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Kurzzusammenfassung

Land, Meer, Luft und Raum – In all diesen Bereichen sind robotische Mecha-
nismen im Dienst des menschlichen Strebens. Darunter haben frei schwebende
Roboter, wie z.B. Orbitalroboter oder Humanoiden, in letzter Zeit an Bedeutung
gewonnen, aufgrund ihrer Mobilität. Diese mobilen Mechanismen sind einzigar-
tig durch den Erhalt des Momentes, wenn die Schwerkraftwirkung entfernt wird.
Diese Eigenschaft folgt aus der Einhaltung der kinetischen Energie des Mecha-
nismus unabhängig von seinem räumlichen Standort, wie von Noethers Theorem
dargestellt wird. Ein solches System ist ein Euler-Lagrange-System mit Symme-
trie (Invarianz), auch gennant ein Lagrange-Poincaré-System. Bei solchen mo-
bilen Mechanismen sind die frei schwebende Basis und der Gelenkmechanismus
mit Sensoren und Aktoren ausgestattet, die auf unterschiedlichen Grundprinzip-
ien beruhen. Dies beeinträchtigt die Steuerungsleistung, falls traditionelle Meth-
oden angewendet werden, die Symmetrie ignorieren. Dasselbe gilt für die Simu-
lation ihrer Dynamik ohne Berücksichtigung der Symmetrie, was bei kritischen
Anwendungen, wie etwa der Bodensimulation von Orbitalrobotermissionen zur
Validierung vor dem Start, nachteilig sein kann. Doch selbst bei Robotermech-
anismen ohne inhärente Symmetrie erscheint diese notwendig, wenn eine hier-
archische Aufgabenausführung für Ganzkörperbewegungen erforderlich ist. Dies
bedeutet, dass die Bewegung zur Erfüllung der sekundären Aufgabe eine Sym-
metrie der primären Aufgabe sein sollte. Trotz der Vielfalt ihrer Erscheinungs-
formen fehlt eine gemeinsame, auf Symmetrie basierende Theorie, die Dynamik
und Steuerungssynthese für diese Klasse von Problemen in der Robotik verein-
heitlicht.

Um dies zu erreichen, leistet diese Dissertation, wie der Titel andeutet, Bei-
träge zur Nutzung der Lagrangian-Symmetrie für die Dynamik und Bewegungs-
kontrolle von robotischen Mechanismen. Für einen freischwebender-Roboter wird
eine neue Berechnung seiner Lagrange-Poincaré-Dynamik bereitgestellt, die vor-
teilhafte Eigenschaften für die Bewegungs-kontrolle aufdeckt. Unter Verwendung
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dieser Berechnung werden neue geometrische Aspekte seiner Bewegung offenbart.
Die Struktur der vorgeschlagenen Dynamik wird ausgenutzt, um ein Hardware-in-
the-Loop-Simulationsrahmen für Orbitalroboter zu entwickeln. Der vorgeschla-
gene Rahmen erfordert weniger Sensoren als der Stand der Technik und skaliert
gemäß den Entwicklungsphasen der Mission. Letzteres ist auf die implizite Sub-
strukturierung der Lagrange-Poincaré-Dynamik zurückzuführen. Die Symmetrie
in der Lagrange-Poincaré-Dynamik wird ausgenutzt, um ein Steuerungsrahmen
zu entwickeln, der die oben genannten Probleme, die aus der hybriden Sen-
sorik und Aktuation eines freischweibende-Roboters entstehen, adressiert. Dieser
Steuerungsrahmen nutzt das innere Modell der Dynamik und minimalistische
Sensorik, um eine vollständige Bewegungsstabilisierung zu erreichen, während
er in unsicheren Umgebungen kontaktbewusst ist. Um eine hierarchische Bewe-
gungssteuerung in robotischen Mechanismen ohne inhärente Symmetrie zu erre-
ichen, werden zwei Steuerungsansätze vorgeschlagen zur Synthese von künstlicher
Symmetrie. Dies ermöglicht die Nutzung der Steuerungssynthese für Lagrange-
Poincaré-Systeme, wie bei den freischweibende-Robotermechanismen. Daher bi-
etet diese Dissertation eine vereinte Theorie basierend auf der Symmetrie für
die oben genannten Klassen von Problemen in Bezug auf Dynamik und Bewe-
gungssteuerung in der Robotik. Die Methoden werden an den Stand der Technik-
Robotersystemen validiert und in mehreren Fachzeitschriften und Konferenzen
veröffentlicht. Die Anwendbarkeit der Arbeit aus dieser Dissertation wird durch
ihren Nutzen in mehreren Projekten belegt, die von KUKA AG, EU, ESA und
NASA gefördert wurden, und ist ebenfalls berichtet.

“ Wenn man die Gleichheit zweier Zahlen a und b beweist, indem
man zuerst zeigt, dass a ≤ b und dann, dass a ≥ b, ist das unfair:
Man sollte stattdessen zeigen, dass sie wirklich gleich sind, indem
man den inneren Grund für ihre Gleichheit aufdeckt. [1, pp. 64]. ”

Emmy Noether, Weyl’s Levels of infinity, 1935



Abstract

Land, sea, air and space - Across all the media, robotic mechanisms are in ser-
vice of human endeavour. Among them, floating-base robotic mechanisms, e.g.,
orbital robots, humanoids etc., have recently gained prominence due to their mo-
bility. These mobile mechanisms are uniquely characterized by conservation of
momentum if the effect of gravity is removed. This property follows from the in-
variance of the mechanism’s kinetic energy w.r.t. its spatial location, as stated by
Noether’s theorem. Such a system is an Euler-Lagrange system with symmetry
(invariance), or a Lagrange-Poincaré system. For such mobile mechanisms, the
floating-base and the articulated mechanism are equipped with sensors and ac-
tuators that differ in their underlying principles. This negatively affects control
performance while employing traditional methods which disregard its symme-
try. Likewise, simulation of its dynamics without considering symmetry can be
detrimental in critical applications, e.g., on-ground simulation of orbital robotic
missions for validation before launch. Even in robotic mechanisms that do not
possess an inherent symmetry, it still appears as a requirement if hierarchical ex-
ecution of tasks is required for whole-body motion. This means that the motion
towards fulfilment of the secondary task should be a symmetry of the primary
task. Thus, despite raising its head in many guises, a common theory based
on symmetry that unifies the dynamics and control synthesis for this class of
problems in robotics is missing.

To this end, as the title suggests, this thesis makes its contributions towards
employing Lagrangian symmetry for dynamics and motion control of robotic
mechanisms. For a floating-base robotic mechanism, a novel computation of its
Lagrange-Poincaré dynamics is provided, which reveals advantageous properties
for motion control. Using this computation, new geometric aspects of its mo-
tion are revealed. The structure of the proposed dynamics is exploited to design
a hardware-in-the-loop simulation framework for orbital robots. The proposed
framework has lower sensory requirements than the state-of-the-art and also
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scales according to mission development phases due to the implicit substructuring
of the Lagrange-Poincaré dynamics. The symmetry in Lagrange-Poincaré dynam-
ics is exploited to design a control framework that addresses the aforementioned
problems arising from the hybrid sensing and actuation of a floating-base robot.
This control framework exploits the internal model of the dynamics and uses
minimal sensing to achieve full motion stabilization, while being contact-aware in
uncertain environments. To achieve hierarchical motion control in robotic mech-
anisms without any inherent symmetry, two control approaches are proposed to
synthesize artificial symmetry. This enables exploiting the control synthesis for
Lagrange-Poincaré systems, as for the floating-base robotic mechanisms. Thus,
this thesis provides a unified theory based on symmetry for the aforementioned
class of problems related to dynamics and motion control in robotics. The meth-
ods are validated on state-of-the-art robotic systems and are published in several
peer-reviewed conferences and journals. The applicability of the work from this
thesis is evidenced by its utility in several projects funded by KUKA AG, EU,
ESA and NASA, which are also reported.

“ If one proves the equality of two numbers a and b by showing first
that a ≤ b and then that a ≥ b, it is unfair; one should instead
show that they are really equal by disclosing the inner ground for
their equality. [1, pp. 64]. ”

Emmy Noether, Weyl’s Levels of infinity, 1935
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CHAPTER 1

Introduction

“ Inertia tells Space how to curve, and curved Space tells Inertia
how to move [2]. ”

John A. Wheeler, A Journey into Gravity and Spacetime, 1990

We are the universe trying to understand itself. The question of how it evolves
in time and space is answered by our comprehension of the geometry of motion.
We have stood on the shoulders of giants like J. Kepler, I. Newton, L. Euler, J.L.
Lagrange, W. Hamilton, G. Riemann, S. Lie, F. Klein, É. Cartan, E. Noether,
A. Einstein, C. Ehresmann et al. to answer the very fundamental principles of
motion. Variational principles naturally arose in the minds of physicists and sci-
entists to explain motion phenomena using a single dynamical quantity called the
Lagrangian. Using this, the application of Hamilton’s principle leads us to the
Euler-Lagrange equations that determine how the state evolves while conserving
energy. Noether’s theorem and her concept of invariance (symmetry) was instru-
mental in propelling the modern understanding of mechanics. The concept was
elegant and simple: the absence of a position variable in the Lagrangian results
in a special structure of the Euler-Lagrange equations that exhibit a conserva-
tion law. In this case, the variable is said to be a "symmetry of the Lagrangian",
and the resulting Euler-Lagrange systems with symmetry are called Lagrange-
Poincaré systems. The higher dimensional motion is quantified by the variations
of a lower dimensional shape in the level-sets of conserved momenta. Today, we
can unambiguously state that energy conservation is a symmetry in time and
momentum conservation is a symmetry in space. In the context of this thesis,
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2 1 Introduction

symmetry refers to the invariance of the Lagrangian of a system w.r.t. motion
along certain directions in its configuration space.

In the present day, a large class of contemporary engineering systems, e.g.,
mechanical systems, are modeled as Euler-Lagrange systems, which are based on
variational principles emerging from the definition of energy functions [3]. Our
understanding of motion phenomena and its stability has shaped the develop-
ment of motion control approaches for Euler-Lagrange systems. The ability to
steer (control) the state of an Euler-Lagrange system from point A to point B is
still considered the first principle of motion control. The works of A. Lyapunov,
J.P. LaSalle, N. N. Krasovskii, V. M. Matrosov et al. have cumulatively pro-
vided a foundation to ascertain stability of Euler-Lagrange systems using energy,
or energy-like functions without analysing the Euler-Lagrange equations directly.
Thus, the variational modeling method is one of the most powerful techniques
of dynamics because it abstracts the sophisticated Euler-Lagrange system into
a single energy function, which aids analysis of stability, dissipative behaviour
and interconnection of Euler-Lagrange systems through energy exchange. The
generality of this approach is evidenced by its widespread application for electri-
cal, mechanical, eletro-mechanical and robotic systems. In fact, in the robotics
domain, where interactions with the environment are a requirement and not a
disturbance to be rejected, energetic behavioural control serves as a framework
to balance safety, stability and performance.

Humanity’s fascination with robotic mechanisms dates back to characters
from ancient Greece like Talos: the bronze machine who guarded Crete, and
the Indian subcontinent like Bhuta Vahana Yanta: autonomous motion machines
that guarded the relics of King Asoka. While the fascination continues to this
day through science fiction, robotic mechanisms have emerged as a practical
reality to address conveniences and contingencies of human endeavour. For in-
stance, robotic mechanisms have emerged as sophisticated tools to deal with the
space debris problem, infrastructure maintenance, large-scale manufacturing etc.
The curiosity of the past is the reality of today, and our understanding of mo-
tion phenomena and its control enables us to realize a desired behaviour from
these mechanisms. In particular, robotic mechanisms are treated as constrained
Euler-Lagrange systems and motion control boils down to stabilizing its energetic
behaviour in fulfilment of a task. The key idea is to synthesize a desired vari-
ational principle by virtue of control actions, e.g., Passivity-Based Control and
Controlled Lagrangian, so that the robot moves from point A to point B while
minimizing an energy functional.

However, all robotic mechanisms are not created equal. A typical robot
mounted to the machine floor in a factory, i.e., fixed-base robotic manipulator,
has no discernible symmetry of its Lagrangian (momentum conservation). It
possesses homogeneous proprioceptive sensing (e.g., encoders) for motion control.
On the other hand, a Floating-base Robotic Mechanism is an articulated mech-
anism mounted on a movable platform. In contrast to a fixed-base robot, a free
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Floating-base Robotic Mechanism exhibits a natural symmetry of its Lagrangian
w.r.t. position and orientation of its platform. Thus, it is a Lagrange-Poincaré
system and the symmetry implies conservation of its total momentum. Even the
nature of sensing and actuation for the platform and the articulated mechanism
differ in their underlying physical principles. In particular, while the articu-
lated structure uses proprioceptive sensing like the fixed-base robot, the platform
configuration is determined using exteroceptive sensing (e.g., image processing),
which is slow-sampled. This negatively affects control performance while employ-
ing traditional methods (as in fixed-base robots) which disregard its symmetry.
Thus, formulating the motion control in terms of energy functions that employ
the underlying symmetry is not only structure-preserving, but also enables ex-
ploiting the structure for model-based design. The latter is key to addressing the
heterogeneity in sensors and actuators. Before a robotic mechanism is deployed
in a remote environment, like a planetary orbit where its momentum is con-
served (symmetry), its motion control is required to be validated on-ground (no
symmetry) using hardware simulation methods. Simulation of its dynamics with-
out considering symmetry is detrimental to maintaining momentum consistency.
Thus, recreating faithfully the symmetry behaviour is of practical relevance, since
it directly affects key mission control parameters, e.g., fuel usage. At the same
time, even the fixed-base robot is often required to perform a primary task along
a task surface while optimizing its configuration as a secondary task without
affecting the primary. This means that the motion towards the secondary task
should be a symmetry (by requirement) of the primary. Thus, despite being a
topic of practical relevance, a common theory based on symmetry that unifies the
dynamics and control synthesis for this class of problems in robotics was missing.
This is the primary contribution of this thesis.

1.1 Related Work

Motion control in robotics has emerged as a key applied field of geometric me-
chanics. Naturally, advanced concepts from mechanics drive novel developments
in robotics. In robotics, we often deal with constrained mechanisms (through
joints) which feature a non-Euclidean geometry of the configuration space. Thus,
a robotic mechanism is viewed as a particle in a higher-dimensional curved space,
and this makes it a direct descendant of the same mechanics that govern the
theory of general relativity, see Fig. 1.1. This link has been explored over the
years through textbooks, some of which have focused on theoretical robotics [4–
6], while others have been closer to applied robotics [7, 8].

This has led to practical manifestation of theoretical concepts like topology,
energetic behaviour and holonomy. Today, there is a rich heritage of Lie group
(e.g., SE(3)) theory for motion control [9, 10] and observer design [11, 12], which
are encountered frequently in robotics. The energy-based stabilization of Euler-
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Figure 1.1: Left: A 2-joint robot has a 2-Torus configuration space. Right: Mo-
tion (blue) of a particle in an electromagnetic field (scalar potential: V , vector
potential: B) in a non-Euclidean space.

Lagrange systems is one of the most powerful techniques, and has been addressed
through Passivity-Based Control [3] and Controlled Lagrangian [13] approaches.
The motion characteristics of systems with symmetry and constraints are well
understood [14], [15], [16]. Through these works, we know that a variational
symmetry of any Euler-Lagrange system splits the dynamics into momentum dy-
namics (which is conserved) and shape variations, which is known as the Lagrange-
Poincaré system. In such systems, periodic motions in shape can induce a net dis-
placement in an external (group) configuration variable. This is how astronauts
reorient themselves in space and a falling cat lands on its feet. This displacement
is achieved by moving the limbs in a periodic fashion to displace the overall body
orientation. The displacement is actually the consequence of Stokes’ theorem, and
is the cornerstone of locomotion of robotic systems [17, 18]. For practical imple-
mentation, numerical computations of this displacement and the optimal frame in
which the Stokes’s law is useful have been proposed [19–21]. In the subcategory
of robot dynamics, the equations of motion for serial kinematic chain robotic
mechanisms are computed using efficient iterative Newton-Euler algorithms in
real-time implementation [22, 23]. The link between the Lagrangian formulation
from geometric mechanics and the robotics-based Newton-Euler formulation has
been established thoroughly [24]. This lets us write Newton’s second law for the
robot as a constrained Euler-Lagrange system in a coordinate-invariant manner.

Among such systems, Floating-base Robotic Mechanism is an articulated
robotic mechanism mounted on a movable platform, and is ubiquitous in sev-
eral domains [25–27], as shown in Fig. 3.1. The commonly-known equations of
motion for the Floating-base Robotic Mechanism are the inertia-coupled dynam-
ics of its configuration (base and shape) velocities. These dynamics are efficiently
computed by considering the Floating-base Robotic Mechanism as a kinematic
chain using the standard iterative algorithms [22, 26, 28], [23, §9.4]. However, it
is also well known that the Floating-base Robotic Mechanism exhibits the prop-
erty of conservation of linear and angular momentum [29, 30]. This is simply a
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Figure 1.2: Left: Orbital Floating-base Robotic Mechanism in the EROSS IOD
scenario [41]. Right: ESA COMRADE [42] mission scenario inset, and Validation
& Verification facility in the main picture.

consequence of the symmetry of the Lagrangian w.r.t. the configuration of the
base. The Floating-base Robotic Mechanism is further distinguished by its mo-
tion characteristics in that a closed path in its shape space (joints) might cause
a net displacement of the base, just like a falling cat [31]. The natural habitat
of a Floating-base Robotic Mechanism is in a planetary orbit, in the absence of
symmetry-breaking potentials, like gravity, although the concept of modeling also
applies to other domains, e.g., humanoids [22, 25].

For the Floating-base Robotic Mechanism in its natural habitat, i.e., orbital
robotics, see Fig. 1.2, a wide variety of motion control approaches have been
adopted [27, 32–36]. From an actuation perspective, control approaches are clas-
sified as free-floating if only shape actuation is used, while free-flying exploits
the full actuation capability [37, 38]. Free-floating approaches are practically
advantageous because they are fuel-efficient and the Validation & Verification
complexity in a mission preparation is reduced. The latter results from the re-
duction in interfaces between spacecraft and robotic subsystems which enables
mission validation in a geographically distributed manner. However, the free-
floating approach is prone to position drifts due to inadvertent interactions with
the environment during operation and second-order external forces (e.g., gravity
gradient). Free-flying approaches can stabilize the motion during interactions,
but suffer from hybrid actuation problems because the base is actuated using
actuators like thrusters, which are commonly discrete by design. In [27], the dis-
crete thrust problem was addressed using an explicit passivity-preserving control
approach while posing regulation tasks on the end-effector and the base. In [37],
the approach of splitting the dynamics into momentum and shape was exploited.
The key approach was that the momentum subsystem was driven to convergence,
and in this set the required task was achieved. This concept of shape-momentum
decomposition is also popular in motion control of humanoid robots [39, 40].

In recent years, orbital mechanisms have emerged as a key mission element in
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on-orbit servicing [43–45], active debris removal [46], on-orbit assembly [47] and
sample acquisition from remote sites on a comet/asteroid [48]. The controller soft-
ware for the whole bespoke orbital mechanism is executed on subsystem-specific
On-board Software computers. In order to achieve the necessary technology readi-
ness levels, the Validation & Verification of the On-board Software algorithms are
carried out using Hardware-in-the-loop simulation using On-ground Robotic facil-
ities due to their inherent integration of available hardware and software models
[46–50], see Fig. 1.2. Hence, to meaningfully interface the On-board Software
with a Hardware-in-the-loop facility, it is imperative to generate motion in a
physically consistent way. This means that the conservation of momentum cor-
responding to the symmetry of the Floating-base Robotic Mechanism should be
preserved during Validation & Verification testing.

Descending towards terrestrial robotics, where fixed-base kinematic chain
robotic mechanisms are frequently used to perform automation tasks, it is noted
that there is no discernible symmetry. Indeed, these systems naturally do not
feature momentum conservation. Yet, a form of symmetry is often required in
task execution. For instance, it might be required to perform a primary task, e.g.,
polishing a task surface, with the highest priority, while a secondary task, e.g.,
keeping the elbow pointed upward, might be required to achieve an optimal con-
figuration. However, this should be executed in a way that the motion due to the
secondary task does not affect the primary task potential, i.e., it is a symmetry
of the primary task. The seminal work on this topic was proposed in [51, 52]. In
these works, the Euler-Lagrange dynamics was written alternatively using the pri-
mary task velocity and a non-integrable nullspace velocity. Motion stabilization
was achieved by cancelling the off-diagonal Coriolis/Centrifugal terms. However,
the approach relied on semi-definite functions for proof of stability because the
method failed to specify a metric tensor behaviour for the hierarchical motion
control task. Thus, the underlying principle behind hierarchy in motion and the
associated symmetry is still unknown in literature. Even with the recent advent
of methods which aim to learn Lyapunov functions for multi-task execution, the
key challenge is in specifying the metric tensor [53].

From a bird’s eye view, it is evident that although the dynamics and con-
trol of both Floating-base Robotic Mechanism and the hierarchical motion of
terrestrial robots look like different problem statements and have been treated
independently in literature, they are connected through the common concept of
symmetry. However, the unifying theory of dynamics and the associated control
synthesis is missing in robotics. For hierarchical control, it is still not known if
a single energy-like function can be employed to ascertain stability, and if not,
why. Similarly, while the parlance between Lagrangian and robotics computation
of dynamics are well-understood for fixed-base robots, the Floating-base Robotic
Mechanism has not enjoyed this juxtaposition. This is because the Lagrangian
formalism for generalized coordinates is commonly known, but the Floating-base
Robotic Mechanism has a Lie group as a configuration variable, and thus, the
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commonly-known Hamilton’s principle ends up with parametrized coordinates
(e.g., using Euler angles). To obtain singularity-free dynamics, it is viewed as a
kinematic chain mechanism and the dynamics are written using standard itera-
tive algorithms. But this conceals the special structure of the Lagrange-Poincaré
equations resulting from the symmetry. Thus, the momentum conservation prop-
erty has to be explicitly invoked in literature, and the nonholonomic behaviour
due to the symmetry is hidden in the iterative computations, and has appeared
disconnected from it. Even when it comes to the motion control of the Floating-
base Robotic Mechanism, the underlying shape-momentum interconnection has
not been revealed before. Consequently, motion control has not benefited from
the added structure of the Lagrange-Poincaré equations due to symmetry. Fur-
thermore, it is often assumed that the sensing and actuation of the shape and the
group of Lagrange-Poincaré systems is homogeneous. However, the group variable
is commonly measured using exteroceptive sensing in Lagrange-Poincaré systems,
which are slow-sampled. The motion control approaches above have ignored this
unique feature of majority of the Lagrange-Poincaré-type robotic systems. This
negatively affects controller performance, as I show later, and hence, diminishes
their applicability. Similarly, for the case of Validation & Verification testing,
the preservation of the momentum conservation property has also not been ex-
ploited in the state-of-the-art simulation facilities. This results in low fidelity of
the Validation & Verification method while increasing sensory overheads. Thus,
it is of both practical and theoretical significance to bring forward the concept of
symmetry in dynamics and motion control of robotic mechanisms.

1.2 Contribution Overview

The overarching theme of this thesis is to employ the advantages of symmetry in
dynamics description and motion control of robotic systems. At the very core,
the thesis prescribes the way to employ symmetry, when available, and if ab-
sent, it shows the way to generate a symmetry through control action so that
the proposed theory can be applied. In spirit, this thesis could be considered
as an extension of the work in [3] to Lagrange-Poincaré systems as it focuses on
Passivity-Based Control of Lagrange-Poincaré systems. It addresses problems of
practical relevance by bringing together the germane topics from the disciplines
of geometric mechanics, motion control and robotics, as shown in Fig. 1.3. The
thesis balances the theoretical contribution with empirical validation through
simulations and experiments in the field. The contribution begins by considering
a quintessential Lagrange-Poincaré system that has symmetry: a Floating-base
Robotic Mechanism (FRM). Its equations of motion are derived as an efficient re-
cursive computation that reveals the special structure of its Coriolis/Centrifugal
matrix due to the underlying symmetry. These Lagrange-Poincaré equations also
feature a block-diagonalized inertia, and this is exploited to reconstruct the be-
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Figure 1.3: Subject intersection in this thesis.

haviour of a Floating-base Robotic Mechanism in a validation facility with high
fidelity while avoiding sensory overheads. For general Lagrange-Poincaré sys-
tems, a motion control framework is developed that employs an internal model
of the symmetry variable dynamics to combine slow-sampled exteroceptive and
fast-sampled proprioceptive sensing for high performance. For the Floating-base
Robotic Mechanism, the special structure of the Lagrange-Poincaré equations
revealed earlier proves to be crucial in this model-based approach. For general
Euler-Lagrange systems that do not possess a desirable symmetry, a Symmetry
Generating Controller is developed that, firstly, transforms the Euler-Lagrange
system into an Lagrange-Poincaré system, and, secondly, exploits this symme-
try for hierarchical motion control. Finally, for this case of hierarchy, the task-
induced symmetry is imposed such that motion stability can be ascertained using
a single energy function, which was never done earlier. A chapter-wise outline
of the thesis is shown in Fig. 1.4, which highlights the contents of the chapter
and also the flow of ideas between the chapters. The main idea of a Chapter is
written in dark grey with key points highlighted in light grey. The outline will
be explained next.

Chapter 2 provides the formal concepts that are required in the remainder
of the thesis. This includes Lie group theory, fiber bundle theory, constrained me-
chanics and multibody computations that are used in robotics. In particular, the
Hamilton’s principle for deriving the equations of motion for Euler-Lagrange sys-
tems having a Lie group as a configuration variable, e.g., Floating-base Robotic
Mechanism, is shown. A theoretical framework for constrained mechanics is pro-
vided using tools from geometric mechanics which unifies systems with symmetry,
operational space control and systems with physical constraints. To the best of
my knowledge, such a framework is not available in robotics literature. These
concepts are used in the later chapters to develop the main contributions. Herein,
the Lagrangian formalism and robotics notation are correlated.

Chapter 3 focuses on the dynamics of the Floating-base Robotic Mechanism.
A novel geometrical construction is derived for visualizing its nonholonomic mo-
tion. The Lagrange-Poincaré equations of such a mechanism are derived with
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a novel recursive formulation that match the analogous equations from geomet-
ric mechanics. In particular, the dynamics are split into shape and momentum
variations, and the structure reveals additional properties due to the underlying
symmetry. The shape and momentum subsystems are proved to be in a passive in-
terconnection, which forms the basis of motion control. The Lagrange-Poincaré
equations are extended for the presence of symmetry-breaking potential fields
like gravity and buoyancy, while being surrounded by a potential fluid flow for
applications in different domains, e.g., underwater robotics.

Chapter 4 deals with the subject of dynamic substructuring in Validation &
Verification, which is required for testing algorithms on a facility before deploy-
ing a robot in a remote environment. Specifically, the structure of the Lagrange-
Poincaré equations for the shape and momentum dynamics is exploited to reduce
sensory overhead in the Validation & Verification facility. This also enables re-
alizing the motion with high fidelity such that the symmetry (momentum) is
preserved. The Lagrange-Poincaré dynamics derived in Chapter 3 are imple-
mented on Validation & Verification robotic systems to emphasize the benefits
of the proposed approach through several experiments.

Chapter 5 provides a novel Passivity-Based Control framework with an in-
ternal model for motion stabilization of general Lagrange-Poincaré systems. In
particular, two methods are proposed, which differ in the energy functions used
for stabilization. In the first method, the whole system is abstracted as a single
energy function, while in the latter, the shape subsystem is prioritized over the
momentum subsystem, and the corresponding energy functions are used hierar-
chically to ascertain stability. Since in Lagrange-Poincaré systems, the group
variable is measured using exteroceptive sensing, which are slow-sampled, the
proposed approach has a built-in model observer for high performance. The ad-
ditional states of the observer error dynamics elegantly behave as a part of the
shape subsystem of the Lagrange-Poincaré system. This preserves the passive
interconnection between momentum and shape subsystems from Chapter 3.

Chapter 6 deals with motion control with a task-induced hierarchy of general
Euler-Lagrange systems, which lack variational symmetry in desirable directions.
A novel Symmetry Generating Controller is proposed to, first, generate a sym-
metry along the primary task to transform the Euler-Lagrange system into an
Lagrange-Poincaré system. This enables the application of the passive intercon-
nection of the shape (primary task) and momentum (nullspace) subsystems from
Chapter 3. Consequently, this approach of motion stabilization assumes the form
of the second method in Chapter 5, i.e., the shape subsystem is prioritized over
the momentum subsystem, and the corresponding energy functions are used hier-
archically to ascertain stability. In particular, for the momentum subsystem, two
scalar functions are used: the natural energy and the squared-momentum, both
of which are conserved quantities for Lagrange-Poincaré systems.

Chapter 7 deals with general Euler-Lagrange systems which lack any dis-
cernible symmetry and answers positively the fundamental question, if it is pos-
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sible to achieve a task-induced hierarchy using a single energy-like function. It
is proved that task-induced hierarchy is actually a non-conservative problem be-
cause the projection of a potential generates an equilibrium that varies with the
primary task motion. By tracking this wandering setpoint, a novel method that
operates similarly to the first method in Chapter 5 is provided.

Chapter 8 contains a list of practical applications resulting from this thesis’s
research work. As is evident from above, the contributions are towards: dynam-
ics and Validation & Verification methods, sensor-based control, motion control
and also its extension to shared control (with teleoperation). The contributions
include work on: an intravehicular ISS mission, four projects (2 EU and 2 ESA)
on servicing and assembly in space robotics, a Validation & Verification strategy
for orbital robotics that space agencies and companies are increasingly adopting
for early-phase mission analysis, and two industry engagements through KUKA-
sponsored innovation awards.

In the thesis, smaller concepts are structured as Lemmas, while major con-
tributions are written as Theorems. The specific contributions (one or more
Theorems) of this thesis are listed below in the ascending order of chapters:

i) In Theorem 3.1, a novel geometric visualization of the unforced motion of
the Floating-base Robotic Mechanism is derived, which serves as the multi-
body extension of the Poinsot construction (1834) for rigid body motion.

ii) Theorem 3.2 provides a novel factorization of the Coriolis/Centrifugal ma-
trix of the Lagrange-Poincaré equations for the Floating-base Robotic Mech-
anism. This reveals a special structure of these equations derived from ge-
ometric mechanics and exhibits the symmetry. This formulation and its
properties enable model-based control, e.g., observer design, which was not
possible while using prior iterative algorithms in robotics.

iii) In Theorem 3.3, a novel closed-form computation of the curvature that
quantifies the nonholonomic behaviour of the Floating-base Robotic Mech-
anism is derived. This is used to compute the displacement of the base per
periodic motion in shape, and is required for nonholonomic motion planning
without explicitly integrating the equations of motion.

iv) Theorem 3.4 proves that the shape and momentum subsystems in systems
with symmetry (Lagrange-Poincaré systems) e.g. Floating-base Robotic
Mechanism, are in a passive feedback interconnection. This provides an
elegant structure for motion control design using subsystems, and is the
foundation for hierarchical motion control.

v) Theorem 3.5 generalizes the Lagrange-Poincaré equations for the Floating-
base Robotic Mechanism to consider the presence of a symmetry-breaking
potential field and a potential fluid flow surrounding the Floating-base
Robotic Mechanism, and is useful for underwater and aerial robotics.
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vi) Through Theorems 4.1 and 4.2, two control laws are derived based on La-
grangian matching that map the shape and momentum dynamics of the
Lagrange-Poincaré equation of an orbital robot to on-ground robotic facili-
ties. These theorems serve to create a Validation & Verification framework
that replicate the motion of a specimen orbital robot on ground. The
proposed theorems do not require acceleration measurements and ensure
momentum consistency, unlike prior methods.

vii) Theorem 5.1 proposes a novel control law with with an internal model
observer to achieve motion control of Lagrange-Poincaré systems without a
group velocity measurement, while stabilizing a single energy-like function.
This provides robustness against slow-sampled exteroceptive measurement
of the group variable. This is further extended in Theorem 5.3 to include the
group velocity measurement, however, provides an additional estimation of
forces affecting the momentum subsystem.

viii) Theorem 5.2 proposes an observer-based control law, as in Theorem 5.1, but
achieves hierarchical motion control of Lagrange-Poincaré systems while
stabilizing the shape and momentum subsystem energies sequentially. By
prioritizing the shape convergence, Theorem 5.2 posits the geometric frame-
work for hierarchical motion control of general EL systems.

ix) For Euler-Lagrange systems that lack symmetry in desirable directions, e.g.,
in hierarchical motion control, Theorems 6.1 and 6.2 employ a Symmetry
Generating Controller to generate a partial symmetry, and provide a con-
trol law to stabilize the geodesic motion in the primary operational space.
While the former stabilizes the secondary task using the natural energy of
the momentum subsystem, the latter achieves this using the squared mo-
mentum in the Lyapunov function. In contrast to prior works, the metric
behaviour of hierarchical motion control is explicitly prescribed.

x) For a task-induced hierarchy, which is proved to be a non-conservative prob-
lem in this thesis, Theorem 7.1 provides a novel control action that gener-
ates a new conserved Hamiltonian for the Euler-Lagrange system. Using
this new Hamiltonian, asymptotic stabilization is achieved through damp-
ing injection while preserving the natural metric tensor.

The research findings reported in this thesis have found applications that
have been published in five journal and six conferences publications, and
two patents (four more submitted). The main publications which are based
on the work in this thesis are listed in Table 1.1. Furthermore, the contents
of Chapter 6 and Chapter 7 of this thesis are currently being prepared for
two journal submissions. The patents filed during the research period together
with German Aerospace Center are listed in Table 1.2 and are highlighted with
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the percentage of my contribution. Finally, one book chapter, seven journals
and seven conference proceedings have been published collaboratively with other
research activities, which are related to the topic, but not directly integrated in
this thesis. These are summarized in Table 1.3.

Journals
[54] M. De Stefano, H. Mishra1, A. M. Giordano, R. Lampariello, C. Ott.
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IEEE Robotics and Automation Letters, 2021
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an Orbital Robot, IEEE Robotics and Automation Letters, 2021
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CHAPTER 2

Mechanics of Mechanisms

“ In the absence of a constraint or the propulsive energy of an ac-
tion, motion is by virtue of inertia towards a state of equilibrium
or a new constraint [88, pp. 198]. ”

Kanad, Vaisesika Sutra, 6th century BC

This chapter summarizes the preliminary concepts from geometric mechanics and
robotics that are relevant to the contributions of this thesis. In particular, rel-
evant ideas of Lagrangian mechanics, Noether’s symmetry, nonholonomic con-
strained mechanics, impedance control and multibody dynamics are introduced
and expanded. Despite this chapter being preliminary in nature, there are minor
contributions within it, and they are explicitly pointed out. In particular, a de-
tailed treatise on the mechanics of constrained mechanisms is given, which is the
main contribution of this chapter.

The organization of this chapter is as follows. The notations that aid in the
construction of the theory are provided in Sec. 2.1. Importantly, I revisit the
Hamilton’s principle for EL systems on Lie groups and trivial Principal Fiber
Bundles (PFBs) in Sec. 2.2 which is relevant for deriving the equations of motion
of a Floating-base Robotic Mechanism within the Lagrangian formalism. The
concepts of symmetry and its relevance to motion control are outlined math-
ematically in Sec. 2.3. Based on this, a comprehensive theory of constrained
mechanisms is developed in Sec. 2.4, which is the main contribution of this chap-
ter. The concepts of impedance control, passivity and multibody dynamics are
introduced through Sections 2.5-2.6 to aid the reader in navigating the contents
of this thesis.
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2.1 Configuration of Mechanisms

The configuration of a mechanism is usually denoted by a non-Euclidean vari-
able x ∈ Q ⊂ Rd, where d is the dimension of the configuration manifold Q.
An element X of the tangent space at x is denoted as X ∈ TxQ ⊂ R

d, and
Y ∈ T⊤

x Q ⊂ Rd for an element on the cotangent space. The tangent and cotan-
gent spaces at a point x are isomorphic to vector (velocities) and covector (forces)
spaces, respectively. Given two vectors X, Y ∈ TxQ and a symmetric weighing
matrix A ∈ Rn×n, 〈X, Y 〉A denotes an inner-product of the tangent space. The
natural inner product of the tangent space results when A is the metric tensor. In
case A is the identity matrix, it is not explicitly written. For a covector, Z ∈ T⊤

x Q,
a pairing product can be naturally defined as 〈X,Z〉 using the identity weight.
Given a metric tensor A on any configuration space Q, (•)♯ : T⊤

x Q→ TxQ and
(•)♭ : TxQ→ T⊤

x Q are inverse musical isomorphisms that use the metric tensor
to transform the argument quantity from cotangent space to tangent space, and
vice versa [89, pp. 341]. In this thesis, the configuration space on which the
isomorphisms are applied are implicitly clear.

Property 2.1. [89, ch. 12] Consider two manifolds X and Y . Let there be
a surjective map, π : X → Y . This map provides a tangent space pushforward
dπ : TxX → TyY and a cotangent space pullback T⊤

y Y → T⊤
x X in the reverse di-

rection. The pullback property applies to all k-forms, i.e., any k-form, e.g., a
scalar potential, or a covector force, can be pulled back from Y to the correspond-
ing exact quantity on X.

Note that Prop. 2.1 enables canonical pullbacks only from Y to X. For the
reverse direction, a connection choice must be made, and will be made clear
later. Mechanisms can also possess a non-commutative configuration variable,
e.g. attitude (orientation) of a satellite. In this case, the variable belongs to a
non-Abelian Lie group, g ∈ G, e.g. SO(3), SE(2), SE(3) etc, which has a matrix
representation. Given a vector in the tangent space at g, X ∈ TgG, its left in-
variant (right invariant) form is written as xl = g−1X (xr = Xg−1, respectively)1.
Both these forms belong to the Lie algebra, xl, xr ∈ g, which is also a matrix rep-
resentation of vectors on the tangent space at the group identity. It is useful to
write vector fields on Lie groups as invariant forms because g is isomorphic to Rd,
where d is the dimension of the configuration variable, e.g. d = 3, 3, 6 for SO(3),
SE(2), SE(3), respectively. This isomorphism is denoted as (•)∨ : g 7→ Rd and its
inverse is (•)∧ : Rd 7→ g. The left and right invariant forms of a vector are related
as, xr = gxlg

−1, which is written using the Adjoint representation of the group as
x∨
r = Adgx∨

l , Ad : g 7→ g. Given two vectors X, Y ∈ TgG, the non-commutativity
in configuration due to displacements along X, Y is captured by the Lie bracket,

1The left (right) invariant form is known as a body (spatial, respectively) velocity of the
group [90, ch. 2].
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i.e., [X, Y ] = [xr, yr] = adx∨
r
y∨
r , where ad : g→ g is the adjoint map of g onto

itself, and it is the differential of the Ad map. Likewise, for elements on the
cotangent space, the duals Ad⊤ : g⊤ 7→ g⊤ and ad⊤ : g⊤ → g⊤, serve the same
purpose. The group and its algebra are endowed with a local diffeomorphism
map, exp : g→ G and its inverse map, log : G→ g. In general, the configuration
of a sophisticated mechanism can occur in a form (x, g) ∈ G×Q, which com-
prises of commutative and non-commutative bases, e.g. a FRM. While G×Q
denotes a left group action, the same mechanism can be written alternatively as
a right group action, Q×G, and this is only a matter of notation.

2.2 Lagrangian Mechanics

In this subsection, the uncommon topics related to Lagrangian mechanics are
revisited to highlight the difference between the variational principles of mecha-
nisms with commutative and non-commutative basis, e.g., Lie group. This section
ends with the Hamel’s equations, which is used to model the motion of a FRM.
This will serve as a starting point for the contribution in Chapter 3.

Lemma 2.1. Hamilton’s principle [91, §2.1]: Given a mechanical system with
the Lagrangian L(x, ẋ) = T (x, ẋ)− V (x), where T and V are the kinetic and
potential energies, respectively, its motion from time t1 to time t2 is such that the
line integral (called the action integral), I =

∫ t2
t1
L(x, ẋ)dt, has a stationary value

for the actual path of the motion, i.e., δI =
∫ t2
t1
δL(x, ẋ)dt = 0.

Lemma 2.2. Derivation of EL equations [91, §2.3]: Expanding the result of
Lemma 2.1,

∫ t2

t1
δL(x, ẋ)dt =

∫ t2

t1

δL

δx
δxdt+

∫ t2

t1

δL

δẋ
δẋdt = 0 (2.1)

For simplification of (2.1), a crucial step is the application of integration by parts
to the second term as,

∫ t2

t1

δL

δẋ
δẋdt =

∫ t2

t1

δL

δẋ
δxdt−

∫ t2

t1

d

dt

δL

δẋ
dt (2.2)

where
∫ t2
t1

δL
δẋ
δxdt = 0 because δx(ti) = 0, and applying (2.2) in (2.1), leads to,

∫ t2

t1

(δL

δx
− d

dt

δL

δẋ

)

δxdt =
∫ t2

t1

EL(x, ẋ, ẍ)δxdt = 0 (2.3)

Finally, applying the fundamental lemma of calculus of variations, i.e., if the
integral in (2.3) is 0 for arbitrary δx, then EL = 0 is the EL equation.

Lemma 2.3. Given a generalized force f , which produces a virtual displacement
δx, the forced EL equation are given by a direct application of the D’Alembert’s
principle [91, §1.4] as,

〈EL(x, ẋ, ẍ), δx〉 = 〈f, δx〉 ⇒ EL(x, ẋ, ẍ) = f (2.4)
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The lemmas above apply to mechanisms with commutative configuration
spaces, e.g. fixed-base robotic manipulator. However, in mechanisms with a
non-commutative configuration variable, e.g. attitude (orientation) of a satel-
lite, the variable is a matrix representation of a non-Abelian Lie group, which
prevents straightforward application of the Lemmas above. To this end, an al-
ternative form of Hamilton’s principle for Lie groups is required, and is recalled
below.

Lemma 2.4. Hamilton’s principle on Lie groups [92, §9.1]: Given a configura-
tion g ∈ G which evolves as ġ = gV ∧, where V ∧ ∈ g is the left-invariant velocity,
the Hamilton’s principle is independent of g and reduces to the Lie algebra g, i.e.,

δ
∫ t2

t1
L0(g, ġ)dt = δ

∫ t2

t1
l0(V )dt =

∫ t2

t1
〈 δl0
δV

, δV 〉dt = 0 (2.5)

Given a differential displacement, δg ∈ TgG, like δx in Lemma 2.2, the reduced
left-invariant form is β = g−1δg ∈ se(3). Using this, the non-commutative varia-
tional principle is written as δV = adV β + β̇, and applied to (2.5), i.e.,

∫ t2

t1

〈 δl0
δV

, δV 〉dt =
∫ t2

t1

〈 δl0
δV

, adV β∨〉dt+
∫ t2

t1

〈 δl0
δV

, β̇〉dt (2.6)

As in (2.2) of Lemma 2.2, integration by parts is applied to the second term
in (2.6) with β(ti) = 0, followed by applying the fundamental lemma of calculus,
finally resulting in the unforced Euler-Poincaré (EP) equation as,

d

dt

δl0
δV
− ad⊤

V

δl0
δV

= EP(V, V̇ ) = 0 (2.7)

Given a generalized force, F ∈ g⊤, which produces a virtual left-invariant dis-
placement β, the forced EP equation is obtained by applying D’Alembert principle
as in Lemma 2.3 as,

〈EP(V, V̇ ), β〉 = 〈F, β〉 ⇒ EP(V, V̇ ) = F (2.8)

In many cases, as is also encountered in this work later, the Lagrangian is
explicitly a function of a Lie group variable. In this case, EP reduction as in
Lemma 2.4 is not feasible. To this end, the following is useful.

Lemma 2.5. [93, eq. 1.1] Consider a mechanism with a configuration variable

g ∈ G, which varies as ġ = gV ∧. Given a left-invariant Lagrangian l̆(g, V ), which
explicitly depends on the pose g, its motion is described by the unforced Left-
invariant EL equation for the Lie group as follows,

d

dt

δl̆

δV
−

(

g−1 δl̆

δg

)∨ − ad⊤
V

δl̆

δV
= ELG(g, V, V̇ ) = 0 (2.9)

As in Lemma 2.4, for a generalized force F , the forced ELG equation is obtained
by applying D’Alembert’s principle as,

ELG(g, V, V̇ ) = F (2.10)



2.2 Lagrangian Mechanics 21

Proof. Computing the first variation of the action integral, i.e., δ
∫ t2
t1
l̆dt, using

the left-invariant form of the variation β = g−1δg (as in Lemma 2.4), we obtain,

∫ t2

t1

δl̆(g, V )dt =
∫ t2

t1

(

〈 δl
δV

, δV 〉+ 〈 δl
δg
, δg〉

)

dt

=
∫ t2

t1

(

〈 δl
δV

, δV 〉+ 〈
(

g−1 δl

δg

)∨
, β∨〉

)

dt

(2.11)

where the final step is converted to a left-invariant inner product. Applying
Lemma 2.4, the result follows.

Remark 1. Note that the result of Lemma 2.5 structurally encapsulates the re-
sults of Lemma 2.2 and 2.4, i.e., the L.H.S. consists of the derivative of the
Lagrangian relative to the configuration and the non-commutative ad-term.

Correspondingly, the right invariant form using the spatial velocity is written
using a negative sign for the ad-term as,

d

dt

δl̆

δṼ
−

( δl̆

δg
g−1

)∨
+ ad⊤

Ṽ

δl̆

δṼ
= F̃ (2.12)

where Ṽ ∧ ∈ g and F̃ ∈ g⊤ are the right invariant forms of velocity and force.

Lemma 2.6. Hamel’s equations Consider a mechanism with a configuration con-
sisting of non-commutative and commutative bases, (g, x) ∈ G×Q, i.e., a trivial
PFB [14]. If the Lagrangian, L(g, ġ, x, ẋ), can be written in a left-invariant form,
l(V, x, ẋ), i.e., independent of the group variable g, then its motion is described
by the Hamel’s equations [94, §. 6], [31, eq. 4, 5], written as follows,

d

dt

δl

δV
− ad⊤

V

δl

δV
= F,

d

dt

δl

δẋ
− δl

δq
= f (2.13)

where (F, f) ∈ g× T⊤
x Q are the generalized forces.

Proof. The proof exploits the Hamilton’s principle from Lemmas 2.2 and 2.4.
Computing the first variation of the action integral, i.e., δ

∫ t2
t1
ldt, we obtain,

∫ t2

t1

δl(V, x, ẋ)dt =
∫ t2

t1

(

〈 δl
δV

, δV 〉+ 〈 δl
δx
, δx〉+ 〈 δl

δẋ
, δẋ〉

)

dt (2.14)

in which directly applying the commutative variational principle from Lemma
2.1 for the variations δx, and the non-commutative variational principle from
Lemma 2.4 for the variations δg leads to the unforced equations. Finally, applying
D’Alembert’s principle for generalized forces (F, f) ∈ g× T⊤

x Q, which correspond
to the arbitrary displacements (β, δx), the result follows.
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Remark 2. In the special case of Lemma 2.6 with G as an Abelian group (com-
mutative basis), e.g. robotic manipulator mounted on a linear guide, the non-
commutative term, i.e., ad⊤

V
δl
δV

= 0.

In EL systems, we are often interested in symmetry along certain directions.
For example, consider a fixed-base robot with configuration q ∈ Q. It is required
to control its motion on an operational space of a dimension lower than Q. Then,
the motion along the nullspace basis to the primary task vector field acts as its
symmetry, and is relevant in analysis. Since the contributions of this thesis are
based around such a symmetry, it is formally introduced next.

2.3 Symmetry in EL Systems

While EL equations describe the general motion, they do not reveal information
about its symmetry, i.e., invariance to transformations. For the following an-
alytical treatment, let the configuration manifold of an EL system be Q ⊂ Rn

with its configuration as q ∈ Q. It is endowed with an inertia tensor, M(q),
which yields the kinetic energy metric K = 1

2
〈q̇, q̇〉M(q). Given a scalar potential,

V (q) : Q→ R, its Lagrangian is L = K(q, q̇)− V (q). Using the Hamilton’s prin-
ciple and D’Alembert’s principle (Lemmas 2.1 and 2.3 from Chapter 2), the EL
equations are written as follows with their corresponding subject on the R.H.S.,

d

dt

δL

δq̇
− δL

δq
= τ̃ , Lagrangian (2.15a)

∇q̇ q̇ = (τ̃ − ∂V

∂q
)♯, Riemannian (2.15b)

M(q)q̈ + C(q, q̇)q̇ = τ̃ − ∂V

∂q
, Robotics (2.15c)

where ∇ is the covariant derivative on Q, τ̃ ∈ T⊤
q Q is the total force (including

the control action), and C is the matrix of the Coriolis/Centrifugal (CC) forces
containing the Christoffel symbols corresponding to M [8, ch. 4].

Def. 2.1. [95, §II.A] Let ξ be a smooth vector field, e.g., nullspace basis of a
primary task in operational space control [51]. The flow of ξ gives a transforma-
tion Φ on Q called Continuous Point Transformation (CPT), i.e., a displacement
of the point q along ξ, such that Φ(q, 0) = q, see Fig. 2.1a. In coordinates,

Φ(q, ǫ) : q 7→ q∗ = q + ǫξ(q) +O(ǫ) (2.16)

where the parameter ǫ takes a value around 0, indicating the infinitesimal nature
of the transformation.
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(a) Action of CPT for a sufficiently small ǫ creates
a mapping from original trajectory qi(t) to another
qi∗(t) along the vector field ξ. In this work, we do
not consider time-like transformations.
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(b) A scalar potential, V = 1
2 ||q1||2,

with a symmetry along q2-axis.

Figure 2.1: Symmetry: Concept for EL systems.

Def. 2.1 is a critical concept in analysing infinitesimal symmetries, i.e., sym-
metries along a vector field rather than a trivial symmetry along a coordinate
variable. Given a scalar quantity V(q), its variation along the flow of ξ is deter-
mined by the Lie derivative,

LξV(q) = V(Φ(q, ǫ))− V(q) = ǫ〈ξ, ∂V
∂q

(q)〉 (2.17)

The function V(q) is considered to be ξ-invariant, or ξ is a symmetry of V, if
LξV(q) = 0, i.e., the function remains invariant along the flow of ξ.

Example 1. In Fig. 2.1b, a scalar potential V(q) = 1
2
||q1||2 is shown on q(qi) ∈ Q.

Considering the vector,

ξ = ξ1(q)
∂

∂q1
+ ξ2(q)

∂

∂q2
=

[

ξ1(q) ξ2(q)
]
[

∂
∂q1

∂
∂q2

]

, (2.18)

for ξ1 = 0 and ξ2 = 1, ξ is a symmetry of V by inspection. In (2.18), ξ ∈ R
1×n

is the matrix form of the symmetry basis (nullspace), and may depend on q in a
general case.

To use this notion for a velocity-dependent scalar quantity on Q, K(q, q̇), the
first prolongation of the infinitesimal generator is defined as [95, §II.C],

ξ̂ = ξ
∂

∂q
+ ξ̇

∂

∂q̇
(2.19)

Thus, the variation along the flow of ξ̂ is determined as,

Lξ̂K(q, q̇) = ǫ
(

〈ξ, ∂K
∂q

(q, q̇)〉+ 〈ξ̇, ∂K
∂q̇

(q, q̇)〉
)

(2.20)

As before, K is ξ-invariant, or ξ is a symmetry of K, if Lξ̂K = 0.
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Example 2. In Example 1, consider a kinetic energy K = 1
2
〈q̇, q̇〉M(q1), in which

M(q1) is the inertia tensor with only q1 dependency. The first prolongation can
be written as,

ξ̂ = ξ(q)

[
∂
∂q1

∂
∂q2

]

+ ξ̇(q, q̇)

[
∂
∂q̇1

∂
∂q̇2

]

(2.21)

Since, ξ1 = 0 and ξ2 = 1, are constants, we get Lξ̂K = 0, implying that the

kinetic energy is ξ-invariant, with symmetry along q2 axis. This type of symmetry
is observed in FRM, in which the kinetic energy is independent of the floating
platform’s configuration [56].

Def. 2.2. Noether Point Symmetry (NPS): A CPT which is a symmetry of the
Lagrangian of the EL system in (2.15), i.e.,

Lξ̂
∫

Ldt =
∫ (

L(q∗, q̇∗)− L(q, q̇)
)

dt = ǫF(q) (2.22)

where F is the Bessel-Hagen term, and it can only be the total derivative2 of a
scalar field, i.e., F =

∫ dα(q)
dt
dt [95, §III]. In this case, Φ with generator ξ is simply

a Lie symmetry of the EL equations, whereas, in the particular case that F = 0,
the symmetry is strict. The term ξ̂(L) = α̇ is called the Rund-Trautman identity,
and the Rund-Trautman expression for the EL equations gives a momentum-
related term as,

〈ξ̂, EL(L)〉 =
d

dt
(α(q)− piξi), p =

∂L

∂q̇
(2.23)

A key point is that for Φ to be a Noether Point Symmetry (NPS), I = α−piξi
is a momentum-related conserved quantity during motion dictated by the EL
equations. In this subsection, the concept of symmetry in a EL system was
provided.

2.3.1 The Metric and its Killing vectors

A deeper understanding of the infinitesimal symmetry of the kinetic energy is
gained from the inertia metric tensor next. The following theory will be exploited
in Chapter 6 to achieve hierarchical motion control by synthesizing an artificial
symmetry of the metric tensor. Consider the EL system in (2.15) with the kinetic
energy K(q, q̇) = 1

2
〈q̇, q̇〉M(q). In this case, (2.20) is rewritten to get the NPS as,

Lξ̂Kij(q) = ξ(Kij(q)) +Kij(q)
∂ξj

∂qi
+Kij(q)

∂ξk

∂qj
= 0 (2.24)

which is the Killing equation [97]. The key concept behind (2.24) is that it shows
that K does not vary as one translates along the vector field ξ. The metric

2Note that this is because the addition of a total time derivative of a scalar field to the
Lagrangian leaves the EL equations invariant [96].
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Figure 2.2: Killing vectors along ∂
∂φ

on a Sphere Q = S2 in a surrounding Eu-
clidean space (R3), which create rotations around z-axis.

of the EL system can maximally have upto n(n+ 1)/2 Killing vectors, where
n = dim(Q) [98], e.g. Euclidean space. Of these, n killing vectors are translation
symmetries ∂q, and the remaining n(n−1)

2
indicate the O(n) rotational symmetries.

