-Stack Path Planner for an Air Taxi Control Center

Sukhbir Singh Page 43

References

References

[1] European Union Aviation Safety Agency (EASA), “Easy access rules for u-space — may

2024”, Tech. Rep., 2024. [Online]. Available: https://www.easa.europa.eu/en/downloads/

139563/en (visited on 04/16/2025).

[2] L. Matlekovic, F. Juric, and P. Schneider-Kamp, “Microservices for autonomous uav in-

spection with uav simulation as a service”, Simulation Modelling Practice and Theory,

vol. 119, p. 102 548, 2022. DOI: 10 . 1016 / j . simpat . 2022 . 102548. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S1569190X22000466.

[3] “U-space blueprint”, European Commission, Tech. Rep., 2017. [Online]. Available: https:

/ / ec . europa . eu / research / participants / documents / downloadPublic ? documentIds =

080166e501ba2683&appId=PPGMS (visited on 08/03/2025).

[4] T. Prevot, J. Rios, P. Kopardekar, et al., “Uas traffic management (utm) concept of oper-

ations to safely enable low altitude flight operations”, in AIAA Aviation Forum, 2016. DOI:

10.2514/6.2016-3292.

[5] SESAR Joint Undertaking, “Sesar concept of operations (conops 2019)”, Tech. Rep.,

2019. [Online]. Available: https : / / ec . europa . eu / research / participants / documents /

downloadPublic ? documentIds = 080166e5c91e877d & appId = PPGMS (visited on

06/13/2025).

[6] F. Morscheck, “A modular experimental flight management and 4d trajectory generation

system for unmanned multicopter, urban air mobility vehicles and other vtol vehicles”, in

IEEE/AIAA Digital Avionics Systems Conference (DASC), 2021, pp. 1–9. DOI: 10.1109/

DASC52595.2021.9594290.

[7] A. Kuenz, High Performance Conflict Detection and Resolution for Multi-Dimensional Ob-

jects (DLR Forschungsbericht 31). Oct. 2015. [Online]. Available: https : / / elib . dlr . de /

98476/.

[8] N. Dragoni, S. Giallorenzo, A. L. Lafuente, et al., “Microservices: Yesterday, today, and

tomorrow”, in Present and Ulterior Software Engineering, M. Mazzara and B. Meyer, Eds.

Springer International Publishing, 2017, pp. 195–216. DOI: 10.1007/978-3-319-67425-

4_12. [Online]. Available: https://doi.org/10.1007/978-3-319-67425-4_12.

[9] “Sesar master plan 2025”, SESAR Joint Undertaking, Tech. Rep., 2025. [Online]. Avail-

able: https://www.sesarju.eu/sites/default/files/documents/reports/SESAR%20Master%

20Plan%202025.pdf (visited on 09/16/2025).

[10] G. Enea and M. Porretta, “A comparison of 4d-trajectory operations envisioned for

nextgen and sesar, some preliminary findings”, vol. 5, pp. 4152–4165, 2012.

[11] J. J. Acevedo, C. Capitán, J. Capitiin, et al., “A geometrical approach based on 4d grids for

conflict management of multiple uavs operating in u-space”, in International Conference

on Unmanned Aircraft Systems (ICUAS), 2020, pp. 263–270. DOI: 10.1109/ICUAS48674.

2020.9213929.

Development and Evaluation of a Full-Stack Path Planner for an Air Taxi Control Center

Sukhbir Singh Page I

https://www.easa.europa.eu/en/downloads/139563/en
https://www.easa.europa.eu/en/downloads/139563/en
https://doi.org/10.1016/j.simpat.2022.102548
https://www.sciencedirect.com/science/article/pii/S1569190X22000466
https://ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e501ba2683&appId=PPGMS
https://ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e501ba2683&appId=PPGMS
https://ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e501ba2683&appId=PPGMS
https://doi.org/10.2514/6.2016-3292
https://ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e5c91e877d&appId=PPGMS
https://ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e5c91e877d&appId=PPGMS
https://doi.org/10.1109/DASC52595.2021.9594290
https://doi.org/10.1109/DASC52595.2021.9594290
https://elib.dlr.de/98476/
https://elib.dlr.de/98476/
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1007/978-3-319-67425-4_12
https://www.sesarju.eu/sites/default/files/documents/reports/SESAR%20Master%20Plan%202025.pdf
https://www.sesarju.eu/sites/default/files/documents/reports/SESAR%20Master%20Plan%202025.pdf
https://doi.org/10.1109/ICUAS48674.2020.9213929
https://doi.org/10.1109/ICUAS48674.2020.9213929

References

[12] C. Capitán, H. León, J. Capitán, et al., “Unmanned aerial traffic management system

architecture for u-space in-flight services”, Applied Sciences, vol. 11, p. 3995, 2021. DOI:

10.3390/app11093995.