A manifold possessing maximal killing vectors is a constant curvature manifold.
Thus, in an n-dimensional Riemannian space, there can be maximally n(n+1)

2

conserved momenta.

Lemma 2.7. Consider a Riemannian manifold (Q,M(q)) having k < n Killing
vectors, ξi. A coordinate system exists such that the metric is independent of k
coordinates corresponding to the Killing vector flows. The converse is also true.

Proof. See [98, Prop. 2.2].

Example 3. Considering a sphere, Q = S2, a configuration point is denoted as
q ≡ q(r, φ, θ), see Fig. 2.2. The Riemannian metric on S2 is written in matrix
form as blkdiag(I, r2 sin2 θ, r2).

The vector, ξ =
[

ξ1(q) ξ2(q) ξ3(q)
]

with ξ1 = ξ3 = 0 and ξ2 = 1, is a killing
vector of the metric tensor because it does not depend upon φ explicitly. The
killing vectors (blue arrows) have been shown in Fig. 2.2 for the the particular
case of ξ, which cause rotations about the z-axis.
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Figure 2.3: Constrained mechanisms. A: System with symmetry, FRM which
features momentum conservation. B: Operational space control, the end-effector
tip of the fixed-base robot is controlled on a sphere. C: A serial kinematic chain
robot kinematically constrained at both end-effectors for torso operation. D:
Constraint modeled as a submersion.

2.4 Constrained Motion of Mechanisms

Constraints in mechanisms, see Fig. 2.3, are encountered in two ways: Physical
constraints, which are satisfied by the equations of motion of the system; and
virtual constraints, e.g. operational space motion, Fig. 2.3-B, which are required
to be satisfied by the closed-loop dynamics through motion control. The former
type can further be classified into two. While presence of a physical (kinematic)
constraint, Fig. 2.3-C, is an obvious one, the dynamic constraint that are a math-
ematical consequence of symmetry, Fig. 2.3-A, are unintuitive because they are
not physically present but still satisfied by the dynamics [14]. The contributions
of this thesis encompass physical and virtual constraints. Therefore, in the follow-
ing, a comprehensive theory of constrained mechanisms is developed to highlight
the aspects of modeling, integrability of subspaces and the group structure in-
duced by the constraint. To the best of my knowledge, such a theory is not
available in robotics literature and this is the main contribution of this chapter.

2.4.1 Modeling Constraints

Consider a mechanism with a configuration manifold Q. In geometric mechan-
ics, a constrained mechanism appears in an abstract form as shown in Fig. 2.4.
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Ver(TxQ)

Hor(TxQ) Q

Q

x(t0)

x(tf )

f(x)

Figure 2.4: An illustration of a constrained mechanism with a configuration space
Q as a fiber bundle with map f , which maps points in Q to base space Q. At a
point x, the Ehresmann connection decomposes the tangent space into Hor(TxQ)
(green plane) and Ver(TxQ) (magenta line) directions. Ver(TxQ) is tangent to all
points (arrowed orange line) which map to the same point inQ. A periodic motion
in Hor(TxQ) projected to Q results in net displacement in Q, i.e., x(t0) 6= x(tf ).

The presence of a constraint implies a bundle structure, i.e., there exists a map
f : Q→ Q, where Q is known as the base space and Q assumes the role of a
total space [99, Ch. 3], see Fig. 2.3-D. The following assumption is required for
theoretical development.

Assumption 2.1. Given the EL system, the bundle map f corresponding to the
constraint is not singular, i.e., rank

(

df(x)
)

= m.

Def. 2.3. For a EL system, let Q (dim(Q) = n) be the configuration space and
Q (dim(Q) = m) be the operational space such that both are differentiable mani-
folds with k = n−m > 0. Then, the differentiable map f : Q 7→ Q is a surjective
submersion at x ∈ Q if its differential, df : TxQ 7→ Tf(x)Q is a surjective map.

The map, f , from Def. 2.3 is a surjective submersion if it satisfies Assumption
2.1, i.e., J = df is such that rank(J) = m. Generally, f is a surjective submersion,
i.e., non-invertible map, as r = f(x), where x ∈ Q. This results in a fibered man-
ifold, denoted as a triplet (Q, f,Q). Each fiber f−1(r) for r ∈ Q is an embedded
submanifold of Q with dimension k [100], commonly known as a the manifold of
self-motions [101]. Formally, this is a fiber space3, {f−1(r) : r ∈ Q}. The fiber
bundle can be denoted by the short exact sequence as,

f−1(r) Q QΨ f
(2.25)

3Alternatively, Q appears as a disjoint and connected set of self-motion submanifolds [89,
Ch. 19], parametrized by any r. The partition of Q into the disjoint nullspaces parametrized
by r is a foliation [102].
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where Ψ : f−1(r)→ Q is the inclusion map of the embedded submanifold at each
r. The inclusion map has the form Ψ(r, s∗) = x∗, which for a given fiber coordi-
nate s∗ gives a configuration in x∗ ∈ Q [103, §1]. The map Ψ determines a section
in Q for a given r, and allows determining fiber coordinate. In particular, it satis-
fies π ◦Ψ = IdQ and Ψ(f(q)) = x, which determines the origin in the fiber. Note
that, Ψ is determined such that s∗ is an origin of the fiber at r. To understand
the topology of the fiber, it is prudent to identify its tangent space.

For every x ∈ Q, the primary submersion f canonically4 describes a vertical
subspace, V, on the tangent bundle TQ, as, Vx = Kern(J(q)), where Vx is a
k-dimensional vector space. The vertical component of TxQ at a point x of the
bundle is denoted by Ver(TxQ) = Kern(df(x)), which we denote as a matrix
basis Z ∈ Rn×k. The fibered manifold provides canonical exact sequences for the
tangent and the cotangent spaces as follows [104, eq. 1.4.3],

Vx TxQ TrQZ J (2.26)

T⊤
r Q T⊤

x Q V⊤
x

J⊤ Z⊤

(2.27)

Assumption 2.2. For any r ∈ Q, rank(Ver(TrQ)) = rank(Kern(J)) = k, where
Kern(•) is the kernel, or the nullspace, of the argument.

In general, the set of points in which Assumption 2.2 is fulfilled is dense in
Q, and it specifies that the mechanism is free of algorithmic singularities [105,
106]. The assumption merely states that the vertical subspace Vx is full rank. In
this work, the motion of the EL system is considered in the local region which
satisfies Assumptions 2.1 and 2.2.

Let a vertical velocity be (x, µ̃) ∈ Vx, where µ̃ ∈ Rk. The velocity µ̃ is canon-
ically projected to a vertical component ẋv ∈ Ver(TqQ) on the tangent space, as
ẋv = Z(x)µ̃, where Z ∈ R

n×k denotes the set of vertical (nullspace) basis. Mo-
tion along Z ensures the invariance of f(q) = r. Since Vx is tangent to the fiber
f−1(r), Z = dΨ is the Jacobian (differential) w.r.t. s of the inclusion map Ψ in
(2.25), as we shall prove next.

2.4.2 Integral flows of Vertical Subspace

In the following, the objective is to uncover the structure group that acts on the
fiber (nullspace). Consider a fixed point in operational space r ∈ Q defining a
distribution D, allowing motions only along the fiber, i.e., ẋ ∈ D.

The integral curve of the ith vertical vector Z i ∈ Vx on Q is a smooth curve
x(t) = γ(ǫi), parametrized with γ(ǫi) : I ⊂ R 7→ Q, whose tangent vector coin-
cides with Z i at that point, i.e., d

dt
γ(ǫ) = Z i(γ(ǫi)). A unique parametrization of

4The vertical subspace is canonical, whereas its orthogonal complement is chosen using a
connection [14], as shall be described later.
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γ might not be found, however, there is a maximal integral curve defined on the
largest possible domain interval, denoted as Ψi(x0, ǫi), which is written as,

Ψi(x0, ǫi) = x0 + Z i(x0)ǫi +O(ǫ2i ) (2.28)

Note that (2.28) has the structure of a CPT from Def. 2.1, and we get,

Z i(q) =
d

dǫi

∣
∣
∣
∣
ǫi=0

Ψi(x, ǫi), Ψi(x, si) = x0 (2.29)

whose integral solution is a left action5 of the flow, Ψi(q, ǫi) = exp(Z i(x0)ǫi) · x0.
For all the fiber (nullspace) basis, the CPT is written using the Product of Ex-
ponentials (PoE) as, Ψ(x, ǫ) = Πk

i=1 exp(Z i(x0)ǫi)x0 [107, Th. 1.51].

Assumption 2.3. Let Qδ ⊂ Q and Qδ ⊂ Q exist such that the fiber bundle aris-
ing from the constraint (Q, f,Q) is locally a Cartesian product Q ∼= Q× f−1(r)
∀r ∈ Qδ.

From a topological perspective, (Q, f,Q) can be non-trivial, i.e., it does not
admit a global product space trivialization, e.g., Möbious strip. The local triv-
iality condition in Assumption 2.3 is necessary to limit the scope to continuous
motions along a chosen trivialization of the fiber, i.e. the nullspace.

2.4.3 Local Integrability of the Vertical Subspace

The vertical velocity µ̃ ∈ Vx can be written using its tangent space component
at a fixed r ∈ Q as ẋv ∈ Ver(TqQ) as,

Z(x)µ̃ = ẋv = ẋ⇒ Z⊤Zµ̃ = Z⊤ẋ⇒ µ̃ = Z⊤ẋ (2.30)

which means ẋv = Zẋ, where Z = ZZ⊤ ∈ R
n×n is a tangent space (endomor-

phism) projector, i.e., Z : TQ 7→ TQ. I point out that Z is a Stiefel manifold,
giving a set of orthonormal k-frames on Q, and consequently, Z is the corre-
sponding Grasmannian projector [108], if Z is composed of orthonormal basis,
e.g., computed using Singular Value Decomposition (SVD).

Lemma 2.8. Given Assumption 2.3, the vertical subspace, V, of TQ, is integrable
[89, Ch. 13], and Ver(TxQ) forms a closed subalgebra of TqQ.

Proof. To prove this, Frobenius theorem is invoked to show that, given X, Y ∈ V,
the commutator, [X, Y ] ∈ V. Using f as the surjective submersion,

df([X, Y ]) = [df(X), df(Y )] = 0 (2.31)

which proves that [X, Y ] ∈ Kern(df) = V, and is a closed subalgebra.
5The solution is also equivalently given by a right action.
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Figure 2.5: Integrability of the vertical subspace (V) of the forward kinematics
as a surjective submersion, f : T7 7→ R3.

Example 4. An articulated system with n = 7 revolute joints, Q = T7, is con-
sidered with the task space as the inertial position of the end-effector tip in the
reachable subspace, i.e., Q ⊂ R3. Thus the kinematics map, f : T7 7→ R3 defines
a vertical subspace, whose basis is determined by a matrix Z ∈ R

7×4 obtained us-
ing SVD from spectral geometry. A trajectory along Z1, Z3 is chosen to create a
periodic circular motion of diameter 10[°], see Fig. 2.5, as follows,

q(t) =
∫ 4

0
(Z1ν1 + Z3ν3)dt (2.32)

where (ν1, ν2) = 5(sin π
2
t, cos π

2
t)[°/s]. In the right of Fig. 2.5, it is seen that all

joints during the trajectory are displaced from their initial condition and return to
it at the end, t = 4, demonstrating integrability of V. This is a special case because
the Lie Algebra of T7 is Abelian, and hence solvable, i.e., given X, Y ∈ TxT7,
[X, Y ] = 0, see [89, Ex. 8.40c]. Consequently, the Lie subalgebra V is also solvable
by Lie’s theorem, see [109, §3]. Hence, the vertical vector fields commute and the
mechanism returns to the initial configuration after a loop.

Remark 3. Note that, in general, the Lie Algebra of TxQ is not Abelian, e.g.,
FRM. In this case, the Lie subalgebra spanned by the vertical subspace V of the
submersion might not commute. This occurs when one of the configuration co-
ordinates is non-Abelian. Hence, the joint positions, as on the right of Fig. 2.5,
might not return to their initial condition. This, however, is the property of
non-commutative Lie Algebra, but the vertical subspace is integrable.

2.4.4 Structure Group-(oid) of Vertical Subspace

In the following, the objective is to uncover the structure group that acts on the
fiber (nullspace). From Lemma 2.8, at a given r, V is a closed Lie subalgebra
of TxQ satisfying the submersion f(x) = r. In (2.29), Z i is the infinitesimal



2.4 Constrained Motion of Mechanisms 31

generator of the integral curve on Q, and Ψ denotes the left flow action, because
it acts from the R.H.S. Corresponding to this flow action is a local Lie group, G,
parameterized by ǫi as follows.

Lemma 2.9. Consider the EL system satisfying Def. 2.3 as a constraint f(q) = r,
which restricts its velocities to the distribution ẋ ∈ D. The vertical subspace
(nullspace) V = Kern(df) of the submersion is the allowable motion, and the fiber
velocity is obtained using (2.30). In this case,

1. ∀Z, ∃(x, µ̃) ∈ Vx, and the following isomorphism holds:

µ̃ ∈ Vx
∼= g, Z(x)µ̃ ∈ gQ ∼= Ver(TxQ) (2.33)

2. The Lie algebra g generates a k-dimensional Lie group, G, which results in
an analogous left group action on Q as Ψ(x, ǫ) = g(ǫ) · x, where g ∈ G0, see
Fig. 2.6.

3. At a fixed r, x(0) ≡ (r, z), where z ∈ f−1(r) is the fiber element at r. Thus,
a group element g ∈ G0 acts only on the second argument as x(t) ≡ (r, g · z),
and (r, g) parametrizes the motions on Q w.r.t. x(0).

4. The group element is written as the PoE,

g = Πk
i=1 exp(Z i(q)ǫi), g ∈ G0. (2.34)

5. The Lie group reconstruction is determined by a right-invariant vector field
ġ = µ̃∧ · g, where µ̃ denotes the spatial velocity in the basis of e(r0), see
Fig. 2.6.

where (ǫi) parameterize the Lie group G0, and g denotes the Lie algebra basis
corresponding to the vertical velocity, µ̃, and gQ denotes the vector field corre-
sponding g, which in turn corresponds to ẋv.

Proof. Recall from Lemma 2.8 that Ver(TxQ) is a closed subalgebra of TxQ. In
item 1, for all the vector fields Z i, i = 1..k in Q ((2.29)), there exists a fiber
velocity, which forms a Lie algebra µ̃ ∈ g ∼= V, see [110, Def. 557]. For item 2, by
the Fundamental Theorem on Lie Algebra Actions [89, Lemma 20.16], there is a
k-parameter local Lie group G with the corresponding left group action Ψ(q, ǫ),
which is the same result obtained in Sec. 2.4.2. Item 3 results by fixing the chart
at x(t = 0). Note that the action of G0 depends upon the choice of variables
[111, §1.9]. For example, a group element g ∈ SO(2) parametrized with an angle,
δθ, acts on x = (x1, x2) ∈ R2 in Euclidean coordinates as x̂ = g(δθ)x. However,
in polar coordinates, g acts as x̂θ = (R, θ + δθ). The submersion, f , creates a
polar decomposition as x ≡ (r, z), and g acts on z by left translation. For item 4,
each velocity Z i generates a flow given by a one-parameter subgroup, as shown
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Figure 2.6: Motion along the nullspace of a distribution D, which arises from a
constraint on the forward kinematics submersion, f(x) = r.

in Sec. 2.4.2. The flow is given by the exponential map [107, Th. 1.51] and [112,
Th 5.3]. The overall group displacement is simply the PoE. For item 5, note
that the infinitesimal generator of the flow due to a left group action is produced
by right-invariant Lie algebra, see [4, Prop. 9.3.7], i.e., which denotes a spatial
velocity [5, Def. 2.8.13] in the basis of e0, see Fig. 2.6.

Remark 4. The reader might be aware of the concept of PoE from its application
in robotics to determine forward kinematics of open-chain multibody systems, see
[8, §2.2] [113, Th. 3.1], for a point in operational space, u ∈ S as,

u(x) = PoE(x)u(0), PoE(x) = Πn
i=1 exp(ζ̂i(x)ϑi) (2.35)

where ζ̂i and ϑi define the Lie algebra basis (twist) and the displacement of the
ith-joint, respectively. Note the similarity in (2.34) of Lemma 2.9 and (2.35).

Remark 5. Note that the vertical vectors corresponding to the basis, Z i, are
a vector representation (Rn), and are the infinitesimal generator of the group
action. The vectors can be converted to a matrix algebra by Ado’s theorem, see
[89, Th. 8.49]. This step is required for the exp(•) functions in Lemma 2.9.

Hence, using Lemma 2.9, let G0 be the local k-dimensional Lie group [107,
Def. 1.20] with a matrix representation in GL(n). Given g ∈ G0, a new con-
figuration along the nullspace at r is obtained as x∗ = g · x, where · represents
the matrix multiplication. Let the corresponding Lie algebra be g ∼= Vx, where
g ⊂ gl(n) is also a matrix representation of Vx, as discussed in Remark 5. A vector
µ̃ ∈ g is tangent to the curve produced by the exponential map, µ̃ = d

dt
(exp(tµ̃)).

Thus, the submersion f creates a vertical space V as a closed Lie subalgebra, g,
which is an infinitesimal generator for the group displacement, g, in the nullspace
given by Lemma 2.9. This group displacement, like in (2.35), is determined using
PoE, such that Z i determines the Lie algebra basis, and ǫ is the group parameter
change. At this point, it is worth noting that given the Lie algebra basis for g,
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the group element’s parameters (ǫi(t) in (2.34)) can be obtained using the Wei-
Norman formula to form the group element g [114, 115]. The problem here is
that the Lie Group G0 is not equipped with a defined identity, e. It is convenient
to choose the configuration at t = 0, i.e., x(0), to define e.

Lemma 2.10. Let the bundle map of a constrained EL system be denoted as
f : Q 7→ Q, and be a surjective submersion. Let V = Kern(df) be its vertical
subspace that defines an action of a k-parameter group G0 on Q at a fixed r ∈ Q.
Then, G0 is local symmetry group of the algebraic system of f , i.e., there exist
k G0-invariant functions that define a submanifold of Q, and the group orbit
induced by Z i is denoted as Q/G0

∼= Q.

Proof. Firstly, note that if the forward kinematics, f , satisfies f(x) = r, it also
satisfies f(g · x) = r. Here, G0 determines the symmetry group of the algebraic
system given by the submersion [107]. This invariance is written in terms of the
Lie algebra as,

LZif = Z i(df) = Z i(q)⊤J(q)⊤ = 0 (2.36)

where J(q) ∈ R
m×n is the Jacobian matrix corresponding to the submersion f .

From [107, Def. 2.3], the result follows.

Property 2.2. For the fiber bundle (Q, f,Q), the action of g ∈ G0 corresponding
to the basis Z leaves the distribution D invariant, i.e.,

〈df(g · x), ẋ〉 = 〈df(x), ẋ〉.

Furthermore, once the group G0 is fixed at x(0), ẋv is translated using the Adjoint
group action as (Adgµ̃)Q = Ψ(g−1)ẋv, see [5, pp 233]. Consequently, it follows
that, Z1µ̃ = (Ad−1

g µ̃)Q, implying that Z ∼= Adg−1 is the adjoint action of G0.

In motion control of EL systems, a virtual constraint on the primary opera-
tional space is desired, see Fig. 2.3-B. However, it is required to regulate a part
of the motion as if it is described on Q. This means that r ≡ r(t) is not station-
ary. Note that Lemma 2.10 indicates only a point-dependent (local) symmetry.
This is because the group identity e

(

r(t)
)

is not defined along the trajectory r(t).
This is a topological obstruction to finding coordinates for the fiber, while mo-
tion occurs in the base space, Q. However, the fiber is point-wise, for each r ∈ Q
integrable.

This kind of point-wise symmetry is Cartan geometry, as opposed to Klein
geometry, in which the fiber is homogeneous [116]. For the fiber bundle, (Q, f,Q),
Gt is a Lie groupoid, which is the many-object generalization of a Lie group with a
point-dependent identity map [117, 118]. A treatment of the groupoid formalism
is beyond the scope of this work. However, the key conclusion here is that the
foliation of Q arising from submersion, f , viewed as a Lie algebroid is integrable
[118]. Thus, its vertical subspace integrates to a Lie Groupoid [119]. A topological
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Figure 2.7: A fibered bundle (Q, f,Q, Gt) in which the fiber is not a homogeneous
space resulting in non-continuous group action, i.e., ∀r(t), (ri+1, zi+1) cannot be
obtained through group action, g.(ri, zi) for g ∈ Gt. This is because the group
identity e

(

r(t)
)

varies along the trajectory r(t).

abstraction is shown in Fig. 2.7, in which the fiber space (orange leaves) do not
make up a homogeneous space, and cause an obstruction to determining distances
in the fiber. Although direct motion control on the Groupoid coordinates is not
treated here, its Jacobian map, Z is useful.

Remark 6. In [102], it was concluded that the nullspace (vertical) subspace is
non-integrable because given a closed loop in operational space r(t) ∈ Q such that
r(t0) = r(tf ), x(t0) 6= x(tf ). This is, however, the non-integrability (geometric
phase like a falling cat [94]) of the horizontal subspace - the orthogonal comple-
ment of the vertical subspace V, which we shall explain next, but V is integrable.

With the above analysis, a point r ∈ Q was fixed to uncover the structure
Lie group acting on the fibers. At t = 0, the identity (0-element) of the group
is fixed as g(r) = e0, and thus, the fiber f−1(r), i.e., the nullspace, is isomorphic
to the group G0. In the following, the condition f(x) = r is used to describe the
motion of a constrained EL system.

2.4.5 Constrained EL Systems: Vertical Subspace

Commonly, constrained mechanics is handled using well-known mathematical
tools like Lagrange multipliers [8, §6.1] and Lagrangian reduction [5]. In the
former, the dynamics of ẋ ∈ TxQ are written in a constraint-consistent form,
whereas, in the latter, the constraint is treated as a vertical subspace and the
dynamics are written in new invariant coordinates, w ∈ f−1(r), see [5] and [8,
§4.6]. In the latter case, f−1(r) denotes the manifold of allowable motions and
its parametrization is assumed to be known.
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In the following, the allowable motion is described perversely along the vertical
subspace, while assuming a constraint on the submersion f . To achieve this, the
fiber bundle structure (Q, f,Q, G0) from the previous section is employed. This
approach is uncommon but falls under the subject of Lagrangian mechanics on
fibered manifolds [119]. This aids modeling the motion violating the submersion
constraint as its horizontal subspace, which helps model the base space, Q, in
terms of a quotient description, Q/G0. Another consequence of the sequences in
(2.26) and (2.27) is the canonically defined metric on the submanifold f−1(r).

Def. 2.4. Induced metric on the submanifold [89, pp. 333]: Given the Rie-
mannian manifold (Q,M) characterizing the EL system, the submanifold f−1(r)
induced by the submersion automatically inherits a pullback metric using the Ja-
cobian, Z, of the inclusion map, Ψ, as Λ(x) = Z⊤MZ.

To that end, using (2.30), the canonical vertical metric is defined using the
infinitesimal generator, Kv = 1

2
〈µ̃, µ̃〉Λ, and Λ, is the locked inertia [14, Def. 5.2]

of the system. From Lemma 4, µ̃ is a spatial velocity, and hence, Λ is resolved in
the spatial frame of the group motion, i.e., at e0.

Lemma 2.11. Consider a EL system with its configuration x ∈ Q such that
dim(Q) = n. Let the EL system be holonomically constrained, such that the
constraint is defined on another manifold Q with dim(Q) = m. Correspond-
ingly, there is a submersion f : Q 7→ Q, which is a surjective submersion, i.e.,
k = n−m > 0. The constraint is written as, f(q) = r, where d

dt
r = 0. The sub-

space of the tangent space TQ with allowable motion is the vertical subspace,
V = Kern(df), which is a closed Lie subalgebra isomorphic to g. Thus, the con-
strained EL system’s configuration is g ∈ G0, where G0 is the Lie group cor-
responding to g obtained through PoE. Then, the equations of motion on the
k = n−m submanifold, f−1(r) are written by the right-trivialized Euler-Lagrange
equations for the Lie group,

d

dt

δl

δµ̃
−

( δl

δg
g−1

)∨
= −ad⊤

µ̃

δl

δµ̃
+ F, ġ = µ̃∧ · g (2.37)

where F ∈ g⊤ ∼= V⊤
x is the right-invariant (spatial) force restricted to the subman-

ifold f−1(r).

Proof. The Lagrangian for the constrained EL system is l = Kv(g, µ̃)− V(g),
where V : G 7→ R is the scalar potential on the Lie group G0. For such a system,
the dynamics are given by the forced right-trivialized Euler-Lagrange equations
for the Lie group G0, as we recall from the corollary in (2.12) of Lemma 2.5. The
forcing is simply obtained using D’Alembert’s work principle.

Let τ ∈ T⊤
x Q, then it can be mapped to F as,

〈τ, ẋ〉 = 〈F, µ̃〉 = 〈F, Z⊤ẋ〉 ⇒ τ = Z(x)F (2.38)
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Remark 7. It is worth pointing out that µ̃ is a velocity expressed relative to a
configuration-dependent frame of the EL system. In that sense, it is a quasive-
locity, and the dynamics in Lemma 2.11 are also given by the Hamel’s equations,
as shown in [120, eq. 2.5].

Lemma 2.12. Consider the constrained EL system described in Lemma 2.11.

For the unforced case, i.e., F = −
(
δV
δg
g−1

)∨
, the constrained Hamiltonian for the

nullspace (vertical) motion is

H̃ = Kv(g, µ̃) + V(g) = 〈 δl
δµ̃
, ξ〉 − l(q, ξ) (2.39)

and satisfies energy conservation, ˙̃H = 0.

Proof. Taking the time-derivative of (2.39),

˙̃H =
d

dt
〈 δl
δµ̃
, µ̃〉 − l̇ (2.40)

Computing the time-derivative of the constrained Lagrangian l,

l̇ = 〈
( δl

δg
g−1

)∨
, µ̃〉+ 〈 δl

δµ̃
, ˙̃µ〉 = 〈

( δl

δg
g−1

)∨
, µ̃〉+

d

dt
〈 δl
δµ̃
, µ̃〉 − 〈 d

dt

δl

δµ̃
, µ̃〉 (2.41)

Using (2.41) in (2.40),

˙̃H = 〈ad⊤
µ̃

δl

δµ̃
, µ̃〉 = 0⇒ H̃ = const. (2.42)

because of the skew-symmetry of the Lie bracket in ad-operator [10].

Lemma 2.12 is further proof of the integrability of the vertical space V.

2.4.6 The Horizontal Subspace

So far, the canonical structure available for the constraint has been discussed. To
write the equations of motion using fiber bundle velocities, a geometric concept
called the connection is required. A connection fundamentally provides a mech-
anism to compute a vertical velocity, µ̃ using the velocity ẋ of the EL system.

Def. 2.5. An Ehresmann connection A is a vertical valued quantity on Q defined
as, Ax : TxQ 7→ Vx and A

(

Ver(µ̃)
)

= µ̃, where µ̃ ∈ V [14].

Using the Ehresmann connection in Def. 2.5, the tangent space decomposes
as TxQ = Ver(TxQ)

⊕
Hor(TxQ), where Hor(TxQ) is the horizontal subspace and

is orthogonal to the canonical vertical subspace. This formulation is applicable
for both, motion analysis of constrained mechanisms and also the operational
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Figure 2.8: Non-integrability of the horizontal subspace (Hor(TxQ)) of the sur-
jective submersion, T7 7→ R3.

space motion control of mechanisms. In particular, the connection defines the
endomorphism map, TxQ→ TxQ, through the projector matrix Z = ZA, which
splits any tangent velocity vector ẋ∗ ∈ TxQ as,

ẋ∗ = ẋ∗
v + ẋ∗

h = (Z)ẋ∗ + Kern(Z)ẋ∗ (2.43)

Note that in (2.30), a subconscious choice was made as A = Z⊤, while con-
sidering a fixed ṙ. However, the connection is a choice, and can be chosen in
a way that aids or simplifies analysis. The horizontal subspace is generally the
non-integrable distribution, and corresponds to the velocity ṙ for the submersion
f . Example 4 is used to illustrate this in Fig. 2.8. In particular, the EL system
was initialized to run two different simulations, with ẋ(0) = ẋv(0), say Sv, and
ẋ(0) = ẋh(0), Sh. On the left, it can be seen that the energy corresponding to Sv
is conserved, as proved in Lemma 2.12. In contrast, there is no such conservation
property in Sh, indicating a non-integrable behaviour. In the center, a volumetric
quantity is computed as ∆vol = 〈∆p,∆q〉 for the EL system, where ∆p denotes
change in momentum and ∆q denotes the change in configuration w.r.t. the
same quantities at t = 0. The latter quantity is plotted on the right. From these
plots, we can empirically verify the integrability of the vertical subspace and the
non-integrability of the horizontal subspace.

2.4.7 Topology of Fiber Bundle and EL equations

Using the aforementioned machinery, the motion of the EL system can be de-
scribed using the fiber bundle velocity (ṙ, µ̃) instead of using (2.15). The vari-
ational problem for describing the motion on the fiber bundle is not trivial. A
bottom-up classification of sophistication in fiber bundles in provided in Fig. 2.9
to show how topology affects the EL mechanics. Consider a fixed r ∈ Q. In this
case, as shown in Lemma 2.11, the Lagrangian on the fiber can be written as,

l(g, µ̃) =
1

2
〈µ̃, µ̃〉Λ(g) − V(g) (2.44)

where the EL dynamics describe the variation of the structure group of the fiber
f−1(r). For the case in which r(t) varies, a family of such Lagrangians is obtained
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Figure 2.9: Step-wise classification of fiber bundles in increasing sophistication.

[119]. This situation has been encountered previously in the field of EL systems
with symmetry [5], in which f : Q→ Q is the submersion such that Q ∼= Q/G is
a quotient space of the Lie group G. In these special cases, the fiber space is
itself the Lie group resulting in a PFB. Consequently, the velocity (ṙ, µ̃) and its
dynamics correspond to the shape velocity and the group velocity (could be non-
Abelian), respectively, and their dynamics e.g., FRM [56]. Importantly, at each
r, the same group G determines the fiber. In case of a trivial fiber bundle, i.e.,
Q = G×Q, the identity of G can be globally trivialized. In a simpler topology,
the metric in the fiber, Λ, is constant ∀x. This in turn leads to geodesic invariance,
i.e., for every geodesic in Q, x : [a, b]→ Q, if ẋ ∈ D(x(a)), then ẋ ∈ D(x(t)) [121,
§3]. However, in case of non-trivial fiber bundles, i.e., Q 6= G×Q is not globally
a Cartesian product, the identity of G is only locally defined at each r. So,
for motion control, there is an obstruction to measuring distances in the fiber
while considering motion in Q. Already, for this case, the Lagrangian formalism
is not readily available. Indeed, the only work I could find on this topic is
[121], for which a published version was not available. This does not affect our
subsequent work, as we are able to derive the dynamics using robotics tools.
But this emphasizes exotic topologies that are encountered in robotics and are
extremely rare in geometric mechanics. In the non-trivial case, Λ ≡ Λ(x), whereas
in the trivial case, Λ ≡ Λ(r). In case of general fiber bundles, however, as is the
case in this chapter, the structure group of the fiber is not globally the same
∀r ∈ Q, and is actually a Groupoid structure, which is a relatively new topic.

In the general case considered here, the quotient map f : Q→ Q/Gt holds
locally for each r(t), where Gt is the Lie group locally defined at r. From a global
perspective, this defines a Lie groupoid, i.e., a set of Groups [119]. Recall that
this was also our conclusion from Sec. 2.4.4. In this case, the tangent space that
is isomorphic to the groupoid yields a Lie algebroid. Hence, the dynamics of
(ṙ, µ̃) correspond to the dynamics of the shape velocity and the Lie algebroid of
Gt. This implies that, ∀r ∈ Q, the EL dynamics of l gives the dynamics of the
structure group Gt at r.
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2.4.7.1 Operational Space as a Constraint

In operational space motion control, as in Fig. 2.3-B, the EL system is not con-
trolled directly on its configuration space Q. Instead, it is controlled on an
alternative operational space given by the submersion f , e.g., on a sphere, i.e.,
Q = S2. In this case, the total motion of the mechanism decomposes into motions
along operational space and internal motions [122]. In other words, the tangent
space decomposes as TxQ = Hor(TxQ) + Ver(TxQ), where Hor(TxQ), for instance
corresponds to motion on Cartesian space, Q = SE(3), that is required to be con-
strained, while Ver(TxQ) denotes the space of null-space motions. It is worth
pointing out that, generally, such a formulation does not result in a trivial fiber
bundle, i.e., Q 6= G×Q. In fact, the EL system need not have any symmetry
of the Lagrangian along the fibers, therefore, resulting in a general fiber bundle
with a Groupoid toplogy in the nullspace (fiber).

2.4.7.2 Symmetry as a Constraint

In the case of mechanisms with continuous symmetry, i.e., the Lagrangian is in-
variant to some configuration variables, the corresponding conjugate momenta is
conserved by the equations of motion. This is a simple restatement of Noether’s
theorem [14, §4.1]. Let the configuration be written as x = (g, q) ∈ Q, as in
Lemma 2.6, where Q = G×Q assumes a PFB topology. Let the group recon-
struction formula be ġ = gV ∧, where V ∧ ∈ g is the left-invariant group velocity
written using the Lie algebra. Thus, the submersion in Def. 2.3 is trivially written
as, f : G×Q → Q, which projects to the second argument, and its differential
is df = J =

[

0m,k Im,m

]

. Due to the presence of a global Lie group, the left-
invariant Lagrangian can be explicitly written as l = 1

2
〈ζ, ζ〉M(q) − V(q), where

ζ =
[

V ⊤ q̇⊤
]

, M is the left-invariant inertia metric tensor of the whole mecha-
nism and V : Q → R is the symmetry-preserving potential, respectively. Gener-

ally, the inertia assumes a form, M(q) =

[

M1(q) M1q(q)
M1q(q)

⊤ Mq(q)

]

, where M1 is the

body locked-inertia, M1q is the inertia coupling and Mq is the inertia metric ten-
sor on Q when V = 0. Note that M1 is the left-trivialized form of Λ in Def. 2.4,
and will be shown below. This description generalizes a wide class of systems, e.g.
see Fig. 5.3a, manipulator-equipped spacecraft, spacecraft with rotors (Astrobee),
etc. Note that l is clearly independent of g. The conjugate momentum map is
defined below.

Def. 2.6. The momentum map [5, §3.7] is a mapping, J : TQ→ g⊤, which is
defined as J = 〈Z, δl

δζ
〉, and physically represents the total right-invariant momen-

tum of the mechanism.
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Figure 2.10: FRM with group symmetry. On left, a manipulator-equipped space-
craft. On right, the Astrobee free-flyer with internal rotors.

Using Def. 2.6 and Def. 2.4, for the PFB topology, J [31, App.] and Λ are

J =
[

Ad−⊤
g 0

]

M(q)ζ, Λ =
[

Ad−⊤
g 0

]

M(q)

[

Ad−1
g

0

]

(2.45)

because Z⊤ =
[

Ad−⊤
g 0

]

contains the group Adjoint action as shown in Property
2.2. In such mechanisms, the conservation principle itself imposes a mathematical
constraint, which is modeled using a special type of Ehresmann connection. The
conservation of J is written as a constraint on the tangent-space using a geometric
quantity called the mechanical connection [17, §3.2], defined below.

Def. 2.7. Mechanical connection: A map, A : TQ→ se(3), which quantifies the
right-invariant velocity corresponding to J , and is written as µ̃ = Aζ = Λ−1J .
Using the momentum map in Def. 2.6,

µ̃ = Λ−1J = Λ−1Z⊤ δl

δζ
= Λ−1Z⊤M(q)ζ = Adg

[

I6,6 Al(q)
]

︸ ︷︷ ︸

A

[

V
q̇

]

(2.46)

where Al = M−1
1 M1q is alternatively called the local mechanical connection, and

Λ is the right-invariant locked inertia [14, eq. 5.3.1] defined in Def. 2.4.

Just like the Ehresmann connection, in Def. 2.7, A is the connection for the
bundle map G×Q → Q [123, §2]. In fact, the mechanical connection is the
Ehresmann connection on the PFB, which arises due to the symmetry action of
a Lie group.
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Lemma 2.13. Given Def. 2.7, the tangent space decomposes as

g× TqQ = Hor(g× TqQ) + Ver(g× TqQ), (2.47)

where A = 0 defines Hor(g × TqQ) and the latter is the orthogonal complement.
Consequently, the horizontal velocity is ζh = (−Alq̇, q̇) and the vertical velocity
is ζv = ζ − ζh = (V1 +Alq̇, 0) = (µ, 0), respectively, which are identified using the
shape and left-invariant (body) locked velocities, i.e., q̇ and µ, respectively.

In FRM, Hor(TxQ) refers to the reduced joint-space, while Ver(TxQ) denotes
the space of the momentum variation. A key difference between the two types of
constraints discussed in subsections 2.4.7.1 and 2.4.7.2 is the following. While in
operational space motion control, Hor(TxQ) denotes the space of motions parallel
to the constraint, i.e., deformation along the constraint, it refers to the space of
internal motions perpendicular to the momentum constraint for a FRM.

2.4.8 Nonholonomic nature of Constraints

In general, constraints are nonholonomic in nature, i.e, the constraint map of
the Ehresmann connection is not preserved over a closed path in Hor(TxQ), i.e.,
gait, see Fig. 2.4. In fact, this is observed through a net displacement in the
mechanism’s configuration, i.e., x(t0) 6= x(tf ). For example, in robotics, it is well
known that gaits in end-effector operational space, i.e., Hor(TxQ), result in a net
displacement in the mechanism’s natural configuration in Q [105]. Likewise, for
FRM, a gait in the shape-space (internal motions) results in a net-displacement
of the inertial configuration, the falling-cat phenomenon [94]. The amount of
non-preservation of the constraint is quantified by its curvature, which, in sim-
pler commutative spaces, is the exterior derivative of the constraint map. In
case of non-commutative spaces, the curvature is given by the covariant exterior
derivative, which also accounts for the change due to non-commutativity [19].
Informally speaking, the curvature or the exterior derivative gives the differential
change in the constraint per infinitesimal area displacement due to the gait in
the base space Q (chequered red in Fig. 2.4).

2.4.8.1 Curvature of Floating-base Robotic Mechanism (FRM)

A unique characteristic of the FRM is that A is not preserved over a closed path
in shape space, i.e., gait. In fact, this is observed through a net displacement of
the FRM-base pose g due to the gait, as shown in Fig. 2.11. This is the falling-cat
phenomenon [94]. Due to its g-dependency, A in (3.6) is not preserved over a
gait, and the amount of non-preservation is quantified by its curvature. Based
on the q-dependency, just as A is defined locally by Al, the curvature of A is
defined by the local curvature of Al [14, Def. 3.5], denoted as DAl, where D is
the exterior covariant derivative operator, see [20, §B.6]. The local curvature,
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DAl, is significant because it appears explicitly in the LP equations, as I shall
see later, and is also employed for locomotion analysis in geometric mechanics
[20, 124, 125], as described below.

Initial condition final conditiongait

q1

q2
t0 tf

q1(0)q1(0)

g(t0)
g(tf)

q2(0)

q2(0)

Figure 2.11: Net displacement of the FRM-base, δg = g(t0)
−1g(tf), due to a gait.

Left: FRM initial (t0) configuration; Center: gait with starting point (green) and
direction (arrow); Right: FRM final (tf) configuration.

In particular, DAl is exploited to estimate the net displacement of the FRM-
base over a gait, i.e., δg = g(t0)

−1g(tf) in Fig. 2.11. Common approaches presup-
pose that the time-integral in ġ = gV ∧, for µ̃ = 06, is converted into an area inte-
gral by invoking Stokes’ theorem, see Appendix A.3.1. In short, given an infinites-
imal path displacement in shape space, dq ∈ Rn, (−Aldq)∧ in ġ = gV ∧ defines a
se(3) infinitesimal displacement of the FRM-base. Similarly, for an infinitesimal
area displacement over a gait in shape space dA ∈ Rn × Rn, (−DAldA)∧ also
quantifies a net displacement. Note that the area dA requires two base vectors
to be uniquely determined.

Def. 2.8. The local curvature is (DAl)(q, x)y = (dAl)(q, x)y − adAlxAly, where
x, y ∈ Rn are the two vectors in shape space that uniquely define the basis for an
oriented differential area in the shape. The term dAl(x)y is the exterior derivative
operator and measures the intrinsic change in Al across the shape space; and
adAlxAly is the Lie bracket, which measures the extrinsic change in Al, as the
allowable velocity space rotates with the FRM-base body frame due to the non-
abelian property of SE(3) [20].

Since SE(3) is non-abelian, an exact solution for δg in Fig. 2.11 is not feasible
for the FRM. However, an approximate δĝ over a gait area U is estimated as [20],

ζ = log
(

δĝ
)

= −
∫ ∫

U
DAldA ≈ log

(

δg
)

, (2.48)

using visual tools to compute the area integral in (2.48), see Appendix A.3.2.
The approximation errors in (2.48) are mitigated by computing the area integral
therein in the minimum perturbation coordinate frame, which minimizes non-
commutativity, instead of the group frame of the floating platform in the FRM,
see [19, 20]. In [125], an alternative approximation of the integral of ġ = gV ∧

was used. In such locomotion approaches, DAl is essential, and is traditionally
computed using symbolic or numeric methods.
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2.5 Mechanical Attributes for Motion Control

In the following, the mechanical attributes that are relevant for characterization
of motion control of mechanisms in this thesis are defined.

2.5.1 Impedance/Compliance Control

Consider a mechanism with x, x̂ ∈ Q as the current and the setpoint equilibrium
configurations, respectively. The relative motion between the two configurations
is quantified by ˙̃x = x− T (x, x̂) ˙̂x, where T : Tx̂Q→ TxQ is the linear map to
transform a vector from one tangent space to another.

Def. 2.9. Mechanical Impedance: It is a tuple (M, γ, ψ), where M : TxQ→ T⊤
x Q

is the inertia metric tensor, γ : Q→ T⊤
x Q is the differential of a scalar potential,

i.e., γ = −dxVx(x, x̂), and ψ : TxQ→ T⊤
x Q is the differential of a Rayleigh dis-

sipation potential, i.e., ψ = −dẋVẋ(ẋ, ˙̂x), which characterizes the equations of
motion about an equilibrium point (x̂, ˙̂x) ∈ Tx̂Q. By characterizes, I mean that
the equation of motion is,

M(x)∇ẋ
˙̃x+ γ(x, x̂) + ψ(x, x̂, ˙̂x) = Fd (2.49)

where ∇ is the Levi-Civita connection of the Riemannian metric on Q [10], and
Fd ∈ T⊤

x Q is the input force.

In Def. 2.9, (2.49) is simply the Newton’s law on non-Euclidean spaces. The
map γ is commonly called the stiffness force, while ψ is the damping force. To-
gether, (γ, ψ) constitute the commonly-known Proportional-Derivative (PD) con-
trol action. In the following two definitions, damping is inherently assumed in
the motion control system.

Def. 2.10. Impedance Control: Given a displacement (δx, δẋ) from the equilib-
rium (x̂, ˙̂x) ∈ Tx̂Q, it is the motion control to ensure that closed-loop equations

of motion are characterized by a configurable impedance (M̂, γ̂, ψ̂). A subset of

impedance control is stiffness control, which characterizes (γ̂, ψ̂) for the closed-
loop motion with the natural inertia M . In essence, impedance control configures
the tuple of scalars (T̂ , V̂x, V̂ẋ), which are the configurable kinetic energy metric,
scalar potential and the Rayleigh dissipation potential, respectively.

In many mechanisms, the motion control system is indirectly commanded as
a (δx, δẋ) displacement relative to (x, ẋ) ∈ TxQ. In this case, the inverse tuple,
(M̂−1, γ̂−1, ψ̂−1) is configured, which is commonly called admittance control. If
(γ̂−1, ψ̂−1) are instead specified, it is compliance control.
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2.5.2 Passivity in EL systems

In the following, key concepts about L2-stability, asymptotic stability and feed-
back interconnection of systems are introduced. These concepts will be employed
in Chapter 5 for motion control analysis. For further details on passivity and
Lyapunov stability, the reader is referred to [3, Def. A.8] and [126], respectively.

Def. 2.11. Given, the state of a EL system, x ∈ X ⊂ Ra, with input u ∈ U ⊂ Rb

and output y ∈ Y ⊂ Rc, the dynamical system

Σ : ẋ = h(x, u), y = k(x, u) (2.50)

is said to be passive if there exists a continuously differentiable function V ≥ 0
(storage function), such that V̇ ≤ y⊤u. Moreover, it satisfies Output Strict Passiv-
ity (OSP) if V̇ ≤ −δ||y||2 + y⊤u, δ > 0. If (2.50) satisfies stability of the origin,
i.e., h(0, 0) = 0a, k(0, 0) = 0c, and is also OSP, then it is finite-gain L2-stable
and its L2-gain ≤ 1

δ
[126], which implies bounded input bounded output for the

map u 7→ y. The notion of asymptotic stability using passivity is introduced below.

In Def. 2.11, OSP is a formal way of explaining terminal velocity, i.e., a
system experiencing an input u like gravity will reach a finite terminal velocity, y,
as t→∞. This is a powerful concept to prove robustness against disturbances,
e.g., interactions of a robot with its environment.

Def. 2.12. Zero-state observability and detectability [3, Def. A.8] An EL system
of the form ẋ = h(x), x ∈ Rn is Zero-State Observable (ZSO) from the output
y = k(x), if for all initial conditions x(0) ∈ Rn, we have (y(t) ≡ 0⇒ x(t) = 0). It
is Zero-State Detectable (ZSD) if the output satisfies y(t) ≡ 0⇒ limt→∞ x(t) = 0.

Def. 2.13. [3, Prop. A.9]Suppose the system Σ is OSP with positive semidefinite
storage function H ≥ 0.

1. If Σ is ZSO, then H(x) > 0, ∀x 6= 0.

2. If H(x) > 0, ∀x 6= 0, H(0) = 0 and Σ is ZSD, then x is a locally asymptot-
ically stable equilibrium of (2.50)

In this thesis, feedback interconnection of subsystems will be encountered in
the context of systems with symmetry (LP systems), and the following concept
is introduced as a starting point for the analysis.

Def. 2.14. Invariance of Passivity [3, Prop. A.6] Consider the input-output sys-
tem in a feedback interconnection as depicted in Fig. 2.12 with state x = (x1, x2),
output y = (y1, y2) and input u = (u1, u2). If Σ1 and Σ2 are both passive then,
Σ : u 7→ y is also passive. If furthermore they are OSP then Σ : u 7→ y is also
OSP.
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Figure 2.12: Passive interconnection of subsystems.

2.5.3 Variable Inertia in EL systems

In this thesis, I consider general EL systems with configuration-dependent inertia,
e.g., a robotic manipulator. For such systems, the following fundamental matrices
[127] provide two key variations of inertia, and are employed in Chapters 3 and
6. Consider the EL system in Lemma 2.2 with inertia tensor M(x).

Def. 2.15. Given velocities y, z ∈ TxQ, the partial derivative of the scalar product
〈y, z〉M(x) relative to the configuration (x) is written using the Inertia Derivative

(ID) matrix [127, Def. 1], Md(x, y)⊤, as ∂〈y,z〉M

∂x
= Md(x, y)⊤z. In (2.3), the ID

matrix is required to define the partial derivative of the kinetic energy relative to
the configuration as ∂〈ẋ,ẋ〉M

∂x
= Md(q, ẋ)⊤ẋ.

Def. 2.16. The Inertia Velocity (IV) matrix [127, Def. 2] is a symmetric matrix,
Mv(x, y), given any velocity, y ∈ TxQ, which is interpreted as Mv(ẋ) = dM

dt
when

y = q̇, and appears in (2.3).

2.6 Computations for Multibody mechanisms

The development of computationally efficient multibody algorithms in the robot
dynamics community [23, 128, 129] has been pivotal not only in control of robotic
mechanisms, but has also pervaded to other branches of mechanics, like molecular
dynamics [130]. While direct symbolic computation is the closest in structure to
the purely Lagrangian formulation, it is computationally inefficient [131]. Thus,
the fast iterative/recursive algorithms have been favoured for real-time control
purposes. In such approaches, each link is treated as a constrained rigid body
[23]. Its configuration lies on a non-Abelian Lie group, and the kinematic con-
straint defines the joint type, e.g. revolute, prismatic. The group depends on the
nature of spatial complexity, e.g. SE(3) (SE(2)) for spatial (planar, respectively)
cases. Its kinematic quantities (position, velocity and acceleration) and dynamic
quantities (forces) are computed using the same quantities of the previous link
and its own joint quantities in an iterative loop. Applying D’Alembert’s principle
using the external forces yields the forced equation of motion. These algorithms
are classified as Newton-Euler [128] or Lagrangian [129, 132], and are equally
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competitive [133]. The topics outlined in this section provide the preliminary
material for the computations derived in Chapter 3.

qk

qk

qk
qk{k}

{k}

{k}

{k}

A B DC

Figure 2.13: Articulated robotic mechanisms. A: An inverted pendulum, B:
a fixed-base manipulator, C: a manipulator-equipped spacecraft and D: a hu-
manoid torso with manipulators, in which {k} is the kth-link frame and qk is the
position of the kth joint.

2.6.1 Rigid-Body Motion

To this end, the constrained motion of a rigid body is revisited. The kth link in
Fig. 2.13 is modeled as a rigid-body with pose gk ∈ SE(3). Its time variation is
given by the reconstruction formula,

Kinematics
{

ġk = gkV
∧
k , gk ≡ gk(Rk, pk), (2.51)

where V ∧
k ∈ se(3) is its left-invariant body velocity. Its left-invariant Lagrangian

is lk = 1
2
〈Vk, Vk〉Mk

, where Mk ∈ R6×6 is the rigid-body inertia tensor (see Ap-
pendix A.1.2). The link motion is governed by the forced Euler-Poincaré equa-
tion, as in (2.8), which is written as,

Dynamics
{

EP(Vk, V̇k) = MkV̇k + (−ad⊤
Vk
Mk)Vk = Fk , (2.52)

where Fk ∈ R6 ∼= se(3)⊤ is the left-invariant body wrench arising due to the joint
constraint, joint actuation, etc. In (2.52), ad⊤

Vk
Mk encapsulates the SE(3) struc-

tural coefficients, see (A.1) in Appendix A.1.2,.

2.6.1.1 Body-level factorization

In Lyapunov-based stability analysis for motion control of mechanisms, the pas-
sivity or the skew-symmetry of the matrix of Coriolis/centrifugal (CC) terms is
required [10, 62, 134]. While the former is the energy conservation property of
the unforced dynamics, the latter is a stronger property required in tracking con-
trol and observer design, as explained in Appendix A.2.1. The CC matrix of a
multibody mechanism is obtained using (2.52) for each link. Thus, the CC matrix
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in (2.52), which is known as the body-level factorization has ramifications on the
properties of multibody dynamics equations, as shall be demonstrated later.

Abstracting the group notation, the dynamics in (2.52) is written purely in
vector notation as,

MkV̇k + C(Vk)Vk = Fk (2.53)

where C(Vk) ∈ R6×6 is the body-level factorization [135] of the Coriolis/Centrifugal
(CC) terms. A key property is that while C(Vk)Vk is unique, C(Vk) is non-unique.
In the following, I state the commonly used choices below.

1. Natural EP factorization: C(Vk) = ad⊤
Vk
Mk. It satisfies passivity, i.e.,

V ⊤
k ad⊤

Vk
MkVk = (adVk

Vk)
⊤MkVk = 0 (2.54)

However, it does not satisfy skew-symmetry. Additionally, due to the non-
abelian property of SE(3), the bivariate map (ad⊤

vMk)w is not commutative,
i.e., (ad⊤

vMk)w 6= (ad⊤
wMk)v, given v, w ∈ R6.

2. Augmented EP factorization: Using the property adxx = 0, the natural EP
factorization was augmented in [22] with an extra term as follows,

C(Vk) =
(

ad⊤
Vk
Mk −MkadVk

)

(2.55)

which satisfies C(Vk)VK = ad⊤
Vk
MkVK and skew-symmetry by construction.

3. Bilinear EP factorization: For common Lie groups in robotics, e.g. SE(3),
SO(3), SE(2) etc., the natural EP factorization in the EP equation of
Lemma 2.4 leads to a bilinear map, i.e., ad⊤ : (g, g⊤)→ g⊤. Due to the bi-
linearity, an alternative bilinear map exists, ad∼

(•) : (g⊤, g)→ g⊤, such that,
given v ∈ Rd ∼= g, (ad⊤

v ) δl0
δV

= ad∼
δl0
δV

v. For the kth-link on SE(3),

(ad⊤
v )
δlk
δVk

= ad∼
δlk
δVk

v = ad∼
MkVk

v. (2.56)

Although I proposed this factorization in the context of observer design in
[62], see (A.2) in Appendix A.1.2, I attribute the contribution to the earlier
works [30], [26] and [28] in the context of multibody mechanisms.

Property 2.3. The dynamics in (2.52) written alternatively using the prop-

erty in (2.56) satisfies skew-symmetry, i.e., x⊤
(
d
dt
Mk − 2(−ad∼

MkVk
)
)

x = 0

for x ∈ R6. A corollary is that this property is invariant to a time-varying
change of basis.

Proof. See Lemma A.1.3 in Appendix A.1.2.
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Therefore, using the skew-symmetric operator, ad∼
(•), (2.56) enables the ex-

change of velocity arguments with the ad⊤
(•) operator to compute the equiv-

alent CC wrench. Using (2.56), C(Vk) = ad∼
MkVK

.

4. The Riemannian connection [10, eq. 8], [6]: For a Lie group, G, the Rie-
mannian connection is written as,

∇vw =
1

2
advw −

1

2
M

−1
(

ad⊤
v Mw + ad⊤

wMv
)

(2.57)

where M : g→ g⊤ is the left-invariant metric on G. In (2.57), ∇vw denotes
the left-invariant covariant derivative of the vector field w along the vector
field v, which is computed using the Levi-Civita (torsion-free) connection
∇ on G. Using ∇ for the rigid body, G = SE(3),

C(v)w =Mk∇vw =
1

2
Mkadvw −

1

2

(

ad⊤
vMkw + ad⊤

vMkw
)

=
1

2

(

Mkadv −
(

ad⊤
vMk + ad∼

Mkv

))

w
(2.58)

where in the last equality the bilinear EP factorization is used. By in-
spection, one can verify that this choice of C(Vk) satisfies skew-symmetry.
This factorization was used in [136], and shown in [135] to be Christoffel-
consistent. The main reason for this is that (2.57) results directly from
the torsion-free connection property, see [6], which is used in differential
geometry to compute the Christoffel symbols. A geometric picture of this
choice was missing, which I have provided here.

2.6.2 Recursive Lagrangian Mechanics

Let the configuration of the mechanisms in Fig. 2.13 be r ∈ Q ⊂ Rn, where Q
is the configuration manifold. Note that Q might contain basis which is com-
mutative (A and B), non-commutative (e.g. SO(3) for a rigid-body satellite) or
both (C and D). Thus, the configuration velocity is written as ζ ∈ TrQ ⊂ Rn.
In the case that Q contains purely commutative basis, ζ = ṙ, while in case that
Q contains a Lie group as a configuration variable, ζ might contain trivialized
velocity (left or right) of the Lie group, see Sec. 2.1. The pose of the kth-link is
obtained as a map gk = fk(r), where fk : Q→ SE(3) is the forward kinematics
map. The link velocity is obtained using the pushforward, i.e., the differential of
the map along system velocity as dfk(ṙ) = Jk(r)ζ = Vk, where Jk = g−1

k
δgk

δr
such

that Jk : TrQ→ R6 ∼= se(3) is the left-invariant (body) Jacobian of the forward
kinematics map [90]. The joint torques/forces are obtained using the pullback,
i.e., df⊤(Fk) = Jk(r)

⊤Fk = Fk, where Fk ∈ T⊤
r Q denote the torques/forces on the

mechanism due to the wrenches acting on the kth-link.
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Assumption 2.4. The mechanisms considered in Fig. 2.13 are characterized by
a simple Lagrangian, i.e., L = T − V, where T = 1

2
〈ζ, ζ〉M(r) is the kinetic energy

metric based on the inertia tensor M(r) and V(r) : Q→ R is the potential energy.

Let us first consider that Q constitutes a commutative basis. In this case, the
motion is governed by the EL equation from Lemma 2.2. Under Assumption 2.4,
the forced EL equation from Lemma 2.3 is written in vector notation as,

EL(r, ṙ, r̈) = M(r)r̈ + C(r, ṙ)ṙ = F +∇rV (2.59)

where M,C ∈ Rn×n are the matrices of inertia and CC terms, respectively, and
τ ∈ T⊤

r Q ⊂ Rn contains the generalized torques/forces acting on the mechanism.
By inspection, it can be seen that, dM(r)

dt
ṙ − 1

2
δ
δr
〈ṙ, ṙ〉M = C(r, ṙ)ṙ.

Secondly, consider that Q = SE(3)× Q̃, i.e., Q is a direct product of the non-
commutative SE(3) group and commutative topology Q̃, e.g. C and D. Let the
configuration of the mechanism be denoted as r = (g1, q). Considering symmetry-
breaking potential forces (e.g. gravity) as external, the presence of the group
coordinate g1 yields a reduced Lagrangian with inertia, M ∈ R(6+n)×(6+n), as

l(q, ζ) = T − V , where T = 1
2
〈ζ, ζ〉M , ζ =

[

V ⊤
1 q̇⊤

]⊤
is the configuration velocity,

ζ∧ = g−1
1 ġ1 ∈ se(3) for the pose. The motion resulting from l(q, ζ) are governed

by the Hamel’s equations (Lemma 2.6). In robot dynamics, the floating-base
formulation [22, 23, 26] for the Hamel’s equations are written as,

[

Mb(q) Mbq(q)
Mbq(q)

⊤ Mq(q)

]

︸ ︷︷ ︸

M(q)

[

V̇1

q̈

]

+ C(q, ζ)

[

V1

q̇

]

=

[

F1

τ

]

︸ ︷︷ ︸

F

+∇qV, (2.60)

where Mb,Mbq,Mq are the locked, coupling and manipulator inertias, respectively,
C ∈ R(6+n)×(6+n) is the CC matrix, and F1 ∈ R6 ∼= se(3)⊤ and τ ∈ Rn are the
forces acting on the base and joints, respectively.

Remark 8. Abstracting the commutative/non-commutative basis, both (2.59) and
(2.60) can be written compactly as,

M(r)ζ̇ + C(r, ζ)ζ = F +∇rV (2.61)

A notable advantage of modeling each link as a rigid-body in Sec. 2.6.1 is the
efficient multibody computation using the recursive Newton-Euler algorithm [28,
137]. The recursive form yields an iterative computation of the dynamic matrices
M,C in the equations of motion in (2.61) [22, 26, 28], which are outlined below.

Lemma 2.14. The matrices M,C in the motion equation in (2.61), are computed,
e.g. see [28, eq. 18], using the body-level factorization, C, as follows,

M =
∑

k

J⊤
k Mk Jk, C =

∑

k

J⊤
k (C(Vk) Jk +Mk J̇k). (2.62)

where Jk is the link Jacobian relative to the base frame.
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Proof. The velocity of the kth link is Vk = Jk(r)ζ and its time-derivative is written
as V̇k = Jk(r)ζ̇ + J̇k(ζ)ζ. Substituting this in (2.53) for all links, pre-multiplying
J⊤
k on both sides and considering that the constraint reaction wrenches disappear

after projection results in (2.61) with M,C as in (3.2). Note that an iterative
loop is required in Lemma 2.14, and Jk and J̇k are obtained beforehand in this
loop through a recursive computation, as shown in [22, §VI].

Lemma 2.14 is directly applicable to serial kinematic mechanisms. For general
tree mechanisms, an outward summation for each branch of the tree is required
in (3.2).

Property 2.4. Given the equation of motion in (2.61), and the computation of
Lemma 2.14 using any body-level factorization in (2.53), the dynamic matrices
M,C satisfy the passivity property ζ⊤(dM

dt
(ζ)− 2C(ζ))ζ = 0 [28]. However, only

the augmented EP, bilinear EP and the Riemannian connection factorizations
satisfy the skew-symmetric property, i.e., w⊤(dM

dt
(ζ)− 2C(ζ))w = 0 for an arbi-

trary w ∈ Rn [135]. Among these factorizations, the latter provides a Christoffel-
consistent factorization, i.e., preserves the structural coefficients of Q.

Remark 9. Contrasting (2.61) with EL and Hamel’s equations from Lemmas 2.1
and 2.6, it is clear that the ease of computation in Lemma 2.14 comes at the cost
of abstracting the structure of the Lagrangian equations. In particular, C has no
discernible structure, and does not provide much insight for model-based control
design. This has been well-known in robotics [131].

2.6.3 Constraints and Transformations

Lemma 2.14 provides an efficient computation of (2.61), which is the dynamics
of the mechanism’s natural configuration residing on Q. In such mechanisms,
it is common to encounter constraints which arise from a kinematic coupling or
conservation of momenta due to symmetry. As I revealed in Sec. 2.4, these con-
straints decompose the tangent space TrQ along horizontal (perpendicular to the
constraint) and vertical (parallel to the constraint) directions. It is convenient
for motion analysis to rewrite (reduce) the equations of motion. In the following,
Lemma 2.14 is exploited to obtain the variation of the vertical and horizontal ve-
locities as an alternative dynamics description of the mechanism. This alternative
emphasizes the symmetry explicitly, and will be employed in Chapter 3.

2.6.3.1 Newtonian Transformation

Consider the mechanism in (2.61), for which the equation of motion on the natural
configuration manifold Q is known. An arbitrary velocity ξ can be defined simply
by using a linear map, ξ = L(r)ζ, such that ξ generalizes a velocity (or quasi-
velocity) in operational space, horizontal and (or) vertical tangent space due to
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constraints or symmetry. In robotics, L can be the push-forward Jacobian map of
forward kinematics of the mechanism, i.e., L(r) = δf

δr
, or appear from the Pfaffian

form of a constraint (symmetry), which is non-integrable, i.e., dL(r)ξ 6= 0. In this
case, the motion equations in (2.61) are written using the new velocities ξ. I call
this a Newtonian transformation because although (2.61) is derived from a scalar
Lagrangian through variational principles, the same cannot be concluded for the
transformed equations of motion.

Assumption 2.5. The linear map L satisfies rank(L) = dim(Q) (full-rank) and
is invertible, at least, in a local neighbourhood of a configuration r0 ∈ Q.

Lemma 2.15. Given the mechanism in (2.61), with a non-integrable linear map
ξ = L(r)ζ satisfying Assumption 2.5, the dynamics of ξ are written as,

Λ(r)ξ̇ + Γ(r, ζ)ξ = F + L−⊤∇rV (2.63)

which is obtained in two of the following ways.

1. ζ-Iteration+ξ-Transformation: Applying Lemma 2.14, ∀k, V̇k = Jkζ̇ + J̇kζ
is substituted in (2.52), and pre-multiplied with J⊤

k on both sides, re-
sulting in the dynamics of the configuration velocity, ζ . Following this,
ξ̇ = L−1ζ̇ + L̇−1ζ is substituted in ζ̇ from the previous result. This results
in Λ(r) = L−⊤ML−1 and Γ(r, ζ) = L−⊤(ML̇−1 + CL−1) and F = L−⊤F .

2. Direct ξ-Iteration: Secondly, I propose an alternative way of using direct
iteration to compute the dynamics of ξ. In particular, ∀k, Vk is rewritten
as a map of the new velocity, ξ, as

Vk = Jkζ = JkL
−1ξ ⇒ V̇k = JkL

−1ξ̇ +
d

dt
(JkL

−1)ξ (2.64)

Substituting R.H.S in (2.52), and pre-multiplying (JkL
−1)−⊤ yields the re-

sult in a link-wise iterative fashion. This method was published in [56].

Both approaches in Lemma 2.15 yield the same motion equations, and hence,
the same inertia and CC matrix (see [135, Rem. 6]). However, as will be seen later,
in some cases, JkL−1 can be partitioned further, which enables the factorization
of the CC matrix with more structure. Although a computational comparison
merits its own scope, I provide a preliminary idea below. The computation of Γ
in Lemma 2.15-1 requires one pass of n iterations (link-wise), and an additional
numerical transformation. Lemma 2.15-2, however, requires 2 passes with n
iterations in each pass. One pass is nominally given by the computation of L, Jk
and J̇k, followed by another pass to obtain (3.4).
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Property 2.5. For mechanisms, the equations of motion obtained using a New-
tonian transformation preserves passivity or energy conservation property, i.e.,

x⊤
( d

dt
Λ(r)− 2Γ(r, ζ)

)

x = 0, x = ζ (2.65)

If the body-level factorization of Γ is chosen to be skew-symmetric, then the above
property holds for arbitrary x. Additionally, if the Riemmanian connection fac-
torization is used as the body-level factorization, then the transformed CC matrix
Γ is Christoffel-consistent [135].

2.7 Conclusion

This chapter introduced the preliminary material that is relevant for the expo-
sition of concepts in this thesis. In particular, the concept of symmetry in the
context of Lagrangian mechanics was formally introduced. A detailed theory on
constrained motion of mechanisms was provided. This is a unified framework
to generalize the dynamics and motion control problem of FRM and hierarchi-
cal control. Such a theory has not been reported earlier, and this was the key
contribution of this chapter. The concepts of impedance control and passivity
were introduced to familiarize the reader with the preliminaries of PBC. A short
treatment of multibody dynamics was provided as a preliminary to derive the
LP dynamics of the FRM in the next chapter.



CHAPTER 3

Motion of Floating-base Robotic Mechanism (FRM)

“ The falling-cat (FRM) can right itself using the concept of induc-
ing a change in the state of a system by exploiting the underly-
ing geometry of the system itself, which connects it to quantum
physics, optics, and Foucault’s pendulum mechanics [138]. ”

G. J. Gbur, Falling Felines and Fundamental Physics, 2019

3.1 Introduction

A FRM is an articulated robotic mechanism mounted on a movable platform, and
is ubiquitous in several domains [25–27], as shown in Fig. 3.1. The commonly-
known equations of motion for the FRM are the inertia-coupled dynamics of its
configuration (FRM-base and shape) velocities. These dynamics are efficiently
computed by considering the FRM as a kinematic chain using the standard iter-
ative algorithm in Lemma 2.14. These equations also exhibit the skew-symmetry
(or passivity) property, which is useful for stability analyses in motion control
[27]. From the Lagrangian perspective in geometric mechanics (Lemma 2.6), the
dynamics above are seen as a set of an EP equation and an EL equation, which
correspond to the motion of the FRM-base and the shape (joints), respectively.
This set is called a system of Hamel’s equations [31, 94]. Among kinematic chain
systems, the FRM is unique in its well-known property of momentum conserva-
tion, i.e., it is an EL system with inherent symmetry. This property is modeled as
a Pfaffian-like velocity constraint using the mechanical connection, as I outlined

53
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g1k
g1k

g1k

g1 g1g1

qk

qk
qk

{1}
{1} {1}

{O}

Figure 3.1: Floating-base Robotic Mechanism (FRM) with configuration (g1, q),
where g1 ∈ SE(3) is the pose of the FRM-base frame, {1}, relative to the inertial
frame {O}, and q ∈ Rn are the n-joint positions.

in Sec. 2.4.7.2. The FRM is further distinguished by its distinct non-flatness (cur-
vature) of this connection [31], i.e., the constraint is not preserved over a closed
path (gait) in shape space. In other words, a gait might cause a net displacement
of the FRM-base, recall Sec. 2.4.8.1.

3.2 Related Work

Noether’s invariance arising from Lie group action was first observed for rotational
dynamics of a rigid body, and the Poinsot construction provided a geometric visu-
alization of this symmetry [139]. While the FRM is also a system with symmetry,
an analogue of Poinsot construction for multibody systems is missing in litera-
ture. For the dynamics of this class of mechanical systems, the LP equations,
were proposed in the early nineties [14, §5.3][94, pp. 141]. In particular, the LP
equations consist of momentum and shape variations as an EP equation and an
EL equation with curvature-related gyroscopic forces, respectively. The structure
of the LP equations provide a useful insight into the FRM dynamics through a
block-diagonal inertia, the separation of velocity dependencies in the CC terms
and the apparentness of the curvature form. A first step in this direction by the
robot dynamics community was a matrix transformation of the Hamel’s equations
[25], which revealed the useful block-diagonal inertia property.

However, a direct link between kinematic chain iterative dynamics and LP
equations has not been established before. A negative consequence was that only
the block-diagonal structure of inertia was exploited, as in [25, 140], whereas
the structural properties of the CC matrix were not examined. In fact, the use
of matrix transformations resulted in a placeholder CC matrix, which concealed
its precise structure. This resulted in a CC matrix, which (a) had an apparent
coupling between the shape dynamics and the group variable, (b) lacked a com-
mutative property (like fixed-base robots, see [141]), and (c) did not reveal the
FRM curvature. I point out that the curvature computation in FRM locomotion
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analyses [19, 20, 124, 142] is traditionally performed using numeric or symbolic
methods, and an analytical computation method is missing. In fact, locomotion
approaches in geometric mechanics approximate this displacement per gait using
area integrals of the curvature [19, 20, 124, 125, 143].

The CC matrix of multibody systems is required in applications that include,
but are not limited to, motion tracking [134], velocity observers [141] and con-
tact detection [144]. The skew-symmetry of an iteratively computed CC matrix
[22] was extended in [135] with Christoffel-symbol consistency. In [127], the CC
matrix was structured as the sum of inertia variations relative to time and shape,
defined as fundamental matrices. However, prior CC matrix factorizations were
limited to configuration velocity dynamics, and the added structure due to veloc-
ity constraints, as in the FRM1, remains unexamined.

3.3 Key Contributions

To this end, the contributions of this chapter are the following.

1. In Theorem 3.1, I provide a novel Poinsot’s construction to provide a geo-
metrical method for visualizing the nonholonomic unforced motion of the
FRM. This is the multibody equivalent of the original Poinsot construction
(1834) for rigid body motion, and is a direct contribution towards under-
standing the geometry of motion for FRMs.

2. In Theorem 3.2, I propose a novel CC matrix for the LP equations of a FRM
as a sum of two matrices, in which the partitions of each are computed using
an iterative expression with a specific velocity dependency. In particular,
the first CC matrix depends on the shape velocity, while the second depends
on the locked velocity (momentum). I prove that the former CC matrix
of block-diagonal terms satisfies the skew-symmetry (passivity) property,
while the latter is itself skew-symmetric. This structure is a result of the
inherent symmetry of the FRM, and was not revealed in prior works.

3. The proposed CC matrix structure is used to reveal the following proper-
ties. By extending the notion of fundamental matrices [127] for fixed-base
robots to the FRM, I identify the parts of the CC matrix with commuta-
tivity. This enables the reordering of velocity arguments in the CC forces
for simplification, e.g. in velocity observers, which was previously limited
to fixed-base robots [141]. I prove that the shape dynamics is invariant to a
transformation of the momentum dynamics, e.g. to a centroidal frame [25].

4. In Theorem 3.4, it is proved that in the FRM the momentum and the shape
subsystems are in a passive feedback interconnection with each other. This

1In the FRM, the velocity constraint is not externally imposed, but is a mathematical
consequence of the symmetry (conservation law) in the motion equations.
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is a property of immense utility in motion control, that is unique to the
FRM due to its inherent symmetry in the LP dynamics.

5. From the proposed CC matrix, in Theorem 3.3, I derive the curvature as an
analytic matrix-based expression. This is useful for computing the FRM-
base displacement per gait in the shape space.

6. Finally, in Theorem 3.5, I generalize the motion of the FRM in the presence
of symmetry-breaking potential fields like gravity and buoyancy, while being
surrounded by a potential fluid flow. In contrast to prior works, this work
extends the momentum-shape formulation of FRM-dynamics to also include
fluid effects. This formulation is useful for aerial and underwater robotics
applications.

The work proposed here exhaustively focuses on the derivation of the dynam-
ics, notably, as an iterative formulation, and its properties, which can appeal to
a broad robotics audience. To achieve that, I establish an interdisciplinary link
between the forms of LP equations from both communities, robot dynamics and
geometric mechanics.

The chapter is organized as follows. In Sec. 3.4, the LP equations of motion
for the FRM from both, robot dynamics and geometric mechanics, are reviewed.
I also propose the Poinsot construction to provide a geometric visualization of
the FRM’s motion. The main result, i.e., the CC matrix factorization, is stated
and derived in Sec. 3.5. In Sec. 3.6, the novel properties of the CC matrix are
proved and the closed form expression of curvature is derived. It is proved that
the momentum and the shape subsystems of the FRM are in a passive feedback
interconnection. In Sec. 3.7, the LP dynamics of a free FRM is generalized in the
presence of a symmetry-breaking potential and the surrounding potential fluid
flow. The chapter concludes with remarks in Sec. 3.8. A sectioned Appendix is
given to aid the analysis.

3.4 Dynamics of the FRM

In this section, due to the interdisciplinary nature of this chapter, the relevant
details of FRM dynamics descriptions from both communities, robot dynamics
[23, 25] and geometric mechanics [14, 16, 94] are examined. The presentation
is structured in order to facilitate a link between the two dynamic descriptions.
For the sake of clarity, I consider the FRM as a single kinematic chain, which is
formalized as follows.

Def. 3.1. A FRM is a multibody system of n + 1 rigid links (see Fig. 3.1),
which comprises of a movable platform and an articulated mechanism with n
holonomic joints. Its configuration space is Q ≡ SE(3)× Rn with coordinates
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r = (g1, q) ∈ Q, where g1 ≡ (R1, p1) ∈ SE(3) is the pose of the FRM-base and
q ∈ R

n is the shape (joint positions) of the mechanism.

For general kinematic tree structures, the following computations will have an
outer summation, as in [23]. In the text, the shape (q) and velocity dependencies
of the dynamic quantities are provided in declaration and omitted later for brevity.
For details specific to SE(3) notation and properties, the reader is referred to
Appendix A.

3.4.1 Floating-base Dynamics or Hamel’s Equations

Considering potential forces (e.g. gravity) as external, the Lagrangian of the
FRM is independent of the g1 [14, §5] with inertia, M(q) ∈ R(6+n)×(6+n), as

l(q, V ) = 1
2
〈V, V 〉M , where V =

[

V ⊤
1 q̇⊤

]⊤
is the FRM configuration velocity,

and V ∧
1 = g−1

1 ġ1 ∈ se(3) for the FRM-base pose. The equations of motion that
result from l(q, V ) are given by the Hamel’s equations (see Lemma 2.6). It is the
Lagrangian equivalent of the floating-base formulation in (2.60) [22, 23, 26] from
robot dynamics, and written as,

[

Mb(q) Mbq(q)
Mbq(q)

⊤ Mq(q)

]

︸ ︷︷ ︸

M(q)

[

V̇1

q̈

]

+ C(q, V )

[

V1

q̇

]

=

[

F1

τ

]

︸ ︷︷ ︸

F

, (3.1)

where Mb,Mbq,Mq are the locked, coupling and manipulator inertias, respectively,
C ∈ R(6+n)×(6+n) is the CC matrix, and F1 ∈ R6 ∼= se(3)⊤ and τ ∈ Rn are the
forces acting on the FRM-base and joints, respectively.

A notable advantage of (3.1) is its efficient computation using the recursive
Newton-Euler algorithm [28, 137]. For the contribution of this chapter, Lemma
2.14 is used for the iterative computation of M,C as follows.

Lemma 3.1. The matrices M,C in the motion equation, (3.1), are computed
using the natural EP body-level factorization as,

M =
∑

k

T⊤
k Mk Tk, C =

∑

k

T⊤
k (−ad⊤

Vk
Mk Tk +Mk Ṫk). (3.2)

where Tk =
[

Ad−1
1k (q) Jk(q)

]

, and Jk is the link Jacobian relative to the FRM-
base.

The partitioning in Tk is used to add detail to the dynamic matrices, e.g.

M =

[

Mb Mbq

M⊤
bq Mq

]

, Mb =
∑

k

Ad−⊤
1k Mk Ad−1

1k ,

Mbq =
∑

k

Ad−⊤
1k Mk Jk, Mq =

∑

k

J⊤
k Mk Jk.

(3.3)
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Note that the natural EP factorization in Lemma 3.1 does not satisfy skew-
symmetry, i.e., x⊤(Ṁ − 2C)x = 0, x ∈ R

6+n. This is commonly achieved using
alternative factorizations, see 2.6.1.1. In this paper, Lemma 3.1 serves as a start-
ing point to ease into the derivation of the main result, which satisfies skew-
symmetry.

3.4.2 Lagrange-Poincaré (LP) Equations: The Motivation

The dynamics in Sec. 3.4.1 only describe the FRM as a kinematic chain. How-
ever, the FRM is also uniquely characterized by a conservation property on its
momentum map, i.e., J = Ad−⊤

1

(

MbV1 +Mbqq̇
)

, using Def. 2.6.
The alternative dynamics description, which explicitly shows this property, is

the set of Lagrange-Poincaré (LP) equations [14, §5.3]. In this chapter, I develop
a body formulation of the LP equations, i.e., using body velocity quantities. To
this end, I define the locked velocity for the FRM as follows.

Def. 3.2. Locked velocity is the velocity of the instantaneous equivalent rigid
FRM (locked shape), and is written as µ = V1 +Al(q)q̇, where Al = M−1

b Mbq is
the dynamic-coupling factor in robot dynamics. It is the body velocity correspond-
ing to the momentum map, i.e., µ = M−1

b Ad⊤
1 J .

3.4.2.1 LP Equations in Robot Dynamics

In the robot dynamics community, a matrix-based form of the LP equations is
obtained by applying the Newtonian transformation (of type 1) from subsection
2.6.3.1 to (3.1), and is summarized in the Lemma below.

Lemma 3.2. Considering ξ =
[

µ⊤ q̇⊤
]⊤

as the new mechanism velocity, which

is related to the configuration velocity, V , through a transformation as V = L(q)ξ,

L =

[

I6,6 −Al
0n,6 In,n

]

, the dynamics of the FRM are alternatively given as,

[

Mb(q) 06,n

0n,6 Λq(q)

]

︸ ︷︷ ︸

Λ(q)=L⊤ML

ξ̇ +

[

Γb(q, V ) Γbq(q, V )
Γqb(q, V ) Γq(q, V )

]

︸ ︷︷ ︸

Γ(q,V )=L⊤(ML̇+CL)

ξ =

[

F1

(τ −A⊤
l F1)

]

︸ ︷︷ ︸

F

, (3.4)

where Λ,Γ are the transformed matrices of inertia and CC terms, and F denotes
the transformed covector of forces acting on the FRM.

Accordingly, the FRM-base pose, g1, is reconstructed alternatively as,

ġ1 = g1

(

µ−Al(q)q̇
)∧
, ∵ V1 =

[

I6,6 −Al
]

ξ (3.5)
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Remark 10. In [25, eq. 15], the approach in Lemma 3.2 was used to obtain
the dynamics of (J , q̇) instead of ξ. Due to the g1-dependency of J in Def. 2.6,
however, the shape dynamics had an apparent g1-dependency [16, eq. 8], which
is not physical. Although the shape dynamics in Lemma 3.2 (bottom row) does
not have a g1-dependency, its invariance to frame transformations as a property
is unproved, but often assumed.

Remark 11. In (3.4), Γ is a placeholder CC matrix, and does not provide a
special structure like the block-diagonal inertia, Λ. In particular, there is no clear
separation of velocity dependencies, i.e., µ, q̇, in the partitions of Γ. This limits
specific applications, e.g. model-based control [63], and dynamics linearization,

like ∂(ΓV )
∂µ

, ∂(ΓV )
∂q̇

, which require the partitioned CC terms, preferably with closed
form computation.

It is worth appreciating that the analytic form of the LP equations was re-
vealed by the geometric mechanics community [14, 16, 94]. In this structure,
notable aspects of the CC terms are velocity dependency separation and the
apparentness of the curvature term. Therefore, I will subsequently review the
concepts from geometric mechanics that lead to the analytic form of the LP
equations. Juxtaposing it with robot dynamics in (3.4) will pave the way for the
main result.

3.4.2.2 LP Equations in Geometric Mechanics

Using Def. 2.7, the conservation of J is written as a Pfaffian-like velocity con-
straint using the mechanical connection, as follows

(Ad−⊤
1 MbAd−1

1 )−1J = Ad1

[

I6,6 Al(q)
]
[

V1

q̇

]

︸ ︷︷ ︸

A(q,V )

,
(3.6)

and Al is alternatively called the local mechanical connection. Note that A is
simply the right-invariant (spatial) velocity corresponding to the momentum, J .
Applying Lemma 2.13, A = 06 defines horizontal and vertical subspaces with ve-
locities Vh = (−Alq̇, q̇) and Vv = V − Vh = (V1 +Alq̇, 0n), respectively, which are
minimally written using the shape and locked velocities, i.e., q̇ and µ, respec-
tively. Using these minimal velocity forms in the orthogonal subspaces, Lemma
2.13 provides a geometric interpretation of V = Lξ = Vv + Vh in Lemma 3.2.

The FRM configuration space, SE3×Rn, shown as grey box in Fig. 3.2, has a
PFB structure [14, §3.2]. This means that its motion r(t) (blue dot trajectory) in
SE(3)×Rn is composed of SE(3) as the fiber (black dashed lines) and Rn as the
shape-space, see red bordered manifold and reduced-space trajectory, q(t). Pro-
jecting (black arrows) Vh into Rn, i.e. shape-space, yields the reduced dynamics.
Secondly, the vertical part Vv (blue arrow), is identified with the locked velocity.
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g1

Vh

q(t)

r(t)

V1Vv

SE(3)

SE(3)×Rn

Rn

Figure 3.2: A differential-geometric illustration of the FRM configuration space.

horr, verr, Vb have been marked as blue arrows in Fig. 3.2. The LP equations
(shown next) are a direct consequence of this orthogonal split.

I recall from subsection 2.4.8.1 that a FRM has a non-null curvature, which
is employed for locomotion analysis in geometric mechanics. A supplementary
goal in this chapter is to derive an analytical computation of DAl using iterative
robot dynamics. To facilitate a comparison with the robot dynamics notation in
(3.4), the unforced LP equations are stated below in matrix-vector notation.

Lemma 3.3. For the unforced FRM, the horizontal and vertical velocity decompo-
sition of the velocity due to the mechanical connection results in the Lagrangian,
l̂(q, ξ) = 1

2
〈q̇, q̇〉Λq + 1

2
〈µ, µ〉Mb

. Using l̂, the dynamics is given by the LP equa-
tions, which in matrix-based notation [16], [145] read as,

Mbµ̇+
dMb

dt
µ = ad⊤

µMbµ− ad⊤
Al q̇
Mbµ, (3.7)

Λq q̈ +
dΛq

dt
q̇ − ∂

2∂q
〈q̇, q̇〉Λq = Ñ(q, µ, q̇)

= −
(

(DAl)(q̇)
)⊤
Mbµ+

∂〈µ, µ〉Mb

2∂q
−A⊤

l ad⊤
µMbµ.

(3.8)

In Lemma 3.3, the unforced case of the full FRM dynamics is interpreted as
the momentum dynamics in body basis, (3.7), which defines the level-set on which
the shape dynamics, (3.8), evolve. Lemma 3.3 further highlights the following
aspects of the CC terms. Firstly, there is not only an elegant separation of the CC
couplings in terms of velocity dependencies, i.e., (q̇, q̇) on L.H.S and (q̇, µ), (µ, µ)
on R.H.S, but they also have physical interpretations. Secondly, note that the
curvature appears explicitly in (3.8). This structure is in contrast to (3.4), see
Remark 11. However, (3.7) and (3.8) do not satisfy the skew-symmetric property,
which is desirable, see Appendix A.2.1.
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Hence, the main idea in this chapter is to modify the iterative computations
from the previous works in robot dynamics [22, 25] to directly obtain the forced
dynamics in (3.4), and separate the CC couplings as in geometric mechanics
(Lemma 3.3). Instead of the original form of the LP equations, I derive a refor-
mulation, which provides a skew-symmetric property. Before proceeding towards
this, however, I first present a geometric visualization of the motion of the FRM,
which gives the reader an intuition about the locked velocity µ.

3.4.3 A Geometric View of FRM Motion

In this subsection, the unforced motion of the FRM is considered in (3.7)-(3.8).
Firstly, I recall that using (3.6),

A = Ad1M
−1
b Ad⊤

1 J = Ad1µ (3.9)

The geometric interpretation is split into subsections (3.4.3.1) and (3.4.3.2), cor-
responding to the linear and angular parts, respectively. In (3.4.3.2), I propose
a new generalized Poinsot’s construction to provide a geometric interpretation of
the angular part of µ.

3.4.3.1 Center-of-Mass (CoM) velocity

Def. 3.3. For the FRM in Def. 3.1, in which the kth-link pose relative to an
inertial frame {O} is gk ≡ (Rk, pk), the CoM is,

p =

∑n
k=1(mkpk)
∑n
k=1 mk

=

∑n
k=1(mkpk)

m
⇒ ṗ =

∑n
k=1(mkṗk)

m
=

∑n
k=1(mkRkvk)

m
(3.10)

where m is the total mass of the FRM, and vk is the body trivialized translational
velocity of the kth link.

Def. 3.4. For the FRM defined in Def. 3.1, the virtual chassis frame of a FRM
is an instantaneous locked body frame, {C}, located at the CoM, and is oriented
along the instantaneous principal axes of the FRM’s locked inertia [146]. The
pose of {C} relative to {O} is denoted as gc ≡ (Rc, p) ∈ SE(3).

Lemma 3.4. For the FRM defined in Def. 3.1, for which the locked inertia
trivialized at {1} is Mb, the instantaneous locked principal axes inertia about the
frame {C} (Def. 3.4) is completely diagonalized as

Mc =

[

Ic 0
0 m · I3,3

]

, Ic = diag ([Ix(q) Iy(q) Iz(q)]) (3.11)

where Ic is the locked moment of inertia about {C}.
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Proof. Firstly, trivializing Mb at the intermediate frame {C ′}, which is located
on the CoM, gc′ ≡ (I3,3, p), removes the product of inertia terms, i.e., linear and
angular parts are decoupled as blkdiag(m · I3,3, I

′
c) [25]. Secondly, Sylvester’s law

of inertia is invoked which states that for a positive definite Ic′, Ic = Rc′cIc′RT
c′c,

where Ic =
∑n
k=1 RckIkR

T
ck is the completely diagonalized and Rc′c is the orien-

tation of the principal axes relative to {C ′}. This result is obtained using a
right-handed SVD, which leads to the result.

The total body momentum resolved in the virtual chassis frame, {C}, is
Π̄ =

∑n
k=1 Ad−⊤

ck MkVk, and expanding,

Π̄ =
n∑

k=1

[

pck×Rckmkvk +RckIkωk
Rckmkvk

]

(3.12)

Let µ̄ be the locked velocity trivialized at {C}. Trivializing A and J at {C},
A = Adcµ̄ and J = Ad−⊤

c Π̄. Using (3.9),

µ̄ =
n∑

k=1

(

Ad−⊤
ck M

−1
k Ad−1

ck

)

Π̄ = M−1
c Π̄ (3.13)

Using (3.12) in (3.13),

µ̄ =

[

I−1
c 0
0 1

m

]
n∑

k=1

[

pck×Rckmkvk +RckIkωk
Rckmkvk

]

(3.14)

Multiplying the terms in (3.14) and applying Def. 3.3 to simplify the linear part,

µ̄ =

[

I−1
c hω
RT
c ṗ

]

= Ad−1
1c µ (3.15)

where hω =
∑n
k=1 pck×Rckmkvk + RckIkωk. Thus, the linear part of µ̄ is simply

the CoM velocity of the FRM and thus, we conclude the following.

Remark 12. For the FRM defined in Def. 3.1, the linear part of the velocity
(bottom 3 components) of both the mechanical connection A and the locked velocity
µ is simply CoM velocity trivialized at {1}.

3.4.3.2 Generalized Poinsot’s Construction

In this section, the Poinsot’s construction [147] for rigid body is generalized to a
multibody FRM. To that end, I first recall the Poinsot’s theorem for rigid bodies.

Def. 3.5. Classical Poinsot’s theorem [147, pp. 493] for rigid body: The moment
of inertia ellipsoid in space rolls without slipping on the invariable plane.

For the generalization to a FRM, the following Lemma is required.
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Lemma 3.5. For the FRM defined in Def. 3.1, the total kinetic energy is

K =
1

2
mṗTp

︸ ︷︷ ︸

Kµv

+
1

2
µ̄TωIc(q)µ̄ω

︸ ︷︷ ︸

Kµω

+
1

2
q̇TΛq q̇

︸ ︷︷ ︸

Kq̇

(3.16)

and the exchange of energy between Kq̇ and Kµω takes place due to variations in
shape-space. Furthermore,

Π̄ =

[

Π̄ω

Π̄v

]

= Mcµ =

[

Icµ̄ω
mµ̄v

]

(3.17)

Proof. Using µ̄ from (3.15) instead of µ, the kinetic energy is,

K =
1

2

(

µ̄TMcµ̄+ q̇TΛq(q)q̇
)

(3.18)

Using (3.15) on (3.18), and noting thatMc is diagonalized according to Lemma 3.4
and µ̄ω = RT

bcµω from (3.15), the result follows. Furthermore, Kµv is independent
of q and Kq̇ is independent of p and hence there is no energy exchange between
Kµv and Kq̇. Finally, using the diagonal structure of Mc from Lemma 3.4, the
final part of the proof follows.

Next, I provide a generalization of Poinsot’s theorem to the FRM, which
reveals the geometry of its motion.

Theorem 3.1. Generalized Poinsot’s theorem: For the FRM defined in Def. 3.1,
the locked moment of inertia ellipsoid in space rolls without slipping on a momen-
tum plane, which translates to accommodate the ellipsoid’s shape deformation.

Proof. I begin the proof using a local trivialization of µ about the instantaneous
locked frame, {C}, which is defined in Lemma 3.4, and state the following. Using
Lemma 3.5, the total kinetic energy, K = Kµv +Kµω +Kq̇ = K0, K0 ≥ 0. In the
following, like Poinsot, I consider Kµv = cv, cv ≥ 0 and K̇µv = 0. This implies
that the inertial CoM velocity is invariant and this follows from unforced motion
of FRM. With no loss of generality, I restrict to the level set of the total kinetic
energy given by,

K̃ = {Kµω +Kq̇|Kµv = cv} = K̃0, K̃0 ≥ 0 (3.19)

Furthermore,

K̃0 = Kµω +Kq̇ ⇒ Kµω = K̃0 −Kq̇ ⇒
∑

k=x,y,z

µ̄2
ωk
Ik = 2(K̃0 −Kq̇)

⇒
∑

k=x,y,z

(
Ik

2(K̃0 −Kq̇)

)

µ̄2
ωk

= 1⇒ ρT Icρ = 1 = F (ρ), (see [91, pp. 201])
(3.20)
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where ρ = 1√
2(K0−Kq̇)

µ̄ω is a normalized vector pointing along locked angular

velocity in the instantaneous {C} frame. The final result of (3.20), is the ellipsoid
of inertia in body [147] in the body ρ-space in the locked system.

In (3.20), let σ = Icρ = 1√
2Kµω )

Π̄ω. Using equivalence of inner products,

see Lemma A.1 in Appendix, (3.20) is, thus, written as 〈ρ, σ〉 = 1 = 〈ρ′, σ′〉.
Using this, the corresponding ellipsoid of inertia in space is simply, F ′(ρ′) =
ρ′TRcIcR

T
c ρ

′ = 1, where F ′ is defined in (x, y, z) of an inertial ρ′-space. For the
FRM, this Locked Inertia Ellipsoid has been shown in Fig. 3.3a.

Remark 13. The locked inertia ellipsoid, F (ρ) which is defined in the instan-
taneous frame {C} (see Lemma 3.4), in contrast to the rigid body formulation
(see [147, pp. 492]), is not fixed in its principal semi-axes. For the FRM, which
is a multibody, these semi-axes are given from (3.20) as ( 1√

Ix(q)
, 1√

Iy(q)
, 1√

Iz(q)
)

and vary as q changes. This fact is clearly visible in Fig. 3.3b, where the inertia
ellipsoid has been shown for t = {0, 45, 57}[s] during the FRM’s unforced motion.

Furthermore, taking the gradient of F ′ at ρ′ (point at which ρ meets the
ellipsoid), ∇ρ′F ′(ρ′) = 2σ′ = 2 1√

2Kµω

RcIcµ̄ω =
√

2
Kµω
Jω, where Jω is the angular

momentum map and is conserved in inertial space. Thus, Jω is normal to a plane
in the inertial ρ′-space and is written as G(ρ) =

√
2

Kµω
JTω ρ

′ =
√

2
Kµω

Π̄T
ωρ = 1.

Remark 14. The momentum plane, G(ρ), as mentioned above, is expressed in
either body (ρ) or inertial (ρ′) basis. However, it is clearly seen through (3.20)
that these bases are not invariant and change in scale as Kq̇ changes. This is in
contrast to the rigid body, where the invariance of kinetic energy results in fixed
bases. Hence, in the case of the FRM, the momentum plane, G(ρ) translates in
a direction parallel to Jω as the basis of ρ scale up and down.

The endpoint of the vector ρ is thus the point of contact of the inertia ellipsoid
F (ρ) and the momentum plane G(ρ), and therefore, the inertia ellipsoid rolls on
this plane without slipping.

In other words, as the shape of the inertia ellipsoid changes, the momentum
plane translates correspondingly in a way that ensures that the ellipsoid rolls
without slipping.

Remark 15. Using the plane equation G(ρ), the normal distance of the ellipsoid

from the momentum plane is given as, d =
∣
∣
∣

√
2

Kµω
Π̄T
ωρ

∣
∣
∣. In case of a rigid body,

the conservation of both kinetic energy and angular momentum ensures that ḋ = 0.
Since the semi-axes of the inertia ellipsoid for the FRM change with change in
shape-space q, it is natural that d is not fixed. This can be seen through its
dependence on the ρ which varies with Kq̇.
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(a) Generalized Poinsot’s construction

(b) Snapshots of inertia ellipsoid

Figure 3.3: (a): Generalized Poinsot’s construction (isometric view) for the FRM
showing the Locked Inertia Ellipsoid, F (ρ), that rolls on the Momentum Plane,
G(ρ). G is parameterized by its normal, the generalized angular momentum Jω
(magenta), which is constant in inertial space. The normalized locked angular
velocity, ρ, (black) is shown in the locked local basis, {ρx, ρy, ρz}(RGB), and
touches both F and G. The trajectories on the ellipsoid (Polhode, yellow) and
the plane (Herpolhode, cyan) are only instantaneous since the basis, {x, y, z},
depend on Kq̇. The total energy K̃0 (top) remains constant while Kµω and Kq̇
exchange energy. (b): Isometric views of Locked Inertia Ellipsoid, F (ρ) rolling
on the Momentum Plane G(ρ) at t = 0[s] (left), t = 45[s] (right) and t = 57[s]
(bottom) for a torque-free FRM motion. F (ρ) varies as shape changes, and G(ρ)
translates accordingly. The angular momentum map Jω remains invariant.

Remark 16. In case of rigid body motion, the trajectories of ρ on the inertia
ellipsoid and the momentum plane are called the Polhode and Herpolhode respec-
tively. For the FRM, these trajectories exist but can only be considered in an
instantaneous sense. In Fig. 3.3a, it can be seen that because the parameters of
the ellipsoid and the plane change (see remarks 13 and 14), the Polhode and the
Herpolhode exist only at the point of contact.

Hence, in this subsection, the locked velocity of the FRM trivialized about the
virtual chassis frame was used to provide a geometric interpretation. Clearly, µ
and A are simply the same (see (3.9) and (3.15)) but trivialized in {B} and {I},
respectively. This contribution of the chapter is towards mechanics of the FRM,
which has not been reported earlier in literature. In particular, the generalized
Poinsot construction was possible due to the use of the virtual chassis frame from
robotics and the classical Poinsot construction from geometric mechanics.
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3.5 Main Contribution

In this section, the proposed form of the LP equations and its properties are de-
rived. To ease the subsequent derivation, firstly, a direct computation is chosen
to obtain (3.4) and avoid the transformation in Lemma 3.2. Secondly, the vari-
ations of the locked inertia are expressed as fundamental matrices so that they
can be used in the resulting CC matrix factorization.

3.5.1 Choice of Iterative Computation

From subsection 2.6.3.1, I recall that both iterative computations for Newtonian
transformations can be used to obtain the dynamics of ξ. Both approaches yield
the same motion equations, and hence, the same inertia and CC matrix (see [135,
Rem. 6]). However, Lemma 2.15-1 provides a numerical computation of the CC
matrix in a way that its structure is concealed due to L̇, which might be difficult
to obtain in closed form. This computation was used for the FRM (ν̂ = ξ) by
[25], see Lemma 3.2. In contrast, Lemma 2.15-2 directly provides a closed form
computation of the CC matrix.

Remark 17. In this chapter, Lemma 2.15-2 is exploited as the first step in the
derivation of the main result for the FRM (ν̂ = ξ). To this end, the decomposition
of V into velocities in the vertical and horizontal subspaces from Lemma 2.13 is
exploited to redefine the link velocity, Vk, from Lemma 2.14 as, Vk = Tk(Vv + Vh),
which is written as,

Vk = T̃k(q)ξ, T̃k(q) =
[

Ad−1
1k (q) J̃k(q)

]

, (3.21)

where J̃k = Jk − Ad−1
1k Al is the generalized Jacobian [25] for the kth link.

3.5.2 Fundamental Matrices of Locked Inertia

For fixed-base robots, the CC matrix was shown as the sum of variations of the
inertia matrix relative to time and shape in Def. 2.15 and Def. 2.16, also see
[127]. These two variations were expressed as fundamental matrices (operators)
that described the CC terms in the Euler-Lagrange equations. For the FRM
case, I extend the notion of the fundamental matrices to describe the CC terms
that arise from the variations of the locked inertia, Mb, in the LP equations of
the FRM, i.e., (3.7)-(3.8). To this end, I define three operators in the respective
Lemmas below.

Lemma 3.6. Locked Inertia Velocity (LIV) matrix: It is a symmetric matrix,
P (q, x), given an arbitrary shape velocity, x ∈ R

n, which gives P (q̇) = dMb

dt
when

x = q̇, and appears in (3.7). It is computed as,

P (q̇) = −
∑

k

Ad−⊤
1k

(

ad⊤
Jk q̇
Mk +MkadJkq̇

)

Ad−1
1k . (3.22)
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Proof. Computing d
dt
Mb(q) using Mb in (3.3) and the time-derivative of the Ad

operator (see Prop. A.2, Appendix A.1), the expression of the LIV matrix, P (q, q̇),
is obtained as (3.22).

Lemma 3.7. Locked Inertia Derivative (LID) matrix: Given arbitrary veloci-
ties x, y ∈ R

6 ∼= se(3), the partial derivative of the scalar product 〈x, y〉Mb
relative

to shape (q) is written in matrix notation using the LID matrix, S(q, x)⊤, as
∂〈x,y〉Mb

∂q
= S(q, x)⊤y. In (3.8), the LID matrix serves to define the partial deriva-

tive of the locked kinetic energy relative to shape as
∂〈µ,µ〉Mb

∂q
= S(q, µ)⊤µ, where,

S(µ)⊤ =
∑

k

J⊤
k

(

ad⊤
Ad−1

1k
µ
Mk + ad∼

MkAd−1
1k
µ

)

Ad−1
1k . (3.23)

Proof. Given arbitrary x, y, the closed form computation of S(q, x)⊤y is derived
in Lemma A.4 of the Appendix A.5. The expression in (3.23) follows as a corollary
of Lemma A.4 for the specific case of the locked velocity, i.e. x = y = µ.

In the SE(3) group, the time-derivative of a covector in the body frame has an
ad⊤-term (apparent wrench) to account for changing body basis and encapsulates
the SE(3) structural coefficients, as shown in Prop. A.3 of Appendix A.1. For
the FRM, the body frame is the moving FRM-base frame, {1}, which has a body
velocity V1 that depends on the shape velocity due to the mechanical connection,
i.e., V1 = µ−Alq̇. Hence, there is an additional term that accounts for the
changing body basis in SE(3) due to the local mechanical connection through
Alq̇. This is captured by the matrix below.

Lemma 3.8. Given an arbitrary locked velocity x ∈ R6 ∼= se(3), and shape veloc-
ity y ∈ Rn, such that x = V1 +Aly, the apparent forces due to the change in the
SE(3) body basis resulting from the mechanical connection is ad∼

Mbx
Aly, where

ad∼
Mbx
Al is the Interaction Matrix (IM) which encapsulates the product of the

structure coefficients of the local mechanical connection, Al, and the SE(3) group.

Proof. The time-derivative of the locked momentum z = Mbx, is obtained using
Prop. A.3 of Appendix A.1.2 as,

dz

dt
= z̊ − ad⊤

V1
Mbx = z̊ − ad⊤

xMbx+ ad⊤
Aly
Mbx, (3.24)

where z̊ is the componentwise time-derivative (see [23, §2.10]). Note that (3.24)
already reveals the R.H.S of (3.7) for x = µ, y = q̇. In particular, the last R.H.S
term in (3.24) yields the apparent forces due to the change in the SE(3) body
basis resulting from the mechanical connection. Applying the property (2.56) to
it as (ad⊤

Aly
Mb)x = (ad∼

Mbx
Al)y in the spirit of the arguments of Sec. 2.6.1 results

in the IM.
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The LP equations are presented next with the proposed CC matrix factoriza-
tion as the main contribution of this paper.

3.5.3 Proposed form of the LP equations

Theorem 3.2. Let us consider the Floating-base Robotic System in Def. 3.1,
given the Pfaffian-like constraint ( mechanical connection) arising from the SE(3)
symmetry in Lemma 2.13. Its motion is governed by the LP equations. This
system of equations is proposed with the following factorization of the matrix of
CC terms, and is written as:

[

Mb(q) 06,n

0n,6 Λq(q)

]

︸ ︷︷ ︸

Λ(q)

[

µ̇
q̈

]

+

[
1
2
P (q̇) 06,n

0n,6 Γ̃′
q(q̇)

]

︸ ︷︷ ︸

Dq̇(q,q̇)

[

µ
q̇

]

︸︷︷︸

ξ

=

[

ad∼
Mbµ

−1
2
S(µ)− ad∼

Mbµ
Al

1
2
S(µ)⊤ −A⊤

l ad∼
Mbµ

−B̃(q, µ)

]

︸ ︷︷ ︸

Dµ(q,µ)

[

µ
q̇

]

+

[

F1

τ −A⊤
l F1

]

︸ ︷︷ ︸

F

.

(3.25)

In (5.3), Λ is the block-diagonal inertia tensor, which is composed of the
locked inertia, Mb, and the reduced shape inertia, Λq. The two proposed CC
matrices are Dq̇ and Dµ, which have velocity dependencies of q̇ and µ, respectively.
These CC matrices contain the fundamental matrices defined in Lemmas 3.6-3.8.
Additionally, B̃ is related to the curvature of the local mechanical connection, and
Γ̃′ is the reduced shape CC matrix that results in the (q̇, q̇)-coupling in the shape
dynamics. The external forces acting on the FRM are concatenated in F , and
include the actuation and the potential (gravity) forces. In particular, given the
initial conditions (t = 0) for (q, q̇, g1, µ), (5.3) is solved by computing the matrices
as,

• Λq(q) =
∑

k

J⊤
k Mk Jk −A⊤

l MbAl (3.26a)

• P (q̇) = −
∑

k

Ad−⊤
1k

(

ad⊤
Jk q̇
Mk +MkadJk q̇

)

Ad−1
1k (3.26b)

• S(µ)⊤ =
∑

k

J⊤
k

(

ad⊤
Ad−1

1k
µMk + ad∼

MkAd−1
1k
µ

)

Ad−1
1k (3.26c)

• Γ̃′
q(q̇) =

∑

k

J̃⊤
k (−ad∼

MkJ̃k q̇
J̃k +Mk

˙̃Jk) (3.26d)

• B̃(µ) = −A⊤
l ad∼

Mbµ
Al + S(µ)TAl −A⊤

l S(µ)

−
∑

k

(J⊤
k Mk∇(Ad−1

1k
µ)Jk)

(3.26e)

where, J̃k = Jk − Ad−1
1k Al for the kth link, and given a velocity X ∈ R

6 ∼= se(3),

∇X = M−1
k (ad⊤

XMk + ad∼
MkX
−MkadX). (3.27)
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Proof. A sketch of proof for Theorem 3.2 is shown in Fig. 3.4 as incremental steps
that are followed here. In the following steps, the identities (A.10a)-(A.10e) from
Lemma A.2 related to J̃k, which are listed in Appendix A.2, will be referred.

Derive Λ,Γ,F for (3.4)Lemma 2.15-2

Separate velocity-dependencies (µ, q̇) in ΓLemma 3.9

Factorize Γξ as CC terms in (3.7), (3.8)Lemma 3.10

Prop. 3.1 Derive Dq̇,Dµ as in (5.3)

Step 1:

Step 2:

Step 3:

Step 4:

Figure 3.4: A sketch of proof for Theorem 3.2.

Step 1

As stated in Remark 17, Lemma 2.15-2 is invoked with link velocity Vk = T̃kξ
to compute (3.4). This leads to three inferences, the first two of which corrob-
orate the earlier results from Lemma 3.2, and are stated here for completeness.
Firstly, the inertia matrix is obtained as, Λ(q) =

∑

k T̃
⊤
k MkT̃k. Using (A.10a), Λ

is obtained in the exact block-diagonal form of (3.4). Secondly, F =
∑

k T̃
⊤
k Fk

reduces to the same form as (3.4) after considering that the constraint forces in
the articulated mechanism of the FRM vanish after projection.

Thirdly, the CC matrix is obtained as,

Γ(q, Vk) = T̃⊤
(

− ad⊤
Vk
MkT̃ + Mk

˙̃T
)

. (3.28)

By analysing further the closed form computation of Γ, the structure in Dq̇,Dµ
in (5.3) is revealed, and this is the main contribution of this paper.

Step 2

To this end, I separate the FRM velocity dependencies, i.e., µ and q̇, in Γ. The
computations are summarized in the following Lemma.

Lemma 3.9. The CC matrix, Γ, in (3.28) is obtained through the computation
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of its block partitions, Γb,Γbq,Γqb,Γq, as functions of µ and q̇, as follows:

Γb =− ad⊤
µMb + ad⊤

Al q̇
Mb + P (q̇) (3.29)

Γbq =06,n (3.30)

Γqb =A⊤
l ad⊤

µMb −
∑

k

J⊤
k ad⊤

Ad−1
1k
µ
MkAd−1

1k

︸ ︷︷ ︸

S̃(q,µ)⊤

−
∑

k

(

J̃⊤
k ad⊤

J̃kq̇
Mk + J̃⊤

k Mk adJk q̇

)

Ad−1
1k

︸ ︷︷ ︸

B1(q,q̇)

(3.31)

Γq =−
∑

k

J̃⊤
k ad⊤

Ad−1
1k
µMk J̃k

︸ ︷︷ ︸

B2(q,µ)

+
∑

k

J̃⊤
k (−ad⊤

J̃k q̇
Mk J̃k +Mk

˙̃Jk)

︸ ︷︷ ︸

Γ′
q(q,q̇)

.
(3.32)

Proof. See Appendix A.6.6.1.

We note here that Γ 6= Dq̇ +Dµ.
Remark 18. The last term in (3.29) is the LIV matrix in Lemma 3.6. Addition-
ally, applying Γb,Γbq in (3.29) to the top row of (3.4) results in the momentum
equation of (3.7).

This concludes the simplification obtained through separation of dependencies
in the iterative formulation. On the R.H.S of (5.3), I see that the Dµ matrix only
has µ-dependency whereas Γqb in Γ from (3.31) has q̇-dependency too. Also, note
that in (3.32), Λ̇q 6= Γ′

q + Γ′⊤
q , which implies that the standard reduced shape

space skew-symmetric property [25] for the FRM is not satisfied.

Step 3

For this, the following factorization is used to obtain the CC terms in (3.8) from
the result in Lemma 3.9.

Lemma 3.10. Given the iterative computation of Γ in Lemma 3.9, the computed
CC forces acting on the FRM, i.e., Γ(q, ξ)ξ give the closed form computation of
the CC forces in (3.7) and (3.8) with velocity dependencies of µ, q̇.

Proof. Given Γqb and Γq in Lemma 3.9, the CC torques of the shape dynamics
(bottom row) in (3.4) are computed as,

Γqbµ+ Γq q̇ =− 1

2
S(µ)⊤µ+A⊤

l ad⊤
Alq̇
Mbµ

+ B̃(q, µ)q̇ + Γ̃′
q(q̇)q̇,

(3.33)

where all the CC matrices on R.H.S are the same as in Theorem 3.2. The proof
of (3.33) is given in Appendix A.6.6.2.
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Remark 19. With the above observations, note that (3.33) provides the velocity
dependency separation which matches the shape dynamics in (3.8). Also, in the

shape dynamics Γ̃′
q(q̇)q̇ =

(
dΛq(q̇)
dt

q̇ − ∂〈q̇,q̇〉Λq

2∂q

)

.

Using the Remarks 18 and 19, I conclude that the above simplifications of the
iteratively computed Γ(q, ξ)ξ results in the CC terms of (3.7) and (3.8).

However, these equations do not jointly satisfy skew-symmetry, which is often
required, as noted in Appendix A.2.1.

Step 4

Hence, I observe the following commutative property which leads to the main
result in (5.3).

Property 3.1. Given locked velocities, x, y ∈ R6, and shape velocity, z ∈ Rn,
the following commutativity properties for the fundamental matrices from Lem-
mas 3.6 and 3.7 hold.

S(q, x)⊤y = S(q, y)⊤x, P (q, z)y = S(q, y)z. (3.34)

Proof. For the first, S⊤ from (3.23) of Lemma 3.7 is used with (2.56). For the
second, (2.56) and adxy = −adyx are used.

The Prop. 3.1 leads to the following corollary, which is used to obtain the
result in Theorem 3.2.

Corollary 1. Given locked velocity µ ∈ R6 ∼= se(3)∗ and shape velocity q̇ ∈ Rn,
P (q̇)µ = 1

2
P (q̇)µ+ 1

2
S(µ)q̇.

Using Corollary 1 on Γb in Lemma 3.9, followed by using (2.56) for both ad⊤

terms, I obtain the first row in (5.3). Using the same property for the A⊤
l ad⊤

µMbµ
term in (3.33) provides the second row in (5.3). Rearranging as (q̇, q̇) on L.H.S
and all (q̇, µ), (µ, µ) on R.H.S, I obtain the proposed Dq̇,Dµ matrices in (5.3).

With Theorem 3.2, the CC matrix for the LP equations was obtained as a
sum of two novel CC matrices, namely Dq̇ and Dµ. Notably, their block partitions
have an explicit velocity dependency on q̇ and µ, respectively. In contrast, the Γ
matrix in (3.4) and the result in [25, eq. 18] have functional dependencies on V
for all the block partitions instead of the velocity of the inertia-decoupling trans-
formation, i.e., ξ. By defining the IM matrix as in Lemma 3.8, the same operator
is used in the momentum dynamics (top) and the shape dynamics (bottom, with
a transpose) of (5.3), in contrast to the last R.H.S term in both, (3.7) and (3.8).
The structure of Dq̇ and Dµ reveals key properties, which are provided next.
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3.6 Properties of the LP Equations

In this section, the properties of the LP equations of the FRM that are useful
in motion control design, e.g., observers, tracking control etc. are outlined. The
properties outlined below have not been revealed in literature and are a key
contribution of this chapter. With each property, a corresponding application
area is also given.

3.6.1 Commutativity

For fixed-base robots, I recall that the commutativity property of the CC matrix
is well known [127, 141]. This property, however, does not hold for a rigid-body
due to the non-abelian nature of SE(3), as discussed in Sec. 2.6.1. Consequently,
for the FRM, the complete CC matrix in (3.4) does not exhibit this property.

The separation of velocity dependencies in the CC terms of (5.3) enabled
the isolation of the LIV matrix, P , and the LID matrix, S, for which I proved
commutativity in Prop. 3.1. In the context of FRM dynamics, such a property has
not been reported before and is neither apparent in (3.4) nor the pair (3.7)-(3.8).
Two uses of this property are demonstrated below.

Given two velocities, x, y ∈ R6, the dynamics of the error z = x− y is en-
countered in the stability analysis of tracking [10] and observer design [62, 141]
problems. The following corollary of Prop. 3.1 is useful to eliminate y in such
cases.

S(x)⊤x− S(y)⊤y =
(

2S(x)⊤ − S(z)⊤
)

z. (3.35)

Prop. 3.1 is also useful for linearization, e.g. in Kalman filtering, as is demon-
strated next. Given the velocity state ξ, linearisation of the function w = S(µ)q̇,
which appears in the top row of (5.3), about ξ̂ =

[

µ̂⊤ ˆ̇q⊤
]

, gives,

∂w

∂ξ

∣
∣
∣
∣
ξ=ξ̂

=
[

∂w
∂µ

∣
∣
∣
∣
µ=µ̂

∂w
∂q̇

∣
∣
∣
∣
q̇=ˆ̇q

]

=
[

P (ˆ̇q) S(µ̂)
]

(3.36)

after applying the second of Prop. 3.1.

3.6.2 Skew-symmetry/Passivity

This property is pivotal to motion control analysis, and is stated next.

Property 3.2. Given x ∈ R6, y ∈ Rn, and z =
[

x⊤ y⊤
]⊤

, the skew-symmetric

property, z⊤(Λ̇− 2Γ)z = 0, can be viewed in (5.3), as satisfying the following,

x⊤(
dMb

dt
− P (q̇))x = 0, y⊤(

dΛq

dt
− 2Γ̃′

q)y = 0,

xTad∼
Mbµ

x = 0, y⊤B̃(q, µ)y = 0, z⊤Dµz = 0.
(3.37)
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The CC matrix, Dq̇, which depends on q̇, satisfies the skew-symmetry property
(top row in (3.37)), while the CC matrix, Dµ, which depends on µ, is skew-
symmetric (bottom row in (3.37)).

Proof. See Appendix A.6.1.

Prop. 3.2 is crucial for Lyapunov-based stability analysis in specific problems
like motion tracking [134] and observer design [62], as explained in Appendix
A.2.1.

3.6.3 SE(3) Transformation of Momentum Dynamics

Considering an arbitrary frame as {C}, its pose gc(t) ∈ SE(3), which may be time-
varying, is a right SE(3) translation of g1, i.e., gc = g1g1c(t), where ġ1c = g1cV

∧
1c,

and V ∧
1c ∈ se(3). Correspondingly, this change of basis of µ to {C} is an Adjoint

transformation of g1c, i.e., µc = Ad−1
1c µ. For this case, the following is useful.

Property 3.3. The momentum dynamics in top row of (5.3) transform to any
frame {C} with a pose gc(t) ∈ SE(3) through a right SE(3) translation as,

M̄b(q)µ̇c + P̄ (q, q̇, g1c)µc = ad∼
M̄b(q)µc

µc

−
(1

2
S̄(q,Ad1cµc) + ad∼

M̄b(q)µc
Āl(q, g1c)

)

q̇ + F̄b,
(3.38)

where the dynamic transformations are:

• M̄b = Ad⊤
1cMbAd1c • Āl = Ad−1

1c Al
• ad∼

M̄bµc
= Ad⊤

1cad∼
Mbµ

Ad1c • F̄1 = Ad⊤
1cF1

• S̄ = Ad⊤
1cS(Ad1cµc) • ad∼

M̄bµc
Āl = Ad⊤

1cad∼
Mbµ
Al

• P̄ = Ad⊤
1c

P

2
Ad1c + M̄badV1c

and all the L.H.S terms above have an implicit g1c-dependency.

Proof. Multiplying Ad⊤
1c to the first row in (5.3), and rewriting µ = Ad1cµc, (3.38)

follows.

Prop. 3.3 is useful for FRM applications that require the momentum dynamics
(top row, (5.3)) in a more suitable frame, e.g. centroidal frame in humanoids [25],
for control design and motion planning purposes.
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3.6.4 SE(3) Invariance of Shape Dynamics

Two key observations are made here as a corollary.

Property 3.4. The shape dynamics (bottom row, (5.3)) is invariant to the right
SE(3) translation in Prop. 3.3, i.e., invariant to the transformation of the mo-
mentum dynamics like (3.38). Additionally, the system skew-symmetric Prop. 3.2
is preserved.

Proof. We note that the transformations in Prop. 3.3 with µ = Ad1cµc satisfy,

Ā⊤
l M̄bĀl = A⊤

l MbAl, Ā⊤
l F̄1 = A⊤

l F1, (3.39)

S̄(µc)
⊤µc = S(Ad1cµc)

⊤Ad1cµc = S(µ)⊤µ,

Ā⊤
l ad∼

M̄bµc
µc = A⊤

l ad∼
Mbµ

µ, B̃(Ad1cµc) = B̃(µ).
(3.40)

These properties are used for the proof in Appendix A.6.2.

Note that although the first in Prop. 3.4 appears obvious, prior works [25]
have not revealed this invariance, as discussed in Remark 10. The aforementioned
proof is a direct consequence of the proposed factorization of Dq̇,Dµ in (5.3).

Using Properties 3.3 and 3.4, (5.3) is rewritten with a transformation of the
proposed CC matrices as,

D̄q̇ =

[

P̄ (q̇) 06,n

0n,6 Γ̃′
q(q̇)

]

,

D̄µ =




ad∼

M̄bµc
− S̄(µc)

2
− ad∼

M̄bµc
Āl

S̄(µc)⊤

2
− Ā⊤

l ad∼
M̄bµc

B̃(Ad1cµc)



.

(3.41)

Applications that require the momentum in another frame (as in Prop. 3.3)
exploit shape (joints) for control [25]. The invariance in Prop. 3.4 obviates the
measurement of g1 for local joint control, as I shall also demonstrate later.

3.6.5 Analytical Computation of Curvature

Deriving an analytical iterative computation of the local curvature for the FRM
was a supplementary goal of the factorization in Theorem 3.2. Although symbolic
forms of the FRM curvature have been proposed in geometric mechanics [142]
for up to 3-shape variable systems, the iterative forms typically used in robot
dynamics2 have not been derived before. To this end, I report the following.

Theorem 3.3. Given the FRM in Def. 3.1, its curvature quantifies the non-
holonomy (see Def. 2.8), (DAl)(x)y =

(

(dAl)(x)− adAlxAl
)

y, in iterative form
is written using the CC matrix structure in Theorem 3.2 as,

(DAl)(q, x)y = −Mb(q)
−1B⊤(q, x)y, x, y ∈ R

n, (3.42)

2Note that the curvature does not appear explicitly in the CC matrix (Γ) of (3.4).
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where,

B(q, x) =
∑

k

(

J⊤
k (Mk∇Jkx + 2MkadJkx

)

Ad−1
1k

)

− S(Alx)T +A⊤
l P (x) +A⊤

l ad⊤
Alx
Mb.

(3.43)

Proof. See Appendix A.6.3.

Corollary 2. In (3.42), if x = y, DAl = 06.

Proof. See Appendix A.6.4.

Property 3.5. (Contravariance of curvature, [14, Def. 3.5]): Given gc ∈ SE(3)
such that gc = g1g1c, the body curvature, DAl, transforms contravariantly to the
new basis of gc as DAcl = Ad−1

1c DAl.

Proof. See Appendix A.6.5.

The Prop. 3.5 is essential to transform Theorem 3.3 from the FRM-base frame,
{1}, to a minimum perturbation coordinate frame (see [20, 142]), in which the
approximation of Stokes’s theorem on SE(3), (2.48), is optimal. Theorem 3.3
enables curvature computation for more than 2-shape variables, which will be
demonstrated in the next section, and is useful for locomotion analysis, i.e., gait
planning and initialization [19].

3.6.6 Nonholonomic locomotion of FRM

I recall from Sec. 2.4.8.1, see Fig. 2.11, that locomotion methods address the
synthesis of a gait i.e., closed path in shape space, and its optimization to induce
a desired displacement (in FRM-base) [19, 20, 124, 143]. Therein, the inverse
problem is commonly posed as: Given a gait, q(t) ∈ R

n, can the net FRM-base
displacement, δg1, be estimated without explicitly integrating (5.4). To answer this,
I refer to the well-known result from geometric mechanics [19, 20, 124] for µ = 0,
which, firstly, converts the integral of (5.4) into an area integral of curvature, as
shown in Appendix A.3.1. As a second step, a visual representation of the cur-
vature, Constraint Curvature Function (CCF), is used to compute the resulting
area integral, summarized in Appendix A.3.2. This integral is an approximation
of the FRM-base displacement per gait.

For optimal gait planning, the CCF, firstly, aids in gait synthesis, i.e., identify
regions in shape space that induce negative, positive or zero displacement, for
initialization and heuristics, see [143, §5]. Secondly, given a gait parameter, e.g.
its perimeter, the CCF is used to solve an optimality criteria, e.g. maximize
displacement and minimize perimeter [143, §6]. Recently, in [142], the idea was
extended for n > 2 shape variables. While the aforementioned works compute the
CCF map using symbolic or numeric methods for planar systems, in the following
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treatment, I demonstrate the application of the analytical form in Theorem 3.3
for a spatial FRM with n ≥ 2, and use the CCF to answer the question posed
above.

3.6.6.1 Motivating Scenario

To this end, let us consider the FRM in Def. 3.1, in which m joints (shape
variables) such that 2 ≤ m ≤ n execute a gait. This gait is considered on a static
embedded two-dimensional hyper-plane, H(q) = 0, which has local coordinates

r =
[

r1 r2

]⊤
about the origin qc = ∇H(q). Thus, there exists a unique map

between the gait-space and the shape space, ψ, as,

q = ψ(qc, r)⇒ q̇ = Ψ(qc, r)ṙ, (3.44)

where Ψ = ∂ψ
∂r
∈ Rn×2 is the gait Jacobian with n−m zero-rows. The concept

is illustrated in Fig. 3.5, in which a circular gait (on a hyperplane) in an anti-
clockwise sense is executed using m = 3 shape variables, denoted as (q1, q2, q3).
This scenario was considered in [148, § V.B], however, for a planar FRM with
symbolically computed CCF. This motivating scenario is a typical application, in
which Theorem 3.3 serves to generate the CCF surface map point-wise analyti-
cally.

q1

q2

q3

r1

r2

qc

q(0)

R

R
3

R2

Figure 3.5: A 2-Degree-of-Freedom gait-space (hyperplane) with variables (r1, r2)
and its origin at qc in a surrounding 3-D shape space with variables (q1, q2, q3),
which execute an anti-clockwise gait starting at q(0).

To this end, the Algorithm 1 is the novel contribution here.
Given a gait with initial condition, q(0), the following steps from [19, 20] yield

an approximate FRM-base displacement.

1. Using the output of Algorithm 1, the CCF surface map is plotted over the
gait-space, ϑr, and the CCF volume under the gait, r(t), is computed to
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Algorithm 1 Generate CCF Surface Map
Input:

Ψ, ψ, g1(0), qc
Minimum Perturbation Coordinate (MPC) frame [19, 20], {C}, with pose
gc ∈ SE(3)

Output: CCF
1: Assign basis: e1 = Ψ(1), e2 ∈ Ψ(2) ∈ Rn, where Ψ(i) is its ith column
2: Compute relative pose: g1c = g1(0)−1gc
3: Create discretized domain (grid) of gait-space, ϑr ⊂ R2 such that r(t) ∈ ϑr
4: for each r ∈ ϑr do
5: Compute the configuration point in shape space: q = ψ(qc, r) ∈ ϑq ⊂ Rm

6: Compute curvature using (3.42) from Theorem 3.3 in the FRM-base frame,
{1}: DAl(q, e1)e2

7: Transform curvature to the MPC frame, {C} using Prop. 3.5:
DAcl = Ad−1

1c DAl
8: CCF(index of r)← DAcl
9: end for

10: Save CCF to file.

obtain the corrected Body Velocity Integral (cBVI) (see Appendix A.3.2)
component-wise, i.e., ζi in (2.48).

2. The net displacement in {C}, i.e., gc(t0)−1gc(tf ) is approximated as exp(ζ)
using (2.48).

3. Since g1c(t0) = g1c(tf) over a gait, the net displacement of the FRM-base is
approximated as δĝ1 = exp(Ad1cζ) ≈ δg1.

3.6.6.2 Example

For the FRM, I considered the LWR-4+ robot with n = 7 joints, dynamic and
kinematic parameters of which were reported in [27]. The FRM-base was mod-
eled with a mass, mb = 3.5[kg] and principal inertia, Ib ≡ (0.12, 0.14, 0.12)[kg.m2].
As an example, a circular gait, as in Fig. 3.5, was considered with qc = q(0) = 07,

the gait-shape map and the gait Jacobian as ψ = Ψ =

[

0 1/
√

2 1/
√

2 0 03

0 0 0 1 03

]⊤

,

such that the joints numbered 2, 3, 4, m = 3 are used. The circular gait was

ṙ = π
2

[

sin(πt) cos(πt)
]⊤

. As in [21], the virtual chassis frame, i.e., a coordinate
system located at the CoM of the FRM and oriented along its instantaneous
principal axes, was chosen as the MPC frame {C}. In this frame, the locked
inertia is diagonalized. Due to this choice, the translation components k = 4, 5, 6
can be ignored since the CoM of the FRM is invariant to shape motion, i.e., the
curvature components are zero. This was also verified in the computed DAcl . The



78 3 Motion of Floating-base Robotic Mechanism (FRM)

Algorithm 1 from Sec. 3.6.6.1 was executed with a discrete grid size of 30× 30
for ϑr to obtain the CCF surface data. The specific CCF surfaces are shown in
Fig. 3.6 with the gait overlaid in blue. By visual inspection, it can be seen that
the encased volumes in k = 1, 2 bases are small and the maximal displacement
is expected along the negative k = 3 basis (enlarged). Indeed, upon integrating
(5.4) with µ = 06 and g1(0) = I4,4, the final FRM-base orientation after the gait
was found to be (−0.4228, 0.1682,−13.73)[°] in XYZ sense. By using the ap-
proximation in Sec. 3.6.6.1, it was found to be (−0.9623, 0.9873,−13.25)[°]. The
error metric of the pose estimate was ||log(δg−1

1 δĝ1)|| = 0.017 with an orientation
error of 1.0450[°], which is comparable to the mean error, 3.7242[°], reported in
[19]. From the similarity in the approximation error, we conclude the suitability
of Theorem 3.3 for generating the CCF surface map using Algorithm 1 towards
usage in the gait planning [19, 124, 143]. I note that the approximation method
itself is not in the scope of this paper, and is used from these works here as a
use-case.
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Figure 3.6: CCF surface plots for the rotational bases k = 1, 2, 3 of the virtual
chassis frame, {C}, for a 2-DoF gait (blue) using 3-shape variables.

The key point here is that the analytical method in Theorem 3.3 yields the
exact curvature value at a given shape (q) in step 6 of Algorithm 1 to generate the
CCF map. In contrast, numerical methods perform a numerical differentiation of
Al at q to obtain DAl, which introduces approximation errors. The advantage of
the recursive computation in Theorem 3.3 over symbolic methods [148] is the ease
of adding/removing joints seamlessly to the locomotion analysis using the same
FRM model. For example, in Sec. 3.6.6.2, if the same analysis was required for
joints (1, 2, 3, 4), instead of the joints (2, 3, 4), the symbolic computation would
require a modification of the FRM model accordingly. In contrast, Theorem
3.3 always uses the same FRM model, and thus, offers scalability to arbitrary
FRM kinematic structures, which are not restricted to be planar, i.e., g1 ∈ SE(3).
Moreover, the proposed computation provides a valid alternative to numerical
and symbolic methods.
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3.6.7 Passive Interconnection of Momentum & Shape

In EL systems, the block-diagonal structure of the inertia tensor implies a decom-
position of the Lagrangian into two subsystems, which further implies a passive
interconnection of both subsystems, [3, §2.4]. In the following, I extend the re-
sult in [3, Prop. 2.10] to the case of LP systems, i.e., systems with symmetry
like the FRM, which also possess a block-diagonal inertia tensor, but have a
non-commutative configuration variable (SE(3)).

Theorem 3.4. Consider the LP system, whose motion is given by Theorem 3.2.
Its Lagrangian can be decomposed as,

l̂(q, ξ) =
1

2
〈µ, µ〉Mb(q)

︸ ︷︷ ︸

l̂µ

+
1

2
〈q̇, q̇〉Λq(q) − V(q)

︸ ︷︷ ︸

l̂q̇

(3.45)

where V : Rn → R is a scalar potential field on the shape. The dynamics in (5.3)
is represented as the negative feedback interconnection of two passive subsystems
(as shown in Fig. 3.7a)

Σ1 : (τ −A⊤
l F1) +

Dl̂µ
Dq
7→ q̇, Σ2 :

[

F1

−q̇

]

7→



µ
Dl̂µ
Dq



 (3.46)

with the subsystem Hamiltonians, Hµ ≡ l̂µ and Hq̇ = 〈 δl̂q̇
δq̇
, q̇〉 − l̂q̇ as storage func-

tions, where Dl̂µ
Dq

is the covariant derivative of the locked kinetic energy relative to

the shape (q), see [149, §4.2], and serves as the subsystem coupling signal.

Proof. Under the presence of V, the R.H.S. of the shape dynamics for forcing is
τ −A⊤

l F1 − ∂V
∂q

. In the shape dynamics (bottom row of (5.3)), the CC terms with
(µ, µ) coupling are actually the covariant derivative of the locked kinetic energy,
l̂µ, relative to the shape, see [149, §4.2], i.e.,

Dl̂µ
Dq

=
δl̂µ
δq
−A⊤

l ad⊤
µ

δl̂µ
δµ

(3.47)

Thus, taking the time-derivative of Hq̇ for Σ1,

Hq̇ = 〈(τ −A⊤
l F1) +

Dl̂µ
Dq

, q̇〉 (3.48)

by using the skew-symmetry of B̃ and Γ̃′ in Prop. 3.2. Likewise, computing the
time-derivative of Hµ for Σ2, and using passivity in Prop. 3.2,

Ḣµ =〈F1, µ〉 − 〈µ,
(1

2
S(µ) + ad∼

Mbµ
µAl

)

q̇〉

=〈F1, µ〉+ 〈−q̇,
(1

2
S(µ)⊤ −A⊤

l ad⊤
µMb

)

µ〉 = 〈F1, µ〉+ 〈−q̇, Dl̂µ
Dq
〉

(3.49)
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Dl̂µ
Dq

F1

τ

µ

−

+
q̇

Σ1 : Bottom (5.3)

−A⊤
l

Σ2 : Top (5.3)

Shape Dyn.

Momentum Dyn.

(a) Passive interconnection of momen-
tum and shape subsystems.

Dl̂µ
Dq

d1U

dqU

µ −

−

−

+
q̇

Σ1 : Bottom (5.3)

−A⊤
l

Σ2 : Top (5.3)

Σ3 : (3.54)

Shape Dyn.

Momentum Dyn.

Potential

(b) Passive interconnection of momentum
and shape subsystems with a symmetry-
breaking potential.

Figure 3.7: Passive interconnection block diagrams.

It is worth highlighting the significance of Theorem 3.4 in the context of mo-
tion control. Prior works from pedal robotics [25, 150–152] and orbital robotics
[34, 36] have exploited momentum-based motion control methods. In these works,
the momentum subsystem motion is analysed as a linear system (not energy-
based), while passivity analysis is applied only for the whole system (not sub-
system). The main reason that prevents subsystem motion analysis is the in-

terconnection term Dl̂µ
Dq

. Theorem 3.4 concludes that the momentum and shape
subsystems are in a passive negative feedback interconnection, and hence ensur-
ing OSP of each subsystem is enough to ensure OSP of the whole system. Note
also that this passive interconnection is a direct result of Noether’s symmetry
in the FRM dynamics, and would not result from the general inertia-decoupled
form in Lemma 3.2.

3.7 Generalization of the FRM

In Sec. 3.5, I considered the FRM with a Lagrangian, l̂, that was independent of
the group variable g1. In this section, I generalize the following case: The motion
of the FRM in Def. 3.1 is governed by a symmetry-breaking potential field in the
presence of a surrounding potential fluid flow, see Fig. 3.8.

3.7.1 Symmetry-breaking Potential Fields

A symmetry-breaking potential field, U(g1, q) : SE(3)× Rn → R, is a scalar poten-
tial, which breaks the Lagrangian symmetry of the FRM, i.e., l̂ = l̂µ + l̂q̇ − U(g1, q)
depends explicitly on the FRM-base pose g1. Common examples of such poten-
tial fields are gravity and buoyancy. Considering the unforced3 FRM under such

3The following analysis is performed for the unforced case for ease of illustration, but
obviously the extension of the passive interconnection also holds in the forced case with the
forces acting as additional inputs as in Theorem 3.4.
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a symmetry-breaking potential field, the LP equations are written by applying
the same transformation as for the forces in the proof of Theorem 3.2, but with
a negative sign, as,

LP∗(q, µ̇, q̈) = −
[

d1U(g1, q)
dqU(g1, q)−A⊤

l d1U(g1, q)

]

(3.50)

where d1 and dq are the differentials of the argument relative to the coordinates g1

and q, respectively. In the following, the SE(3)-dependency of the differentials on
the SE(3) group will be denoted by the subfixes, as in (3.50). Despite symmetry-
breaking, I extend the result of Theorem 3.4 below.

Corollary 3. Consider the LP system, whose motion is given by Theorem 3.2
with forces purely arising from a symmetry-breaking potential, U(g1, q). Its La-
grangian in (3.45) is,

l̂(q, ξ) = l̂µ(q, µ) + l̂q̇(q, q̇)− U(g1, q) (3.51)

The passive feedback interconnection of the momentum and shape subsystems in
Theorem 3.4 is in a negative feedback interconnection with the dynamics of U ,
which are together represented as three passive subsystems (as shown in Fig. 3.7b)

Σ1 :− (dqU − A⊤
l d1U) +

Dl̂µ
Dq
7→ q̇, Σ2 :

[

−d1U
−q̇

]

7→



µ
Dl̂µ
Dq



 (3.52)

Σ3 :

[

µ
q̇

]

7→
[

d1U
dqU − A⊤

l d1U

]

(3.53)

with the subsystem Hamiltonians Hµ,Hq̇ and the potential U as the storage func-
tions.

Proof. For Σ3, the dynamics of U is given by,

d

dt
U = 〈d1U , V1〉+ 〈dqU , q̇〉 = 〈d1U , µ〉+ 〈dqU − A⊤

l d1U , q̇〉 (3.54)

The unforced variant of LP equations in (3.50) is,

LP∗(q, µ̇, q̈) = −
[

d1U(g1, q)
dqU(g1, q)−A⊤

l d1U(g1, q)

]

(3.55)

Computing the time-derivatives of Hq̇ and Hµ for Σ1 and Σ2, as in Theorem 3.4,

Ḣq̇ = −〈−(dqU −A⊤
l d1U), q̇〉 − 〈Dl̂µ

Dq
, q̇〉, Ḣµ = −〈d1U , µ〉+ 〈q̇, Dl̂µ

Dq
〉 (3.56)
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Remark 20. Resolving the top row of Theorem 3.2 in the CoM frame of the FRM
provides the CoM translational dynamics (µ̇v), which is the only part affected by
the gravity potential forces, see [25]. However, this simplification only works for
the gravity potential. For a general symmetry-breaking potential, e.g. buoyancy,
there might be yet another frame of relevance. Thus, I have provided a general
expression in (3.50), which includes the result in [25].

Consider the FRM in Fig. 3.8 with a body frame positioned at the CoM,
{CM}, but oriented along {1}. The gravity potential is

Ug = mγh = mγ〈E3, pc〉 = mγ〈E3, p1 +R1p1c(q)〉 (3.57)

where γ = 9.81[m/s2] is the gravity constant, E3 = (0, 0, 1) is the vertical direction
of {O}, and p1c ∈ R

3 is the position of CoM ({CM}) relative to {1}. Considering
Ug ≡ Ug(gc),

dcmUg(gcm) =
(

g−1
cm

δUg
δgcm

)∨
= fg = (γ̂, 0) (3.58)

where γ̂ = R⊤
1 E3mγ is the left trivialized gravity force at {CM}. Similarly,

dqUg(g1, q) =
δUg
δq

= 〈δgc
δq
,
δUg
δgc
〉 = J⊤

1cdcmUg (3.59)

where J1c ∈ R6×n is the Jacobian (push-forward) of g1cm ≡ g1cm(q) as a forward
kinematics map. For any arbitrary body frame {1}, considering Ug ≡ Ug(g1, q),

d1Ug(g1, q) =
(

g−1
1

δUg
δg1

)∨
=

(

γ̂, (p1cm)×γ̂
)

= Ad−⊤
1cmfg = Ad−⊤

1cmdcmUg (3.60)

Thus, the total gravity contribution in LP∗ in (3.50) is compactly written as,
(

Ad−⊤
1cmdcmUg, (J1cm − Ad−⊤

1cmAl)⊤dcmUg
)

= (Ad−⊤
1cmdcmUg, J̃⊤

1cmdcmUg) (3.61)

where J̃1cm is the corresponding generalized Jacobian. In the same way, consider
the body frame positioned at the buoyancy center, {CB}, but oriented along {1}.
Let the buoyancy potential be written as Ub(gcb) ≡ Ub(g1, q). Following the same
steps as above, the buoyancy contribution appears in the form of (3.61) as

(

Ad−⊤
1cb dcbUb, (J1cb − Ad−⊤

1cbAl)⊤dcbUb
)

= (Ad−⊤
1cb dcbUb, J̃⊤

1cbdcbUb) (3.62)

where the subfixes cm have been replaced with analogous cb terms.
Thus, using the above machinery, symmetry-breaking potential fields (gravity

and buoyancy) can be considered for the FRM as an LP system. This is relevant
for applications in aerial and underwater robotics, especially keeping the passive
feedback interconnection in perspective for motion control.
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g1
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gcb
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{O}

{1}
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Figure 3.8: Floating-base Robotic Mechanism (FRM) in presence of symmetry-
breaking potentials in the form of gravity at CoM {CM} and buoyancy at {CB},
while being submerged in a potential fluid flow. Motion of FRM results in motion
of liquid envelope (grey), and vice versa.

3.7.2 Potential Fluid Flow

For the second generalization, the FRM is considered submerged in a fluid, e.g.
in underwater robotics, microrobotics. Three key simplifications are exploited
for analysis of this case. Firstly, the fluid flow is considered to be a poten-
tial flow, i.e., motion is considered in absence of a vortex-shedding mechanism
[153]. This framework is sufficient to describe the motion of the FRM due to
transfer of momentum between itself and the surrounding fluid. Secondly, the
fluid is considered incompressible [154], which makes the FRM-fluid system inde-
pendent (symmetric) of fluid variables, and the dynamics of (g1, q) is sufficient
to completely describe the motion of the FRM. Thirdly, in the absence of the
symmetry-breaking potentials, the total Lagrangian of the FRM-fluid system is
independent of g1, i.e.,

l̂ =
1

2
〈µ, µ〉Mb

+
1

2
〈q̇, q̇〉Λq +Kf(q, q̇, µ) (3.63)

where Kf is the kinetic energy of the fluid. Together with the potential flow
consideration, (3.63) is written as, l̂ = 1

2
〈µ, µ〉M̂b

+ 1
2
〈q̇, q̇〉Λ̂q

, where M̂b and Λ̂q

are the new inertia tensors with added inertia effects due to the surrounding
fluid [153–156]. Consequently, the local mechanical connection, Âl = M̂−1

b M̂bq,
where M̂bq is the coupling inertia with added inertia. Note that for these inertia
tensor transformations, each link inertia M̂k = Mk +

∑
M̄kj, where M̄kj is the

inertia added to the kth-link due to the surrounding fluid and the jth-link due to
hydrodynamic coupling, see [153, §7.2].

Thus, considering the link-wise inertia mappings, the result of Theorem 3.2
holds, as all the matrices in (3.26) are computable using M̂k. In this case, µ is the
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locked velocity of the FRM-fluid system, and the top row of (5.3) encapsulates
its total momentum dynamics. Using this, the following generalization of LP
dynamics of the FRM is stated.

Theorem 3.5. Consider the Floating-base Robotic System in Fig. 3.8 in the pres-
ence of an effective symmetry-breaking potential U(g1, q), e.g. gravity, buoyancy,
spatial spring etc., and surrounded by a potential fluid flow with kinetic energy
Kf . The Lagrangian of the FRM-fluid system is of the form,

l̂ =
1

2
〈µ, µ〉Mb

+
1

2
〈q̇, q̇〉Λq +Kf (q, q̇, µ)− U(g1, q) (3.64)

and its motion is governed by a variation of the LP equations. This system
of equations is written using the factorization of the matrix of CC terms, as in
Theorem 3.2, and is written as:

[

M̂b(q) 06,n

0n,6 Λ̂q(q)

]

︸ ︷︷ ︸

ˆΛ(q)

[

µ̇
q̈

]

+





1
2
P̂ (q̇) 06,n

0n,6
ˆ̃Γ′
q(q̇)





︸ ︷︷ ︸

D̂q̇(q,q̇)

[

µ
q̇

]

︸︷︷︸

ξ

=




ad∼

M̂bµ
−1

2
Ŝ(µ)− ad∼

M̂bµ
Âl

1
2
Ŝ(µ)⊤ − Â⊤

l ad∼
M̂bµ

− ˆ̃B(q, µ)





︸ ︷︷ ︸

D̂µ(q,µ)

[

µ
q̇

]

+

[

F1

τ −A⊤
l F1

]

+

[

d1U
dqU − d1U

]

(3.65)

where the •̂ matrices are computed using M̂k for the link inertia.

Theorem 3.5 is a generalized form of the LP dynamics of the FRM under
the action of symmetry-breaking potential fields and in the presence of a sur-
rounding potential flow. In this way, this form is applicable to orbital, aerial
and underwater robotics. The key advantages of Theorems 3.2-3.5 over the prior
results from robot dynamics (Lemma 3.2) and geometric mechanics (Lemma 3.3)
are summarized in Table 3.1 through a comparison. From Theorem 3.2, the
closed form expressions of Dq̇,Dµ enable the linearization of the CC terms, e.g.
∂Dq̇ξ

∂q̇
, ∂Dµξ

∂µ
using existing methods, as in [22], which is not possible in Lemmas

3.2 and 3.3. Although a computational comparison merits its own scope, I pro-
vide a preliminary idea below. The computation of Γ in Lemma 3.2 required
one pass of n iterations (link-wise), and an additional numerical transformation.
The computation of Dq̇,Dµ in Theorem 3.2 requires 2 passes with n iterations
in each pass. One pass is nominally given by the expressions in (3.26), which
in turn require Al that is computed in a preceding pass. For the extension in
Theorem 3.5 to consider surrounding fluid, an additional pass of n+1 iterations is
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required to compute M̂k with added inertia effects for each link to account for the
hydrodynamic coupling between the links. While the simplification of the gravity
force was given before in robot dynamics [25], I provide a general framework for
symmetry-breaking potential fields to account for other effects like buoyancy and
parasitic stiffness acting on the FRM-base.

Table 3.1: Comparison of FRM dynamics formulations

Property Rob. Dyn. Geom. Mech. Prop. Form
(Lem. 3.2) (Lem. 3.3) (Th. 3.2)

Commut. (Prop. 3.1) ✖ ✖ ✓

Skew-sym. (Prop. 3.2) ✓ ✖ ✓

SE(3) Transf. (Prop. 3.3) ✓ ✓ ✓

Invariance (Prop. 3.4) ✖ ✖ ✓

Curvature (Th. 3.3) ✖ ✓ ✓

CC Linearization ✖ ✖ ✓

Computation Iterative Symbolic Iterative
Complexity n+Transform. − 2n

Symmetry-breaking ✓ ✓ ✓

Potential Generalization
Extension with ✖ ✓ ✓

Fluid Flow (Th. 3.5)

3.8 Conclusion

In this paper, I proposed a novel factorization of the Coriolis/Centrifugal (CC)
matrix for the inertia-decoupled equations of a Floating-base Robotic Mechanism
(FRM). The factorization was a consequence of simplifying the CC matrix compu-
tation from robot dynamics and deriving the Lagrange-Poincaré (LP) equations
from geometric mechanics. The proposed CC matrix is separated into two parts
based on velocity dependency. The first part, which depends only on the shape ve-
locity, was proved to satisfy the skew-symmetry (passivity) property. The second
part, which depends only on the locked velocity, was proved to be skew-symmetric.
I also derived novel commutative properties between two fundamental matrices
that feature in the proposed CC matrices. I proved that the shape dynamics are
invariant to the transformation of momentum dynamics. From a geometric per-
spective, I derived the generalized Poinsot’s construction to visualize the motion
of the FRM. Using the proposed CC matrix factorization, I derived the iterative
expression to compute the curvature form of the FRM. I also used the proposed
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curvature computation to estimate the FRM-base displacement due to a planar
gait, while considering more than two shape variables. Using the proposed form
of the LP dynamics, the passive feedback interconnection between the momen-
tum and shape subsystems was revealed. Furthermore, the proposed form was
extended to include symmetry-breaking potentials (e.g., gravity) and the pres-
ence of a surrounding potential fluid flow. In this way, the contributions of this
chapter are applicable in multiple robotics domains. The publication resulting
from the contributions of this chapter is:

1. H. Mishra, G. Garofalo, A. M. Giordano, M. De Stefano, C. Ott, and
A. Kugi, “Reduced Euler-Lagrange equations of floating-base robots: Com-
putation, properties, and applications”, IEEE Transactions on Robotics,
pp. 1–19, 2022

In the following two chapters, the proposed form of the LP dynamics will be
exploited to simulate momentum-consistent dynamics for HIL simulation and for
designing observer-based motion control for the FRM.



CHAPTER 4

Motion Substructuring for V&V

“ Driven by the principle of being (on-orbit), the vehicular mecha-
nism (on-ground) appears in its specific role by association with
the principle of becoming (Lagrangian matching) [157, pp. 35]. ”

Ishvarakrishna, Samkhya-karika, 4th century AD

4.1 Introduction

Dynamic substructuring is an engineering approach to model the dynamical be-
haviour of a multi-system mechanism by decomposing it into meaningful domain-
specific subsystems [158]. A key advantage of substructuring is that it enables the
interfacing of model-based and real subsystems in a HIL simulation. In large-scale
orbital projects for on-orbit servicing/assembly, HIL serves as a key element for
V&V of control, estimation and planning algorithms of orbital mechanisms [46].
In this chapter, the main contribution is a HIL framework for V&V of orbital
motion control algorithms from the phases of control prototyping to flight-ready
prototype tests. To achieve this, the inertia-decoupled LP dynamics from the
previous chapter will be exploited for substructuring.

4.1.1 Related Work

Orbital mechanisms, e.g. a manipulator-equipped spacecraft, have emerged as a
key mission element in on-orbit servicing [43–45], active debris removal [46], on-

87
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orbit assembly [47] and sample acquisition from remote sites on a comet/asteroid
[48]. The controller software for the whole bespoke orbital mechanism, which
includes navigation, control law, planner etc. [73], is executed on subsystem-
specific On-board Software (OBSW) computers. For the V&V of the OBSW
algorithms, which is required to achieve the necessary technology readiness levels
[159, 160], HIL simulation using On-ground Robotic facilities (OGRF) have in-
creasingly gained eminence [46–50] due to their inherent integration of available
hardware and software models. Hence, to meaningfully interface the OBSW with
a HIL facility, it is imperative to generate motion in a physically consistent way.

A classification of the reported HIL facilities is provided in Table. 4.1 and is
summarized below. In [161, 162], HIL for an underactuated and unforced orbital
FRM was proposed by exploiting its momentum map conservation and combin-
ing a numerical simulation of spacecraft states with a fixed-base OGRF. In an
alternative strategy in [162], the orbital FRM was mounted on a vehicle (another
manipulator), which effected the spacecraft motion. In [49, 163], the end-effector
poses of fixed-base reference robot and OGRF were modeled with a kinematic
constraint and drift-compensation schemes were proposed. The vehicle emula-
tion system II [164] used Force-Torque Sensor (FTS) measurements instead of
model-based dynamics to command the spacecraft motion, which results from
interaction between the orbital manipulator and its spacecraft. A fixed-base HIL
approach was used in [165] to simulate a dual-arm orbital FRM for contact sce-
narios. A common attribute of HIL in [161, 165] was the use of a fixed-base
OGRF and a vehicle with the satellite-prototype to simulate the relative motion
between the test satellite and the orbital FRM. In [73, §3], a predefined momen-
tum and kinematic model of a grasped satellite were added to the reduced orbital
FRM dynamics computation to simulate interaction dynamics. Alternatively, in
[50, 166], inertia-coupled Hamel’s equations [31] were integrated using FTS mea-
surements to compute the dynamics of the orbital FRM’s spacecraft. In [166],
joint positions were commanded to a fixed-base OGRF in admittance causality
and the spacecraft motion was numerically simulated. Contrastingly, in [50], the
orbital manipulator was considered as an impedance on a vehicle, which effected
spacecraft motion in admittance causality. To summarize, in the aforementioned
works, for the free-floating case, reduced dynamics on momentum map level-set
were exploited while, the Hamel’s equations were used for the case with external
forces. Note that only the former method preserves implicitly the symmetry, i.e.
momentum is conserved.

4.1.2 Key Contributions

In this chapter, the emphasized items from Table 4.1 are considered. I use a model-
based dynamic interaction between orbital manipulator and spacecraft because
the interaction forces depend directly on the HIL state-space, i.e. actual motion
in OGRF. Like [162], I also analyse both fixed-base and vehicle-driven OGRF, but,
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Table 4.1: Classification of HIL facilities for orbital FRM

Attribute Classification
• Dynamic interaction Model-based, FTS sensor

between manipulator
and spacecraft

• Spacecraft Fixed-base (software),
simulation Vehicle-driven

• Vehicle causality Impedance, Admittance
• Commanded motion Absolute, Relative

for the vehicle, both causalities, admittance and impedance, are considered. By
describing absolute dynamics, I ensure that the OGRF experiences the correctly
computed Coriolis/Centrifugal (CC) forces during HIL validation. An orbital
manipulator in impedance causality is considered due to its suitability for contact-
oriented tasks [43–45]. To this end, the main result of this chapter is obtained by
proving equivalence between the Controlled Lagrangians (CL) corresponding to
the OGRF and the orbital robot. However, instead of the Hamel’s equations or
the reduced dynamics, I exploit the inertia-decoupled structure of the LP [167,
eq. 2.9] equations to fully describe the orbital robot dynamics and, therefore,
include spacecraft-actuation and external forces.

The contributions of this chapter are the following.

1. In Theorem 4.1, a converse Lagrangian matching method is proposed that
shapes the behaviour of the EL equations of an OGRF to replicate the EL
equations of the shape (joints) of the orbital FRM. This enables control
prototyping using the OGRF, while considering the mission orbital FRM.

2. In Theorem 4.2, a converse Lagrangian matching method is proposed that
shapes the behaviour of the EL equations of an OGRF to replicate the EP
equations of the spacecraft (base) of the orbital FRM. To simulate space-
craft motion, the block-diagonal inertia of LP equations from Chapter 3
are exploited. This obviates the need for joint acceleration/torque measure-
ments, which can be noisy and bias-prone. In fact, to simulate interactions
between manipulator and spacecraft even in presence of external forces, I
show that tangent space variables and a FTS of the HIL are sufficient.

3. The physical (momentum) consistency in previous free-floating HIL is ex-
tended to the case of a forced orbital robot by using LP equations to
completely describe its fully-actuated dynamics.

4. Finally, I demonstrate the effectiveness of the proposed methods through
comparative experiments on two OGRF platforms, a fixed-base KUKA
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LWR4+ and the OOS-SIM [50]. In particular, for the latter case, I also
provide experimental results for the HIL of a fully-actuated orbital robot
while considering environment interactions.

The layout of the chapter is as follows. The problem statement of HIL for
the orbital robot is described in Sec. 4.2. In Sec. 4.3, the motion of the OGRF
in a typical HIL facility are modeled. In Sec. 4.4, the main idea is proposed
using the method of Controlled Lagrangians (CL), and LP equations are intro-
duced. In Sec. 4.5, I propose two converse theorems for dynamics equivalence and
three modalities for simulating spacecraft motion in HIL. In Sec. 5.6.2, I provide
experimental results, followed by concluding remarks in Sec. 4.7.

4.2 V&V-Problem for an Orbital Mechanism

Orbital FRMs are a key technology for on-orbit servicing/assembly operations [41,
168] and active debris removal [169]. In projects related to early-phase mission
analysis and flight-prototype validation, HIL testing is a necessary requirement
to increase the technology readiness level. Therefore, it is important to replicate
the motion of the mission orbital FRM on the OGRF faithfully to maximize the
scope of V&V. To that end, let us first formalize it.

4.2.1 Orbital Mechanism

Def. 4.1. An orbital mechanism, e.g. a manipulator-equipped spacecraft, is a
FRM of n + 1 rigid links, which are connected with n holonomic-joints. The
simplified configuration space of the orbital robot, as seen in Fig. 4.1 (blue box),
is Q̂ ∼= SE(3)× Rn with coordinates z = (gb, q) ∈ Q̂.

Using Def. 4.1, the orbital mechanism’s total velocity is ζ = (Vb, q̇), where
ġb = gbV

∧
b , V ∧

b ∈ se(3) refers to the spacecraft velocity. Considering the fully-
coupled inertia tensor, M̂(q) ∈ R(6+n)×(6+n), its reduced Lagrangian takes the
form l̂(q, ζ) = 1

2
ζ⊤M̂(q)ζ. The Hamel’s equations describe its dynamics as,

[

M̂b M̂bq

M̂⊤
bq M̂q

]

︸ ︷︷ ︸

M̂

ζ̇ + Ĉ(q, ζ)ζ =

[

F̂b
τ̂

]

+

[

Ĵb(q)
⊤

Ĵ(q)⊤

]

Fe, (4.1)

where M̂ and Ĉ are the matrices of inertia and CC terms, respectively, (F̂b, τ̂)
are the actuator forces commanded from OBSW, and Fe ∈ R6 ∼= se(3)⊤ is the
external interaction wrench at a material point {E} on the mechanism’s structure.
Given the pose ge = f̂(q), where f : Q̂ → SE(3) is the forward kinematics map
of {E}, and Ĵb ∈ R6×6 and Ĵ ∈ R6×n are the Jacobians for base and articulated
mechanism displacements, respectively.
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Interface

(spacecraft-base)

Interface

(joints)

{B}

{O}

gb

qk

qk

(gb, Vb)

τ̂

τ1

(q, q̇)

F̂b

Figure 4.1: Diagram of an orbital robot (CAESAR [170], blue) on right. The
forced dynamics of this system can be simulated on a fixed-base CAESAR ma-
nipulator (red) for HLS validation.

4.2.2 Problem Statement

Orbital mechanisms can have a articulated structures with length of 2−4[m] [43,
170] depending on mission requirements. Firstly, the HIL V&V of these unwieldy-
sized mechanisms poses additional complexities [46] to simulate the base motion,
which can be avoided using a fixed-base setup. This is illustrated in Fig. 4.1,
where an OBSW is interfaced with the fixed-base CAESAR arm [170] (red box).
Secondly, for HIL validation of sensor-based navigation, physical floating-base
dynamics is also necessary. In this case, a scaled-down model might be used
while simulating floating-base dynamics. Therefore, in both cases outlined above,
a common interface (Fig. 4.1, yellow) between an OBSW and OGRF is required,
which maps the OBSW commands, (F̂b, τ̂), to that of OGRF, such that the
latter’s state-space trajectories are identical to that of the orbital mechanism.

Past HIL methods have relied on Hamel’s equations for simulating the forced
dynamics of the orbital robot. On one hand, this requires q̈ or τ measurements
for reconstructing spacecraft motion (first row in (4.1)), which is a sensory over-
head for the HIL. On the other hand, the Hamel’s equations lack the momentum
consistency of free-floating dynamics. Note that free-floating dynamics are physi-
cally consistent due to the momentum map level-set constraint but are restricted
to an unforced case. Therefore, alternatively, I use the LP description of the
orbital mechanism, to ensure consistency.
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4.3 On-ground Robotic facilities (OGRF)

During the course of a large-scale project, e.g. an orbital mission, the required
technology-readiness level [159, 160] dictates the complexity of the HIL OGRF
that is used for V&V. In the following, the OGRF that are commonly available
for prototyping and V&V of the motion system on an orbital mechanism are
classified, see Fig. 4.2. In the following treatment, the HIL-specific quantities are
denoted by their corresponding subfix.

{B}
{B}

{B}

{E}

{E}{E}

{E}
{B}

BA DC

Figure 4.2: On-ground Robotic facilities (OGRF). A: Fixed-base manipulator,
B: Flight-ready prototype of vehicle with simulated manipulator, C: Vehicle-
manipulator with mechanical mounting on another manipulator end-effector, {B},
D: Gravity-compensated OGRF for flight-ready prototype of manipulator.

4.3.1 Fixed-base Manipulator

A fixed-base manipulator is often a starting point to initiate prototyping [48]. It
is formalized below.

Def. 4.2. A fixed-base manipulator is a multibody with n holonomic-joints, see
left of Fig. 4.2-A. Its configuration is denoted with coordinates, q1 ∈ Q1, corre-
sponding to the joint positions and Q1 is a Riemannian manifold with manipulator
inertia, Λ1(q1) ∈ Rn×n, as its metric tensor.

The Lagrangian for this manipulator is L1 = 1
2
〈q̇1, q̇1〉Λ1 − U1(q1), where U1(q1)

is the gravity potential. The dynamics are written using the Euler-Lagrange
operator, EL(L1) [167, eq. 2.3] as,

EL(L1) = Λ1(q1)q̈1 + Γ1(q1, q̇1)q̇1 = τ1 + τ1d + J1(q)
⊤Fe (4.2)

where C1 ∈ Rn×n is the matrix of joint-space CC terms, and τ1, τ1d ∈ Rn are actu-
ation and other lumped torques (including gravity potential torques, i.e. ∂U1(q1)

∂q1
),

respectively. J1(q1) ∈ R6×n and Fe ∈ R6 ∼= se(3)∗ are the manipulator Jacobian
and wrench at end-effector, respectively.
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Remark 21. The fixed-base OGFM in Def. 4.2 is capable of executing only the
motion of an orbital robot’s manipulator. So, the spacecraft pose, gb, is entirely
reconstructed in software using the simulated actuation F̄b, and I denote this HIL
configuration space as Q = SE(3)× Rn.

4.3.2 Vehicle with Simulated Manipulator

For a mission, the spacecraft platform and the manipulator subsystems are de-
veloped by different stakeholders. In this case, the former might already have a
HIL OGRF for the spacecraft [171, 172], see Fig. 4.2-B.

Def. 4.3. A mechanism (e.g. a manipulator) which models the platform’s mo-
tion, e.g. spacecraft, with configuration g2 ∈ SE(3), i.e., the inertial pose of
{B}.

4.3.2.1 Lagrangian Modeling and Computation

Let the vehicle system in Def. 4.3 be a mechanism with configuration q2 ∈ Q2,
which has a Lagrangian 1

2
〈q̇2, q̇2〉M2(q2) − U2(q2). Its motion is described by the

EL equations as,

EL = M2(q2)q̈2 + C2(q2, q2)q̇2 = τ2 + τ2d (4.3)

where M2, C2, τ2, τ2d follow the same definitions as in subsection 4.3.1.

Assumption 4.1. The vehicle mechanism is a non-redundant robotic manipula-
tor, dimQ2 = dim

(

SE(3)
)

.

The pose of {B}, g2 = f2(q2), where f2 : Q2 → SE(3) is the forward kine-
matics map of the vehicle mechanism. The push-forward differential map is
df2(q̇2) = T2(q2)q̇2. Using Assumption 4.1, f−1

2 and T−1
2 exist locally by the in-

verse function theorem. In the neighbourhood of q2, the Lagrangian is rewrit-
ten as, L2 = 1

2
〈V2, V2〉M(g2) + U(g2), where V2 = (g−1

2 ġ2)
∨. Note that L2 is not

independent of g2, and hence, the dynamics is given by the left-invariant Euler-
Lagrange equation on SE(3), see Lemma 2.5, and written as,

ELSE(3)(L2) =M2(g2)V̇2 + Γ2(g2, V2)V2 = F2 + F2d (4.4)

where the transformed quantities for the analytical result in Lemma 2.5 are com-
puted using the Newtonian transformation in Lemma 2.15-1. In particular,

M2 =T−⊤
2 M2T

−1
2

Γ2V2 =Ṁ2V2 −
(

g−1
2

δl

δg2

)∨ − ad⊤
V2

ΛV2 = Ṁ2V2 − J−⊤
2

δL

δq
− ad⊤

V2
ΛV2

=T−⊤
2 (M2Ṫ

−1
2 + C2T

−1
2 )V2

F2 =T−⊤
2 τ2, F2d = T−⊤

2 τ2d

(4.5)
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For the complete motion simulation of an orbital mechanism, the coupling with
a simulated manipulator is required.

4.3.3 Vehicle-Manipulator

Def. 4.4. A vehicle-manipulator [26] (Fig. 4.2-C) is a multibody system consist-
ing of a fixed-base manipulator of n holonomic-joints mounted on a vehicle at a
frame {B}. The configuration of the manipulator and vehicle are denoted with
coordinates, q3, and g3 ∈ SE(3) (see App.), respectively.

4.3.3.1 Lagrangian Modeling and Computation

For model-based HIL, the vehicle-manipulator is modeled as a fully-coupled sys-
tem on the simplified configuration space, Q3

∼= SE(3)× R
n. Its Lagrangian is

L3(q3, g3, V3) = 1
2
〈ζ3, ζ3〉M3, with inertia tensor, M3(q3, g3) ∈ R(6+n)×(6+n), mecha-

nism velocity ζ3 =
[

V ⊤
3 q̇⊤

3

]⊤
, V ∧

3 ∈ se(3) (see App.) is the body velocity for the
vehicle pose, g3, and ġ3 = g3V

∧
3 . As was in subsection 4.3.2, L3 is not independent

of g3, and hence a straightforward Hamel’s equation form is not possible. Instead,
the dynamics are given by the ELSE(3) equation for the motion of {B}, and the
EL equations for the joints.

Specifically, using L3, the dynamics are obtained using recursive computations,
and are written in vector algebra notation as,

M3(g3, q3)

[

V̇3

q̈3

]

+ C3(g3, ζ3)

[

V3

q̇3

]

=

[

F3 + F3d

τ3 + τ3d

]

+

[

T3(q3)⊤

J3(q3)
⊤

]

Fe (4.6)

where, F3,F3d ∈ R6 ∼= se(3)∗ are the actuation and lumped wrenches (including
gravity wrench), of the vehicle, respectively. And, τ3, τ3d ∈ Rn are the actuation
and lumped torques (including gravity torques) of the manipulator, respectively.

Also, C3 ∈ R(6+n)×(6+n) is the non-unique CC matrix and M3 =

[

M3 M3q

M⊤
3q M3

]

is

the coupled inertia1. J3 ∈ R
6×n, T3 ∈ R

6×6 are the end-effector Jacobians for
the manipulator and vehicle, respectively, and Fe ∈ R6 ∼= se(3)∗ is end-effector
wrench.

4.3.3.2 Momentum Constraint

If the vehicle in the vehicle-manipulator is left unactuated, a trajectory of the
manipulator causes a vehicle displacement due to momentum exchange2. In par-
ticular, the momentum quantity is J3 = Ad⊤

gb
(M3V3 +M3q q̇3). Using J3, the

1M3, M3q, M3 are the locked, coupling and manipulator inertias, respectively [50].
2Note that M3 does not have a symmetry in g3 like the orbital FRM, and hence, the

momentum is not conserved, but momentum exchange occurs.
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mechanical connection (see Def. 2.7) is, A3(g3, q3, ζ3) = Ad3

[

I6,6 A3(g3, q3)
]
[

V3

q̇3

]

,

where A3 =M−1
3 M3q is the local form of the connection. Note that the vehicle-

manipulator contrasts with the FRM in Chapter 3, in which the Lagrangian and
the mechanical connection were independent of the SE(3) pose. Although there is
no such symmetry for the vehicle-manipulator, the same framework is exploited
to rewrite the dynamics in (4.6) in a Ver−Hor form with block-diagonal inertia.
To this end, as in Chapter 3, A3 is parameterized by a locked velocity, µ3.

Next, I follow the steps to rewrite the dynamics of the vehicle-manipulator.
The vehicle-manipulator velocity is ξ3 = (µ3, q̇3), which is obtained using the lin-

ear transformation T3(g3, q3) =

[

I A3

0 I

]

, as ξ3 =
[

µ⊤
3 q̇⊤

3

]⊤
= T3(q)ζ3. Applying

the Newtonian transformation in Lemma 2.15-1 on (4.6),

M̂3(g3, q3)

[

µ̇3

q̈3

]

+ Ĉ3(g3, q3, ζ3)

[

µ3

q̇3

]

=

[

F̄3 + T⊤
3 Fe

τ3 −A⊤
3 F̄3 + J̃⊤

3 Fe

]

(4.7)

where F̄3 = F3 + F3d, J̃3 = J3−Ad−1
gbe
A3 is the generalized Jacobian, and M̂3 and

Ĉ3 are the transformed inertia and CC matrix, obtained as,

M̂3 =blkdiag(M3,Λ3(q3)) = T −⊤
3 M3T −1

3

Ĉ3 =

[

Γ3(ζ3) Γ3q(ζ3)

−Γ3q(ζ3)
⊤ Γ̄3(ζ3)

]

= T −⊤
3 (M3Ṫ

−1
3 + C3T −1

3 )
(4.8)

In particular, the momentum equation is the top row of (4.7) as,

Ver(LP)(l3) =M3µ̇3 +
[

Γ3(ζ3) Γ3q(ζ3)
]

ζ3 = F̄3 + T⊤
3 Fe (4.9)

and the shape-space dynamics is the bottom row,

Hor(LP)(l3) = Λ3q̈3 +
[

−Γ3q(ζ3)
⊤ Γ̄3(ζ3)

]

+A⊤
3 F̄3 = τ3 + τ3d + J̃⊤

3 Fe (4.10)

By following the above procedure, the two pairs, (4.17),(4.18) and (4.9),(4.10)
have decoupled inertias. This removes acceleration dependencies between the two
equations in each pair, and this addresses the problem described in Sec. 4.2.2.

4.3.4 Gravity-compensated OGRF

Typically, a flight-ready orbital manipulator (e.g. CAESAR [170]) might not have
enough torque capability to support its own gravity during on-ground V&V. It is
common to use passive (fixed mass) [47] or active gravity-compensation schemes.
The latter approach exploits a carrier, which is another serial-chain or parallel
mechanism to generate gravity-support torques [173]. The analysis shown in the
following is related to the patent [67] in Table 1.2.
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Def. 4.5. A gravity-compensated manipulator, see Fig. 4.2-D, is a fixed-base
manipulator, which is constrained to a carrier mechanism to compensate for its
own gravity [173]. Its configuration is x4 = (q4, θ4) ∈ Q4 ≡ Q̂4 × Q̃4, where
q4 ∈ Q̂4 and θ4 ∈ Q̃4 are the position variables of the fixed-base manipulator and
the carrier, respectively.

α

β
γ

{X}
{X}

BA

Figure 4.3: A: Unconstrained SO(3)-motion of attachment, {X}, between CAE-
SAR and carrier, B: CAESAR manipulator in operation with carrier mechanism.

4.3.4.1 Lagrangian Modeling and Computation

The carrier and the flight-prototype manipulator are multibody mechanisms
with commutative configuration spaces. Let the corresponding unconstrained
Lagrangians be L̃4 = 1

2
〈θ̇4, θ̇4〉H4 − Ũ4(θ4), and L̂4 = 1

2
〈q̇4, q̇4〉M4 + Û4(q4), where

M4, H4 are the inertia tensors and Ũ4, Û4 are the scalar potentials, e.g. gravity.
The motion is given by their corresponding EL equations as follows,

EL(L̃4) =H4(θ4)θ̈4 +N4(θ4, θ̇4)θ̇4 = t4 + t4d

EL(L̂4) =M4(q4)q̈4 + C4(q4, q̇4)q̇4 = τ4 + τ4d + J4(q4)⊤Fe
(4.11)

where C4, N4 are the CC matrices, τ4, t4 are the actuator torques, τ4d, t4d contain
the lumped torques, like gravity, i.e., ∂Ũ4

∂θ4
and ∂Û4

∂q4
, respectively. For V&V, the

external interaction wrench, Fe is of interest for the manipulator, at a point, e.g.
end-effector, given by its forward kinematics map g4 : Q̂4 → SE(3). The wrench
is pulled back using using the map Jacobian as J⊤

4 Fe.
The constraint between the manipulator and the carrier, see Figs. 4.2-D and

4.3, is realized at a material 3D-point {X}. Let f4 : Q̂→ G and h4 : Q̃→ G
denote the forward kinematics maps for the manipulator and carrier of {X},
respectively. Note that G is a subgroup of SE(3), e.g. SO(3), R3, or SE(3) itself
[174], which generalizes a family of holonomic motion constraints in 3D-space.

Assumption 4.2. The carrier mechanism is non-redundant, i.e., h−1
4 exists lo-

cally by the inverse function theorem.
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Note that using the theory on constrained mechanics in Chapter 2, the con-
straint between the vehicle and the CAESAR manipulator is written as a map,
π : Q4 → G, see Def. 2.3. Given the subgroup positions of the carrier and ma-
nipulator as, g̃4, ĝ4 ∈ G, respectively, the relative position gives the holonomic
constraint as,

gx = π(x4) = ĝ−1
4 g̃4 = const.⇒ W4 − Ad−1

gx
V4 =

[

T̃4 −Ad−1
gx
T̂4

]

︸ ︷︷ ︸

J

[

θ̇4

q̇4

]

= 0 (4.12)

where W4 = (g̃−1
4

˙̃g4)
∨ and V4 = (ĝ−1

4
˙̂g4)

∨ are the body velocities of the carrier and
manipulator at {X}, respectively.

In the particular case of CAESAR in Fig. 4.3, note that the motion in SO(3)
at {X} is unconstrained by virtue of rotational motions in α, β, γ, where α, β are
the rotational joints from an attached sleeve mechanism, and γ is the assumed
rotational degree of freedom about the cable length axis. Hence, the constraint
is purely translational, i.e., gx ∈ R

3.
Using Assumption 4.2, T̃4 is invertible and θ4 = h−1

4 f4(q4). Using this invert-

ible transformation, (4.12) is written in the form µ4 = A(θ4, q4)
[

θ̇⊤
4 q̇⊤

4

]⊤
, where

A =
[

I T̃−1
4 Ad−1

gx
T̂4

]

is the Ehresmann connection in Def. 2.5. Due to the kine-
matic constraint, however, the vertical velocity µ4 = 0. Thus, the constrained La-
grangian of Fig. 4.2-D is written as L4 = 1

2
〈q̇4, q̇4〉Λ4 − U4(q4), while considering

µ4 = 0, where Λ4 is the constrained inertia, and U4(q4) = Ũ4(h−1
4 f4(q4)) + Û4(q4)

such that dU4 = dÛ4 + A⊤dŨ4, see [14, §2.1]. The constrained dynamics are ob-
tained by simply taking the Hor(EL) part of the motion. To enable computation,

note that
[

µ⊤
4 q̇⊤

4

]⊤
= T4

[

θ̇⊤
4 q̇⊤

4

]⊤
, where T4 =

[

I A
0 I

]

is the invertible tangent

space map. Using the Newtonian transformation in Lemma 2.15-1 on (4.11), the
dynamics are written using µ4 = 0 as,

Hor(EL)(L4) = Λ4(x4)q̈4 +Γ4(x4, q̇4) = τ4−A⊤(t4 + t4d)+τ4d+J4(q4)
⊤Fe (4.13)

where Γ4 is the the matrix of CC terms, and computed as,

Λ4 =M4 − A⊤H4A

Γ4q̇4 =Λ̇4 −
δL4

δq4
+ A⊤ δL4

δθ4
+

(

(dA)(ẋ1)
)⊤ δL4

δµ
, [14, eq. 2.1.6]

=Hor
(

T−⊤
4 (blkdiag(H4,M4)Ṫ−1

4 + blkdiag(N4, C4)T
−1
4 )

)
[

0
q̇4

]
(4.14)

where Hor(•) above considers the CC terms of only the Hor(EL) (bottom row)
dynamics.
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4.3.4.2 Energetic behaviour of Gravity-Compensation

In (4.13), let the actuation be decomposed as τ4 = τ4c + τ4g, where τ4c and τ4g

are the torques for motion control from OBSW (mission element) and gravity-
compensation (on-ground element), respectively. The motion control task is iden-
tified using a scalar potential Φ4(q4) : Q̂→ R+.

Lemma 4.1. Given the gravity-compensated OGRF in Fig. 4.2-D, if the motion
control torque τ4 satisfies a passivity property with the motion control task, i.e.,
τ4c + dΦ4 7→ q̇4, τ4g −A⊤(t4 + t4d) + τ4d = ∆g = 0, and Fe = 0, then the complete
manipulator-carrier mechanism is Lyapunov stable, i.e., the OGRF states (x4, ẋ4)
are bounded. In case Fe,∆g 6= 0, the OGRF is passive with the passivity-map
(J⊤

4 Fe + ∆g) 7→ q̇4.

Proof. Consider the function H4 = 1
2
〈q̇4, q̇4〉Λ4 + Ũ4(θ4) + Û4(q4) + Φ4(q4), where

Φ4 : Q̂→ R+ is a potential for the motion control task. Taking its time-derivative
using (4.13) with Fe = 0,

Ḣ4 = q̇⊤
4

(

τ4 −A⊤(t4 + t4d) + τ4d

)

= q̇⊤
4 (τ4c + dΦ4) ≤ 0 (4.15)

where the passivity property, q̇⊤
4 (Λ̇4 − 2Γ4)q̇4 = 0, for the constrained OGRF is

applied, and (4.15) implies Lyapunov stability. For the latter part, considering
Fe,∆g 6= 0, and computing time-derivative of H4,

Ḣ4 ≤ (J⊤
4 Fe + ∆g)

⊤q̇4 ⇒H4(t)−H4(0) ≤
∫ t

0
(J⊤

4 Fe + ∆g)
⊤q̇4dt (4.16)

Lemma 4.1 is important because it provides a stability guarantee for the V&V
of a gravity-compensated OGRF. It also gives the condition for the OBSW to
ensure stability during the V&V testing phase.

Remark 22. The solution of τ4g + A⊤(t4 + t4d) + τ4d = ∆g = 0 might be an un-
derdetermined problem if the manipulator has more degrees-of-freedom than the
carrier mechanism. In this case, an optimization problem is formulated with
∆g = 0 as a constraint function, as shown by [173]. This method was solved as
an optimality constraint problem in the patent [67], which resulted from the work
during this thesis.

4.4 Motion Substructuring Approach

In the following, the key idea of using the Controlled Lagrangian method [167,
175] towards substructuring the orbital FRM in terms of shape and momentum
variations of its LP dynamics is described.
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4.4.1 Method of Controlled Lagrangians

In this chapter, I use the method of Controlled Lagrangian (CL). Its basic idea
is as follows: Given the problem to asymptotically stabilize an equilibrium of a
mechanical system, I find a control law such that the closed-loop dynamics emerge
from a chosen Lagrangian. The method of CL leads to an actuation mapping,
which is the key concept used in this chapter. For control synthesis details, I refer
the reader to [175, §2.2.1].

Firstly, I specify that in contrast to control synthesis, it has to be proved that
the CLs for the HIL OGRF and the orbital robot are equivalent for the chosen
actuation mapping. This is exactly analogous to stating the converse theorem
for CL-equivalence [167, Prop. 2.4]. The time-evolution of the orbital mechanism
state in the mission scenario for a given actuation is different to that of the OGRF.
This is because the configuration spaces are different (see Fig.8.14), i.e. Q̂ 6= Qi,
because the inertia tensors, which depend on kinematic/dynamic parameters,
are different. An OBSW designed for (4.1) can be meaningfully interfaced with
OGRF, if and only if, the time-trajectories of z (red dot) in OGRF (dashed blue)
and orbital robot (dashed pink) are identical. This is achieved by creating a
configuration-dependent mapping between the actuation in cotangent spaces of
Q̂ (pink) and Qi (blue), and is the main contribution of this chapter.

Qi

Q̂

z
z

z1

zn (Fi, τi)

(F̂b, τ̂ )

Figure 4.4: At any given time, the configuration (red dot) of the mechanical
systems in Q̂ (dotted) and Qi (grey) have the same local coordinates z and
identical time-trajectories. To achieve this, a mapping between (Fi, τi) (blue)
and (F̂b, τ̂) (pink) has to be enforced.

Although this idea can also be applied to the Hamel’s equations, (4.6) and
(4.1), the coupled inertia leads to the problem described in Sec. 4.2.2. So, alter-
natively, I use LP equations, which reveal a block-diagonal inertia.

4.4.2 LP Equations of an Orbital Mechanism

In this section, the LP equations from Theorem 3.2 are used for substructuring
the motion of the orbital robot. These equations reveal a block-diagonalized in-
ertia, and hence can be written as a pair of Ver(LP) and Hor(LP) equations,
which correspond to locked and shape dynamics, respectively. The LP equations
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describe the dynamics using a new system velocity ξ̂ =
[

µ̂⊤ q̇⊤
]⊤ ∈ R6+n with

locked velocity, µ̂, which is obtained as µ̂ = Vb + Âl(q)q̇, where Âl = M̂−1
b M̂bq is

the local mechanical connection. The locked velocity, µ̂, has a physical interpre-
tation of being the velocity of the instantaneous equivalent rigid body system by
locking the joints of the orbital robot.

A key consequence of defining the new system velocity, ξ̂, is a block-diagonal
inertia, which leads to a decoupled reduced Lagrangian, l̂(q, ξ). The dynamics
resulting from l̂ are the LP equations, which is computed using Theorem 3.2,
and decomposes the motion of the orbital mechanism into momentum and shape
substructures. The top row of LP equations in (5.3) gives,

Ver(LP)(l) = M̂b
˙̂µ+ P (q, q̇)µ̂− ad∼

M̂bµ̂
(µ̂− Âlq̇) = F̂b + Ĵ⊤

b Fe (4.17)

after applying Property 3.1. Note that Ver(LP)(l) is related to the locked kinetic
energy, l = 1

2
〈µ̂, µ̂〉M̂b

. Also, the second row in (5.3) is compactly written as,

Hor(LP)(l) =Λ̂q q̈ + Γq(q̇)q̇ − Γµ(µ)ξ̂ = τ̂ − ÂTl F̂b + Ĵ⊤Fe,
Γµ(µ) =

[(
1
2
S(µ̂)⊤ −A⊤

l ad∼
Mbµ̂

)

−B̃(µ̂)
] (4.18)

where Hor(LP)(l) corresponds to the shape kinetic energy, 1
2
q̇⊤Λ̂q(q)q̇. The base

(spacecraft) pose gb is reconstructed as,

ġb = gbV
∧
b = gb

(

µ̂− Âl(q)q̇
)∧

(4.19)

4.5 Proposed method and Modalities

This section describes the main contribution of this chapter. In particular, two
theorems are presented that shape the behaviour of the dynamics of an OGRF
to replicate the motion of the shape (joints) and momentum of the orbital FRM.
Furthermore, these theorems are applied to common OGRF, as shown in Fig. 4.2,
to derive platform-specific control laws.

4.5.1 Dynamics equivalence

The main objective of this section is to establish conditions of equivalence between
dynamics of an orbital robot and OGRF. To this end, I first state the following.

Assumption 4.3. For the on-ground V&V of control, planning and estimation
algorithms of the orbital mechanism in Sec. 4.2 using the OGRF in Sec. 4.3, the
initial state-space,

(

q(0), q̇(0), gb(0), µ(0)
)

, are identical.

The following two theorems result in the actuation maps that are required for
dynamics equivalence.
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Theorem 4.1. (Converse matching for EL equations): Given shape (joints)
dynamics of an orbital mechanism in (4.18), which is required to be produced on
a fixed-base OGRF (i = 1) in (4.2), vehicle-manipulator OGRF (i = 3) in (4.10)
and a gravity-compensated OGRF (i = 4) in (4.13), respectively, they produce the
same equations of motion, i.e. (q(t), q̇(t)), if and only if, Ass. 4.3 holds and,

• There is a map between the control torques τ̂ 7→ τi, as,

τi =EL(Li, X)− ∂q̇q̇(Li)Λ̂−1
q EL(L, ξ) + ∂q̇q̇(Li)Λ̂

−1
q (τ̂ − Âl(q)⊤F̂b)

+
(

∂q̇q̇(Li)Λ̂
−1
q Ĵ⊤ − J⊤

i

)

Fe − τid
(4.20)

where ∂q̇q̇(Li) = ∂2Li

∂q̇2 , i = 1, 2 corresponding to (4.2) and (4.10), respectively. For
fixed-base manipulator and gravity-compensated OGRF, i = 1, 3, X = q̇, and for
vehicle-manipulator, i = 2, X = ξ3.

Proof. Like [175, Prop. 2.1.5], I denote the resulting accelerations in CLs, Li
and L, as q̈i, ¨̂q corresponding to actuation torques τi, τ̂ , respectively. Taking the
inertia-scaled difference in these accelerations,

Λ̂q(¨̂q − q̈i) =− EL(L, ξ) + τ̂ − Â⊤
l F̂b + Ĵ⊤

g Fe
− Λ̂q∂q̇q̇(Li)

−1
(

− EL(Li, X) + τi + τid + J⊤
i Fe

) (4.21)

Substituting τi as (4.20) in (4.21), Λ̂q(q)(¨̂q− q̈i) = 0. In addition to this equality,
if and only if, Ass. 4.3 holds true, trajectories for (q(t), q̇(t)) are identical, thereby
proving equivalence of Li, L.

To illustrate the result, for example, applying Theorem 4.1 on a fixed-base
OGRF (i = 1) in (4.2),

τ1 =C1(q̇)q̇ −M1Λ̂−1
q Γq(q̇)q̇

︸ ︷︷ ︸

1

+M1Λ̂
−1
q Γµ(µ̂)ξ̂

︸ ︷︷ ︸

2

+M1Λ̂−1
q

(

τ̂ − Â⊤
l F̂b

︸ ︷︷ ︸

3

)

+
(

M1Λ̂
−1
q Ĵ⊤ − J⊤

i

)

Fe
︸ ︷︷ ︸

4

− τ1d
︸︷︷︸

5

(4.22)

where the numbered items are described as follows,

1. Joint-space CC terms using actual HIL joint measurements

2. CC terms arising from non-zero simulated momentum

3. Actuation commands from OBSW

4. Mapping of interaction wrenches measured on HIL facility
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5. Feedforward gravity-compensation and disturbance models, e.g. friction

This means that Theorem 4.1 enforces an interface between the OBSW and
the OGRF such that the joint-space trajectories of both robots in Fig. 4.1 are
identical. Theorem 4.1 also guarantees that the state-feedback (q, q̇) (red arrow)
to the OBSW is consistent with expected orbital robot dynamics.

Theorem 4.2. (Converse matching for EP equations): Given locked dynamics
of an orbital robot in (4.17), which is required to be produced on a vehicle with
a simulated manipulator (i = 2) in (4.4) and a vehicle-manipulator (i = 3) in
(4.9), respectively, they produce the same equations of motion, i.e. (gb(t), µ(t)),
if and only if, Ass. 4.3 holds and,

• There is a map between the control torques F̂b 7→ Fi as,

Fi =− Fid + EP(l2, ξ)−MiM̂
−1
b EP(l, ξ) +MiM̂

−1
b F̂b

+ (MiM̂
−1
b Ĵ⊤

b − T⊤
i )Fe

(4.23)

Proof. Taking the inertia-scaled difference in resulting locked accelerations,

M̂b( ˙̂µ− µ̇i) =ad∼
M̂bµ̂

(µ̂− Âlq̇)− P (q̇)µ̂+ F̂b + Ĵ⊤
b Fe

− M̂bM−1
i

(

Γi(qi, Y )Y + Fi + T⊤
i Fe

) (4.24)

If Fi is chosen as,

Fi =MiM̂
−1
b

(

ad∼
M̂bµ̂

(µ̂− Âlq̇)− P (q̇)µ̂
)

− Γi(Y )Y
︸ ︷︷ ︸

1

+MiM̂
−1
b F̂b

︸ ︷︷ ︸

2

+ (MiM̂
−1
b Ĵ⊤

b − T⊤
i )Fe

︸ ︷︷ ︸

3

− Fid
︸︷︷︸

4

and substituted in (4.24), M̂b(q)( ˙̂µ− µ̇i) = 0. In addition to this equality, if and
only if, Ass. 4.3 holds true, (gb(t), µ(t)) is identical for the orbital mechanism and
OGRF, and the result of the theorem is obtained by taking µi(t) = µ̂(t). The
numbered items in (4.2) are described as follows,

1. CC terms arising for the momentum dynamics

2. Mapping of Actuation commands from OBSW

3. Mapping of interaction wrenches measured on HIL facility

4. Feedforward gravity-compensation for vehicle

I note that one would obtain the same equations as (4.20) and (4.23) if the
problem was formulated as an impedance control/matching task in locked and
shape spaces [176, eq. 15].
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4.5.2 Generating Motion for V&V

In this section, I outline three modalities of HIL and provide block diagrams for
clarity on complete implementation using Theorems 4.1 and 4.2.

4.5.2.1 Fixed-base OGRF, M1-A

In this mode, the floating-base (e.g. spacecraft) motion is simulated in software
by integrating the equations of motion, while the hardware component of the HIL
contains the articulated mechanism, its joint sensors and a FTS at the point of
interaction. For the former, instead of using (4.1), I propose integrating Ver(LP)
equation from (4.17), i.e. F1 = F̂b in Fig. 8.14, and (5.4) to close the HIL loop
as shown in Fig. 4.5.

Fixed-base

manipulator

Momentum 

Dynamics: 

SE(3) reconstruction:

 

µ̇ µ

(gb, Vb)

gb
(4.17)

M1-HIL

OBSW

(5.4)

τ̂ , F̂b τ1

(4.22)

∫∫ ġb
(q, q̇)

Fe

Figure 4.5: A HIL for an orbital mechanism using a fixed-base OGRF.

4.5.2.2 Gravity-compensated OGRF, M1-B

As in the previous case, the floating-base (e.g. spacecraft) motion is simulated
in software, while the hardware component of the HIL contains the articulated
mechanism, its joint sensors, the gravity-compensation system, and a FTS at the
point of interaction. For the floating-base simulation, Ver(LP) equation from
(4.17) is integrated, i.e. F1 = F̂b in Fig. 8.14, and (5.4) to close the HIL loop as
shown in Fig. 4.5.

4.5.2.3 Impedance Vehicle-Simulated Manipulator, M2-A

In this mode, the joints motion of the articulated mechanism is simulated in
software by integrating the equations of motion, while the hardware component
of the HIL contains the vehicle that simulates the floating-base and its sensing.
In impedance causality, the vehicle in Def. 4.2 has a torque-interface to effect
base motion. Following the principle in M1-A, I propose integrating Hor(LP)
equation from (4.18), i.e. τ2 = τ̂ , to close the loop as shown in Fig. 4.6.



104 4 Motion Substructuring for V&V

Simulated

Manipulator

 

Vehicle 

(����������

ġb

(gb, Vb)

gb

M2-A-HIL

OBSW

(4.18)

(4.23)

τ̂ , F̂b τ2

F2

(q, q̇)

q̇q̈

q

∫∫

Figure 4.6: A HIL for an orbital mechanism using a vehicle with impedance
causality and a simulated manipulator.

4.5.2.4 Admittance Vehicle-Simulated Manipulator, M2-B

This modality is the same as the previous, except that the vehicle in Def. 4.2
has a position-interface for motion control to effect base motion. The desired
locked inertia for the admittance controller can be straightforwardly chosen as,
M̂b = M2. This simplifies the map in (4.23) of Theorem 4.2 as,

F2 = −F2d + EL(l2, ξ)− EL(l, ξ) + F̂b (4.25)

which is substituted in (4.9). Satisfying Theorems 4.1 and 4.2 ensures that the
OGRF motion dynamics match (4.17) and (4.18), which implies Vb = µ̂− Âlq̇.
Hence, the admittance controller commands, (gb(t), Vb(t)), are obtained by inte-
grating Ver(LP) equation in (4.9) and the SE(3) reconstruction in (5.4).

4.5.2.5 Vehicle-Manipulator Impedance mode, M3-A

In impedance causality, the vehicle in Def. 4.2 has a torque-interface to effect
spacecraft motion. This might be a use-case for simulating dynamics of a small-
sized arm on a small satellite [177], in which the vehicle is a KUKA LWR-4, for
instance. In this case, Theorem 4.2 is invoked to enforce a mapping, namely
(4.23), between actuation torques F̂b,F3. The complete strategy has been shown
in Fig. 4.7.

4.5.2.6 Vehicle-Manipulator Admittance mode, M3-B

In admittance causality, the vehicle, e.g. an industrial robot, is used in position-
control mode to simulate the spacecraft motion [50]. The desired locked inertia
for the admittance controller can be straightforwardly chosen as, M̂b = M̄b. This
simplifies the map in (4.23) of Theorem 4.2 as,

F3 = −F3d + EL(l2, ξ)− EL(l, ξ) + F̂b + (Ĵ⊤
b − T⊤

3 )Fe (4.26)
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Vehicle-

Manipulator

 

Vehicle 

(Impedance)

ġb

(gb, Vb)

gb

OBSW

M3-A-HIL
(4.20)

(4.23)

τ̂ , F̂b τ2

F3

(q, q̇)

Fe

Figure 4.7: A HIL for an orbital mechanism using a vehicle-manipulator with
impedance causality in vehicle.

which is substituted in (4.9). Satisfying Theorems 4.1 and 4.2 ensures that the
OGRF motion dynamics match (4.17) and (4.18), which implies Vb = µ− Âlq̇.
Hence, the admittance controller commands, (gb(t), Vb(t)), are obtained by inte-
grating (4.9) and (5.4). This strategy has been shown in Fig. 4.8.

Note that the proposed methods account for different manipulator models in
the OGRF and the orbital robot. A consequence of Theorems 4.1 and 4.2 is the
stability M1 and M2, given that OBSW stabilizes (4.1). For M3, the closed-loop
stability is a function of the vehicle’s admittance dynamics.

Momentum 

Dynamics: 

SE(3) reconstruction:
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�����e�

Ve	
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Manipulator

 

µ̇ µ

(gb, Vb)

gb

τ2

OBSW

M3-B-HIL
(4.20)

(4.17) (5.4)

τ̂ , F̂b

∫∫ ġb
(q, q̇)

Fe

Figure 4.8: A HIL setup for an orbital robot using a vehicle-manipulator with
admittance causality in vehicle.

4.6 Experimental Validation

In this section, the experimental results are summarized. From a practical per-
spective, vehicle in impedance causality (M3-A) has low disturbance-rejection
against errors, e.g. gravity-compensation, through (4.23), which might affect the
HIL accuracy. Therefore, results for M1-A and M3-B methods are shown, see
Fig. 4.9. In both approaches, a KUKA LWR4+ was used as the manipulator for
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both, the reference orbital robot and the OGRF. The mass and inertia parameters
of LWR4+ are the same as reported in [27, Table 1]. In the following, (•̃) refers
to a measured quantity. I denote the twist velocity basis of the frame {B} as
ei, i = 1..6 where i = 1, 2, 3 and i = 4, 5, 6 denote the instantaneous translation
and rotational basis, respectively.

{B}

{B}

{O}

τ1

τ̂

{E}

(a) M1-A with KUKA LWR4+.

{B}
{B}

{O}
(gb, τ2)(F̂b, τ̂) {E}

(b) M3-B on DLR OOS-SIM.

Figure 4.9: In both figures, orbital robot on left and OGRF on right, with {B}
as the common frame on spacecraft. The simulation and hardware elements have
identical initial conditions.

Scenario 1. A joint trajectory between two configurations was commanded while
considering initial momentum J (0) = 06. The OBSW was a free-floating con-
troller, i.e. unactuated spacecraft. Therefore, the actuation, (06, τ̂), which was
generated by the OBSW, was used in (4.20) to obtain τi commands for the two
LWR4+ OGRF. During the maneuver, contacts were made at the end-effector,
{E}, and the resulting wrench, Fe, was measured using a FTS sensor.

For this scenario, the HIL spacecraft dynamics was computed using the fol-
lowing three methods.

1. P0: Using the dynamics in (4.1), V̇ was integrated with state,
(

gb, Vb, q̃, ˙̃q
)

,

and actuation,
[

0⊤
6 τ̂⊤

]⊤
, to obtain the spacecraft state, (gb, Vb).

2. P1: Using only the first row of (4.1), V̇b was integrated using the same ac-
tuation as P0. However, this requires ¨̃q measurements, which was obtained
by numerical differentiation of ˙̃q and a first order low-pass filter with cut-off
frequency of 10[Hz].

3. M1-A: The proposed method was used with identical state and actuation
as that of P0.

The P0 method has a dependency on τ̂ , which results in a drift in V̇b due to
the compensation of residual torques, e.g. gravity-compensation errors. Indeed,
it was observed that even in static condition, the OBSW applied control action
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in the order of 0.1[N.m], which caused a non-physical motion in the spacecraft.
Although an ad-hoc deadzone was implemented, the configuration-dependence of
these torques made it ineffective. Hence, results for P1 and M1-A were compared
since they are independent of τ̂ .

4.6.1 M1-A on KUKA LWR4+

M1-A was validated using Scenario 1 on the setup in Fig. 4.9a, in which the
reference orbital robot (Fig. 4.9a, left) and the fixed-base OGRF (Fig. 4.9a,
right) are shown. A joint-space PD-controller [29] was implemented as the
OBSW. The mass of the spacecraft was 105[Kg] and principal inertias were
(47.5, 34.9, 46.2)[Kg.m2].

In Fig. 4.10a, the comparison between results from P1 (left) and M1-A (right)
for the Scenario 1 are presented. In the first row, the measured momentum map
J̃ has been presented for both approaches in basis e2, e3, e4, since the contacts
affected J̃ in these directions by the highest magnitude. During t = [0, 13][s]
(before first contact), it can be clearly seen that the initial condition, J (0), holds
during manipulator motion for M1-A (right), whereas in P1 (left), this condition
is violated, which makes the HIL non-physical during manipulator motion. The
measured contact forces referenced at {B}, J⊤

b Fe, are presented in the second row,
where Jb is the spacecraft Jacobian of end-effector. Despite the applied forces
being of a similar magnitude, the change in J̃ (t) is characterized by spikes in P1
(left), whereas M1-A provides consistent increments. In Fig. 4.10b, the resulting
free-floating spacecraft velocity Vb during t = [0, 9][s] is shown for P1 (dashed)
and M1-A (solid) for ei, i = 1..6 (colored). Due to the non-physical momentum
behavior, it can be seen that P1 results in an underestimated velocity, especially
in e4, e5.

4.6.2 M3-B on OOS-SIM

The OOS-SIM [50] is a HIL facility (Fig. 4.9b, right), which uses an industrial
robot in admittance causality to simulate dynamics for the orbital robot’s space-
craft. The simulated spacecraft mass was 600[Kg] and principal inertias were
(500, 600, 500)[Kg.m2]. First, I note that since orbital robot and OGRF are iden-
tical, (4.26) simplifies further to F̄b = −F̄bd + F̂b for the admittance controller.
Secondly, (4.20) simplifies to τ2 = −τ2d + τ̂ . Thus, the HIL simplifies to feed-
through of the OBSW commands with additional gravity-compensation. For the
validation procedure, Ṽb was obtained by numerically differentiating the indus-
trial robot’s forward kinematics g̃b and using a first-order low-pass filter with
10[Hz] cut-off frequency.
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Figure 4.10: (a): Comparison between P1 (left) and M1-A (right) during OGRF
motion and contacts. Top row: Momentum, Bottom row: Contact forces. Differ-
ence in contact events is due to manually induced contacts. (b): Comparison of
Vb(t) (colored) during a trajectory between P1 (dashed) and M1-A (solid).

4.6.2.1 M3-B: Momentum Consistency

A free-floating Cartesian PD-controller [29] was used in Scenario 1 to approach
the stationary satellite structure on the right of Fig. 4.9b till contact was made.
The comparative results from P1 and M3-B are presented in Fig. 4.11a. In first
row, J̃ is plotted for e1, e3, e5, since the contact affected its magnitude more
significantly in these basis. Note that, the second order response at t ≥ 0[s] in
both approaches is due to the admittance controller’s transient response. However,
during t = [0, 10] (plot insets), it can be seen that J̃ → 06 for M3-B, whereas,
this condition is violated for P1. This corroborates the same observation made in
Sec. 4.6.1. I also note that, in experiments for both, M3-B and P1, the controller
parameters, trajectory and initial conditions were kept identical. However, I
observe in second row that the contact duration is longer for P1. This might
be explained as follows. In P1, gb is integrated from an erroneous Vb, which
was observed clearly in Fig. 4.10 of Sec. 4.6.1. This is due to a non-physical
momentum, which is also seen in left of Fig. 4.11a. As a result of the ensuing
non-physical behavior, the generalized Jacobian for J = 06, that is used in OBSW
is not in agreement with HIL, resulting in modified Cartesian forces and hence
a different contact behavior. In fact, a direct result of this was that the orbital
robot gained twice as much more momentum in t > 11[s] for P1 than M3-B.

4.6.2.2 M3-B for a V&V Scenario

In this scenario, the conditions of Scenario 1 were the same, however, with space-
craft actuation (F̂b 6= 06). The goal of this validation was to emphasize that the
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Figure 4.11: (a): Comparison between P1 (left) and M3-B (right) during OGRF
motion and contacts. Top row: Momentum map, Bottom row: Contact forces.
(b): Experimental result for M3-B HIL of a fully-actuated orbital robot with
multiple contacts. OBSW actuation in top two rows, contact forces in third row
and momentum map in bottom row.

proposed method is applicable to a fully-actuated orbital robot while interacting
with a passive environment. A fully-actuated orbital robot controller [27] was
used to regulate poses of end-effector, {E}, and spacecraft, {B}. The desired
end-effector pose was chosen to induce a contact at {E} with the client structure
on right of Fig.4.9b. The results have been presented in Fig. 4.11b.

In the first row, the OBSW joint-actuation τ̂ has been plotted. The quantities
F̂b, J⊤

b Fe and J̃ have been plotted for e1, e3, e5 bases, since the contacts affected
their magnitude more significantly in these basis. Note that, as soon as the
manipulator moves at t ≥ 0[s], Fb 6= 06 (plot inset). This causes a consequent
change in J̃ (plot inset). The first contact occurs at t = 10.5[s], which drastically
changes J̃ . However, control action F̂b also increases to compensate for resulting
pose errors. And finally, through consequent contacts (third row) in t > 40[s],
the controller is able to stabilize motion (J̃ → 06, t > 50[s]) by achieving force
balance between F̂b and J⊤

b Fe. This is achieved through the manipulator torques
τ̂ , which act between {E} and {B}.
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4.6.3 Discussion

In sections 4.6.1-4.6.2, I observed that the combined effect of noisy ˜̈q and filter
dynamics in P1 negatively affects a HIL by injecting non-physical momentum
during manipulator motion. This diminishes the physical consistency of HIL
validation. For instance, on-ground estimation of spacecraft fuel-consumption to
perform tasks, e.g. spacecraft pose regulation, is affected by erroneous Vb and
alteration of contact dynamics in P1. In contrast, the proposed M1-A and M3-
B methods simulate an orbital robot without requiring ˜̈q. In fact, this imparts
a physically correct behaviour to the HIL without precluding external forces in
dynamics. Thus, the problem statement in Sec. 4.2.2 has been duly addressed
using the proposed methods and which were also experimentally validated. A
key observation from Sec. 4.6.2 is that force feedback of Fe is not required to
simulate interactions if the manipulators for the orbital robot and the OGRF are
identical.

I remark that the proposed methods enable HIL of a fully-actuated orbital
robot with contacts. However, model-based discontinuous thruster actuation
requires high bandwidth in the vehicle-manipulator OGRF. In practice, time
delays in the force loop and admittance characteristics might negatively affect
HIL fidelity. This may limit stability during contacts, and addressing this issue
with the proposed methods defines our future scope of work.

4.7 Conclusion

In this chapter, a Hardware-in-the-loop framework was proposed to simulate a
fully-actuated orbital robot in the presence of external forces. To this end, two
converse theorems of Controlled Lagrangian equivalence were proved and applied
to the Lagrange-Poincaré equations of an orbital robot. By exploiting the block-
diagonal inertia of these equations, the need of joint acceleration/torque mea-
surements for simulating spacecraft motion was avoided. The main benefit of the
proposed approaches was physical (momentum) consistency, which was validated
through experiments on two facilities, a fixed-base KUKA LWR-4 and OOS-SIM.
Furthermore, the specific case of a fully-actuated orbital robot with multiple
contacts was experimentally validated using the proposed method to prove its
effectiveness. The publications resulting from the contributions of this chapter
are:

1. H. Mishra, A. M. Giordano, M. De Stefano, R. Lampariello, and C. Ott,
“Inertia-decoupled equations for hardware-in-the-loop simulation of an or-
bital robot with external forces”, in 2020 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), 2020, pp. 1879–1886

2. M. De Stefano, H. Mishra, A. M. Giordano, R. Lampariello, and C. Ott,
“A relative dynamics formulation for hardware- in-the-loop simulation of
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on-orbit robotic missions”, IEEE Robotics and Automation Letters, vol. 6,
no. 2, pp. 3569–3576, 2021

3. H. Mishra, T. Vicariotto, and M. De Stefano, “Dynamics, simulation &
control of orbital modules for on-orbit assembly”, IEEE Robotics and Au-
tomation Letters, vol. 10, no. 1, pp. 200–207, 2025

The HIL framework proposed here was exploited in several projects funded
by the EU and European Space Agency (ESA). The results are detailed later in
Chapter 8.





CHAPTER 5

Sensor-based Motion Control of LP Systems

“ A goal-oriented motion is meaningful if it is driven by the right
cognition, which, in turn, is incrementally achieved through sense-
perception of things present, estimation of things present as well
as not, and comparison with the previously known. [178, pp. 15]. ”

Gautama, Nyaya Sutra, 2nd-century AD

5.1 Introduction

Rapid developments in robotics research have rendered mechanisms kinetic in
their environment, rather than being affixed spatially, see Fig. 5.1. In such
mechanisms, apart from the internal shape, the spatial position is an additional
variable (usually a group, e.g. SE(3), SO(3)) for motion control. The group po-
sition is often a symmetry variable, i.e., the Lagrangian does not depend on it.
Lagrangian symmetry implies a conservation or a continuity equation for momen-
tum by Noether’s theorem [14, §4.1]. These mechanisms are a particular form of
EL systems, called LP systems [149]. In Chapter 3, I derived the LP dynam-
ics using efficient Newton-Euler (NE)-like iterative computations for FRM. The
FRM has emerged as a key element for complex tasks, e.g. on-orbit servicing
[179, 180], aerial [181, 182] and underwater manipulation [155, 183]. Meaningful
motion control in such a task requires effective feedback of the mechanism states
and a coordinated actuation of the whole FRM. However, the heterogeneous sens-
ing and actuation between the group and shape subsystems make motion control

113
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Figure 5.1: LP systems: Mechanisms with group symmetry (gb). (A): Cart-
Pendulum toy, (B): Aerial manipulator, (C), Orbital manipulator, (D): Hu-
manoid, (E): Satellite with rotors.

non-trivial, which is the main topic of this chapter. Although the analytical
treatment is posed for the FRM, it applies to any LP system without loss of
generality.

5.1.1 State-of-the-art: Full-state feedback

The first approach to motion control for a FRM, or any LP system, is stabilization
of its relative equilibria (or the shape), i.e., joints on a momentum level-set. This
approach exploits only the internal actuation, e.g. joints, reaction wheels etc.,
and is commonly known as free-floating motion control [73, 140, 184]. With this
approach, the reachable workspace of the FRM is restricted by the momentum
level-set assumption. Furthermore, while the motion control is passive relative to
disturbances in its internal motion, an external disturbance (impact) can cause
an irreversible drift in operational space variables. Both these demerits are miti-
gated by exploiting the fully-actuated capability (momentum transfer actuators,
e.g. thrusters) of the FRM, termed as free-flying motion control, [27, 34, 35,
134]. This approach, is further classified as hierarchical [34, 35] and direct PBC
[27, 134]. In the former approach, the symmetry (momentum) property of the
FRM is exploited by prioritizing the momentum-related task as primary, and the
operational space task as secondary. The latter approach exploits the passivity
of the FRM-dynamics for motion control with equal priority tasks. In all the
aforestated approaches so far, full-state feedback is often assumed, and the con-
troller development is made in a manner that the FRM’s sensing and actuation



5.1 Introduction 115

is equivalent for its shape and external motions.

5.1.2 State-of-the-art: Output feedback

In contrast to full-state feedback, Output Feedback Control (OFC) specifically
considers available sensing. In this approach, the overall controller is a dynamic
feedback system, wherein the unmeasured states are estimated to realize the
motion control law. OFC approaches exploiting velocity observers of mechanical
systems have a rich history in robotics [185–187] and motion control [62, 141,
188]. Kalman filter designs, which are purely based on kinematics equations, have
used both proprioceptive and exteroceptive measurements for the estimation of
the FRM-base states [185–187]. In the absence of velocity sensors, the dynamics
model of the mechanism is exploited [62, 141, 188]. Despite the vast literature,
the OFC approach often gets misinterpreted within the research community.

Remark 23. While a perception system provides an estimate of a physical quan-
tity only using sensory data, an OFC exploits the applied control effort and avail-
able sensing in a feedback loop to stabilize motion. The observer in the latter is
similar to a perception system only in error injection, i.e., correction of the esti-
mated quantity using sensory feedback. However, the stability analyses of OFC is
usually non-trivial due to the lack of a separation principle, i.e. the error dynam-
ics of the observer and the control law are mutually dependent. Therefore, the
observer design fits a particular choice of a control law [141, 188]. It might also
be worth noting that an OFC approach is associated with a convergence guarantee,
and is starkly different from a controller that tracks a model-free interpolation.

The properties of the mechanism’s dynamics are crucial in observer design.
In particular, the analysis in [141] relied upon the commutative and the skew-
symmetric properties of the Coriolis/Centrifugal (CC) matrix for a fixed-base
robot. In [189], the controller was dynamically extended to possess a EL structure
with damping using the estimated velocity, whereas the motion control of the EL
plant was achieved purely through an interconnection potential. In [188, 190],
intrinsic observers that conform to the Riemannian manifold structure of the
mechanism’s configuration space were designed. The authors proved that the
observer convergence for a general mechanism was local due to the manifold
curvature forces, which are quadratic in velocities.

5.1.3 Problem Statement: LP Systems

Full-state feedback of the LP system’s (FRM) internal shape is often available
through proprioceptive sensing, e.g. joint encoders, and hence using a dirty
derivative or a first order observer [3] is sufficient for shape velocity feedback.
However, its external motion (momentum) and the group variable are not directly
measured. Exteroceptive sensing, e.g. camera and its image processing, are used
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Figure 5.2: Conventional approach vs Anticipatory robotic control paradigm.

to locate the FRM in its environment. The circuitry on such sensors is limited
in its sampling time. Additionally, the sensor pipeline introduces a transport
delay due to processing and data transmission. Hence, the closed-loop motion
control is affected not only by low feedback rate, but also by transport delay [191].
Furthermore, a pure exteroceptive approach does not provide velocity feedback
of the floating-base, and a numerical differentiation of a slow-sampled, noisy and
latency-affected signal is ineffective for feedback control. To mitigate this, the
exteroceptive signal is combined with high-rate proprioceptive measurements, e.g.
IMU, in a sophisticated sensor-fusion algorithm (commonly known as ’perception
system’ or ’localizer’ or ’navigation filter’). Although this approach is effective in
some ’slow’ applications, abrupt changes in visible feature count result in outliers
and non-physical discontinuities in the feedback signal [192, 193].

In the conventional approach, the feedback results from a direct interconnec-
tion of the perception system (orange) and a control law (blue), see Fig. 5.2a.
However, the outliers in feedback (due to occlusions, feature count losses etc.)
of the external motion of the FRM results in high-frequency effort commands
to the actuator. Furthermore, high-frequency effort leads to abrupt flow (mo-
mentum) changes, which adversely affects the perception system, e.g. due to
large pixel velocities. Consequently, the feedback nature of Fig. 5.2a restricts
the motion control stability [192, 194]. These observations highlight a key issue.
There is a coupling between sensor-actuator system of the FRM’s external mo-
tion, through the effort-flow variables [195]. An example is shown in Fig. 5.3
from the ROAM-2 ISS flight experiment of the Astrobee robot. On the right,
the outliers in estimated linear velocity and acceleration bias from the localizer
are shown. A similar problem had been observed in my earlier work [73] at the
DLR-OOS-SIM, as shown in Fig. 5.4, in which the quaternion estimate jumps
in close range due to feature count reduction. At the same time, the heteroge-
neous actuation for the shape and the FRM-base also affects the motion control
negatively, as is shown in Fig. 5.5. In particular, the static friction in the shape
coupled with the slow actuation dynamics of the FRM-base create a limit cycle.
Thus, to achieve meaningful motion stabilization of the FRM, a sophisticated
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Figure 5.3: Localizer outliers during the ROAM-2 ISS flight experiment.
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Figure 5.4: Left: The orbital FRM at OOS-SIM; Center: Camera-view with
image-processing overlay; Right: Divergence of the localizer quaternion α̃ relative
to ground truth α̂ in close proximity.

approach is required.

5.1.4 Summary of Contributions

To this end, this chapter provides a motion control framework for LP systems,
especially the FRM, to deal with sensing and actuator heterogeneity of the shape
and momentum subsystems. The contributions of this chapter are listed below.

1. A motion control framework consisting of two full-state feedback PBC-
design approaches: Direct IM-PBC and Subsystem IM-PBC, is proposed
through Lemmas 5.1 and 5.2, respectively. In Direct PBC, the passivity
of the whole LP-dynamics is exploited in control design, whereas in Sub-
system PBC, the shape subsystem stabilization is given precedence. The
key significance of the two approaches is the assertion of OSP of the in-
terconnected system of momentum and shape, without requiring OSP for
both subsystems, as is commonly known from literature, see [189, Appendix
A.3]. The proposed approaches hold for any LP system, i.e., mechanism
with block-diagonalized inertia, as is the case for the FRM. This acts as a
starting point for the OFC problem.
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Figure 5.5: Left: Coordinated control of the orbital FRM at OOS-SIM; Right:
Limit cycle (t > 20[s]) of a FRM between heterogeneous actuation of articulated
mechanism (top, τ) and FRM-base (wrench, (fb, tb)) arising from static friction
in the shape (joints) and the slow (50[Hz]) actuation of the FRM-base.

2. To address the OFC problem, two novel IM-PBC approaches are proposed
by extending the Direct PBC and Subsystem PBC modalities. The IM-PBC
methods exploit an observer based on the internal model of the Ver(LP)
dynamics to achieve full motion stabilization, while considering symmetry-
breaking potentials, e.g. gravity, buoyancy and global control tasks (end-
effector pose). In particular, the IM-PBC methods consist of the observer
system for the momentum and the group variable in feedback with the
motion control law. The methods are novel in that, they use a minimal
set of measurements in form of the shape’s state-space and the exterocep-
tive group variable (FRM-base pose) of the FRM. Hence, inertial sensors
(velocity measurements) of the group-momentum variables are not strictly
required, as in [185–187]. To the best of the authors’ knowledge, such a
method has not been reported for FRM. By exploiting the block-diagonal
inertia in the LP equations, the need for shape acceleration measurements
is avoided in motion control.

3. The two IM-PBC methods are dynamic extensions of the full-state feed-
back direct and subsystem PBC approaches in item 1. In particular, Lem-
mas 5.1 and 5.2 are extended with the observer through Theorems 5.1 and
5.2, respectively. Importantly, in the momentum and shape interconnec-
tion (Fig. 3.7a of Chap. 3), the observer states elegantly extend the shape
subsystem. In contrast to the dynamic extension in [189], the estimated
quantity is directly used in the control law. In this way, the IM-PBC meth-
ods intuitively extend the corresponding approaches in item 1, and it also
reveals gain criteria for convergence.
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4. Both methods are proved to be OSP to external disturbances, which are
suitable for contact-oriented tasks. Furthermore, the free-space motion is
Uniform Almost Global Asymptotic Stability (UAGAS) [188], which is in
contrast to [188, 190]. To achieve this, I reveal a skew-symmetric form of
the curvature-related forces specific to LP systems.

5. Furthermore, the proposed methods are extended to include additional sen-
sory and model information to improve performance. The proposed IM-
PBC extension with velocity sensing is able to perform contact-detection,
shown in Theorem 5.3, and provide an integral action (Lemma 5.9) to deal
with the heterogeneity in actuation of the FRM. The Subsystem IM-PBC
is validated through simulations to highlight key aspects of convergence,
and the Direct IM-PBC is validated experimentally on the DLR-OOS-SIM
within the context of the EU EROSS+ mission project.

The chapter is organized as follows. In Sec. 5.2, the dynamics descriptions
of the FRM are revisited. In Sec. 5.3, the PBC approach for LP systems is
introduced consisting of potential shaping and damping injection. Therein, two
full-state feedback PBC approaches, namely direct PBC and subsystem PBC
are introduced. While the former exploits the passivity of LP dynamics with
symmetry-breaking potentials, the latter prioritizes the shape subsystem for con-
vergence. In Sec. 5.4, the aforementioned PBC approaches are extended for the
OFC problem, denoted as the IM-PBC framework. Within this framework, di-
rect IM-PBC and subsystem IM-PBC are proposed. Herein, the observer and
control feedback laws are provided. The presentation of each method is followed
by a stability/passivity analysis. In Sec. 5.5, the sensory and model extensions
for the proposed IM-PBC are provided, which can be exploited for performance
improvement. Within this extension, the proposed framework is shown to exploit
contact detection and integral actions. In Sec. 5.6, the validation summary of the
IM-PBC is provided, with relevant plots that highlight convergence and perfor-
mance characteristics. Finally, concluding remarks, accompanying publications
and future work are summarized in Sec. 5.7.

5.2 Modeling Motion for Control

A FRM is a system consisting of a floating-base and n joints/links, see Def. 3.1.
In this chapter, its configuration is denoted as r = (gb, q) ∈ SE(3)×Rn, where
gb, q are the inertial pose of the floating-base and articulated mechanism’s joint
positions, respectively. For generality, I consider the FRM as a multibody in the
presence of symmetry-breaking potential field(s), e.g. gravity and/or buoyancy,
and surrounded by a potential fluid flow, as in Sec. 3.7 of Chap. 3. To this end,
the motion of purely rigid FRM is introduced first, followed by the result from
Theorem 3.5 of Chap. 3. To ease the notation, the q-dependency of the dynamic
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matrices is clarified in declaration but is omitted thereafter. The dynamics of an
FRM are introduced next.

5.2.0.1 Hamel’s equations

Denoting the total velocity as V = (Vb, q̇), the dynamics of a FRM are com-
monly described using the Hamel’s equations (see Lemma 2.6), which is written
in robotics as,

[

Λb(q) Mbq(q)
Mbq(q)

⊤ Mq(q)

][

V̇b
q̈

]

+ C(q, V )

[

Vb
q̇

]

=

[

Fb
τ

]

+

[

Fd
τd

]

(5.1)

where, Λb,Mbq,Mq are the locked, coupling and manipulator inertias, respectively,
C is the CC matrix, τ, τd ∈ Rn are the actuation and disturbance torques, respec-
tively, and Fb, Fd ∈ R6 ∼= se(3)∗ are the actuation wrenches, respectively.

The demerit of the inertia coupling in (5.1) is that q̈ measurements are re-
quired to solve the spacecraft dynamics, i.e. V̇b. This is a sensory overhead for
the observer design. Additionally, the CC-coupling terms in (5.1) render the
observer’s stability analysis non-trivial.

5.2.0.2 Lagrange-Poincaré (LP) equations

Contrary to Hamel’s equations, that use (q, V ) to describe the dynamics of
an FRM, the LP equations use (q, ξ), where ξ = (µ, q̇) ∈ R6+n is a new sys-
tem velocity with locked velocity, µ (see Def. 3.2). Using the transformation

T (q) =

[

I6,6 Al
0n,6 In,n

]

, such that ξ = TV , LP equations can be obtained using the

Newtonian Transformation in Lemma 2.15-1, as,

Λ(q)ξ̇ + Γ(q, V )ξ =

[

Fb + Fd
τ + τd −A⊤

l (Fb + Fd)

]

(5.2)

A key consequence of the transformation leading to (5.2) is that Λ is block-
diagonal [25]. This avoids the need for q̈ measurements to solve for µ̇ in (5.2).
However, note that Γ is a place-holder CC matrix, which lacks specific struc-
ture and has velocity dependencies of V instead of ξ. This prevents using its
Lagrangian structure in model-based design. Furthermore, it does not generalize
symmetry-breaking potentials like buoyancy and the effects of surrounding fluid.

In Chap. 3, I revealed the LP equations with a special structure of the CC ma-
trix with properties that will prove to be useful here. Furthermore, by exploiting
Theorem 3.5, I generalize the proposed method for FRM in symmetry-breaking
potential field(s), while being submerged in a potential fluid. Therefore, to aid
the design of the motion control system, the LP equations from Theorem 3.2
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Chapter 3 are used to describe the FRM dynamics in this chapter as,
[

Λb(q) 06,n

0n,6 Λq(q)

]

︸ ︷︷ ︸

Λ(q)

[

µ̇
q̈

]

+

[
1
2
P (q, q̇) 06,n

0n,6 Γ̃′
q(q, q̇)

]

︸ ︷︷ ︸

Dq̇(q,q̇)

[

µ
q̇

]

︸︷︷︸

ξ

=

[

ad⊤
µΛb −1

2
S(q, µ)− ad∼

Λbµ
Al

1
2
S(q, µ)⊤ −A⊤

l ad∼
Λbµ

−B̃(q, µ)

]

︸ ︷︷ ︸

Dµ(q,µ)

[

µ
q̇

]

+

[

I 0
−A⊤

l I

]([

Fb
τ

]

+

[

Fd
τd

]

−
[

dbU(g1, q)
dqU(g1, q)

])

(5.3)

where Λ is the block-diagonal inertia consisting of the locked inertia, Λb, and
reduced shape inertia [29], Λq, which include the additional inertia effects of the
surrounding potential fluid flow. The CC matrices Dq̇,Dµ depend only on q̇ and
µ, respectively1. Also, Γ̃′

q is the reduced CC matrix [29] and B̃(µ)q̇ is the mixed
(µ, q̇) CC-coupling in the bottom row of (5.3) arising from curvature. In (5.3),
P (q̇) = d

dt
Λb and S(µ)⊤µ = ∂

∂q
〈µ, µ〉Λb

, are two fundamental matrices that arise
in the LP equations. The effective symmetry breaking potential is denoted by U ,
and db, dq denote the differentials of the argument relative to gb and q coordinates,
respectively. The FRM-base pose kinematics is rewritten as,

ġb = gbV
∧
b = gb(µ−Al(q)q̇)∧, gb(Rb, pb) (5.4)

5.3 Passivity-Based Control (PBC) Framework

PBC broadly consists of two stages: potential shaping and damping injection
[3]. In the former, the mechanism’s potential energy is modified in a way that
its minimum defines the new equilibrium for the mechanism’s configuration. In
damping injection, the mechanism is damped along the geodesic resulting from
the potential shaping stage to stabilize around the new equilibrium. In the fol-
lowing, I will review aspects of PBC for the FRM, or more generally for any LP
system.

5.3.1 Potential Shaping

The motion stabilization task for the FRM can be broken down into two aspects:
relative equilibria stabilization to regulate the internal motion, and group stabi-
lization to regulate the external motion. The former is achieved through shape
potentials and the latter through symmetry-breaking potentials.

1The (1, 1) block matrix in Dµ here is written using the Natural EP body-level factorization,
see Sec. 2.6.1.1 in Chap. 2.6.



122 5 Sensor-based Motion Control of LP Systems

5.3.1.1 Shape Potentials

The stabilization of the relative equilibria, i.e., the shape (joints), e.g. controlling
the end-effector of the FRM relative to the FRM-base, is achieved by shaping
the shape potential energy. The control task(s) is formulated as a potential
Φq(q) : R

n → R+. Formally, Φq(q) is a potential on the shape-space of the
LP system, i.e., Φq(q) : SE(3) × Rn/SE(3) ∼= Rn → R+. Note that Φq(q) is
the effective potential, i.e., the sum of k task potentials on the shape variables,
Φq(q) =

∑k
i Φq,i(q). Each of the task potentials can be formulated on some desired

configuration space, e.g. only p-variables of the shape (Rp), SE(3), SO(3) etc. Let
the ith operational space be Qi, with a forward kinematics map, fi : Rn → Qi.
The differential kinematics is given by the push-forward as, dqfi(q)(q̇) = Ji(q)q̇,
where Ji = δfi(q)

δq
is the Jacobian. Hence, the time-derivative of Φq(q) is given by

its directional derivative (or the Lie derivative) along the shape trajectory q, i.e.,

Φ̇q(q) = 〈δΦq

δq
, q̇〉 =

k∑

i=1

〈δfi
δq

⊤ δΦq,i

δfi
, q̇〉 =

k∑

i=1

〈J⊤
i dfi

Φq,i, q̇〉 (5.5)

where dfi
refers to the differential w.r.t. the ith operational space.

Assumption 5.1. The task potential Φq(q), is at least positive semi-definite in
the FRM-shape with upper and lower bounds 0 ≤ Φq < Φq < Φq, Φq,Φq ≥ 0, and
is quadratic.

5.3.1.2 Symmetry-Breaking Potentials

For the LP system, potential shaping consists of restoring the symmetry of the LP
equations by removing the effect of the symmetry-breaking potential U(gb, q) (e.g.
gravity, buoyancy) in (5.3), and imposing the behaviour of another symmetry-
breaking task potential, Φ(gb, q), that explicitly depends on the group variable
(FRM-base). As before, Φ =

∑l
i=1 Φi(gb, q) is the effective symmetry-breaking po-

tential. In this case, each task consists of a symmetry-breaking forward kinemat-
ics map(s), hi(gb, q) : SE(3)×Rn → Q̂i. Since hi depends on gb, the corresponding
task potential, Φi(hi(gb, q)) : Q → R, is symmetry-breaking. The time-derivative
of Φ(gb, q) is given by its directional derivative (or the Lie derivative) along the
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system trajectory (gb, q), i.e.,

d

dt
Φ(gb, q) =〈dbΦ, Vb〉+ 〈dqΦ, q̇〉 = 〈dbΦ, µ〉+ 〈dqΦ−A⊤

l dbΦ, q̇〉

=
l∑

i=1

(

〈δΦi

δhi

(

g−1
b

δhi
δgb

)

, µ〉+ 〈δΦi

δhi

δhi
δq
−A⊤

l

δΦi

δhi

(

g−1
b

δhi
δgb

)

, q̇〉
)

=
l∑

i=1

(

〈Ti(q)⊤dhi
Φi, µ〉+ 〈(J⊤

i −A⊤
l Jb)dhi

Φi, q̇〉
)

=
l∑

i=1

(

〈Ti(q)⊤dhi
Φi, µ〉+ 〈J̃⊤

i dhi
Φi, q̇〉

)

(5.6)

where Ti =
(

g−1
b

δhi

δgb

)

and J̃i are known as the FRM-base and generalized Jaco-
bians, respectively, and dhi

Φi is the differential of Φi relative to the hi variable.

Assumption 5.2. The task potential Φ(gb, q), is at least positive semi-definite
in the FRM configuration (gb, q) with upper and lower bounds 0 ≤ Φ < Φ < Φ,
Φ,Φ ≥ 0, and is quadratic.

Assumptions 5.1 and 5.2 are standard in passivity-based and Lyapunov-based
control design [3, 10], and are required for ascertaining passivity/stability through
functional analysis.

Remark 24. Note that the proportional actions in (5.5) and (5.6) are obtained as
the effective sum of the pullback operations (transposed Jacobian) on the potential
differentials in their respective task configuration spaces. This is a consequence
of the well-known result of superposition of stiffness actions. Hence, this type of
control approach is the pullback-type controller, wherein the potential from a task
space is pulled back to the configuration space for motion stabilization.

To this end, the actuation (Fb, τ) in (5.3) is decomposed as,
[

Fb
τ

]

=

[

F̂b(U(., q))
τ̂ (U(., q))

]

+

[

F̃b(Φ(., q))
τ̃(Φ(., q))

]

+

[

F b(µ, q̇)
τ (µ, q̇)

]

(5.7)

where (•̂), (•̃) and (•) denote the symmetry-restoring, potential shaping task con-
trol, and damping injection actions, and (.) is the argument for the measurement
(or estimate) for the FRM-base configuration.

5.3.2 Structure-Preserving Damping Injection

An intuitive choice for damping injection is (F b, τ) = −(Db(q)µ,Dq(q)q̇), where
Db, Dq ≻ 0. However, using the FRM Hamiltonian, H = Hµ+Hq̇ (Theorem 3.4),
and computing its time-derivative assuming U ,Φ = 0 and (Fd, τd) = (0, 0),

Ḣ = −
[

µ⊤ q̇⊤
]
[

Db 0
A⊤
l Db Dq

][

µ
q̇

]

(5.8)
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which is an asymmetric damping on the FRM velocities. Hence, in the following,
the damping injection is performed as,

(F b, τ) = (−Db(q)µ+Db(q)Alq̇, Dq(q)q̇) (5.9)

which results in the dissipation of the Hamiltonian as,

Ḣ = −〈µ, µ〉Db
− 〈q̇, q̇〉D̃q

, D̃q = Dq −A⊤
l DbAl (5.10)

Remark 25. Note that the particular choice of F b in (5.9) creates a negative feed-
back interconnection through the off-diagonal terms in the effective damping ma-
trix, which generates no net power flow between momentum and shape subsystems.
In that respect, this choice is structure-preserving, and is exploited in the PBC
approach here. It is worth pointing out that the damping can be chosen directly
in the symmetry-breaking task-space by disregarding the structure. However, this
approach does not exploit the structural properties of the LP system for the FRM.
That being said, Db(q) can be set in the desired symmetry-breaking task-space ba-
sis, e.g. the end-effector, using the push-forward maps as Db(q) = Ti(q)

⊤DbTi(q),
where Db ≻ 0 is the required damping.

5.3.3 PBC Design: LP Systems

FRM is a LP system with a symmetry group (SE(3)), which results in a mo-
mentum continuity equation. Consequently, this leads to a block-diagonalized
inertia, and a feedback interconnection of momentum and shape subsystems, as
I showed in Fig. 3.7a. Motion stabilization for such systems can be achieved in
two ways. In the first approach, namely direct PBC, the passivity of the whole
system is exploited in motion control and the subsystem decomposition is ig-
nored. This means that all tasks in motion control assume equal priority. In the
second approach, subsystem PBC, one subsystem is prioritized for convergence
by strengthening its passivity property to OSP through control action. These
two approaches were motivated by motion stabilization of the generalized AC
motor [3, pp. 9.3]. In fact, the momentum and shape subsystems of the FRM
are analogous to the electrical and mechanical subsystems of an electromechan-
ical machine, see [3, Fig. 9.2]. In the following, I bring forward the two PBC
approaches through two novel Lemmas for subsystem OSP analysis.

5.3.3.1 Direct PBC

Lemma 5.1. Given a LP system with U = 0, like the floating FRM, let the
damping injection be (5.9). The negative feedback interconnection of the momen-
tum and shape subsystems is rendered OSP because the shape subsystem is OSP,
and the momentum subsystem is passive in a way that it would be OSP in the
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absence of the interconnection. In particular, the OSP map is,
[

F̃b + Fd
τ̃ + τd −A⊤

l (F̃b + Fd)

]

7→
[

µ
q̇

]

(5.11)

with storage function H = Hµ +Hq̇.

Proof. Taking the time-derivative of the momentum subsystem (Σ2) storage func-
tion, Hµ, using (5.3),

Ḣµ = −〈µ, µ〉Db
− 〈q̇, Dl̂µ

Dq
−A⊤

l Dbµ〉+ 〈µ, F̃b + Fd〉 (5.12)

which creates the passivity map (F̃b + Fd, q̇) 7→ (µ, Dl̂µ
Dq
− A⊤

l Dbµ). Note that
Σ2 is not OSP. Taking the time-derivative of the shape subsystem (Σ1) storage
function, Hq̇,

Ḣq̇ = −〈q̇, q̇〉D̃q
+ 〈q̇, τ̃ + τd −A⊤

l (F̃b + Fd) + (
Dl̂µ
Dq
−A⊤

l Dbµ)〉 (5.13)

which creates the OSP map τ̃ + τd −A⊤
l (F̃b + Fd) + (Dl̂µ

Dq
−A⊤

l Dbµ) 7→ q̇. Thus
computing Ḣ using (5.12) and (5.13), the result follows.

Remark 26. Note that Lemma 5.1 is a relaxed version of the standard feedback
interconnection result in literature, which requires both subsystems in a feedback
interconnection to be OSP to preserve this property [189, Appendix A.3]. Lemma
5.1 is a useful result that applies specifically to LP systems, which are character-
ized by a block-diagonal inertia and a Lagrangian symmetry variable, e.g. gb for
the FRM.

5.3.3.2 Subsystem PBC: Prioritized Shape

Alternatively, for performance reasons, the motion control of shape can be prior-
itized for convergence. In this case, the OSP of the shape subsystem is strength-
ened, which results in a cascade system. This approach is outlined below.

Lemma 5.2. Given a LP system with U = 0, like the floating FRM, choos-

ing τ = τ̃ − (Dl̂µ
Dq
− A⊤

l Dbµ) − Dq(q̇) to compensate for µ-disturbances, and

Fb = F̃b − Db(q)µ + Db(q)Alq̇ transforms the negative feedback into a cascade
interconnection with the shape subsystem driving the momentum subsystem. The
cascade interconnection is rendered OSP as the shape subsystem is OSP, and the
momentum subsystem is passive in a way that it would be OSP in the absence of
the interconnection. An additional secant condition must be satisfied as follows,

Db −
1

4
X⊤D̃−1

q X ≻ 0 (5.14)
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where X =
(

1
2
S(µ) + ad∼

Λbµ
Al −Db(q)Al

)

. In particular, the OSP map is,

[

F̃b + Fd
τ̃ + τd −A⊤

l (Fb + Fd)

]

7→
[

µ
q̇

]

(5.15)

with storage function H = Hµ +Hq̇.

Proof. From Lemma 5.1, the momentum subsystem Σ2 has the passivity map
(F̃b + Fd, q̇) 7→ (µ, Dl̂µ

Dq
−A⊤

l Db). Taking the time-derivative of Hq̇,

Ḣq̇ = −〈q̇, q̇〉D̃q
+ 〈q̇, τ̃ + τd −A⊤

l (F̃b + Fd)〉 (5.16)

where D̃q = Dq−A⊤
l DbAl, which creates the OSP map τ̃+τd−A⊤

l (F̃b+Fd) 7→ q̇.
Thus computing Ḣ using (5.12) and (5.16),

Ḣ = −
[

µ⊤ q̇⊤
]

[

Db
1
2
X

1
2
X⊤ D̃q

]

︸ ︷︷ ︸

Y(µ)

[

µ
q̇

]

+〈F̃b+Fd, µ〉+〈q̇, τ̃+τd−A⊤
l (F̃b+Fd)〉 (5.17)

and OSP follows from the Schur’s complement for positive-definiteness of Y(µ)
to get the secant condition in (5.14).

Corollary 4. The condition of positive-definiteness of Y(µ) to ensure OSP of the
cascade interconnection in Theorem 5.2 can be reformulated using commutativity
in Prop. 3.34 and the mapping between ad∼ 7→ ad⊤ operators as,

[

µ⊤ q̇⊤
]

Y(µ)

[

µ
q̇

]

=
[

µ⊤ q̇⊤
]
[

Db + 1
2
P (q̇) + ad⊤

Al q̇
Λb −1

2
DbAl

−1
2
A⊤
l Db D̃q

][

µ
q̇

]

(5.18)

resulting in a modified secant condition from Schur’s complement,

Db +
1

2
P (q̇) + ad⊤

Al q̇
Λb −

1

4
DbAlD̃−1

q A⊤
l Db ≻ 0 (5.19)

which depends only on the shape state-space, (q, q̇), instead of µ.

Remark 27. In prior works on hierarchical control [196], OSP of a lower priority
task is ensured only in the set of convergence of a higher priority task. Lemma
5.2 is a stronger condition, as it affirms the OSP of the whole subsystem (not just
each subsystem), while prioritizing the convergence of the shape subsystem.

Lemmas 5.1 and 5.2 will serve as a foundation to address the OFC problem.
Analogously two variants of IM-PBC, which will additionally estimate (gb, µ),
using an internal model of the Ver(LP) dynamics will be postulated.
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5.4 Proposed Method: IM-PBC

To achieve full-state feedback PBC for the FRM, a measurement of µ is required
in Lemmas 5.1 and 5.2. I recall that the shape measurements (q) are available at
a fast rate, through proprioceptive local sensors, e.g. joint encoders, and hence
using a dirty derivative or a first order observer is sufficient for velocities (q̇).
However, the group variable measurements, (gb, Vb), are obtained either through
an exteroceptive sensor or a localizer algorithm. Since such a method is outlier-
prone due to occlusions, IMU drifts, and feature-loss, the controller stability is
often afflicted. Furthermore, the estimate of µ or Vb cannot be reliably obtained
through a dirty derivative (like the shape) due to the slow-sampling and outlier
discontinuities in the signal.

The proposed control design is motivated by the internal model principle from
classical control theory and cybernetics, i.e., the control approach must utilize
the feedback of the regulated variable, and, additionally, the plant model in the
feedback path [197, 198]. In other words, a good regulator must be a model of
the system. In essence, the passivity-based OFC approach in [3] is a realization
of this philosophy, as the controller was an EL system itself. In neuroscience,
the internal model controller is a well-accepted model of the cerebellum as a
sensorimotor controller. In particular, the motion model is used to generate an
efferent copy (prediction) that is actively used in the feedback loop to achieve
fast-reaching motions despite slow visual sensing [199]. In this vein, I denote
the proposed method as Internal Model-PBC (IM-PBC) for LP systems, i.e.,
mechanisms with symmetry, e.g. FRM. The key idea is to exploit the knowledge
of the applied effort to predict the motion, and utilize it in the feedback loop. In
this thesis, I shall focus on the control-theoretic aspects of the methods and their
validation. The design is motivated by a future outlook of enabling the localizer
system to benefit from the predicted motion.

5.4.1 Differential-Geometric Perspective

In this subsection, key geometric concepts of the FRM from Chapter 3 are re-
visited to develop an analogous concept for the estimation problem to address
the OFC problem. Let r̂ = (ĝb, q) ∈ SE(3)× Rn denote the estimated configu-
ration, where ĝb is the FRM-base pose estimate of a virtual frame {B̂}, recall
Fig. 3.1 for typical FRMs. The corresponding velocity of this configuration is
V̂ = (V̂b, q̇). The configuration state estimation error, η ∈ SE(3) between ĝb(t)
and gb, is defined2 as η(gb, ĝb) = ĝ−1

b gb.
To elucidate the concept, I recall the illustration of the FRM configuration

space in Fig. 3.2. This abstraction is modified in Fig. 5.6 to address the OFC prob-
lem. The proposed observer’s configuration trajectory, r̂(t), is shown as yellow dot

2η is a left-invariant error [12, eq. 6], i.e η(ggb, gĝ1) = η, g ∈ SE(3).
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ĝb

gb

horr

horr̂

q(t)

η

r(t)

r̂(t)
Vbverr

V̂b
verr̂

SE(3)

SE(3)×Rn

Rn

Figure 5.6: A differential-geometric illustration of the estimation problem for the
LP system. The trajectories of the physical system (r, blue trajectory) and its
observer (r̂, yellow trajectory) evolve in SE(3)× Rn, grey-box.

trajectory in Fig. 5.6. Note that the quantities, Λb,Mbq, and hence, Al, are trivi-
alized at the frame {B} in Fig. 3.1. Therefore, given the pose error, η (magenta),
the transport operator, Adη, transforms Al to the observer frame, {B̂}. Thus, the
mechanical connection at r̂ is obtained using (3.6) as, Â = Adb̂

[

I6,6 AdηAl(q)
]

V̂ .
Correspondingly, the horizontal part is obtained as, horr̂ = (−AdηAlq̇, q̇) and the
vertical part as, verr̂ = V̂ −horr̂ = (V̂b+AdηAlq̇, 0n) = (µ̂, 0n). horr̂, verr̂, V̂b have
been marked as yellow arrows. Since (q, q̇), are considered known, the reduced
shape trajectory (red) is identical for both, the FRM and its observer. The key
idea is to use the estimation error, η, in the SE(3) direction (fiber), however, in-
stead of estimating also in the fiber, the estimation is performed along verr̂ while
stabilizing the LP dynamics in (5.3).

The group (SE(3)) velocities (V̂ , µ̂) in the estimation frame, {B̂}, are trans-
ported to the FRM-base frame, {B} using the Ad−1

η V̂ operator. The main idea
is to ensure that in verr̂, the state µ̂(t)→ µ(t) as ĝb → gb, which subsequently
results in V̂b(t)→ Vb(t).

5.4.2 Direct Internal Model-PBC (IM-PBC)

In the following, the direct IM-PBC approach is proposed, which exploits the
passivity of the whole LP dynamics for motion stabilization.

5.4.2.1 Motion with Symmetry-breaking Potentials

The proposed IM-PBC consists of an observer to estimate (ĝb, µ̂) and, additionally,
a motion control law to stabilize the LP dynamics of the whole FRM using the
estimates.
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As a first approach, the measured (not estimated) gb is used in closed-loop
feedback, as in [188, 189]. Thus, the control law is chosen as,

[

F̃b
τ̃

]

=

[

−dbΦ(gb, q)
−dqΦ(gb, q)− dqΦq(q)

]

︸ ︷︷ ︸

Task regulation

,

[

F b
τ

]

=

[

−Db(q)µ̂o +Db(q)Alq̇
−Dq(q)q̇

]

︸ ︷︷ ︸

Damping
[

F̂b
τ̂

]

=

[

dbU(gb, q)
dqU(gb, q)−A⊤

l dbU(gb, q)

]

︸ ︷︷ ︸

Symmetry-restoring
action

(5.20)

where Dq(q), Db(q) ≻ 0 are the damping gains.

5.4.2.2 Group Observer: SE(3)

Corresponding to the configuration error, η, the group error potential is denoted
as Ψ(η) : SE(3) → R+, which provides the error injection for the observer feed-
back loop through its differential (gradient). The group observer is chosen with
the same geometric structure as (5.4) with an error injection term as follows,

˙̂gb = ĝb

(

µ̆− Adη
(

Alq̇ − grad Ψ(η)
)

︸ ︷︷ ︸

V̂b

)∧

(5.21)

where µ̆ ∈ R
6 ∼= se(3) is an internal model locked velocity, and grad is the

Riemannian gradient operator computed at gb, which is related to the differen-
tial through the locked kinetic energy metric as, 〈dΨ, y〉 = 〈grad Ψ, y〉Λb

, given
y ∈ R6 ∼= se(3).

In (5.21), note that µ̂ = µ̆+ Adη grad Ψ(η) is the output locked velocity esti-
mate in the estimation basis {B}, and Adη operator is used to correctly map the
body quantities from the basis of {B} to the estimation basis of {B̂} (Fig. 3.1).
This concept was introduced in the differential geometric approach earlier, and
will also be examined further in Sec. 5.4.2.4.

5.4.2.3 Error kinematics

The observer error kinematics are derived by taking the time derivative of the
pose error, η = ĝ−1

b gb, as,

η̇ = −ĝ−1
b

˙̂gbĝ
−1
b gb + ĝ−1

b ġb

⇒η̇ = η(µ− Ad(η−1)µ̆− grad Ψ(η))∧

⇒(η−1η̇)∨ = µ−
(

Ad(η−1)µ̆+ grad Ψ(η)
)

︸ ︷︷ ︸

µe

(5.22)

where µe is the observer velocity error.
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5.4.2.4 Ver(LP) Observer: Momentum

Before proceeding to the observer equations for the Ver(LP) equation (or the
momentum equation), a vector comparison between the locked velocity (µ) and
the observer velocity (µ̂) is obtained. The Adη−1 term acts as the transport
operator, which helps in defining the correct velocity error as µe = µ− µ̂o, where
µ̂o = Adη−1µ̂, as is evident in (5.22).

Following the discussion above, we compute the velocity error dynamics by
taking the time-derivative of µe and using (5.22), as follows,

d

dt
µe =

d

dt
(µ− Ad−1

η µ̂)

= µ̇−
(

Ad−1
η

˙̆µ+
d

dt
grad Ψ(η)− adµeµ̂o

)
(5.23)

Note that d
dt

grad Ψ(η) along trajectories (η, µe, q, q̇) resolves as,

d

dt
grad Ψ(η) = Λ−1

b Hess(Ψ)µe − Λ−1
b P (q̇) grad Ψ (5.24)

using the chain rule differentiation. Furthermore, substituting for µ̂o = µ − µe
and using the properties, adxx = 0 and adxy = −adyx in (5.23),

d

dt
µe =µ̇−

(

Ad−1
η

˙̆µ+ Λ−1
b Hess(Ψ)µe − Λ−1

b P (q̇) grad Ψ + adµµe
)

(5.25)

Therefore, the observer goal is to determine the internal model Ad(η−1)
˙̆µ. To

this end, the observer for the momentum equation (first row of (5.3)) is proposed
as the dynamics of µ̆ with the geometric structure of the Ver(LP) equation, as
follows,

ΛbAd−1
η

˙̆µ+ P (q̇)Ad−1
η µ̆− ad∼

Λbµ̂o
(µ̂o −Alq̇) = F̃b + l.dΨ(η) + Fo

⇒ Ver(L̂P)direct = F̃b + l.dΨ(η) + Fo
(5.26)

where l > 0 is an observer parameter, Fo ∈ R6 ∼= se(3)∗ is a virtual observer
force (wrench) that shall be used to passivate the error dynamics with optional
measurements (or estimates), as we shall see later.

Velocity error dynamics

Substituting (5.26) into (5.25), and using actual locked dynamics (µ̇) from (5.3),

d

dt
µe = Λ−1

b

(

− 1

2
P (q̇)µe −

(1

2
P (q̇) + ad⊤

Alq̇
Λb

)

µe −Db(q)µ̂o +Db(q)Alq̇

− Hess(Ψ)µe + (ad∼
Λbµ
µ− ad∼

Λbµ̂o
µ̂o − Λbadµµe) + l.dΨ(η) + Fd − Fo

) (5.27)

To simplify the bracketed ad⊤ terms, I provide the following skew-symmetry
property, which is crucial for stability analysis later.
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Lemma 5.3. For body velocities, V1, V2, Ve ∈ R6 ∼= se(3), such that a velocity
error, Ve = V1 − V2, given inertia Λ, the following holds for the natural and
bilinear Body-level factorization (BLF)s (Sec. 2.6.1.1),

ad⊤
V1

ΛV1 − ad⊤
V2

ΛV2 = ad∼
ΛV1

V1 − ad∼
ΛV2

V2 = C(V1, Ve)Ve (5.28)

where C(V1, Ve) = (ad⊤
V1

Λ + ad∼
ΛV1
− Λad∼

ΛVe
). Furthermore, given x ∈ R

6 ∼= se(3),
C satisfies a skew-symmetry property as follows,

〈x,
(

C(V1, Ve)Ve − ΛadV1

)

x〉 = 〈x, C̃(V1, Ve)x〉 = 0⇒ C̃⊤ = −C̃ (5.29)

Proof. For the first part in (5.28),

L.H.S =ad⊤
V1

Λ(Ve + V2)− ad⊤
(V1−Ve)ΛV2

=ad⊤
V1

ΛVe + ad⊤
V1

ΛV2 − ad⊤
V1

ΛV2 + ad⊤
Ve

ΛV2

=ad⊤
V1

ΛVe + ad⊤
Ve

Λ(V1 − Ve)
=(ad⊤

V1
Λ + ad∼

ΛV1
− ad∼

ΛVe
)Ve = C(V1, Ve)Ve

(5.30)

For the second part in (5.29),

L.H.S =〈x, (ad⊤
V1

Λ + ad∼
ΛV1
− ad∼

ΛVe
− ΛadV1)x〉

=〈x, (ad⊤
V1

Λ + ad∼
ΛV1
− ΛadV1)x

︸ ︷︷ ︸

2∇V1
x

〉 − 〈x, ad∼
ΛVe

x〉 (5.31)

Note that the first and second inner product terms in (5.31) contain the
Riemannian connection and bilinear factorization BLF of the rigid body CC
matrix, respectively, see Subsection 2.6.1.1. Moreover, both these factorizations
are skew-symmetric. Hence, 〈x, C̃(V1, Ve)x〉 = 0.

Corollary 5. The matrix operator C in Lemma 5.3 satisfies the following prop-
erty,

〈x, C(µ, y)z〉 = 〈x, ad∼
Λyz〉 = 〈x, ad⊤

z Λy〉 (5.32)

Proof. Using the properties adxy = −adyx, and the bilinear factorization BLF,
the result follows.

In (5.27), using C̃ from Lemma 5.3, and denoting P̃ (q̇) =
(

1
2
P (q̇) + ad⊤

Alq̇
Λb

)

,

dµe
dt

=Λ−1
b

(

C̃(µ, µe)µe −
1

2
P (q̇)µe − l.dΨ(η) + Fd − Fo

−
(

Hess(Ψ) + P̃ (q̇)µe −Db(q)
)

µe −Db(q)µ+Db(q)Alq̇
) (5.33)

Note that the velocity error dynamics in (5.33) is a function of the controlled
quantities µ, q̇. Thus a separation principle between observer and controller de-
sign is not feasible since both, µ and q̇ must be additionally stabilized.
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Dl̂µ
Dq
−A⊤

l Dbµ dbΦ

dqΦ

µ

µ

µe

µe

−1

−1

−1

Dbµ
+

+

+

+
q̇

q̇

τd

Fd

Σ1 : Bottom (5.3), (5.33)

−A⊤
l

Σ2 : Top (5.3)

Σ3 : (5.43)

Obs. & Shape Dyn.

Momentum Dyn.

Potential

Figure 5.7: Direct IM-PBC as passive interconnection of observer-shape, momen-
tum and the symmetry-breaking potential subsystems, with external inputs (red)
on left, and outputs of the IM-PBC (green) on right.

5.4.3 Stability/Passivity Analysis of Direct IM-PBC

The stability analysis of the proposed IM-PBC is based on passive interconnec-
tion of the momentum and shape subsystems for the FRM in Theorem 3.4 of
Chap. 3, and its extension to symmetry-breaking potentials in Corollary 3. In
particular, the error dynamics for the observer and shape are considered as one
subsystem, which is interconnected with the momentum subsystem in a negative
feedback. Furthermore, the symmetry-breaking potential is also in a negative
feedback interconnection with both these subsystems. The interconnection block
diagram is shown in Fig. 5.7, which will be systematically explained through
storage function analysis next.

5.4.3.1 OSP of Observer & Shape dynamics

As mentioned above, the error dynamics of the observer and shape are considered
to be one subsystem, Σ1 in Fig. 5.7, with states z = (η, µe, q, q̇). In the following,
I prove OSP for this subsystem.

Lemma 5.4. Given the FRM with equations of motion as in (5.3), its shape
dynamics (bottom row) and the observer error dynamics in (5.33) satisfy OSP,

Σ1 :




Fd −Fo −Db(q)µ

τd −A⊤
l Fd + Dl̂µ

Dq
−A⊤

l Db(q)µ−
(

dqΦ−A⊤
l dbΦ

)



 7→
[

µe
q̇

]

(5.34)

provided that the observer parameters satisfy (Λ−1
b Hess(Ψ) + P̃ (q̇) − Db(q)) ≻ 0
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with storage function as,

W = lΨ(η)
︸ ︷︷ ︸

W1

+
l

2
〈µe, µe〉Λb

︸ ︷︷ ︸

W2

+
1

2
〈q̇, q̇〉Λq

︸ ︷︷ ︸

W3

+Φq(q) (5.35)

such that l > 0. Furthermore, W is bounded as, α(z) ≤ W (x) ≤ α(z), due to the
corresponding bounds for the kinetic energy metric and the potentials, Ψ(η),Φq(q).

Proof. Differentiating W along trajectories (η, µe, q, q̇) and using the error dy-
namics in bottom row of (5.3) and (5.33),

Ẇ =〈µe,
1

2
(−P (q̇) + P (q̇))µe〉+ 〈q̇, Dl̂µ

Dq
−A⊤

l Db(q)µ〉

+ 〈µe, C̃(µ, µe)µe〉+ 〈q̇, (1

2

d

dt
Λq − Γq(q̇, µ))q̇〉+ 〈µe, Fd − Fo〉

− 〈µe, (Hess(Ψ) + P̃ (q̇)−Db(q))µe〉 − 〈q̇, q̇〉D̃q(q) − 〈µe,−Db(q)µ〉
+ 〈q̇, (τd −A⊤

l Fd)−
(

dqΦ(gb, q)−A⊤
l dbΦ(gb, q)

)

〉

(5.36)

Note that the first term in the top row of (5.36) cancels out. In the second
row of (5.36), the first term is 0 due to the skew-symmetry of C̃ in Lemma 5.3.
Furthermore, the second term is also 0 owing to the skew-symmetry in Prop. 3.2.
Therefore, (5.36) is rewritten as,

Ẇ =− 〈µe, (Hess(Ψ) + P̃ (q̇)−Db(q))µe〉 − 〈q̇, q̇〉D̃q(q)

+
〈

q̇, (τd −A⊤
l Fd) + (

Dl̂µ
Dq
−A⊤

l Db(q)µ)−
(

dqΦ−A⊤
l dbΦ

)〉

+ 〈µe, Fd −Fo −Db(q)µ〉

(5.37)

If the observer gain parameters satisfy H = (Hess(Ψ) + P̃ (q̇)−Db(q)) ≻ 0,

Ẇ ≤− σ(H)||µe||2 − σ(D̃q)||q̇||2 + 〈Fd −Fo −Db(q)µ, µe〉

+
〈

(τd −A⊤
l Fd) + (

Dl̂µ
Dq
−A⊤

l Db(q)µ)−
(

dqΦ−A⊤
l dbΦ

)

, q̇
〉 (5.38)

which proves the result.

In Fig. 5.7, the input-output map of Lemma 5.4 can be verified for the Σ1

subsystem (yellow block).

5.4.3.2 Passivity of the Momentum Dynamics

The second subsystem, Σ2, in Fig. 5.7 is the momentum subsystem parameterized
by µ. For this, I provide the following result.
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Lemma 5.5. Given the FRM with equations of motion as in (5.3), its momentum
dynamics (top row) is passive,

Σ2 :






Fd − dbΦ(gb, q)
−q̇
µe




 7→







µ
Dl̂µ
Dq
−A⊤

l Db(q)µ

Db(q)µ







(5.39)

with storage function as

W =
1

2
〈µ, µ〉Λb

,
1

2
σ(Λb)||µ||2 ≤ W(µ) ≤ 1

2
σ(Λb)||µ||2 (5.40)

Proof. Taking the time-derivative, and exploiting the fact that d
dt

Λb = P (q̇),

Ẇ =− 〈µ, µ〉Db
+ 〈µ, Fd − dbΦ +Dbµe − (

1

2
S + ad∼

Λbµ
Al −DbAl)q̇)〉

≤ − σ(Db)||µ||2 + 〈Fd − dbΦ, µ〉 − 〈q̇,
Dl̂µ
Dq

+A⊤
l Dbµ〉+ 〈µe, Dbµ〉

(5.41)

which proves the result.

In Fig. 5.7, the input-output map of Lemma 5.4 can be verified for the Σ2

subsystem (blue block). Note that in the inequality of (5.41), the latter two terms
denote the negative feedback interconnection with the OSP system Σ1.

5.4.3.3 Passivity of the Symmetry-breaking Potential

The passivity of the potential subsystem, Σ3 in Fig. 5.7, follows from the Corollary
3 of Chap. 3.

Lemma 5.6. The task-oriented symmetry-breaking potential Φ(gb, q), which sat-
isfies bounds, Φ ≤ Φ ≤ Φ, is passive,

Σ3 :

[

µ
q̇

]

7→
[

dbΦ(gb, q)
dqΦ(gb, q)−A⊤

l dbΦ(gb, q)

]

(5.42)

Proof. Taking the time-derivative of Φ,

d

dt
Φ(gb, q) = 〈µ, dbΦ(gb, q)〉+ 〈q̇, dqΦ(gb, q)−A⊤

l dbΦ(gb, q)〉 (5.43)

yields the result.

In Fig. 5.7, the input-output map of Lemma 5.6 can be verified for the Σ3

subsystem (purple block). Note that Σ3 is in a negative feedback interconnection
with both Σ1 and Σ2.
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5.4.3.4 L2-&-Asymptotic Stability of the IM-PBC

In the following, the proposed IM-PBC is proved to be OSP, i.e., L2-stable, with
the disturbance forces as inputs. In the absence of the disturbances, the IM-PBC
is asymptotically stable about an equilibrium defined by the potentials Φ,Φq.
This is formalized in the theorem below.

Theorem 5.1. Given the FRM with equations of motion as in (5.3), the proposed
IM-PBC consisting of

1. SE(3) group observer defined as (5.21) with an error function η = ĝ−1
b gb

such that tr(η(0)) 6= −1,

2. a Ver(LP) observer as (5.26),

3. a motion control law as (5.20),

is OSP with the map,





Fo
Fd
τd




 7→






−µe
µ+ µe −Alq̇

q̇




 (5.44)

with the storage function H = W (η, µe, q̇) +W(µ) + Φ(gb, q). Furthermore, if the
effective task potential, Φ(gb, q)+Φq(q), yields a unique equilibrium in SE(3)×Rn,
and (Fd, τd,Fo) = 0, the closed-loop dynamics is asymptotically stable, i.e., η →
I4,4, f(gb, q)→ f̄ , q → q̄ and (µe, µ, q̇) = 0.

Proof. I recall that Σ1 is OSP from Lemma 5.4. Also, Σ2 is a passive system
in a feedback interconnection with Σ1, which would be OSP without the inter-
connection, see (5.41). Thus, using the relaxed OSP concept in Lemma 5.1 for
interconnection of the shape-momentum subsystems in LP dynamics, the result-
ing feedback interconnection of Σ1 − Σ2 is OSP with (5.44). To this end, the
storage function is H̃ = W (η, µe, q̇) +W(µ). This further emphasizes how the
observer error dynamics serve as a part of the shape, as shown in Fig. 5.7. Fur-
thermore, the symmetry-breaking potential Φ is a passive system (with no input),
which is in a negative feedback interconnection with an effective OSP of Σ1−Σ2,
which preserves the OSP property by the invariance of passivity in Def. 2.14.
Thus, the proposed IM-PBC is L2-stable. For the asymptotic stability analysis,
Lemmas 5.4-5.6 are considered with no input, i.e., (Fo, Fd, τd) = 0. In particular,

Ḣ ≤ −σ(H)||µe||2 − σ(D̃q)||q̇||2 − σ(Db)||µ||2 (5.45)

which implies uniform stability of the IM-PBC states (η, µe, gb, q, µ, q̇) about the
origin (I4,4, 0, ḡb, q̄, 0, 0). Thus, in the set Ω = {η, µe, gb, q, µ, q̇|Ḣ = 0}, the closed-
loop dynamics in (5.33), and the top and bottom rows of (5.3) are determined
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by,





l.I 0 0
0 I −A⊤

l

0 0 I











dΨ
dqΦq(q) + dqΦ(gb, q)

dbΦ(gb, q)




 = 0 (5.46)

In (5.46), dΨ is independent of the task potentials, Φq,Φ. If the effective task
potential, Φ(gb, q) + Φq(q), yields a unique equilibrium in the FRM configuration
space, SE(3)×Rn, then the IM-PBC is ZSO by Lemma 2.12. Thus, from Def. 2.13,
the closed-loop dynamics is asymptotically stable.

5.4.4 Subsystem IM-PBC

In the subsystem IM-PBC, the shape subsystem is given precedence for conver-
gence by exploiting the PBC design outlined in Lemma 5.2. Naturally, the change
in control approach also results in a consequent modification to the observer feed-
back law.

5.4.4.1 Motion Control Law

To this end, the motion control law in (5.47) is modified as,
[

F̃b
τ̃

]

=

[

−dbΦ(gb, q)
−dqΦq(q)

]

︸ ︷︷ ︸

Task regulation

,

[

F b
τ

]

=

[

−Db(q)µ̂o +Db(q)Alq̇
−Dq(q)q̇

]

︸ ︷︷ ︸

Damping
[

F̂b
τ̂

]

=

[

dbU(gb, q)
dqU(gb, q)−A⊤

l dbU(gb, q)

]

︸ ︷︷ ︸

Symmetry-restoring
action

+




0

Dl̂µ
Dq

(µ̂o) +A⊤
l

(

F b + F̃b
)





︸ ︷︷ ︸

Decoupling
action

(5.47)

where Dl̂µ
Dq

(µ̂o) = 1
2
S(µ̂o)

⊤µ̂o−A⊤
l ad⊤

µ̂o
Λbµ̂o, is a part of the decoupling action that

isolates the shape dynamics from the momentum subsystem, however, using the
estimated locked velocity, µ̂o.

Remark 28. The group observer for the subsystem IM-PBC remains identical
in structure to (5.21) of the direct IM-PBC. Consequently, the error kinematics
in (5.22) also is the same.

5.4.4.2 Ver(LP) Observer: Momentum

The observer system for the momentum equation, i.e., the Ver(LP) equation,
however, is simplified as,

ΛbAd−1
η

˙̆µ+ P (q̇)Ad−1
η grad Ψ− ad∼

Λbµ̂o
µ̂o −F b = + F̃b + l.dΨ(η) + Fo

Ver(L̂P)subsystem =F̃b + l.dΨ(η) + Fo
(5.48)
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where Fo is the virtual wrench that is used to passivate the dynamics, as in (5.26).
Note that in contrast to (5.26), (5.48) is structurally different. This is a direct

consequence of the new control law in (5.47). This shall become evident through
the stability analysis later.

Velocity Error Dynamics

Using (5.48), the observer velocity error dynamics are computed, as in (5.33), as,

dµe
dt

=Λ−1
b

(

C̃(µ, µe)µe − P (q̇)µ− ad∼
Λbµ
Alq̇ − l.dΨ(η)

+ Fd − Fo − Hess(Ψ)µe

) (5.49)

Shape (joints) velocity dynamics

The shape velocity dynamics are written by substituting (5.47) in second row of
(5.3), with Γq(q̇, µ) = Γ̃′

q(q̇) + B̃(µ) to ease notation, as,

q̈ =Λ−1
q

(

− Γq(q̇, µ)q̇ +
1

2
(S(µ)⊤µ− S(µ̂o)

⊤µ̂o)

−A⊤
l

(

ad∼
Λbµ

µ− ad∼
Λbµ̂o

µ̂o
)

− dqΦq(q)−Dq(q)q̇
) (5.50)

The quadratic terms in (5.53) are simplified by, firstly, substituting µe = µ− µ̂o
and, then applying the commutative Prop. 3.34 for S⊤ to get

S(µ)⊤µ− S(µ̂o)
⊤µ̂o =

(

2S(µ)⊤ − S(µe)
⊤

)

µe (5.51)

Secondly, using Lemma 5.3 for the C operator, we get,

A⊤
l (ad∼

Λbµ
µ− ad∼

Λbµ̂o
µ̂o)

= A⊤
l (ad⊤

µΛbµ− ad⊤
µ̂o

Λbµ̂o) = A⊤
l C(µ, µe)µe

(5.52)

Finally, using (5.51) and (5.52), (5.53) is rewritten as,

q̈ =Λ−1
q

(

− Γq(q̇, µ)q̇ +
1

2

(

2S(µ)⊤ − S(µe)
⊤

)

µe

−A⊤
l C(µ, µe)µe − dqΦq(q)−Dq(q)q̇

) (5.53)

Momentum Dynamics

The momentum dynamics in closed-loop is rewritten as,

µ̇ =Λ−1
b

(

− 1

2
P (q̇)µ+ ad⊤

µΛbµ−
(1

2
S(µ)− ad∼

Λbµ
Al

)

q̇

− dbΦ(gb, q)−Db(q)µ+Db(q)
(

µe +Alq̇)
) (5.54)
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dbΦ µ

µ

µe

µe

−1

−1+

q̇

q̇

τd

Fd

Σ1 : Bottom (5.3), (5.33)

Σ2 : Top (5.3)

Σ3 : (5.43)

Obs. & Shape Dyn.

Momentum Dyn.

Potential

Figure 5.8: Subsystem IM-PBC as passive interconnection of observer-shape, mo-
mentum and the symmetry-breaking potential subsystems, with external inputs
(red) on left, and outputs of the IM-PBC (green) on right.

5.4.5 Stability/Passivity Analysis of Subsystem IM-PBC

In this subsection, the stability and passivity properties of the subsystem IM-
PBC, see Fig. 5.8, is proved. In particular, the observer and shape subsystem,
Σ1, does not have any interconnection inputs from the other subsystems, and is
proved to be OSP in a prioritized manner. In the set that Σ1 is mechanically sta-
ble, the subsystem Σ2−Σ3 consisting of the momentum and symmetry-breaking
potential is OSP. In the absence of disturbance inputs, both systems are asymp-
totically stable in a hierarchical fashion.

5.4.5.1 OSP & Asymptotic Stability of Observer & Shape Dynamics

Lemma 5.7. Consider the FRM with LP dynamics as in (5.3). Given the shape
motion control law chosen as τ = τ + τ̃ + τ̂ in (5.47), and the observer feedback
laws as (5.21) and (5.48), the observer and the shape dynamics are OSP,

Σ1 :

[

Fd −Fo
τd −A⊤

l Fd

]

7→
[

µe
q̇

]

(5.55)

with storage function as

W = lΨ(η)
︸ ︷︷ ︸

W1

+
l

2
〈µe, µe〉Λb

︸ ︷︷ ︸

W2

+
1

2
〈q̇, q̇〉Λq

︸ ︷︷ ︸

W3

+Φq(q) (5.56)

such that l > 0. Furthermore, if the inputs (Fd, τd,Fo) = 0, then the shape and
observer dynamics are asymptotically stable.



5.4 Proposed Method: IM-PBC 139

Proof. Differentiating W along trajectories (η, µe, q, q̇), and using the error dy-
namics from (5.49) and (5.53),

Ẇ =− 〈µe, P (q̇)µ〉+
1

2
〈µe, P (q̇)µe〉+

1

2
〈q̇, 2S(µ)⊤µe〉 − 〈q̇, S(µe)

⊤µe〉

+ 〈µe, C̃(µ, µe)µe〉+ 〈q̇, (1

2

d

dt
Λq − Γq(q̇, µ)q̇)〉+ 〈µe, Fd − Fo〉

− 〈µe,Hess(Ψ)〉 − 〈q̇, q̇〉Dq(q) + 〈q̇, τd −A⊤
l Fd〉

− 〈q̇,A⊤
l C(µ, µe)µe〉 − 〈µe, ad∼

Λbµ
Alq̇〉

(5.57)

The first row in (5.57) cancels out. This is a direct consequence of the com-
mutativity properties that I revealed in Prop. 3.34 for the FRM, and is shown
below.

− 〈µe, P (q̇)µ〉+
1

2
〈µe, P (q̇)µe〉+

1

2
〈q̇, 2S(µ)⊤µe〉 − 〈q̇, S(µe)

⊤µe〉 =

− 〈q̇, S(µ)⊤µe〈+
1

2
〈q̇, S(µe)

⊤µe〉+ 〈q̇, S(µ)⊤µe〉 − 〈q̇, S(µe)
⊤µe〉 = 0

(5.58)

where the second of Prop. 3.34 is applied to the first two inner products.
Next, note that the first item in the second row of (5.57) cancels out due to

the skew-symmetry of C̃, see Lemma 5.3. The second item in the second row
also cancels out due to the skew-symmetry property of the shape dynamics in
Prop. 3.2. Using the Corollary 5 on the last row of (5.57),

− 〈Alq̇, C(µ, µe)µe〉 − 〈µe, ad∼
Λbµ
Alq̇〉

= −〈Alq̇, ad⊤
µe

Λbµe〉 − 〈µe, ad∼
Λbµ
Alq̇〉 = 〈µe,

(

ΛbadAlq̇ − adAl q̇Λb

)

︸ ︷︷ ︸

skew-symmetric

µe〉

= 0

(5.59)

Thus, (5.57) yields,

Ẇ = −〈µe,Hess(Ψ)µe〉 − 〈q̇, q̇〉Dq(q) + 〈µe, Fd − Fo〉+ 〈q̇, τd −A⊤
l Fd〉

≤ −σ(Hess(Ψ))||µe||2 − σ(Dq)||q̇||2 + 〈Fd −Fo, µe〉+ 〈τd −A⊤
l Fd, q̇〉

(5.60)

which proves the result.
To prove asymptotic stability, consider the shape and observer dynamics with

(Fd, τd,Fo) = 0, which results in,

Ẇ ≤ −σ(Hess(Ψ))||µe||2 − σ(Dq)||q̇||2 (5.61)

which implies W (t) ≤ W (0), for t→∞, i.e., W (0) defines a positively invariant
set, {(η, µe, q, q̇)|W (t) ≤ W (0)}. Let E = {(η, µe, q, q̇)|Ẇ = 0 ⇒ (µe, q̇) =

0}, and the largest invariant set in E is
(

ldΨ(η), dqΦq(q)
)

= (0, 0), which is
convergent if Φq(q) is positive-definite in the shape configuration q.
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5.4.5.2 Convergence of Momentum and Symmetry-breaking Potential

The asymptotic stability (convergence) of the momentum (Σ2) and the symmetry-
breaking potential (Σ3) is achieved in the positively invariant set, E, from Lemma
5.7 for Σ1 subsystem. In particular, the following Lemma states the result.

Theorem 5.2. Consider the FRM with LP dynamics as in (5.3). Given the ex-
ternal actuation Fb = F b+F̃b+F̂b in (5.47), the dynamics of the momentum and
the symmetry-breaking potential, Φ(gb, q), in the positively invariant set defined
as E = {(η, µe, q, q̇)|(µe, q̇) = 0} are OSP,

Σ2 : Fd → µ (5.62)

with the storage function as,

W =
1

2
〈µ, µ〉Λb(q) + Φ(gb, q) (5.63)

If the disturbance, Fd = 0, then Σ2 − Σ3 subsystem is asymptotically stable in E.

Proof. Differentiating W along trajectories in the set E, using (5.54) and (5.43),

Ẇ = −〈µ, µ〉Db(q) ≤ σ(Db(q))||µ||2 (5.64)

due to the first of skew-symmetry Prop. 3.2, which proves the uniform stability
of µ and gb about 0 and the desired setpoint for the FRM-base in Φ(gb, q), re-
spectively. This means, W(t) ≤ W(0), for t→∞, i.e., W(0) defines a positively
invariant set, {(µ, gb)|W(t) ≤ W(0)}. Let E = {(µ, gb)|Ẇ = 0 ⇒ µ = 0}, and
the largest invariant set in E is defined by, dbΦ(gb, q) = 0, which is asymptotically
stable if Φ is positive-definite.

5.4.5.3 Transient OSP of Subsystem IM-PBC

According to Lemma 5.2, the subsystem comprising of Σ2−Σ3 is OSP in the set
E . Note that, the Σ1−Σ2 subsystem is a cascade interconnection (dashed box in
Fig. 5.8), i.e., the observer and shape dynamics drive the momentum subsystem.
In the subsystem IM-PBC, the shape convergence is given precedence, and the
symmetry-breaking potential is an external subsystem. Thus, as in Lemma 5.2,
a stronger condition for OSP of the Σ1 − Σ2 cascade is given next.

Lemma 5.8. Consider the FRM with LP dynamics as in (5.3). Given the shape
motion control law as τ = τ + τ̃ + τ̂ and the external actuation Fb = F b + F̃b +
F̂b in (5.47), and the observer feedback laws as (5.21) and (5.48), the cascade
interconnection Σ1 − Σ2 in Fig. 5.8 (dashed box) is OSP,

(Fo, Fd, τd) 7→ (−µe, µ+ µe −Alq̇, q̇) (5.65)
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with storage function H = W + 1
2
〈µ, µ〉Λb(q), if it satisfies the secant condition

given as,

R(q, q̇) =






Hess(Ψ) −1
2
Db 0

−1
2
Db Db + 1

2
P (q̇) + adAlq̇Λb −1

2
DbAl

0 −1
2
A⊤
l Db Dq




 ≻ 0 (5.66)

Proof. Differentiating H along the system trajectory,

Ḣ = −〈µe,Hess(Ψ)µe〉−〈q̇, q̇〉Dq−〈µ, µ〉Db
+〈µ,Db(q)(µe+Alq̇)〉−〈q̇,

Dl̂µ
Dq
〉 (5.67)

which can be rewritten as,

Ḣ =−
[

µ⊤
e µ⊤ q̇⊤

]

R(q, q̇)






µe
µ
q̇




 +

[

F⊤
o F⊤

d τ⊤
d

]






−µe
µ+ µe −Alq̇

q̇




 (5.68)

and the result follows from the condition in (5.66).

Remark 29. Lemma 5.8 is the extended variant of Lemma 5.2 for output feed-
back motion control, with an additional output related to the observer error µe.
Importantly, the condition in (5.66) is purely determined by the state-space of the
FRM’s shape. To satisfy the secant condition in (5.66), it is worth noting that
the matrices P (q̇) and Al, ad⊤

Al q̇
Λb are upper bounded as,

||P (q, q̇)|| ≤ κ1||q̇||, ||ad⊤
Al(q)q̇

Λb(q)|| ≤ κ2||q̇||. (5.69)

Thus, the secant condition of Lemma 5.8 is satisfied by choosing Hess(Ψ) Db, Dq,
i.e., the gain parameters for the observer and motion control law, respectively, in a
way that dominates the q̇-dependent upper bounds. This aspect of dominating the
velocity-dependent terms was observed also in output-feedback control of fixed-base
robotic mechanisms, see [141].

5.5 Sensory/Model Extension of IM-PBC

In this section, I extend the proposed IM-PBC to include additional sensing and
model information, which serves as a template for motion control of the FRM.
The following extensions are not strictly required, but provide a stronger passivity
property for the closed-loop system. Rather than performing a passivity analysis
of these extensions case by case, only the fully-extended case is analysed, and the
nuances are remarked.
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5.5.1 Velocity: Sensing and Models

In many scenarios, the FRM-base velocity, Vb, might be available from the local-
izer or the navigation filter if an IMU is integrated into it. In this case, a measure-
ment of µ is available using the relationship µ = Vb +Alq̇ in (5.4). However, the
estimation of IMU biases and the exteroceptive nature of the pose measurement
of gb in the localizer makes the velocity estimate outlier-prone, and also possibly
slow-sampled (as in the case of orbital robots). The ROAM-2 ISS experiment for
the Astrobee free-flyer highlighted this aspect, as shown in Fig. 5.3. Hence, it
is advantageous to use the effort-flow framework of the IM-PBC from Fig. 5.2b
and extend it to use the available µ measurements in the IM-PBC-observer. In
this way, the proposed IM-PBC can predict µ̂ based on the effort applied, and
serve as a fault detection algorithm in case of measurement outliers. To that end,
the error injection, Fo, in (5.26) is determined using the negative differential of
a Rayleigh dissipation function on the velocity error, µe, as,

Fo1 = −dµeWe = −Dµµe, We = 〈µe, µe〉Dµ (5.70)

Note that Fo serves to increase the OSP index of Lemmas 5.4 and 5.7, and
hence Σ1 has a stronger dissipation.

In some situations, the FRM might be additionally constrained with a holo-
nomic or a homogeneous non-holonomic constraint, e.g. a humanoid in a non-
slipping single or double support phase has zero feet velocities. In this case, the
proposed IM-PBC-observer is extended to consider such pseudo measurements.
For the holonomic case, let the constraint act at a material point {X} of the
FRM, such that the constraint is either SE(3), or its subgroup. Suppose that the
dimension of the constraint space is d, and its position is denoted as gx, which is
given by a forward kinematics map, gx = f(gb, q) = const., and translates to a
velocity-level constraint as,

Vx = (g−1
x ġx) =

[

T1(q) T2(q)
]

︸ ︷︷ ︸

T (q)

[

µ
q̇

]

= 0 (5.71)

where T ∈ Rd×(n+6) is the Jacobian (push-forward), i.e., df(ξ) = T (q)ξ. Note
that form in (5.71) is also applicable to homogeneous non-holonomic constraints.
The corresponding estimated constraint velocity at {X} is V̂x = T (q)ξ̂, yielding
the constraint velocity error as, Ve = Vx − V̂x = T1(q)µe. The error injection term
at {X} is based on the negative differential of a Rayleigh dissipation function,
Wx = 1

2
〈Ve, Ve〉Dx > 0, as −dVeWx = −Dx(T ξ − T ξ̂) = −T ξ̂, which is pulled

back to {B} as

Fo2 = −T ⊤
1 DxT ξ̂ = −T ⊤

1 DxT (ξ − ξ̂) = −T ⊤
1 DxT1µe (5.72)

Remark 30. In case d < 6, the error injection due to the constraint alone in
(5.48) does not strictly increase OSP index of Σ1 through Lemma 5.4, as the
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correction is restricted to the constraint directions only. However, it serves to use
the pseudo-measurements for improving the internal model locked velocity, µ̆.

In view of the aforementioned treatment, the Ver(LP) observer equations
in direct IM-PBC, (5.26), and subsystem IM-PBC, (5.48), are extended with
velocity measurements and constraint models as,

Ver(L̂P)• = F̃b + l.dΨ(η)−Dµµe − T1(q)⊤DxT (q)

[

µ̂o
q̇

]

(5.73)

5.5.2 Force: Sensing, Models and Estimation

In many cases, the disturbance wrench, Fd, (or a component of it) might be
available through an explicit measurement from a FTS, e.g. the foot contact of
a humanoid, or a wrench model of the disturbance, e.g. the Voxelmap-Pointshell
(VPS) algorithm [200] for contact wrenches. In this case, simply using Fo3 = Fd
simplifies the OSP map in Theorem 5.1 for direct IM-PBC as (Fd, τd) 7→ (µ, q̇)
and the OSP map in Lemma 5.7 as (τd 7→ q̇), i.e., the contribution of µe to the
output is completely eliminated.

However, instead of directly introducing Fd into the feedback loop, it can
be estimated using the proposed IM-PBC-observers. In particular, the IM-PBC
is further extended to estimate the unmodeled wrench for purposes of contact
detection. To this end, the following assumption is required for convergence (if
Fd is not directly measured).

Assumption 5.3. The disturbance wrench Fd is a constant (quasi-static) distur-
bance, i.e., Ḟd = 0.

Let the estimate of Fd be denoted as F̂d ∈ R6 ∼= se(3)∗, which is trivialized at
at {B̂}. As pointed out in Sec. 5.4.1, the Adη operator provides a transport for
the force as Ad⊤

η F̂d trivialized at {B}. Thus, the force estimation error is defined
as, Fe = Fd −Ad⊤

η F̂d. The observer for the force estimation is proposed as,

d

dt
(Ad⊤

η F̂d) = −Kµµe −KfFe, Fo3 = Ad⊤
η F̂d, Kµ, Kf ∈ R

6×6 ≻ 0 (5.74)

Hence, combining the contributions to Fo using all the above additional mea-
surements and model information, Fo =

∑3
i=1Foi,

Theorem 5.3. Given the FRM with equations of motion as in (5.3), the proposed
IM-PBC extended with additional measurement and model information through
Fo as,

Fo = −Dµµe − T ⊤
1 DxT ξ̂ + Ad⊤

η F̂d (5.75)

has the following consequences.
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The direct IM-PBC in Theorem 5.1 is OSP,
[

Fd
τd

]

7→
[

µ−Alq̇
q̇

]

(5.76)

with the storage function H′ = W ′(η, µe, q̇)+W(µ)+Φ(gb, q), where the subsystem
function for Σ1 is augmented as W ′ = W (η, µe, q̇) + 〈Fe, Fe〉K−1

µ
.

For the subsystem IM-PBC, the shape and observer subsystem (Σ1) in Lemma
5.7 is OSP,

τd −A⊤
l Fd 7→ q̇ (5.77)

where the subsystem storage function for Σ1 is augmented as W ′, as for direct
IM-PBC.

Proof. Firstly, for direct IM-PBC, using the time-derivative of W from (5.38) in
Lemma 5.4, and applying (5.75), d

dt
W ′ yields,

Ẇ ′ ≤− σ(lH + D)||µe||2 − σ(D̃q)||q̇||2 − σ(Kf)||Fe||2 + 〈−Db(q)µ, lµe〉

+
〈

(τd −A⊤
l Fd) + (

Dl̂µ
Dq
−A⊤

l Db(q)µ)−
(

dqΦ−A⊤
l dbΦ

)

, q̇
〉 (5.78)

where D = Dµ + T ⊤
1 DxT1. Using (5.78), with Lemmas 5.5 and 5.6, the result

follows straightforwardly from Ḣ′.
Similarly, for subsystem IM-PBC, computing the time-derivative of W ′,

Ẇ ′ =≤ −σ(Hess(Ψ) + D)||µe||2 − σ(Dq)||q̇||2 + 〈τd −A⊤
l Fd, q̇〉 (5.79)

which proves the result.

Remark 31. Note that, (5.78) yields the OSP map, (−Dbµ, τd−A⊤
l Fd) 7→ (lµe, q̇),

which is satisfied even if Kf , Dµ < 0 (not strictly positive-definite). Hence, the
extensions with velocity measurements, FTS or a force model, are not strictly
required. However, if available, the observer performance can be improved by
exploiting them in the proposed framework.

5.5.3 Integral Action for Ver(LP) in Direct IM-PBC

In Theorem 5.3, I provided a variation of the IM-PBC methods that are capable
of estimation of disturbance wrenches, Fd. In practice, Fd might be required for
motion control of the FRM. In Fig. 5.5, I highlighted the problem of limit cycles
generated in the FRM during coordinated control of the shape and its base. This
issue arises specifically in direct IM-PBC, when symmetry-breaking potentials
are used, e.g. end-effector pose and base control simultaneously. In such cases,
the differential of the potential projects to the shape as dqΦ and the group as dbΦ,
as is observed in (5.43). It is often assumed that these commanded forces are
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realized uniformly. However, due to heterogeneity in actuation, this is seldom the
case. In particular, the limit cycles are generated due to a combination of static
friction (τd), and the slow actuator dynamics of the FRM-base, which create a
regenerative feedback loop. The net effect is that a resultant Fd enters the control
loop, where Fd is the disturbance wrench representing the magnitude of failure
of the actuators to achieve the commanded forces. In this case, Ad⊤

η F̂d, can be
exploited to provide an integral action in the momentum equation (Ver(LP)).

Lemma 5.9. Consider the FRM with LP dynamics in (5.3), for which the di-
rect IM-PBC control approach in Theorem 5.3 is utilized. Instead of adding the
estimated disturbance wrench Ad⊤

η F̂d to the observer loop through Fo, consider it
added to the external actuation loop as,

Fb = F b + F̃b + F̂b − Ad⊤
η Fd (5.80)

In this case, the closed-loop LP dynamics is OSP,
[

Fe
τd −A⊤

l Fd

]

7→
[

µ
q̇

]

(5.81)

with the storage function, H′, from Theorem 5.3.

Proof. The time-derivative of the augmented storage function W ′ for the observer
and shape subsystem, Σ1, remains the same as in Theorem 5.3. For the Ver(LP)
equation (Σ2), computing the time-derivative of W using (5.80), the passivity
map in Lemma 5.5 changes to,

Σ2 :






Fe − dbΦ(gb, q)
−q̇
µe




 7→







µ
Dl̂µ
Dq
−A⊤

l Db(q)µ

Db(q)µ







(5.82)

Finally, the time-derivative of H′ yields the result.

Remark 32. By adding an integral action to the motion control of the momentum
subsystem, i.e., Ver(LP) dynamics, we forego its ability to provide a compliant
response to a interaction-borne disturbance wrench in Fd. However, note that the
shape (joints) does not actively perform disturbance rejection through the integral
action in Lemma 5.9. Thus, for interaction-oriented tasks, the shape exhibits a
compliant behaviour if the interaction occurs along the structure that includes the
shape.

5.6 Validation of the Proposed Methods

In this section, I provide the validation of the subsystem IM-PBC and direct
IM-PBC through simulation and experimental results, respectively.
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5.6.1 Simulation Results: Subsystem IM-PBC

An orbital robot was considered as the FRM with spacecraft (FRM-base) mass,
mb = 350[Kg], and principal inertia moments, Ib = blkdiag(128, 147, 147)[Kg.m2].
A KUKA LWR4+ manipulator with with n = 7 joints and parameters reported in
[27] was considered as the articulated mechanism of the FRM. Note that in orbit,
U(gb, q) = 0, i.e., there is no symmetry-breaking potential field on the unforced
FRM and (F̂b, τ̂ ) = (0, 0) in (5.20). In this validation, the main goal is to demon-
strate the convergence properties and estimation performance of Σ1 subsystem,
which is prioritized in subsystem IM-PBC. To this end, the symmetry-breaking
task potential was not considered, i.e., Φ(gb, q) = 0 and (F̃b, τ̃) = (0, 0), the the
total damping in (F b, τ) was restricted to the shape, i.e., F b = 0. This allows
evaluating the convergence properties of Σ1. A shape-space stiffness potential was
chosen as Φq = 1

2
〈∆q,∆q〉Kq , where qd, qdi = qi(0) + 3° was the desired set-point.

The control law parameters were chosen as,

Kq =blkdiag(6, 6, 4.8, 4.8, 1.2, 1.2, 1.2)[Nm/rad.]

Dq =blkdiag(0.4, 0.4, 0.3, 0.2, 0.1, 0.1, 0.1)[Nm/(rad./s)]
(5.83)

Note that, the parameters Kp, Dq were chosen to have an underdamped motion
with a large settling time (> 20[s]) to emphasize the convergence properties even
during rapid shape motions.

5.6.1.1 Convergence of Σ1

For analysing the convergence property of method, 10 simulations were performed
with uniformly distributed initial conditions as follows,

vbi(0) ∈ [−0.1, 0.1][m/s], ωbi(0) ∈ [−0.1, 0.1][rad./s]

pbi(0) ∈ [−0.3, 0.3][m], Rb(θb) : θbi(0) ∈ [−30, 30]°
(5.84)

The observer states were initialized as ĝb = I4,4 and µ̂ = 06. The observer poten-
tial was paratermized as Ψ(η) = 1

2
〈ǫ, ǫ〉kI6,6 , where ǫ = log(η)∨ is the parameter-

ized observer pose error in exponential coordinates, log : SE(3) → se(3) is the
group log map (see [9]). Its parameters were set as k = 2.7, l = 450. In Fig. 5.9a,
the convergence is shown through the Lyapunov function, W (top-left), and its
constituents for 10 simulations. In particular, W is seen to be non-increasing
(plot inset). This validates the uniform stability proved in Lemma 5.7. Note that
after t > 5, the biggest contributing factor to W is the shape-space energy, i.e.
W3 + Φq (top-right). In the inset, I show that d

dt
(W3 +Φq) > 0 during t > 0. This

is due to the interconnection term, 〈q̇, Dl̂µ
Dq
〉 > 0, during the observer convergence

phase. After the observer converges, t > 1, d
dt

(W3 + Φq) ≤ 0. In fact, this is ex-
pected, since {W3 +Φq|W1 +W2 = 0} is the Lyapunov candidate for the full state
feedback case. In the bottom row, the pose error energy, W1, and velocity error
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kinetic energy, W2, are shown to converge. Note that, in the plot insets although
W1,W2 are non-decreasing but overall Ẇ ≤ 0, which proves asymptotic stability
of Σ1.
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Figure 5.9: Convergence evidence of Subsystem IM-PBC.

5.6.1.2 Sensor characteristics and Disturbances

In this part, the effectiveness of the subsystem IM-PBC-observer is established,
while considering sensor characteristics of the exteroceptive sensor and spacecraft
disturbances. The sensor is simulated with sampling time of 0.1[s] and a Gaussian
noise model as g̃b = gb exp(γ∧), where γ ∈ R6 ∼= se(3) has a mean 06 and variance
5e−5I6,6. In the following, ei, i = 1, 2, 3 (4, 5, 6) are the rotational (translational,
respectively) basis of the frame {B} in xyz convention. A disturbance force, Fd,
in e2, e4, e6 basis of {B} was applied, see top-left of Fig. 5.9b. I performed 15
simulations with initial conditions given in (5.84) and the observer initialization
with 30% error in its states

(

ĝb(p̂b, R̂b(θ̂b)), µ̂b
)

. In Fig. 5.9b, I highlight the
convergence results for one simulation. The pose errors (top-right) converge at
t = 7, after which it is shown that the estimates (solid) have a smaller variation,
in contrast to the measurements (×). At the same time, in the bottom row, the
estimates (solid) of linear (left) and angular (right) velocities converge to the
ground-truth (dashed). At t > 7, the effect of Fb on Vb is tracked by the estimate
despite slow-sampled measurements.

The observer’s error statistics for the last 5[s] were evaluated for N = 15
simulations. The standard deviation for the estimation errors in position, rb, and
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Figure 5.10: Velocity convergence in Subsystem IM-PBC.

orientation, ψb, varied between [1, 3.5][mm] and [0.1, 0.18][°], respectively, which
was lower than that of the measurements, [6.2, 7.5][mm] and [0.36, 0.41][°]. In
Fig. 5.10a, for the velocity errors, Ve = [ω⊤

e v⊤
e ]⊤ = Vb − V̂b, the histograms for

linear (ve, left) and angular (ωe, right) parts are reported, which are in the range
of ±1.8[mm/s] and ±0.02[°/s], respectively.

To emphasize that the proposed observer equations do not require a rigidized
system for convergence, I considered a lighter spacecraft (20% of mb, Ib) for valida-
tion. Fig. 5.10b shows that V̂b (left) in solid colours converges to the ground-truth
(dashed) despite high variation of ||q̇|| (right), and its effect on Vb is tracked well
by V̂b in all components.

5.6.2 Experimental Results: Direct IM-PBC

While the previous subsection focused on the observer performance, here I focus
on the full motion stabilization of the FRM at DLR OOS-SIM, while using an
exteroceptive measurement of group state-space (gb, Vb). The DLR OOS-SIM, see
Fig. 5.11, is a hardware-in-the-loop facility to simulate FRM dynamics, especially
for orbital robots. The FRM consists of a KUKA-LWR4+ (orange manipulator)
with n = 7 joints as the articulated mechanism, and the FRM-base (spacecraft
mock-up with gold insulation) is computed using a rigid multibody dynamics
model, and effected using an industrial KUKA-KR120 robot [201].

For the experiment, an orbital robot was considered with mass 800[Kg], and
principal inertia moments blkdiag(800, 600, 500)[Kg.m2]. While gb was obtained
directly from an image-processing algorithm (see [73] for details), Vb was obtained
using the direct kinematics of the KUKA-KR120 robot. Since the OOS-SIM pro-
vides a 0− g environment, U = 0, or (F̂b, τ̂) = (0, 0). The control task was posed
as regulation of the end-effector about a setpoint (star) in Fig. 5.11, which was
(0, 0, 0.1)[m] and (5, 0, 0)[deg] from its initial configuration, and also the regula-
tion of its spacecraft pose, which was (0.02, 0.02, 0.02)[m] and (5, 0, 0)[deg] from
its initial configuration. The sensory information was considered as (gb, Vb, q, q̇),
in which (gb, Vb) was available only at 10[Hz], while the spacecraft actuation Fb
was limited to 10[Hz]. The values for sensing and actuation of the FRM-base are
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representative of the typical Guidance, Navigation & Control (GNC) bus speeds
in space robotics [179].

camera

End-effector

Setpoint

Base

Setpoint

{O}

{O}

{B}

{Bd}
gb

Figure 5.11: Experimental setup for validation of direct PBC. Left: Orbital robot
on DLR OOS-SIM; Right: Image processing to obtain gb, i.e., pose of {B} relative
to {O}.

5.6.2.1 Motion Control without Integral Action

In the first experimental validation, the direct IM-PBC was implemented with-
out any integral action (Sec. 5.5.3) for disturbance rejection. Due to this, the
following results exhibit the limit cycle behaviour, I introduced in Fig. 5.5. How-
ever, the results still serve to provide insights into performance characteristics.
The experimental results are shown through the Figures 5.12-5.15. In Fig. 5.12,
the FRM-base pose gb(pb, θb) are shown for the image-processing measurements
(blue) and the internal state of the direct IM-PBC, ĝb. The desired setpoint for
the FRM-base, which was (−0.02,−0.02, 0.02)[m] and (−3, 2,−4)[deg] from its
initial configuration, is also shown (yellow dashed). Firstly, note that the observer
imparts a filtering effect, in contrast to the noisy camera signals, while tracking
the oscillatory dynamics (due to the limit cycle) of the FRM-base. Thus, the
observer does not introduce a perceptible phase lag like a first order filter. Also
observe that the limit cycles are occurring about the equilibrium (setpoint), i.e.,
the velocities have a 0-crossing, which is symptomatic of deadzone non-linearity.
This is verified by juxtaposing the 0-crossings of µ in Fig. 5.12. It is worth high-
lighting that despite fast oscillatory dynamics and 10[Hz] vision-based feedback,
the observer estimate tracks the measurement well. The combined heterogeneous
actuation of the shape, τ , and the FRM-base is shown in Fig. 5.14, which illus-
trates the source of the limit cycle. Finally, although the Ad⊤

η F̂d was not used in
feedback, I provide the estimated disturbances in Fig. 5.15. This hints towards
the disturbances that are likely to appear from the heterogeneous actuation, since
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the FRM did not undergo any interactions.
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Figure 5.13: Locked velocity, µ. Top row: Linear component (µv); Bottom row:
Angular component (µω). Measurement in blue, and observer output µ̂o in red.

5.6.2.2 Motion Control with Integral Action

To attenuate the limit cycle, the integral action in the FRM-base action (see (5.80)
in Sec. 5.5.3) is exploited. The experimental results are shown through Figures
5.16-5.21. It is observed in the plots that the limit cycle is attenuated. In Fig. 5.16,
the vision-based measurement (blue) and the observer internal estimate, ĝb, are
shown. In particular, in pbz and θbx subplots, outliers are noted at t = 8, 23[s],
respectively, in the measured data. However, the observer remains physically
consistent, which results in a continuous estimate of µ in Fig. 5.17. Note that
a naive differentiation with such outliers would result in discontinuous feedback.
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Center: FRM-base forces (Fb); Right: FRM-base torque (Fb).

0 20 40 60 80
-4

-2

0

0 20 40 60 80
-4

-2

0

0 20 40 60 80
-2

0

0 20 40 60 80
-2

0

0 20 40 60 80
-4

-2

0

0 20 40 60 80
-2

-1

0

1

2

22

2

22

44

4

F̂
d
1
[N

]

F̂
d
2
[N

]

F̂
d
3
[N

]

F̂
d
4
[N

.m
]

F̂
d
5
[N

.m
]

F̂
d
6
[N

.m
]

t[s]t[s]t[s]

t[s]t[s]t[s]

Figure 5.15: Estimated disturbance, F̂d. Top row: Forces; Bottom row: Torques

Fig. 5.17 shows the net momentum of the FRM being damped.

Two symmetry-breaking tasks were considered for the poses of the FRM-base
and the end-effector of the manipulator. In Figures 5.18-5.19, the desired set-
points (dashed blue) and the actual state (red) are shown. In particular, Fig. 5.18
shows the position of the control tasks for FRM-base (top) and end-effector (bot-
tom), and Fig. 5.19 shows the corresponding orientation values. The plots indi-
cate successful execution of the motion control tasks. A slightly underdamped
behaviour is exhibited owing to the 10[Hz] actuation of the FRM-base, which has
been highlighted in the insets of Fig. 5.20 for Fb. Fig. 5.20 shows the combined
effort applied to achieve the tasks. Note that in contrast to (5.14), limit cycles are
attenuated. The final offsets in τ are attributed to gravity compensation errors
in the facility and static friction in the manipulator. The estimated disturbance,
F̂d, which is exploited in the control law is shown in Fig. 5.21. It can be seen that
the disturbances are at their highest magnitudes at the initial phase of motion,
and get attenuated over time due to the control action.
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Figure 5.16: Group variable, FRM-base pose gb(pb, θb). Top row: Position; Bot-
tom row: Orientation (Euler parameterizationXY Z). Vision-based measurement
in blue, observer state ĝb in red, and setpoint for control task in dashed yellow.
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Figure 5.17: Locked velocity, µ. Top row: Linear component (µv); Bottom row:
Angular component (µω). Measurement in blue, and observer output µ̂o in red.

5.6.2.3 Motion Control during Interactions

The key driving factor behind the direct IM-PBC design was to enable a compli-
ant behaviour during interactions. Hence, in the next validation, the controller
response (with integral action) is evaluated during interactions. External forces
were applied to the FRM by pulling the string attached to the gripper in Fig. 5.11.
The key experimental results are shown in Figures 5.22-5.25. The controller was
engaged at t = 8[s], and two interaction events were performed at t = 36.5[s] and
t = 51.5[s]. In Fig. 5.22, the vision-based measurement and observer estimate
of gb are shown together. During the interaction events, it can be seen that the
measured data exhibits outliers up to 5[cm], but the observer estimate is unaf-
fected by it. In particular, during the interactions, the FRM gets displaced from
its equilibrium compliantly. The integral action should intuitively weaken the
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Figure 5.19: Regulation of symmetry-breaking tasks. Top row: FRM-base orien-
tation; Bottom row: End-effector orientation.

compliant behaviour in the Ver(LP) dynamics. However, in the direct IM-PBC
design, the symmetry-breaking potential projects to the FRM-base actuation, see
Fig. 5.7. Consequently, the task-related wrench generates a compliant FRM-base
displacement corresponding to the end-effector displacement, when interactions
occur. This is also exhibited in the time-evolution of µ in Fig. 5.23, which sta-
bilizes to 0 after removal of the external interactions. The coordinated effort
applied by the shape (τ) and the FRM-base (Fb) are shown in Fig. 5.24. It is
seen that during interactions, both subsystems generate control actions to ensure
a force balance compliantly. The estimated disturbances are shown Fig. 5.24, and
in particular, F̂d1, F̂d3, F̂d5 show the directions along which the interactions were
directed. It can been that the direct IM-PBC observer was able to estimate the
disturbance wrench accurately. This proves that the proposed direct IM-PBC is
not only compliant but also a contact-aware control approach.
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Figure 5.20: Total actuation for the direct IM-PBC. Left: Shape actuation (τ);
Center: FRM-base forces (Fb); Right: FRM-base torque (Fb).
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Figure 5.21: Estimated disturbance, F̂d. Top row: Forces; Bottom row: Torques

5.7 Conclusion

In this chapter, a novel IM-PBC framework was proposed to achieve full mo-
tion stabilization of an LP system, namely the FRM. Within the framework,
two methods, namely direct IM-PBC and subsystem IM-PBC were provided.
While the former exploited the passivity of the LP dynamics in the presence
of a symmetry-breaking potential, the latter prioritized the shape subsystem’s
convergence. Both approaches used a minimal set of measurements from the
shape state-space and the exteroceptive group variable for motion stabilization,
even in the presence of symmetry-breaking potentials. The key novelty was the
use of the LP dynamics to exploit, firstly, the block-diagonal inertia to obviate
shape acceleration measurements and, secondly, the properties in the CC matrix
to aid the stability analysis. Both approaches were proved to be asymptotically
stable and OSP in the absence and presence of disturbances, respectively. The
effectiveness and convergence properties of subsystem IM-PBC were validated
through simulation results, while direct IM-PBC was validated experimentally at
the DLR OOS-SIM. The proposed control framework was shown to be extensi-
ble with additional measurements if available, and therefore, is applicable to a
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in blue, observer state ĝb in red, and setpoint for control task in dashed yellow.

0 50 100

×10-3

-2

0

2

4

0 50 100

×10-3

-10

-5

0

5

0 50 100
-0.02

-0.01

0

0.01

0.02

0 50 100

×10-3

-2

-1

0

1

0 50 100
-0.02

-0.01

0

0.01

0.02

0 50 100
-0.01

-0.005

0

0.005

0.01

meas est

µ
v
x
[m

/s
]

µ
v
y
[m

/s
]

µ
v
z
[m

/s
]

µ
ω
x
[r

ad
./

s]

µ
ω
x
[r

ad
./

s]

µ
ω
x
[r

ad
./

s]

t[s]t[s]t[s]

t[s]t[s]t[s]

Figure 5.23: Locked velocity, µ. Top row: Linear component (µv); Bottom row:
Angular component (µω). Measurement in blue, and observer output µ̂o in red.

wide variety of FRMs. The approach was proved to be contact-aware, and im-
portantly, address the problems of heterogeneity in sensing and actuation within
the FRM construction. Although kinematic/dynamic uncertainty in Λb, S, P and
spacecraft-actuator model errors (Fb) is a limiting factor for the framework’s per-
formance, the performance benefits of a model-based fast-feedback due to the
observer was shown to be effective for motion control. The publications resulting
from the contributions of this chapter are:

1. H. Mishra, M. De Stefano, A. M. Giordano, and C. Ott, “A nonlinear
observer for free-floating target motion using only pose measurements”, in
2019 American Control Conference (ACC), 2019, pp. 1114–1121

2. H. Mishra, M. De Stefano, A. M. Giordano, and C. Ott, “Output feed-
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Figure 5.24: Total actuation for the direct IM-PBC. Left: Shape actuation (τ);
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Figure 5.25: Estimated disturbance, F̂d. Top row: Forces; Bottom row: Torques.

back stabilization of an orbital robot”, in 2020 59th IEEE Conference on
Decision and Control (CDC), 2020, pp. 1503–1501
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A. Kugi, “Reduced Euler-Lagrange equations of floating-base robots: Com-
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pp. 1–19, 2022
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The shape-prioritized control approach presented here is the key principle be-
hind hierarchical motion control. The shape here assumes the role of the primary
task, whereas the symmetry-breaking potential assumes the role of the secondary



5.7 Conclusion 157

task. However, the hierarchy was possible because the FRM is a special LP
system with a Lie group as its fiber. Therefore, for general EL systems, it is
evident that this structure needs to be replicated using inertia shaping. This
approach will be employed in the next chapter. A key motivating factor behind
the proposed IM-PBC approach is to close the loop with the perception system,
see Fig. 5.2b. This will enable the latter’s point-set registration algorithm to
exploit the predicted output of the IM-PBC as a priori information to improve
perception performance and reduce computational time. By closing the loop be-
tween mechanical effort and optical flow, the goal is to impart a muscle memory
for fast-reaching agile movements in the FRM. This active perception-oriented
control approach will be pursued as a sequel to this work.





CHAPTER 6

Task-induced Variational Symmetry in Motion Control

“ Noether symmetry reflects invariance under a transformation,
and therefore there must exist a quantity that remains invariant
or conserved [203]. ”

Gian F. Giudice, A Zeptospace Odyssey: A Journey into the
Physics of the LHC, 2009

6.1 Introduction

A large class of contemporary engineering systems, e.g., mechanical systems, are
modeled as EL systems, which are based on variational principles emerging from
the definition of energy functions [3]. The interrelated methods of PBC [3] and
CL [5, pp. 467–514] are popular approaches for motion stabilization of EL sys-
tems. While the latter includes shaping of kinetic energy and the scalar potential
in the Lagrangian, the former usually leaves the kinetic energy (metric tensor)
unchanged. In this context, the full-motion stabilization, either in the config-
uration space or as a local diffeomorphism to an alternative operational space,
is well-understood. The latter has been useful for multiple task-specific motion
control, e.g., in robotic systems, using the superposition of impedances [204], see
RMP Flow framework by [205]. However, quite often, it is required to establish
the notion of hierarchy (or priority), see right of Fig. 6.1, when the EL system
is redundant, i.e., it has more Degrees-of-Freedom (DoF) than the task-specific
motion [206], [207], [52], [208], [209], [210], [211, §2.3.2].

159
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6.1.1 Related Work

The two levels of hierarchy in [207] was extend to N arbitrary levels in [52],
while the tracking case for N levels was addressed in [209]. In the above works,
a matrix transformation of the tangent space was used to rewrite the original
EL dynamics as the dynamics of a subspace called the primary task and decou-
pled nullspace velocities. The off-diagonal CC terms were compensated to prove
Lyapunov stability with semi-definite functions. However, such a transformation
lacks a physical intuition because the underlying physical principle is concealed
[56]1. In fact, due to matrix transformations, the exact nature of the dynamics
and the closed-loop inertia metric tensor was not clearly known, which forced the
usage of semi-definite functions. Moreover, it is not clear if the control solution
is variational, i.e., does there exist a CL for the control problem?. Without a
Lagrangian framework, it is difficult to query geometric properties like: Does the
closed-loop system possess a symmetry (momentum conservation)? Is a geodesic
in configuration space also a geodesic in prioritized subspace? Do there exist nat-
ural energy functions in subspaces?

Motion on a subspace, like task-specific motion, are often encountered in ge-
ometric control, in which NPS is used to perform dynamics reduction. In [5,
Ch. 9], energy-based motion stabilization was shown for nonholonomic systems
with symmetry. In [212], systems with Killing vectors, i.e., directions of symme-
try in the inertia tensor, were exploited for reduction to achieve simultaneous
stabilization of relative equilibria (shape) and a non-stationary motion along
symmetry. However, in such systems, the symmetry is evident already in the
Lagrangian. Generally, EL systems might not possess natural symmetries along
desirable directions (primary subspace). However, motion control might require
the imposition of symmetry by virtue of hierarchy (or priority). To this end,
in [213], the concept of task-induced Lie group symmetry was introduced for a
needle-steering system, however, at a purely kinematic level. Thus, the concept
of task-induced symmetry for EL systems is an open research topic.

6.1.2 Motivating Case

This work is inspired by the PFB [5] topology of the FRM, i.e., its configuration
consists of Lie group (SE(3), see Fig. 6.1), which acts isometrically w.r.t. the
inertia metric tensor [56]. In other words, the Lie algebra of this symmetry
group acts as Killing vectors for the inertia, i.e., the inertia does not change
along the group variable. In general, for any EL system, the kinematics of the
high priority task defines an algebraic symmetry, i.e., task-specific orthogonal
decomposition of the tangent space. However, the algebraic symmetry is not
necessarily a variational (dynamics) symmetry of the EL system. Hence, the

1This was shown for the FRM in Chapter 3, but is generally a problem with matrix trans-
formations.



6.1 Introduction 161

Q = T6

Q = SE(3)× T7

(Q = T3)
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7)

Momentum

Momentum
Shape

Figure 6.1: Lie group symmetry results in reduction of dynamics into shape and
group subspaces. Left: A FRM with the set of joints as the shape-space, while
the SE(3) group defines the conserved momentum direction. Right: Hierarchy in
motion control of a fixed-base robot, the shape-space comprises of the last three
joints, while the nullspace momentum determines motion along the fiber.

key idea in this work is the generation of synthetic symmetry w.r.t. the primary
operational space task, so that the induced metric tensor is invariant to the
motion along the nullspace directions. This symmetry decomposes the dynamics
into those corresponding to the internal shape (for the task), and a conserved
momentum, as in the case of the FRM. In particular, control actions generate
a topological PFB. This physical intuition in the proposed method of imposing
hierarchy was missing in former approaches [206], [207], [52], [208], [209].

6.1.3 Key Contributions

The key novelty in this work are the following.

1. In Lemma 6.5, I develop the Symmetry Generating Controller (SGC), which
performs a CC compensation to transform the general EL system into an
LP system with symmetry along the nullspace to the primary operational
space. In this LP system, the primary space acts as the internal shape,
while the vertical subspace (nullspace) serves as Killing vectors.

2. In Lemma 6.9, an additional CC compensation is performed in the shape
dynamics of the resulting LP system so that its closed-loop behaviour is
characterized by a time-invariant electromagnetic geodesic. The magnetic-
like effect is due to the conserved momenta (vector potential) along the
nullspace (Killing vectors). To the best of my knowledge, this Lagrangian
framework for hierarchical control of an EL system has never been proposed
before. As a result of this formulation, the shape subsystem is proved to be
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stable using its natural energy (Hamiltonian) as the Lyapunov candidate,
in contrast to [207] which required semi-definite functions.

3. For a secondary task using the fiber (nullspace), the controller design uses
two approaches for stabilization. Firstly, in Theorem 6.1, the fiber energy
is used in stabilization. Secondly, in Theorem 6.2, the squared momentum
Casimir invariant is used in the Lyapunov function, which is also conserved
due to the symmetry in the LP system.

4. The proposed approach is validated through simulations and experiments
that emphasize the correctness of the proposed theory.

5. I bring forward the concepts of symmetry, submersion and Killing vector
fields from geometric mechanics, to provide a physically intuitive solution to
the problem of hierarchical motion control of EL systems with redundancy.

The paper is structured as follows. In Sec. 6.2, the preliminary concepts of
Killing vector fields and symmetry generation is provided. To impose a task-
hierarchy, the task-induced fiber bundle is introduced in Sec. 6.3. In Sec. 6.4, the
horizontal subspace is introduced to write the EL equations on the fiber bundle in
Sec. 6.5. In Sec. 6.6, the SGC is derived with relevant stability/passivity analysis.
The SGC is validated through simulations in Sec. 6.7 that highlight conserved
quantities. Finally, the concluding remarks are outlined in Sec. 6.8.

6.2 Preliminaries

In this chapter, the EL system in (2.15) from Chapter 2 is considered, and the
equations are reported here for completeness.

d

dt

δL

δq̇
− δL

δq
= τ̃ (Lagrangian), ∇q̇ q̇ = (τ̃ − ∂V

∂q
)♯ (Riemannian) (6.1a)

M(q)q̈ + C(q, q̇)q̇ = τ̃ − ∂V

∂q
, (Robotics) (6.1b)

Assumption 6.1. Given the EL system in (2.15), the effect of V is removed for
potential shaping [13], i.e., τ̃ 7→ τ̃ = ∂V

∂q
+ τ .

Assumption 6.1 is standard in motion control, see [207], and τ is used to
design the relevant proportional actions in this paper.

Property 6.1. Given the EL system descriptions in (2.15), the motion dynamics
satisfy the passivity property for τ = 0, correspondingly written as,

d

dt

(

〈δL
δq̇
, q̇〉 − L

)

= 0 [3, eq. 2.10], 〈∇q̇ q̇, q̇〉M = 0[10, eq. 2] (6.2a)

〈q̇,
(

Ṁ − 2C(q, q̇)
)

q̇〉 = 0 [8, Lemma 4.2] (6.2b)
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A corollary of this property is that it remains invariant under the action of an
invertible linear map, ξ = T (q)q̇, i.e., the dynamics in terms of ξ also satisfies
passivity [8, Lemma 4.11].

In the following Lemma, I derive the Killing equation from Sec. 2.3.1 in a
robotics notation as the contribution to make it accessible. This will be useful in
designing the control action to generate symmetry of the kinetic energy.

Lemma 6.1. Consider the system in (2.15), the Killing equation in (2.24) can
be rewritten as,

LξK =
1

2

〈

q̇,
(

Mv(q, ξ) + P (q, ξ)
)

q̇
〉

= 0 (6.3)

where Mv ∈ Rn×n is the symmetric Inertia Velocity matrix (Def. 2.15), which is

written as Mv(q, q̇)q̇ = Ṁq̇, and P =
(
∂ξ(q)
∂q

)⊤
M(q).

Proof. The metric for the EL system in (2.15) is K(q, q̇) = 1
2
〈q̇, q̇〉M . Computing

LξK using (2.20),

LξK =
1

2
〈ξ, ∂〈q̇, q̇〉M

∂q
〉+ 〈ξ̇,Mq̇〉 =

1

2
〈ξ,Md(q, q̇)

⊤q̇〉+ 〈∂ξ(q)
∂q

q̇,Mq̇〉

=
1

2
〈q̇,Mv(q, ξ)q̇〉+ 〈q̇, P (q, ξ)q̇〉 = 0

(6.4)

where in the second line, Md ∈ Rn×n is ∂〈x,y〉M(q)

∂q
= M⊤

d (q, x)y for x, y ∈ TqQ, and
called the Inertia Derivative matrix, see Def. 2.15. In the second line, the property
Md(q, x)y = Mv(q, y)x [127, Prop. 6] is used for simplification of the first term
for the result.

6.2.1 Symmetry Generation: Concept

In the following, a general concept for creating synthetic symmetry is derived.
This is the core idea behind this chapter. A preliminary approach towards this
was shown in [97] through quasi-linearization. However, the derivation therein
was based on Einstein-notation which is abstract for the motion control and
robotics communities. Furthermore, the applications were restricted to systems
with trivial Lagrangians with few DoF. In the following, I derive a matrix-based
formulation that generalizes to an arbitrary robotic mechanism, and can be com-
puted using standard dynamics libraries [22].

Lemma 6.2. Consider the system in (2.15) without any scalar potential (V = 0),
but with actuation τ on the R.H.S. A synthetic symmetry is required along the
flow of the vector field ξ(q) = T (q)q̇, where T ∈ Rn×n is a linear map. Let τ be
chosen as,

τ = −T⊤
(

1

2
T−⊤Md(q, T

−1ξ)⊤T−1 + Ṫ−⊤MT−1
)

ξ (6.5)
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where Md is the ID matrix of M . Then, the momenta along ξ is conserved about
the neighbourhood of the initial configuration, q0 ∈ Q, and ξ is the Killing vector.

Proof. The dynamics in (2.15) can be written locally around the initial configu-
ration q0 using the Newtonian transformation in Lemma 2.15 from Chapter 2.6
as,

Λ(q)ξ̇ + Γ(q, ξ)ξ = F = T−⊤τ (6.6)

where Λ(q) is the transformed inertia metric, and its CC matrix assumes the form
Γ(q, ξ) = T−⊤

(

C(q, q̇)T−1 +MṪ−1
)

. Factorizing Γ further using the ID and IV
matrices, we get,

Γ(q, ξ) = T−⊤
(

Mv(q, q̇)−
1

2
M⊤

d (q, q̇)
)

T−1 + T−⊤MṪ−1 (6.7)

Applying τ in (6.6),

Λ(q)ξ̇ + T−⊤
(

Mv(q, q̇)−
1

2
M⊤

d (q, q̇)
)

T−1ξ + T−⊤MṪ−1ξ

= −
(

1

2
T−⊤Md(q, T

−1ξ)⊤T−1 + Ṫ−⊤MT−1
)

ξ
(6.8)

By cancelling the CC terms, we obtain,

⇒ d

dt
p = 0, p = Λ(q)ξ (6.9)

which proves the result.
Note that in Lemma 6.2, the control law τ is chosen in a way that ensures

the fulfilment of the matrix-based Killing equation in Lemma 6.1.

Remark 33. From Lemma 6.2, it is concluded that the control action τ ensures
two integrals of motion. Firstly, the squared momentum Casimir invariant, p2 is
conserved. Consequently, the energy-like function is obtained K̂ = 1

2
〈p, p〉Λ(q0)−1 ,

which is rewritten as, 1
2
〈µ, µ〉Λ(q0), where µ = Λ(q0)−1Λ(q)ξ is a quasivelocity [120].

Thus, there exist n Killing vectors and according to Lemma 2.7, the effective
metric tensor Λ(q0) is independent of the configuration, q.

Consider a simple scenario where, T = In, i.e., it is our goal to generate Killing
vectors of M along the ∂

∂q
directions. In this case, and the control action simplifies

to τ = −1
2
M⊤

d (q, q̇)q̇. Since the vector ξ = ∂
∂q

is not configuration-dependent, the
last term in (6.4) of Lemma 6.1 is 0, giving,

LξK̂ =
1

2
Lξ〈µ, µ〉M(q0) = 0, (6.10)

Note that the approach in Lemma 6.2 uses feedback linearization, but differs
from standard approaches in literature [8, §5.2]. Specifically, the approach in
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this chapter is intended to generate a Killing symmetry of the metric tensor.
In the non-trivial case, when the vector field is dependent on the configuration,
ξ ≡ ξ(q), the control law in Lemma 6.2 can be used to generate symmetries of
the metric along the vector field.

Note that creating a synthetic symmetry in Lemma 6.2 comes at the cost of
giving up the property of energy conservation with the metric M(q). Momen-
tum conservation results from symmetry in space, whereas energy conservation
implies symmetry in time [95]. Hence, in Lemma 6.2, a design choice is made to
give up the latter to obtain the former. However, as shown in Remark 33, the
momentum conservation property can be used to rewrite an alternative energy-
like description that holds in the neighbourhood of q0. Note that imposing a
momentum conservation property does not imply that the underlying manifold is
of a flat curvature. As we shall see, I will use Lemma 6.2 to generate a symmetry
of the metric tensor along the fiber (nullspace) of the primary task. This will
ensure that the primary task geodesic equation can be written on a level set of
the conserved momenta in the fiber.

Using Lemma 2.7 after symmetry generation from Lemma 6.2, the effective
inertia is rendered independent of the flow due to the Killing vectors. This
is crucial for generating a variational symmetry of the Lagrangian and the EL
system is transformed into an LP system. In the next section, the task-induced
fiber bundle topology of the EL system is revisited from Chapter 2.

6.3 Task-induced Fiber Bundle

In motion control for redundant EL systems, instead of the natural configuration
manifold Q, the motion in a primary operational space, R1 ⊂ Rn1, is relevant. As
defined in Def. 2.3 of Chapter 2.1, the forward kinematics map, π1 : Q→ R1 gives
the operational space configuration as r1 ∈ R1 = π1(q), and is a surjective submer-
sion if its differential dπ1(q) = J1 has rank(J1) = n1. Likewise, there might also
be a secondary operational space submersion, π2 : Q→ R2, where dπ2(q) = J2

has rank(J2) = n2, which is required to optimize motion characteristics around
the primary task. Let ri ∈ Ri be the configuration in the Ri operational space.
For motion control, a task is posed as a scalar potential on Ri as, Φi : Ri → R

such that Φi(ri, ri) has an equilibrium at ri ∈ Ri.

Assumption 6.2. The operational spaces, Ri, satisfy dim(Ri) = ni and
∑
ni = n,

and the total task posed on the operational spaces satisfies a unique point in Q.

Assumption 6.2 implies that Φ1 + Φ2 is positive-definite in Q. This is im-
portant for full-motion stabilization. Using both operational spaces, the overall
operational space configuration is

r = (r1, r2) = π(q) =
(

π1(q), π2(q)
)

(6.11)
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where π is a locally invertible transformation by Assumption 6.2, i.e., π : Q→ R,
R = R1 × R2 is the total operational space, i.e., the Cartesian product of the
primary and secondary operational spaces. The differential of the task maps πi,
dπi : TqQ→ Tr1R1, give the total operational space Jacobian map as,

ṙ = J(q)q̇ =

[

J1(q)
J2(q)

]

q̇, Ji = dπi =
∂πi
∂q

⊤

(6.12)

The following property enables the pullback of forces from Ri to Q, and is the
foundation for control based on transposed Jacobian [8].

Property 6.2. For the forward kinematics submersion πi : Q 7→ Ri, correspond-

ing to the scalar field, Φi(ri, ri), there exists Φq
i (q) : Q 7→ R such that

∂Φq
i

∂q
= J⊤

i
∂Φi

∂ri

and Φq
i = Φi. This is because the pullback of exact covectors is also exact by

Poincaré Lemma [89, Th. 11.49].

The formulation in (6.11) and (6.12) was used in the superposition of pull-
back of the diffeomorphism maps (impedances) [204], see RMP Flow framework
by [205]. However, this approach generally violates the notion of hierarchy (or
priority) because the pullback of the secondary task conflicts with the pullback
of the primary task to the configuration space Q, i.e.,

〈(J⊤
1

∂Φ1

∂r1
)♯, (J⊤

2

∂Φ2

∂r2
)♯〉M 6= 0 (6.13)

Hierarchy can be achieved instead by modeling the system as a fiber bundle.
The reader is encouraged to review the preliminaries in Sec. 2.4 for the next
section. The surjective submersion, π1, of the primary task from Def. 2.3 results
in a fibered manifold, denoted as a triplet (Q, π1, R1). The task-induced fiber
bundle can be denoted by the short exact sequence as,

π−1
1 (r1) Q R1

R2 R

Ψ1

π2◦Ψ1

π1

π
π2

(6.14)

where Ψ1 : π−1
1 (r1)→ Q is the inclusion map of the embedded submanifold at

each r1. In the particular case of task-induced symmetry, the function Ψ1 can be
determined locally using,

π1(q) = r1, π2(q) = r2, s(q) = 0 (6.15)

where s determines the fiber origin, i.e., the zero of the fiber at a given π1(q) = r1.
The fiber bundle formalism charts the configuration of the EL system as (r1, s),
which denote the shape and the fiber origin w.r.t. the given r1, respectively. In
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order to exploit this coordinate structure, trivialization morphisms and transition
functions need to be identified to establish the charts [214, Th. 1.1.4]. We are,
however, interested in the tangent space of the exact sequence in (6.14).

For each q ∈ Q, the primary submersion π1 describes the vertical subspace,
V1, on the tangent bundle TQ, as, V1q = Kern(J1(q)), where V1q is a vector space
of dimension k1. The fibered manifold provides canonical exact sequences for the
tangent and the cotangent spaces as follows [104, eq. 1.4.3],

V1q TqQ Tr1R1

Tr2R2 TrR

Z1

J2Z1

J1

J
J2

(6.16)

T⊤
r1
R1 T⊤

q Q V1q
⊤

T⊤
r R T⊤

r2
R2

J⊤
1 Z⊤

1

J⊤

J⊤
2

Z⊤
1 J

⊤
2 (6.17)

Let the vertical velocity be (q, µ̃) ∈ V1q, where µ̃ ∈ Rk1 . The velocity µ̃ is
canonically projected to a vertical component q̇v1 ∈ Ver(TqQ) on the tangent
space, as q̇v1 = Z1(q)µ̃, where Z1 ∈ Rn×k1 denotes the set of vertical (nullspace)
basis. Motion along Z1 ensures the invariance of π1(q) = r1. Note that by Prop-
erty 2.2, Z1 plays the role of the Ad action in V1q, and thus µ̃ assumes a right-
invariant form, i.e., like a spatial velocity twist in rigid body motion. The nu-
merical procedure to find Z1 basis is reported in the Lemma below, and the
contribution here is the geometric perspective of algebraic symmetry.

Lemma 6.3. Consider the system in (2.15) with forward kinematics of the pri-
mary task, π1(q) = r1. Let Φ1(r1, r1) : R1 → R be a potential on the primary
operational space. The condition of Algebraic Symmetry determines the basis
vectors Zj

1 using the condition that the Lie derivative of Φ1 along Zj
1 is 0, i.e.,

LZj
1
Φ1(r1, r1) = 0, where L denotes the Lie derivative of Φ1 along Zj

1. This con-

dition can be obtained using the Singular Value Decomposition (SVD) of the dif-
ferential kinematics, J1 as,

J1 = UΣV ⊤ = U

[

Σ1 0
0 0

] [

V ⊤
1

Z⊤
1

]

︸ ︷︷ ︸

R

(6.18)

where U ∈ O(n1),R ∈ O(n) are matrices of the orthogonal group.

Proof. The power flow due to the proportional action in the operational space
R1 is given by the time-derivative of the corresponding potential,

Lṙ1Φ1(r1, r1) =
d

dt
Φ1(r1, r1) = 〈∂Φ1

∂r1
, ṙ1〉 (6.19)
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The differential in R1 is then pulled back (Property 6.2) to the configuration
space Q as,

Lq̇Φi(ri, ri) = 〈∂Φi

∂ri
, ṙi〉 = 〈J⊤

i

∂Φi

∂ri
, q̇〉 (6.20)

Using the Lie derivative in (6.20) for R1 and Q, and restricting the R.H.S of
(6.20) to V1q in the fiber,

〈J⊤
1

∂Φ1

∂r1
, q̇v1〉 = 〈∂Φ1

∂r1
, J1Z1
︸ ︷︷ ︸

µ̃〉 = 0 (6.21)

Note that applying the decomposition in (6.18), I get the R.H.S in (6.21), which
proves the result.

The following concepts from Chapter 2 are revisited to set up the theory.
In Lemma 6.3, the nullspace basis Z1 defines a CPT as in Def. 2.1, which is a
symmetry of Φ1. Assumption 2.2 is invoked so that the fibers are isomorphic, and
the EL system does not suffer from algorithmic singularity [106]. Using Def. 2.4,
the induced metric on the submanifold π−1

1 is written as M2(q) = Z⊤
1 MZ1.

6.4 The Horizontal subspace

Note that by virtue of pullback, given a covector (force) F1 ∈ T⊤
r1
R1 in the pri-

mary operational space, it can be pulled back canonically to T⊤
q Q as J⊤

1 F1. Un-
fortunately, there is no more canonical geometric machinery available to pullback
forces from the fiber π−1

1 (r1) to T⊤
q Q. The Ehresmann connection from Def. 2.5 is

chosen to aid this step as the mapAq : TqQ 7→ V1q, which satisfiesA
(

Ver(µ̃)
)

= µ̃,
where µ̃ ∈ V1.

Thus, Def. 2.5 determines a specific vertical velocity µ̃ given q̇. In Robotics,
the Ehresmann connection is referred to as the nullspace projector [206, 207], and
appears in literature in the form, A = (Z⊤

1 WZ1)
−1Z⊤

1 W , where W ∈ Rn×n is a
weighing matrix. In particular, the connection defines the endomorphism map,
TqQ→ TqQ, through the projector matrix Z = Z1A, which splits any tangent
velocity vector q̇∗ ∈ TqQ as,

q̇∗ = q̇∗
v + q̇∗

h = (Z)q̇∗ + Kern(Z)q̇∗ (6.22)

which decomposes the tangent space into two distributions as TqQ = V1q + H1q.

Property 6.3. The endomorphism Z : TqQ 7→ TqQ given by Z(q) = Z1A, is an
Ehresmann connection form on Q, see [14, Def. 2.2], which is compatible with
the forward kinematics submersion, π1. It satisfies the projection properties:

Z2 = Z, Zv = v, ∀v ∈ V1q (6.23)

Using Z, the horizontal subspace at q is defined as H1q = Kern
(

Z(q)
)

, with a

horizontal velocity defined as, q̇h = q̇ − Z(q)q̇.
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In the next part, the connection is explicitly shown with its geometric inter-
pretation. To this end, let x ∈ T⊤

q Q be a force covector in Q. Computing the
power flow due to x in the submanifold π−1

1 (r1),

〈x, q̇〉
∣
∣
∣
∣
π−1

1 (r1)
= 〈x, q̇v1〉 = 〈Z⊤

1 x, µ̃〉
︸ ︷︷ ︸

force-velocity pair in fiber

(6.24)

The connection A can be computed as:

Def. 6.1. Statically Consistent: If W = In,n: In this case, the R.H.S. of (6.24)
is written as,

〈Z1Z
⊤
1 x, Z1µ̃〉, ∵ Z⊤

1 Z1 = Ik1×k1 (6.25)

to determine the force-velocity pairing in Q.

Def. 6.2. Dynamically Consistent: If W = M(q): In this case, the R.H.S. of
(6.24) is written using the canonical metric, M2, on the fiber, see Def. 2.4, as,

〈(Z⊤
1 x)♯, µ̃〉M2 = 〈Z1(Z

⊤
1 x)♯, Z1µ̃〉M

= 〈MZ1M−1
2 Z⊤

1 x, Z1µ̃〉 = 〈
(

Z1(Z
⊤
1 x))♯

)♭
, Z1µ̃〉

(6.26)

Thus, we see that both projection formulae satisfy the force-velocity pairing in
(6.24), and hence, are equally valid iff ṙ1 = 0. In geometric mechanics, the former
is called a trivial Ehresmann connection and the latter is called the mechanical
connection, see [5]. In the latter case, µ̃ obtained from the connection is known
as the locked velocity, i.e., the velocity corresponding to the momentum in the
fiber space. Given the system velocity, q̇, the conjugate momentum is written as
δL
δq̇

= M(q)q̇, and the cotangent vertical space is V⊤
1q ⊂ T⊤

q Q, p = Z⊤
1
δL
δq̇

, p ∈ V⊤
1q.

Using the canonical metric on the vertical subspace (see Def. 2.4), the velocity
corresponding to p, i.e., the locked velocity, is obtained as,

µ̃ =M2
−1Z⊤

1

δL

δq̇
=M−1

2 p = A(q)q̇, (6.27)

which defines the vertical velocity as q̇v = Z1Aq̇ = Z(q)q̇. The bundle velocity is
obtained as a locally invertible linear transformation of the velocity on TqQ, i.e.,

[

ṙ1

µ̃

]

= T (q)q̇, T =

[

J1(q)
A(q)

]

(6.28)

which is called the extended Jacobian in robotics. However, note that T does not
emerge as the differential of a kinematic map.

Lemma 6.4. Given the mechanical connection, A, the contribution of the hor-
izontal velocity, i.e., motion purely in the shape, q̇h, towards fiber displacement

is, Ãlṙ1, and µ̃ = Z⊤
1 q̇ + Ãlṙ1, where Ãl = −Z⊤

1 T
−1

[

I

0

]

is the right-trivialized

(spatial) local form of the mechanical connection [14].
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Proof. The velocity of the EL system is, q̇ = T−1
[

ṙ⊤
1 µ̃⊤

]⊤
, using which,

q̇ = T−1

[

ṙ1

µ̃

]

= q̇h + q̇v = T−1

[

ṙ1

0

]

+ T−1

[

0
µ̃

]

(6.29)

The trivial connection gives the pure fiber velocity, i.e., µ̃|ṙ1=0, as shown in
(2.30) of Chapter 2, as µ̃|ṙ1=0 = Z⊤

1 q̇. Thus, the contribution of the horizontal
velocity towards fiber displacement is simply,

(A− Z⊤
1 )q̇h =(A− Z⊤

1 )T−1

[

ṙ1

0

]

= Aq̇h − Z⊤
1 T

−1

[

ṙ1

0

]

=− Z⊤
1 T

−1

[

ṙ1

0

]

, ∵ Aq̇h = 0

(6.30)

which yields the form of Ãl. Consequently, µ̃ is written as the sum of the pure
fiber velocity and the horizontal contribution as µ̃ = Z⊤

1 q̇ + Ãlṙ1.

6.4.1 Restriction of the Secondary Task

Instead of using the pullback of Φ2 directly, hierarchy is imposed by first re-
stricting it to the submanifold, π−1

1 (r1). Consider the secondary task potential,
Φ2(r2, r2). Using Property 6.2, it is concluded that ∀Φ2(r2, r2), ∃Φq

2(q). Recall
that the fiber π−1

1 is an embedded submanifold of Q. Hence, smooth functions on
Q have a restriction to the domain in the submanifold, π−1

1 (r1), i.e., the fiber [89,
Th. 5.27]. The domain restriction applied to the scalar field Φq

2 results in another
restricted scalar field Φ̃2 : π−1

1 → R, whose domain is a point in the submanifold
at r1. This is the restriction of the potential Φ̃2 = Φ2(r2, r2)

∣
∣
∣
π−1

1 (r1)
at each r1.

For the next treatment, the Lie derivative of Φ̃2 along V1 is computed by
restricting the Lie derivative of Φ2 to π−1

1 . Computing this,

Lq̇Φ2

∣
∣
∣
∣
π−1

1 (r1)
= 〈J⊤

2

∂Φ2

∂r2

, q̇〉
∣
∣
∣
∣
π−1

1 (r1)

⇒Lq̇v1Φ̃2 = 〈J⊤
2

∂Φ2

∂r2
, q̇v1〉 = 〈Z⊤

1 J
⊤
2

∂Φ2

∂r2
, µ̃〉

︸ ︷︷ ︸

force-velocity pair in fiber

(6.31)

which is projected to Q using the connection A. The mechanical connection
satisfies an additional orthogonality (symmetry) condition between the propor-
tional actions of the primary and secondary tasks, i.e.,

〈(J⊤
1

∂Φ1

∂r1
)♯, (A⊤Z⊤

1 J
⊤
2

∂Φ2

∂r2
)♯〉M = 0 (6.32)

which is useful to impose a task-induced symmetry, in contrast to direct pullback
(6.13). Note that the definition of A is a choice, and does not affect power flows
in dynamics, but it simplifies the EL equations of motion.
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6.5 EL equations of Motion on the Fiber Bundle

Recall from Sec. 2.4.7 that for a general EL system without symmetry, the quo-
tient map π1 : Q→ Q/Gr1 holds locally for each r1, where Gr1 is the Lie group
locally defined at r1. In this case, the tangent space that is isomorphic to the
groupoid yields a Lie algebroid. Hence, the dynamics of (ṙ1, µ̃) correspond to
the dynamics of the shape velocity and the Lie algebroid of Gr1. The equations
of motion are given below for an arbitrary connection. In robotics notation, the
dynamics are obtained using the Newtonian transformation in Lemma 2.15 from
Chapter 2.6 corresponding to (6.28) as,

M(q)

[

r̈1

˙̃µ

]

+ Γ(q, ṙ1, µ̃)

[

ṙ1

µ̃

]

=

[

F1

f

]

(6.33)

where τ = T⊤(F1, f) denote the forces in the shape and fiber, M = T−⊤MT−1

is the metric tensor (fully-coupled for arbitrary A) in the fiber bundle, and
Γ = T−⊤(CT−1 −MṪ−1) is the matrix of CC terms. For further treatment, the
forces are decomposed as,

F1 = F̂1 + F 1 + F1d, f = f̂ + f + fd (6.34)

where (•̂) are used for feedback action, whereas (•) are used to provide feed-
forward action, while (•)d are disturbance forces in the fiber bundle cotangent
space. In the control design aspect, first f̂ will be used to generate a symmetry of
the metric tensor, then F 1 will be used to render the shape subsystem (primary
space) time-invariant, and (F̂1, f̂) for the hierarchy-based control.

Remark 34. Note that the inertia tensor M is block-diagonalized

M(q) =

[

M1(q) 0
0 M2(q)

]

(6.35)

if A is chosen to be the mechanical connection, as was shown in [207, 215]. In
the following, A is chosen as the mechanical connection to simplify the derivation,
i.e., µ̃ is the locked velocity. But the trivial connection can be alternatively used.

Remark 35. The dynamics in (6.33) satisfy the passivity property by the corol-
lary in Property 6.1, i.e., the kinetic energy 1

2
〈(ṙ1, µ̃), (ṙ1, µ̃)〉M in the bundle

coordinates is conserved.

For the motion control of a redundant EL system, it cannot be a priori as-
sumed that the forward kinematics surjective submersion π1 : Q 7→ R1 has a fixed
point, i.e., constrained. In fact, it is required to regulate the motion along the
operational space R1, such that r1(t) = π1(q(t)) is steered to a desired setpoint,
and in a way that the resulting motion in R1 is geodesic in nature. To achieve
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this, the key objective is to generate an inertia metric tensor M̂ fromM, which
satisfies LZi

1
M̂ = 0, ∀i. This means that the vectors Z i

1 act as infinitesimal

(Killing) symmetries of M̂ according to Lemma 6.1, and in the horizontal lift
basis, M̂ ≡ M̂(r1). It will be shown next that M̂(r1) is the metric for the space
Q̂ = G0 × R1, where G0 is the Lie group arising from the closed Lie algebra V1q.

6.6 Symmetry Generating Controller Design

In this section, the motion control design is derived to generate the required
motion on Q̂ = G0 × R1 using the EL system residing on Q. To that end, we first
define the subspaces relevant to motion control.

Def. 6.3. Primary Subspace: Given a EL system with configuration space Q̂,
the primary subspace is the operational space, R1, which is isomorphic to to the
quotient (shape) space, R1

∼= Q/G0, where G0 is the structural Lie group acting
along the fibers (nullspace). A task-oriented motion on the primary subspace is
determined by a time-invariant "electromagnetic" geodesic on R1 [216], in which
the task-oriented potential, Φ1, defines the equilibrium, and the magnetic potential
is determined by the momenta in the fiber (nullspace).

The electromagnetic geodesic differs from the commonly known geodesic with
scalar potentials [217] in that the former features gyroscopic torques, similar to
the magnetic torques in the Lorentz force law, see Lemma A.5 in the Appendix.
On the left of Fig. 6.2, the geodesic motions under the influence of a purely scalar
potential field on S2 sphere are shown. In [217, 218], such geodesic motions were
used to create periodic motions. However, geodesic motions can be generalized
for a general gauge potential (with an additional vector potential), and can also
be periodic, see [216]. The vector potential causes purely gyroscopic torques
that provide a turning effect around the guiding center. Such an electromagnetic
geodesic is shown on the right of Fig. 6.2. Note that both systems possess identical
Hamiltonians, which is conserved if the potentials are time-invariant.

Def. 6.4. Secondary Subspace: In the context of task-induced symmetry, given
a EL system with configuration space Q̂, the secondary subspace is another oper-
ational space, R2, which drives the momentum subsystem (maybe periodic) along
the fibers (nullspace).

6.6.1 Shaping the Inertia Metric Tensor

Firstly, through control action, a G0-invariant metric, M̂(r1), has to be generated
from M(q) that corresponds to the PFB Q̂ = G0 ×R1. This is achieved through
the application of Lemma 6.2 to the EL equations in 6.33. This means that the
control action is chosen so that the metric, M̂(r) has the group Lie algebra Z1
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Figure 6.2: Geodesics on S2 sphere. Left: Geodesic motion due to a central scalar
potential field. Right: Electromagnetic geodesic motion due to a gauge potential,
consisting of a central scalar potential and a vector potential.

as its Killing vectors. While Lemma 6.2 provides a framework to generate a full
symmetry, in task-induced hierarchy, it might be required to generate a partial
symmetry, i.e., only along nullspace. To this end, the following Lemma illustrates
the way forward.

Lemma 6.5. Given the EL system in (6.33) with actuation forcing τ with the
Ehresmann connection as the mechanical connection. Let f be the component of
τ along the fiber space for feedforward action. If

f =
1

2
Z1(q)

⊤Md(q, q̇)
⊤q̇ + Ż1(q, q̇)

⊤M(q)q̇, (6.36)

then the EL system on Q transforms into a PFB, Q̂ = G0 × R1.

Proof. As shown in Sec. 6.4, the momenta along fiber is p = Z⊤
1
∂l(q,q̇)
∂q

. Thus, the
condition to conserve momenta along the fiber is,

d

dt
〈Z1(q),

δl(q, q̇)

δq̇
〉 = 0⇒ 〈Ż, δl

δq̇
〉+ 〈Z1,

d

dt

δl

δq̇
〉 = 0

⇒〈Ż1,
δl

δq̇
〉+ 〈Z1,

δl

δq
〉 = 0⇒ 〈Z1,

1

2
Md(q, q̇)

⊤q̇〉+ 〈Ż1,M(q)q̇〉 = 0

(6.37)

which is the matrix-based Killing equation in Lemma 6.1. Thus, choosing (6.36),
the system behaves as if there exist Killing symmetries about the Lie algebra,
ξ ∼= Z1, and the momentum is forced to be conserved along these directions. To
see this, computing the inner product using (6.37) with f̂ = fd = 0,

〈µ̃, f〉 = 〈µ̃, 1

2
Z⊤

1 Md(q, q̇)
⊤q̇ + Ż1

⊤
M(q)q̇〉 = 0 (6.38)

which is actually the Rund-Trautman expression in Def. 2.2.
Since momenta is conserved along the fiber, the topology of the resulting EL

system is characterized as a Lie group action of a group G0(q(0)) on the shape R1,
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i.e., Q̂ = G0 × R1. Note that in Lemma 6.5, G0(q(0)) is the group that gets fixed
at q(0). As remarked in Sec. 6.5, since Q does not in general have symmetry, at
each r1(t), there is a group action Gt(r1(t)) which is a function of r1(t). So, in
Lemma 6.5, the control law ensures that the group at G0(r1(0)) is fixed resulting
in a PFB topology. This proves the result.

Consider the EL dynamics in (6.33) with ṙ1 = 0. In this case, the fiber dynam-
ics with f as in Lemma 6.5 results in the conservation of the squared-momentum
Casimir-invariant p2. Let M̂2 be the new locked metric tensor after application
of Lemma 6.5. This can be used to derive an energy-like quantity as,

1

2
〈p, p〉M̂2(r1(0))−1 =

1

2
〈M2(q)µ̃,M2(q)µ̃〉M̂2(r1(0))−1

=
1

2
〈Sµ̃,Sµ̃〉M̂2(r1(0)) =

1

2
〈µ, µ〉M̂2(r1(0))

(6.39)

where S = M̂2(r1(0))−1M2(q) and µ = S(q)µ̃ is the basis change from spatial
to body frame for G0. In the case, ṙ1 6= 0, the kinetic energy in the fiber is
1
2
〈µ, µ〉M̂2(r1), i.e., varies with r1 only. Note that Lemma 6.5 is not restricted

only to the fiber, rather it generates symmetry along the fiber for the entire EL
system. In fact, (6.38) leads to,

〈
(∂Z1µ̃

∂q

)

q̇,M(q)q̇〉+ 〈1
2
Md(q, q̇)

⊤Z1µ̃, q̇〉 = 〈q̇, q̇〉Ψ = 0 (6.40)

where Ψ =
(
∂Z1µ̃
∂q

)⊤
M(q) +Mv(q, Z1µ̃), which is exactly the R.H.S. of (6.4) in

Lemma 6.1. The second term is the symmetric part of ∇q̇ q̇ along Z1µ̃, leaving
only the skew-symmetric part, and the first term removes the variation due to
basis change of Z1. This means that Lemma 6.5 generates a metric tensor M̂
in Q, which does not vary along Z1µ̃. Consequently, we also get M̂1 = M̂1(r1).
Thus, the total kinetic energy assumes the form,

K̂ = K̂1(r1, ṙ1) + K̂2(r1, µ) =
1

2
〈ṙ1, ṙ1〉M̂1(r1) +

1

2
〈µ, µ〉M̂2(r1) (6.41)

which is G0-invariant. Note in (6.38), the pair (Z1, Ż1) are the first prolongation
of Z1 (as in (2.20)), and (6.38) proves that Z1 defines a CPT symmetry of the
closed-loop kinetic energy, K̂.

Property 6.4. Let x, y ∈ V1q be the spatial and body forces for the fiber group G0.
In the spatial and body basis, the power flows are related as, 〈µ̃, x〉 = 〈µ,S−⊤x〉.

Property 6.5. The left-trivialized (body) form of the local mechanical connection

that contributes to the fiber motion is Al = −SZ⊤
1 T

−1

[

I

0

]

.



6.6 Symmetry Generating Controller Design 175

Proof. Using Lemma 6.4, Ãl = −Z⊤
1 T

−1

[

I

0

]

, and Ãlṙ1 gives the right-trivialized

(spatial) form of the local mechanical connection. Thus, using the basis change
S, the result follows straight-forwardly, and Alṙ1 gives the left-trivialized (body)
contribution of the horizontal velocity towards fiber motion.

I point out that in the final control law, we use the spatial pairing 〈µ̃, x〉. But,
the body formulation is used to show that the resulting system is an LP system.

Thus, we can write a G0-invariant Lagrangian for the LP system under the
effect of primary task potential, i.e.,

l(r1, ṙ1, µ) = K̂1(r1, ṙ1)− Φ1(r1, r1) + K̂2(r1, µ), LZi
1
l(r1, ṙ1, µ) = 0 (6.42)

and this is a consequence of Lemma 2.7, i.e., in the fiber bundle coordinates, the
metric (and thus, the Lagrangian) is independent of the group variable, G0. This
is the meaning of variational symmetry, or NPS.

Lemma 6.6. Consider the EL system described in (2.15) with actuation τ , with
forcing chosen as in Lemma 6.5. This generates a kinetic energy function for
the PFB as K̂ = 1

2
〈ṙ1, ṙ1〉M̂1(r1) + 1

2
〈µ, µ〉M̂2(r1). Using the mechanical connection

as the Ehresmann connection with the local form Al (Property 6.5), the state of
the EL system is written as (r, x, ṙ1, µ), where x ∈ G0. This system is known as
the Lagrange-Poincaré system (LP), and its motion is dictated by the LP equa-
tions, which are also called as the Reduced Euler-Lagrange equations or Wong’s
equations [219], and is G0-invariant as,

Hor(LP) =
d

dt

δK̂1

δṙ1
− δK̂1

δr1
=
δK̂2

δr1
+A⊤

l ad⊤
µ

δK̂2

δµ
−

(

DAl(r1, ṙ1)
)⊤ δK̂2

δµ
+ F1

Ver(LP) =
d

dt

δK̂2

δµ
= ad⊤

(µ−Al ṙ1)

δK̂2

δµ
+ ϑ

(6.43)

where DAl refers to the curvature, or the covariant exterior derivative of the
mechanical connection Al, see [19], which measures the non-integrability of the

horizontal subspace H1q, and ϑ = S−⊤(f̂ + f1d).

Proof. Given a G0-invariant Lagrangian, the motion is described by the LP equa-
tions, as shown by [5, 123, 149].

The geometric concept in the control approach is shown in Fig. 6.3. We
started with an EL system having a configuration space Q (dotted) that was
not endowed with any natural symmetry. This is an obstruction to generating
geodesic motion in a primary operational space R1 (red). Thus, through control
action, a symmetry is created along the fiber (Lie group G0) so that there is
a right transitive group action x(0) · g = x(1), resulting in a configuration space
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Figure 6.3: Motion control concept: A redundant EL system with configuration
space Q (dotted) is given, which might not have any natural symmetry, and it is
required to create geodesic motions in an operational space R1 (red). Through
control action, a symmetry is created along the fiber (Lie group G0) so that
there is a transitive group action g · x(0) = x(1), resulting in a configuration
space resembling a PFB, Q̂ = G0 ×R1. Consequently, as a geodesic motion is
generated in R1, a momentum conservation principle along the fibers is ensured.

that is a PFB, Q̂ = G0 × R1. This Lie group, G0, is frozen at r1(0) to simplify the
Groupoid action of a general fiber bundle to group action of PFB. Consequently,
we shall see next that a geodesic motion is generated in R1, as a momentum
conservation principle or a continuity equation along the fibers is ensured. In
the following, the first principles of the subsystem prioritized controller approach
from Chapter 5 will be employed to achieve task-induced symmetry.

6.6.2 Passive Interconnection of Subsystems

In this subsection, it is proved that the LP dynamics from Lemma 6.6 are a
feedback interconnection of passive subsystems composed of the motion on the
primary subspace and its nullspace (fiber), as shown in Fig. 6.4. I recall that this
is identical to the concept in Theorem 3.4 for the FRM. In the shape dynamics
(top row of (6.43)), the CC terms with (µ, µ) coupling are the covariant derivative
of the locked kinetic energy, K̂2, relative to the shape, see [149, §4.2], i.e.,

DK̂2

Dr1

=
δK̂2

δr1

−A⊤
l ad⊤

µ

∂K̂2

δµ
(6.44)
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which provides the time-varying torques from the momentum dynamics for the
motion in the primary subspace R1 = Q̂/G0.

Lemma 6.7. Consider the system in Lemma 6.6. The shape subsystem, Hor(LP),
is passive with the map,

DK̂2

Dr1
+ F1 7→ ṙ1 (6.45)

with the shape subsystem Hamiltonian as the storage function, which is written
as H1 = 1

2
〈ṙ1, ṙ1〉M̂1(r1).

Proof. The motion on R1 = Q̂/G0 for the internal shape Σ1 is described by the
magnetic Lagrangian,

l1 = K̂1(r1, ṙ1)− 〈ṙ1,A⊤
l M̂2(r1)µ〉 (6.46)

which models the primary subspace motion. Its time-derivative is computed as,

l̇1 = 〈 δl1
δr1

, ṙ1〉+ 〈 δl1
δṙ1

, r̈〉 = 〈 δl1
δr1

, ṙ1〉+
d

dt
〈 δl1
δṙ1

, ṙ1〉 − 〈
d

dt

δl1
δṙ1

, ṙ1〉 (6.47)

Using (6.46), the Hamiltonian is obtained as H1 = 〈 δl1
δr1
, ṙ1〉 − l1. Hence, using

(6.47) to compute the time-derivative of H1,

Ḣ1 =
d

dt
〈 δl1
δṙ1

, ṙ1〉 − l̇1 = 〈ṙ1,
DK̂2

Dr1
+ F1〉 (6.48)

which proves passivity of Σ1 with Hamiltonian H1 as the storage function.

Next, we analyze the passivity of the nullspace subsystem, Ver(LP), denoted
as Σ2 in Fig. 6.4.

Lemma 6.8. Given the system in Lemma 6.6, the momentum subsystem, denoted
as Ver(LP), is passive with the map,

[

ϑ
−ṙ1

]

7→
[

µ
DK̂2

Dr1

]

(6.49)

with the subsystem Hamiltonian as the storage function, H2 = K̂2(r1, µ).

Proof. For Σ2, computing the time-derivative of H2,

Ḣ2 = 〈µ, ϑ〉+ 〈DK̂2

Dr1
,−ṙ1〉 (6.50)

which proves the result.
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Primary Task
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Figure 6.4: Passive interconnection of Hor(LP) and Ver(LP) subsystems.

Thus, the LP dynamics form an interconnection between the two passive
subsystems: shape (Σ1) and momentum (Σ2). It can be trivially proved that the
total system is a passive interconnection with

∑2
i=1Hi as the storage function.

This has been summarized in Fig. 6.4. Note that Lemmas 6.7 and 6.8 also hold
in the presence of a primary task potential, Φ1, in Σ1. In this case, F1 will
correspondingly change, and the shape Hamiltonian is H1 = 1

2
〈ṙ1, ṙ1〉M̂2

+ Φ1.
This trivial result is left to the reader. In the next part, both subsystems are
treated independently for motion stabilization.

6.6.3 Stabilizing the Shape Space

As mentioned earlier, r1 ∈ R1
∼= Q̂/G0, denotes the configuration of the shape

space or the reduced space. For motion control, this space is considered as the
primary subspace. Its dynamic system is denoted as Σ1, whose variation is given
by the first of (6.43) in Lemma 6.6. The key objective for motion stabilization is
to ensure that Σ1 is OSP.

Lemma 6.9. Given the system in Lemma 6.6, the shape subsystem, Σ1, is ren-
dered OSP, F1d 7→ ṙ1, with the storage function as H1 from Lemma 6.7, if the

control action is F̂1 = −∂Φ1

∂r1
−Dr1ṙ1, F 1 = −DK̂2

Dr1
. Furthermore, if the distur-

bance torques, F1d = 0, Σ1 is asymptotically stable about the equilibrium of Φ1.

Proof. Taking the time-derivative of H1 using F1,

Ḣ1 = −〈ṙ1, ṙ1〉Dr1 + 〈F1d, ṙ1〉 (6.51)

which proves the first part of the result. In the case that F1d = 0, Σ1 is proved
ZSO (recall Def. 2.12) by using the set A = {(r, ṙ1) ∈ TrR1|Ḣ1 = 0}. In this set,
δΦ1

δr1
= 0, and thus, by LaSalle’s invariance principle, asymptotic stability follows

for the second part [220].
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Remark 36. In Lemma 6.9 F 1 cancels DK̂2

Dr1
, which is actually the time-varying

input for Σ1 from the nullspace subsystem, Σ2. This force is actually related toM2

being r1-dependent. Thus, by cancelling this force, the resultant PFB is further
made geodesic-invariant, i.e., M̂2 is constant, recall Fig. 2.9 from Chapter 2.

Note that in F1, we did not explicitly cancel the curvature term
(

DAl(r, ṙ1)
)⊤

δl
δµ

,

because it provides purely gyroscopic torques from the vector potential, A⊤
l
δK̂2

δµ
.

Thus, if Dr1 = 0 and F1d = 0, we obtain the the electromagnetic geodesic equation
in R1 = Q̂/G0, which is written in a coordinate invariant form as,

R1

∇ṙ1 ṙ1 = −DA(r, ṙ1, µ) (6.52)

where A = (Φ1, A) is the gauge potential, A = A⊤
l
δK̂2

δµ
with δK̂2

δµ
held constant. It is

worth pointing out that (6.52) is the Lorentz force law on R1. This is the physical
interpretation of Lemma 6.9.

6.6.4 Stabilizing the Momentum

Lemma 6.10. Given the system in Lemma 6.6, the nullspace momentum sub-
system, Σ2, is rendered OSP, in the set A, if f̂ = −Dµ̃µ̃, and is asymptotically
stable.

Proof. Computing the time-derivative of H2 using f̂ , and using Prop. 6.4,

Ḣ2 = −〈µ̃, µ̃〉Dµ̃
+ 〈fd, µ̃〉 (6.53)

which proves the first part, and also asymptotic stability follows if fd = 0.

6.6.5 Symmetry-breaking Potential: I

The Lagrangian for the LP system evolving on Q̂ = G0 ×R1 depends only on
the configuration of the primary subspace, r1 ∈ R1. However, for motion control
purposes, there might arise a need to pose another task on a secondary subspace,
R2, e.g., maintaining an optimal configuration in the joint space, while performing
the primary task on S2 in Fig. 2.3-B. Note that using a potential on any other
configuration variable other than r1 breaks the symmetry of the Lagrangian, l, in
(6.42), and thus, such a potential for the secondary task is called as a symmetry-
breaking potential [221]. Let the secondary configuration be r2 ∈ R2, with a task
potential Φ2(r2, r2), as described in Sec. 6.3. Then, its time-derivative provides
a passivity map,

Φ̇2 = 〈∂Φ2(r2, r2)

∂r2
, ṙ2〉 = 〈J⊤

2

∂Φ2(r2, r2)

∂r2
, q̇〉 (6.54)
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ṙ1

Σ1 : Hor(LP)

Σ2 : Ver(LP)

Σ3 : (6.54)

Sec. Potential

Primary Task

Momentum (nullspace)

Figure 6.5: Interconnection of primary task and nullspace subsystems with
symmetry-breaking potential.

Note that the set A, i.e., ṙ1 = 0 is the submanifold π−1
1 (r1) at the primary

equilibrium. Evaluating (6.54) in this set yields

µ̃ 7→ Z⊤
1 J

⊤
2

∂Φ2(r2, r2)

∂r2

. (6.55)

Theorem 6.1. Given the system in Lemma 6.6 in the set A, i.e., ṙ1 = 0, the
feedback interconnection Σ2 − Σ3 is OSP if f̂ = −Z⊤

1 J
⊤
2
∂Φ2

∂r2
−Dµ̃µ̃. The system

converges to the equilibrium (r2) of Φ2, if fd = 0, and Assumption 6.2 holds.

Proof. Computing the time-derivative of H2 using f̂ ,

Ḣ2 = −〈µ̃, µ̃〉Dµ̃
+ 〈µ̃, fd − Z⊤

1 J
⊤
2

∂Φ2

∂r2

〉 (6.56)

which yields the OSP map fd − Z⊤
1 J

⊤
2
∂Φ2

∂r2
7→ µ̃. We also recall the passivity of the

symmetry-breaking potential in (6.55). Using the fact that a feedback intercon-
nection of passive subsystems (Σ2 − Σ3) is OSP if one (Σ2) is OSP (Def. 2.14),
the first part follows. In the set that fd = 0, the system converges to the set
B = {q̇ ∈ TqQ|ṙ1, µ̃ = 0}. In this set, Z⊤

1 J
⊤
2
∂Φ2

∂r2
= 0, which is only satisfied un-

der Assumption 6.2, i.e., if the configuration desired in r2 is compatible with r1

and there is a unique q ∈ Q = π−1(r), where r = (r1, r2).

Using Lemma 6.9 transforms the feedback interconnection of the shape and
momentum subsystems to a cascade interconnection between them, as shown in
Fig. 6.5. This enables converging to the set A without the need for discharg-
ing power from Σ3 into Σ1, and is the physical intuition behind task-induced
symmetry (hierarchy).

Remark 37. The control laws in Lemma 6.9 and Theorem 6.1 provides an elegant
Lagrangian alternative to the seminal works on task-induced hierarchy in robotics
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[51, 52]. In these works, a skew-symmetric CC term was cancelled to create a so-
called dynamic decoupling without analysing its effect on the metric tensor. The
geometry of the control problem and the passive interconnection in Fig. 6.4 were
also missing. In this Chapter, we have provided a rigorous mathematical proof
that this dynamic decoupling can be achieved by generating Killing symmetry of
the metric tensor, and the primary task motion is geodesic.

6.6.6 Symmetry-breaking Potential: II

Although the locked energy H2 is a valid storage function to analyse stabil-
ity/passivity properties, it is not the only way. The key idea behind Lyapunov or
energy-based passivity analysis is the existence of a level-set at t = 0 for which
dissipative behaviour drives the system towards a desired equilibrium. Due to
the SGC action that generates symmetry in the fiber (Lie group), there is a con-
servation law on the momentum, p which gives the squared momentum Casimir
invariant, ||p||2, as a level-set for such an analysis. The main advantage of this
approach is that it removes the interconnection between the shape and momen-
tum subsystems, as shown next. Let the system with the new storage function
be denoted Σ̃2. Naturally, this changes the control law as follows.

Theorem 6.2. Consider the system in Lemma 6.6 described using the Σ1 − Σ̃2

description. They are independently OSP (without an interconnection), and in

the set A, i.e., ṙ1 = 0, Σ̃2 − Σ3 are OSP, if, f̂ = −M−1
2 Z⊤

1 J
⊤
2
∂Φ2

∂r2
−Dpp. The

system converges to the equilibrium of Φ2(r2, r2), if fd = 0, and if it is compatible
with the primary task, Φ1.

Proof. Choosing the storage function as H̃2 = 1
2
||p||2, and taking its derivative

using the new f̂ ,

˙̃H2 = −||p||2Dp
+ 〈p,

(

fd −
(

M−1
2 Z⊤

1 J
⊤
2

∂Φ2

∂r2

))

〉 (6.57)

which proves the OSP for the momentum subsystem, fd −
(

M−1
2 Z⊤

1 J
⊤
2
∂Φ2

∂r2

)

7→ p.

Thus, Σ1−Σ̃2 are not interconnected. Furthermore, as in Lemma 6.1, considering
(6.55) and the interconnection of passive subsystems, OSP of the Σ̃2−Σ3 is proved.
In the set that fd = 0, the system converges to the set B = {q̇ ∈ TqQ|ṙ1, µ̃ = 0}.
In this set,M−1

2 Z⊤
1 J

⊤
2
∂Φ2

∂r2
= 0, which is only satisfied under Assumption 6.2, i.e.,

if the configuration desired in Φ2 is compatible with Φ1, as in Lemma 6.1.

The interconnection of subsystems is shown in Fig. 6.6, in which clearly Φ2

only discharges through the momentum subsystem. Hence, it does not affect the
shape (primary task) and this is task-induced symmetry. In this chapter, the
second method of motion control using symmetry-breaking potential is used for
the validation. The experimental validation of the former approach is shown later
in the Chapter 8 for an application.
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Figure 6.6: Interconnection of primary task and nullspace (momentum-squared)
subsystems with symmetry-breaking potential.

6.6.7 Relation to Floating-base Mechanics

The control approach presented here was inspired by the PFB topology and LP
dynamics of the FRM from Chapter 3, and hence, it is prudent to draw parallels
between both. The configuration space of a floating-base robot is a principal
G-bundle by nature, Q̂ = G0 × R1, where R1 refers to the space of joint motions
and, G0 = SE(3) is the Lie group representation of the position and orientation
of the mechanism in an inertial frame. The configuration of the FRM is q = (s, x)
with s ∈ R1 and x ∈ G0. In this case, π(q) : Q̂ 7→ R1, is the mapping to the shape
space, i.e., R1 = Q̂/G0. The group acts on Q̂, as q · g = (s, x · g), and the action is
transitive and isometric, i.e., the inertia metric tensor, M , on Q̂ does not depend
upon the Lie group configuration x, i.e., M ≡M(s). Obviously, this means that
the Lie algebra of g, corresponding to G0, is a symmetry for the metric tensor,
i.e., they are Killing vector fields. Thus, it is a matter of fact that the momentum
map of floating-base mechanisms have a conserved momenta. The conservation
of momentum is modeled in geometric mechanics as a velocity-level Pfaffian-like
constraint, called the mechanical connection [14]. The body representation of the
connection is the locked velocity, µ, of the FRM. Using the connection, the FRM
motion is given by the LP equations.

While the FRM has natural symmetries arising due to Lie group action, in
this chapter, we developed synthetic task-induced symmetries. Thus, there are
conserved momenta in both cases. Additionally, the primary task serves as the
internal shape, while the nullspace motions constitute a Lie group (fiber). Con-
sequently, just like the FRM, we obtain electromagnetic-like geodesic motions on
the shape, R1 = Q̂/G0, while the motion along the nullspace is purely Killing.

6.7 Validation

In this section, simulation results are used to demonstrate evidence to validate
the proposed theory. In particular, the key focus is to validate the conservation
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properties and the passive interconnection of the shape and nullspace subsys-
tems. To this end, the metric tensors M̂1(r1),M̂2(r1) that correspond to the
LP dynamics rendered by SGC are required to be computed for the kinetic ener-
gies, K̂1 = 1

2
〈ṙ1, ṙ1〉M̂1

and K̂2 = 1
2
〈µ̃, µ̃〉M̂2

such that they are only r1-dependent.
This is computed using the standard computation methods in robotics outlined
in Chapter 2.6, with a special implementation shown in Fig.6.7. Note that this
is only required here for validation purposes, and these quantities are not needed
for motion control.

Kinematics &

Dynamics

Library

Newtonian

Transformation
∫

ṙ1 T−1

[

ṙ1

0

]

qh

q̇h

M,T M̂1,M̂2

Lemma 2.15

(6.28)

T

Figure 6.7: Computation of inertias M̂1(r1),M̂2(r1) of the effective LP system
using standard robotics libraries.

In the following, to implement f in 6.5, the multibody dynamics software
[22] was used, which provides recursive computation of M,C matrices and its
derivatives for the EL equations of mechanisms. It requires the computation of
forces related to the ID matrix Md, which is obtained as,

C(q, q̇) = Ṁ(q, q̇)− δL(q, q̇)

δq
⇒Md(q, q̇)

⊤q̇ = C(q, q̇)q̇ −Mv(q, q̇)q̇ (6.58)

and Ż1 is computed numerically using a numerical differentiation.
To enforce Lemma 6.9, the partial derivative of the locked kinetic energy

(K̂2) with respect to r1 is required. This is computed as follows. Note that,
〈µ̃, µ̃〉M2 = 〈Z1µ̃, Z1µ̃〉M . Thus,

F 1 =
δ〈µ̃, µ̃〉M2

δr1
=

[

12,2 02,5

]

T−⊤ δ〈Z1µ̃, Z1µ̃〉M
δq

=
[

1 0
]

T−⊤Md(q, Z1µ̃)⊤Z1µ̃

(6.59)

where M⊤
d is computed in the same way as (6.58), but with the vertical component

Z1µ̃. Using these tools, the validation is performed in two stages below.

6.7.1 Symmetry Generation and Shape Regulation

An articulated robotic mechanism consisting of n = 7 revolute joints was consid-
ered with Q = T

7, see Fig. 6.8. This mechanism was manufactured during the
ESA-funded MIRROR project for In-Orbit Assembly tasks [47, 66]. The opera-
tional space was considered to be the comprise of the first two joints, i.e., R1 = T2
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with configuration r = (q1, q2) ∈ T2. Thus, the forward kinematics of the surjec-

tive submersion is a constant map, r1 = π1(q) = J1q, with J1 =

[

1 0 05

0 1 05

]

, and

its differential is ṙ1 = dπ1q̇ = J1q̇. The differential map is used to define the ver-

tical space as, V1q = Z1 = Kern(J1), such that Z1 =
[

05 05 I5,5

]⊤
. A linear pri-

mary potential, Φ1 = 1
2
〈r1, r1〉k, with equilibrium r1 = 0, where k = diag(20, 20)

is the spring stiffness is used to generate harmonic motions on R1 = T2.
The proposed control approach was implemented so that the mechanism is

forced to behave as if it operates in the configuration space, Q̂ = T2 × R5, that is
a PFB, instead of Q. Applying Lemma 6.5, f = Z⊤

1 (C −Mv)q̇. This creates the
synthetic symmetry in the considered EL system. The motion characteristics on
the total space, Q, are shown in Fig. 6.8. As remarked in Sec. 6.2.1, the energy
in Q is not a conserved quantity. In the right of Fig. 6.8, the motion (q̇) can
be seen to be dynamic. Recall that the objective is to enforce a priority on the
motion in R1 = T2.

The variation in the proposed kinetic (K̂1) and potential (Φ1) energies are
shown in the left of Fig. 6.10. Note that the reduced Hamiltonian, H1 = K̂1 + Φ1,
remains conserved. This allows motion control design in an independent manner
on R1 = T2. This is aided by the fact that the fiber (nullspace) consisting of
motions on (q3...q7) conserves momentum. This is shown in the center and right.
In the center, the squared momentum Casimir invariant, p2, is shown. Since it
is conserved, it provides a level-set for further stabilization of a secondary task
along the fiber. On the right, it can also be seen that the momenta along the
basis (3...7) corresponding to the (q3...q7) joints is conserved.

Using the same robotic system, another simulation was performed for a non-
trivial primary task, which was posed on the Cartesian position of the end-effector,
r1 = π1(q) ∈ R

3. In this case, dπ1 = J1 is configuration dependent, and conse-
quently, the nullspace basis Z1, i.e., Ż1 6= 0. To implement Lemma 6.5, compu-
tations in the previous simulation were used. On the left of Fig. 6.11, it can be
seen that the shape Hamiltonian, H1 is conserved resulting in a geodesic motion
in Cartesian position. Due to the enforced symmetry, the remaining 4 momenta
are conserved as seen on the right. This validates symmetry generation of the
proposed SGC and shape stabilization in Lemmas 6.5 and 6.9.

6.7.2 Motion Control with Symmetry-breaking Potential

In this subsection, the shape control law in Lemma 6.9 is employed for the Carte-
sian position, r1 ∈ R3 of the end-effector on a KUKA LBR iisy R1300 (n = 6)
robot, such that ṙ1 = J1(q)q̇. The shape potential was, Φ1 = 1

2
〈δr1, δr1〉k1, where

δr1 = r1 − r1, r1 ∈ R
3 is the desired setpoint and k1 = 5[N/m] is the spring po-

tential. The Rayleigh damping is chosen with gain, Dr1 = 2[N/(m/s)]. The
secondary subspace comprises the last three joint positions in the configura-
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q1

q2
(q3...q7)

r = (q1, q2) ∈ T2

Figure 6.8: Simulation using the ESA-funded MIRROR robot with n = 7 joints
meant for In-Orbit Assembly. In the simulation, the operational space was consid-
ered to be R1 = T2 with configuration r1 = (q1, q2) ∈ T2, i.e., n1 = 2. The motion
in the remaining joints forms the fiber.
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Figure 6.9: Motion characteristics on the total space, Q. Left: Total energy is
not conserved during motions; Right: System Velocity with bases 1 (blue) and 2
(red) under the influence of a potential on R1 = Q/G0.

tion space, i.e., R2 = T3. In this subspace, the stiffness potential is chosen as,
Φ2 = 1

2
〈δr2, δr2〉k2, where δr2 = r2 − r2, r2 ∈ R2 is the setpoint with joint stiffness

k2 = 1[N.m/rad]. Note that no damping is applied to the momentum subspace,
i.e., Dp = 0 in Theorem 6.2, to demonstrate that even during harmonic motions,
the momentum-subsystem provides an energy-like level-set.

For the symmetry generation in Lemma 6.5 and shape regulation in Lemma
6.9, computations similar to the previous simulation were used. On the left of
Fig. 6.12, the shape Hamiltonian H1 is shown to monotonically decay over time
due to the damping, according to Lemma 6.9. In the center, motion character-
istics in the nullspace (fiber) subsystem are shown. In particular, it can be seen
that the energy-like function, Ep = H̃2 + Φ2 reaches a level-set for t > 15[s], i.e.,
in the set, H1 = 0. The corresponding momentum variation under the potential
is shown on the right. This proves empirically the Lemma 6.9 and Theorem 6.2,
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Figure 6.10: Left: Conservation of shape Hamiltonian (H1). Center: Squared-
momentum Casimir invariant, p2 along symmetry directions. Right: Momentum,
p, is conserved along symmetry during motions.
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Figure 6.11: Left: Shape Hamiltonian, H1, is conserved because motion on R1

is geodesic. Right: Momentum, p, along nullspace (fiber) which constitutes the
symmetry directions is conserved during motions.

and provides the necessary conditions for motion control with hierarchy. To fur-
ther demonstrate robustness of the proposed approach, the secondary setpoint,
r2, was given two step increments, as shown in Fig. 6.13, in which the arrows
mark the instant of the step. It is seen on the left that Ep simply reaches a new
level-set, with an increase in limit-cycle amplitude. On the right, the limit-cycle
are shown through the variation in the momenta of the nullspace. Of course,
as proved in Lemma 6.9, the shape subsystem remained invariant to the step
increases in Φ2, and consequently Ep.

With these results, the key results of this chapter were validated in terms
of conserved energies and momenta. In particular, the novel control law that
implements task-induced variational symmetry comprising of Lemmas 6.5, 6.9
and Theorem 6.2 have been validated through simulation results. In Chapter 8,
the experimental validation of Theorem 6.2 will be demonstrated for a practical
application.
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Figure 6.12: Left: Asymptotic convergence on shape space (operational space),
R1 = Q/G0 with damping. Center: The Energy function based on Casimir invari-
ant, H̃2, provides a level-set when H1 = 0, even with harmonic motion. Right:
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Figure 6.13: Motion characteristics on the fiber space, i.e., along directions of
generated symmetry. Left: The Energy function based on Casimir invariant,
Ep = H̃2 + Φ2, provides level-sets (for step changes in Φ2, arrows) when H1 = 0,
even with harmonic motion. Right: Time-evolution of Momentum, p.

6.8 Conclusion

The narrative in this chapter is from space to earth. Indeed, the PFB topology,
LP dynamics, and the passive feedback interconnection of shape and momentum
subsystems of an orbital FRM served as building blocks to achieve task-induced
variational symmetry (hierarchy) in motion control of general EL systems that
might not possess symmetry. The proposed approach starts with Lemma 6.5,
which generates a Lagrangian symmetry in a way that the closed-loop inertia met-
ric tensor only depends on the primary task configuration. This step transforms
the EL system into an LP system, in which the shape (primary task) dynamics is
a time-varying electromagnetic geodesic equation. Lemma 6.9 cancels CC terms
to ensure geodesic invariance by resulting a time-varying electromagnetic geodesic
equation, which provides a subspace Hamiltonian to ascertain stability. To com-
pletely realized task-induced symmetry, two approaches were exploited that used
the natural locked energy and the momentum squared Casimir invariant in the
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energy descriptions. We recall that both of these are conserved quantities in LP
systems. In the set that the primary task has converged, stabilization of the
secondary task was proved using Theorems 6.2 and 6.2. While the former used
the natural energy function, the latter employed the squared momentum in the
stability analysis. The energy-momentum concepts proposed in this chapter were
investigated thoroughly and results prove their correctness. Recently, new meth-
ods have been developed to learn Lyapunov functions for multi-task execution.
However, the key challenge is in specifying the metric tensor. As future work,
the metric behaviour in the proposed control approach here will be used to fill
this gap, and create a physics-informed learning method to achieve hierarchical
motion control. Convergence of hierarchical motion control was proved here by
stabilizing the shape and momentum subsystem energies sequentially. This begs
the question if it can be achieved with a single energy function, as was done using
Direct PBC approach in Chapter 5. This subject will be addressed in the next
chapter.



CHAPTER 7

Task-induced Algebraic Symmetry in Motion Control

“ As far as I see, all a priori statements in physics find their origin
in symmetry [222]. ”

Hermann Weyl, Symmetry, 1952

7.1 Introduction

In motion control, the EL system often has more DoF than the dimension of its
primary operational space. The resulting redundancy not only needs to be sta-
bilized but enables improving the system configuration by virtue of another task
on a secondary operational space. This should be realized such that the primary
task assumes precedence over the secondary, see Fig. 7.1, unlike in superposition
of impedances. This means that the control action due to the secondary task
should be an algebraic symmetry of the primary. In particular, it is required to
establish a hierarchy (or priority), [215, 223, 224], [52, 206–209]. In Chapter 6,
this task-induced symmetry was achieved at a variational level, i.e., control action
transformed the EL system into an LP system, in which the inertia metric tensor
was rendered independent of the fiber (nullspace) position. This enabled a hierar-
chical stabilization mechanism in which the primary task (shape) converged first
resulting in an invariant set in which the secondary task also converged. This
resulted from employing two energy-like functions hierarchically. However, this
approach does not give any stability guarantee for the fiber during the transient
state of the primary. Therefore, it is natural to ask if the task-induced algebraic

189
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x x

Q r1
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r2

q0

q

q1

q2

Figure 7.1: Motion control scenario for a particle on Q ⊂ R
3, q = (r1, r2) ∈ Q.

The primary (secondary) operational spaces are the lines in red (blue),
ri = πi(q) ∈ Ri. The initial configuration is q0 ∈ Q, which is the intersection
of the current operational space configurations (dashed lines). The desired equi-
librium is q ∈ Q, which is an intersection of (r1, r2). It is required to impose an
algebraic symmetry such that the proportional action for the secondary task is
projected along the dual basis of the orthogonal subspace to the primary action,
i.e., prioritizes R1.

symmetry can be enforced through a single energy-like function, as in Theorem
5.1. This is the main contribution of this chapter.

7.1.1 Related Work

The concept of hierarchy was proposed almost 20 years ago in the form of kine-
matic and dynamic decoupling of maps of the tangent space [215, 223]. Motion
control was realized by the superposition of the proportional action due to the
primary task, and an endomorphism (nullspace projection) of the proportional
action due to the secondary task. In these schemes, kinematic decoupling was
achieved using a configuration-dependent map, whereas dynamic decoupling used
a metric-dependent map [215, 224]. In the early days, hierarchy was imposed us-
ing feedback linearization [215, 223].

In the realm of hierarchical PBC, two levels of hierarchy was seminally re-
solved in [207] (see also [52]). In these above works, the dynamic decoupling of
the tangent space was used to rewrite the original EL dynamics as the dynamics
of a subspace called the primary task and decoupled nullspace velocities. The
CC torques corresponding to the block off-diagonal parts of the CC matrix were
compensated to prove Lyapunov stability with semi-definite functions. However,
in the aforementioned prior works, stability and passivity properties were ascer-
tained through hierarchical level-sets, and system-wide transient behaviour was
inconclusive. Task hierarchy is also useful when there is a limit-cycle require-
ment in one of the operational spaces. In [225], the method in [207] was extended
to stabilize a limit cycle in the nullspace after the primary task was converged.
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However, the analysis fails if the limit cycle requirement is placed on the pri-
mary space, e.g., hip motion during walking. Thus, a conserved Hamiltonian
(natural energy) for the entire EL system under task hierarchy is required. The
main obstruction earlier was that the nullspace projection of the secondary task
potential results in non-Hamiltonian dynamics with non-zero curl of the control
forces. This is a rare topic in classical mechanics, see [226, 227], and prevents
energy-based stability analysis.

In the theory of EL systems, a hierarchy is a special form of symmetry, i.e.,
invariance of a quantity, e.g., a potential scalar, w.r.t. motions along a vector
field [95]. In the context of PBC without inertia-shaping [3], the symmetry of the
shaped potential is of importance because it implies an orthogonality condition
for the proportional actions. In this chapter, I show that the task hierarchy
indeed is: a task-induced symmetry of the algebraic system of the proportional
actions.

7.1.2 Key Contributions

The contributions of this work are the following.

1. For the first time, task-induced algebraic symmetry (hierarchy) and the
associated motion control problem have been addressed and solved using a
single Hamiltonian, which characterizes the whole EL system. Thus, the
contribution of this chapter is fundamental and toward the explanation of
motion phenomena under task-induced algebraic symmetry.

2. In Lemma 7.4, it is shown that the projection of the proportional action
of the secondary task to the fiber (nullspace) results in a restriction of the
secondary task potential. However, the fiber equilibrium of this restricted
potential is state-dependent, and varies with the primary task configuration.
This generates inertial forces and imparts a non-conservative nature to the
dynamics.

3. In Theorem 7.1, I derive a novel control law that tracks the wandering
equilibrium in the fiber and conserves a new Hamiltonian. Although the
proposed Hamiltonian is different from that of the EL system, it preserves
the natural metric tensor for the non-conservative EL system. This Hamil-
tonian serves as a candidate function in the context of Lyapunov and PBC
approaches using which I prove full motion stabilization with damping in-
jection and limit cycle behaviour.

4. Simulation results for a simple EL system are used to illustrate the key
ideas (e.g., conserved Hamiltonian, variation of equilibrium, limit cycle), so
that the audience can grasp the motion phenomena with ease.



192 7 Task-induced Algebraic Symmetry in Motion Control

The chapter is organized as follows. In Sec. 7.2, the preliminaries of EL
mechanics in the context of operational spaces is described. In Sec. 7.3, I use the
tools from geometric mechanics on fibered manifolds to formulate the problem of
task-induced algebraic symmetry between two operational spaces. In Sec. 7.4, I
show that the task-induced algebraic symmetry is inherently a non-Hamiltonian
problem resulting in a system with curl forces. I derive a novel proportional action
that conserves a new Hamiltonian, but preserves the metric tensor. Finally in,
Sec. 7.5, concluding remarks and the future scope of work are described.

7.2 Preliminaries

In this section, the relevant theory of EL mechanics under proportional actions
arising from scalar potential fields in context of operational spaces is described.

7.2.1 The considered EL system

The EL system in (2.15) from Chapter 2 is considered in this chapter, as in
Chapter 6. It is assumed that Assumption 6.1 is fulfilled and Property 6.1 is
satisfied.

Example 5. Let us consider a particle with configuration q = (q1, q2) ∈ Q ≡ R2,

see Fig. 7.2. Let its mass be M =

[

10 4
4 5

]

[Kg], which gives the kinetic energy,

K = 1
2
〈q̇, q̇〉M . Its Euler-Lagrange equations are,

∇q̇ q̇ = τ ♯ ⇒ d

dt
(Mq̇) = τ (7.1)

where τ ∈ R2 is the control action.

Although Example 5 has a configuration-independent affine metric, it serves
as a strong candidate (inertia coupling) to show that task hierarchy is a non-
Hamiltonian problem. However, the theory is developed with generality to EL
systems and their motion control.

For this, it might be required to regulate the motion on operational spaces,
Ri, such that dim(Ri) = ni ≤ n. Consider the primary (secondary) task i = 1
(i = 2) on the corresponding operational spaces. There is a map πi : Q→ Ri to
each operational space, Ri, and the corresponding operational space configuration
ri ∈ Ri is the forward kinematics map as the following,

r = (r1, r2) = π(q) =
(

π1(q), π2(q)
)

(7.2)

where π is a locally invertible transformation, i.e., π : Q→ R, R = R1 ×R2 is the
total operational space, i.e., the Cartesian product of the primary and secondary
operational spaces.
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Figure 7.2: Motion control scenario for a particle in affine space Q = R2,
q = (q1, q2) ∈ Q. The primary (secondary) operational spaces are the lines in red
(blue), ri = πi =

[

ki 1
]

q. The initial configuration is q0 ∈ Q, and the desired
equilibrium is q ∈ Q, which is an intersection of (r1, r2).

Assumption 7.1. The operational spaces, Ri, satisfy dim(Ri) = ni and
∑
ni = n

and the total task posed on the operational spaces should satisfy a unique point in
Q.

Assumption 7.1 is standard as in Chapter 6.

Def. 7.1. For a EL system, let Q be the configuration space and Ri ⊂ Rni,
i = 1, 2, be the operational spaces, which are differentiable manifolds. Then, the
differentiable map πi : Q 7→ Ri is a surjective submersion at q ∈ Q if its differen-
tial, Ji : TqQ 7→ Tπi(q)Ri is a surjective linear map.

In Example 5, each map πi : R2 → R is considered as a line of slope ki such
that,

r =

[

r1

r2

]

= π(q) =

[

π1(q)
π2(q)

]

=

[

k1 1
k2 1

][

q1

q2

]

(7.3)

with k1 = 1 and k2 = 0.2. Obviously, q ≡ (r1, r2), i.e., the current configuration is
uniquely given by the configurations on the two operational spaces. Note that in
Fig. 7.2, the initial condition q0 = (1, 1.5) ∈ Q is the intersection of the primary
(red) and secondary (blue) dashed lines denoting the current configuration in the
respective spaces.

The differential of the task maps πi, dπi : TqQ 7→ Tr1R1, give the total opera-
tional space Jacobian map as,

ṙ = J(q)q̇ =

[

J1(q)
J2(q)

]

q̇, Ji = dπi =
∂πi
∂q

⊤

(7.4)
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which for Example 5 is,

ṙ = Jq̇ =

[

k1 1
k2 1

]

q̇ (7.5)

To understand the nature of task conflict, I refer to [215, §II.B] for two key
definitions.

Def. 7.2. Kinematic decoupling: Consider the EL system in (2.15) with two
tangent space maps T1 ∈ Rn1×n and T2 ∈ Rn2×n, which may not be Jacobians of a
kinematics submersion, satisfying n = n1 + n2. Let T ⊤ =

[

T ⊤
1 T ⊤

2

]

. Then, the
velocities resulting from these maps, T1q̇ and T2q̇, are kinematically decoupled if,

T1T −1

[

0
T2

]

q̇ = 0 = T2T −1

[

T1

0

]

q̇ (7.6)

Def. 7.2 is, however, a tautology (always true) if T is invertible. This can be
proved as follows. Let T −1 =

[

A B
]

. Using T T −1 = In,n, I get, T1B and T2A

are 0. Using these properties, (7.6) always follows. Thus, the following definition
is a better representation of task conflict for this chapter.

Def. 7.3. Geometric decoupling: Given Def. 7.2, the velocities T1q̇ and T2q̇, are
geometrically decoupled if,

〈

T −1

[

0
T2

]

q̇, T −1

[

T1

0

]

q̇
〉

W
= 0 (7.7)

where W ≻ 0 is a weighing matrix that determines the geometry for decou-
pling. Obviously by Def. 7.3, the operational space velocities in (7.4), ṙ1 and ṙ2,
are not necessarily geometrically decoupled for a given W .

Lemma 7.1. Given a EL system with a point transformation, i.e., a locally
invertible transformation r = π(q), it is described by a local Lagrangian as, L̂(r, ṙ).
The EL equations remain invariant and are described as [91, pp. 30],

d

dt

δL̂

δṙ
− δL̂

δr
= F ⇒ ∇̂ṙṙ = F ♯ ⇒ Λ(q)r̈ + C(r, ṙ)ṙ = F (7.8)

where F = J−⊤τ ∈ T⊤
r R, Λ = J−⊤MJ−1 is the total operational space inertia

metric tensor on R1 × R2, and C = J−⊤(CJ−1 −MJ̇−1) is the corresponding CC
matrix, and ∇̂ is the covariant derivative on R.

Let us consider the equilibria r = (r1, r2) ∈ R which gives a unique point
q = π−1(r) = π−1(r1, r2), purple × in Fig. 7.2. The unique equilibrium q is also
the intersection point of the two surfaces denoting the desired operational space
configurations in R1, R2.
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7.2.2 Proportional Action

Typically in motion control in PBC approaches [13, 189], the proportional ac-
tion arises from the differential of a potential function on the operational space,
Ri, denoted as, Φi : Ri → R. Motion stabilization about an equilibrium is then
achieved through damping injection. In this work, the motion of EL system (e.g.,
particle in Fig. 7.2) is analysed from a mechanics perspective to emphasize the
conserved Hamiltonian associated with task-induced algebraic symmetry in EL
systems. This is required to bring forward the key contribution, i.e., Lyapunov-
based motion stabilization, while considering a class of non-conservative systems
with curl forces. To that end, the proposed theory of motion is developed while
presupposing the effect of scalar potentials corresponding to the proportional
terms. Damping injection for motion stabilization is treated later. The power
flow due to the proportional action in the operational space