[13] Cesiumjs documentation and tutorials (api reference), https://cesium.com/learn/cesiumjs/

ref-doc/, 2025. (visited on 09/16/2025).

[14] L. R. Sahawneh, M. E. Argyle, and R. W. Beard, “3d path planning for small uas operat-

ing in low-altitude airspace”, in International Conference on Unmanned Aircraft Systems

(ICUAS), 2016, pp. 413–419. DOI: 10.1109/ICUAS.2016.7502528.

[15] C. A. Pötter Neto, G. de Carvalho Bertoli, and O. Saotome, “2d and 3d a* algorithm com-

parison for uas traffic management systems”, in International Conference on Unmanned

Aircraft Systems (ICUAS), 2020, pp. 72–76. DOI: 10.1109/ICUAS48674.2020.9214028.

[16] X. Hou, F. Liu, R. Wang, and Y. Yu, “A uav dynamic path planning algorithm”, in 35th

Youth Academic Annual Conference of Chinese Association of Automation (YAC), 2020,

pp. 127–131. DOI: 10.1109/YAC51587.2020.9337581.

[17] A. H. Ahmad, O. Zahwe, A. Nasser, and B. Clement, “Path planning algorithms for un-

manned aerial vehicle: Classification, performance, and implementation”, in 3rd Interna-

tional Conference on Electrical, Computer, Communications and Mechatronics Engineer-

ing (ICECCME), 2023, pp. 1–6. DOI: 10.1109/ICECCME57830.2023.10252168.

Page II

Development and Evaluation of a Full-Stack Path Planner for an Air Taxi Control Center

Sukhbir Singh

https://doi.org/10.3390/app11093995
https://cesium.com/learn/cesiumjs/ref-doc/
https://cesium.com/learn/cesiumjs/ref-doc/
https://doi.org/10.1109/ICUAS.2016.7502528
https://doi.org/10.1109/ICUAS48674.2020.9214028
https://doi.org/10.1109/YAC51587.2020.9337581
https://doi.org/10.1109/ICECCME57830.2023.10252168

	Table of Contents
	List of Figures
	List of Tables
	List of Algorithms
	Table of Symbols
	Introduction
	Background and Context
	Problem Statement
	Objectives
	Thesis Structure

	Motivation
	Importance of Scalable Path Planning in U-Space
	Challenges in Real-Time Multi-UAV Coordination
	Role of Microservices in UTM Systems

	Literature Review
	Existing U-Space Architectures
	Microservices in UAV Path Planning
	Path Planning Algorithms (A*, Potential Fields, etc.)
	Performance Metrics in Distributed Systems

	Overview of the Full-Stack Design
	Subsystems of the Design
	Operational Flow Summary

	Scenario and Data Basis
	Vertiports
	Graph Representation

	Path Planning Algorithms
	Global A* Algorithm in Air Corridors
	Trajectory Generation Pipeline
	Notation and Conventions
	Inputs
	Waypoint Synthesis
	Phase Encoding and Speed Constraints
	CFMS Integration
	Temporal and Spatial Sampling
	Exported Data Fields
	Algorithm Summary

	Conflict Detection with NDMap
	Conflict Resolution

	Results
	Experimental Setup
	Scenario and Data
	Planner and Generator Configuration
	Evaluation Metrics

	Case Studies: Sample Trajectories
	Representative Long-Leg Route
	Representative Short-Leg Route

	Conflict Handling
	Conflict Detection
	Conflict Resolution
	Conflict Handling with Interchanged Endpoints

	Scalability Evaluation with 100 Trajectories
	Evaluation under Active Conflict Resolution
	Processing Strategy
	Timing Results
	Discussion

	Conclusions and Future Work
	Conclusions
	Future Work

	References

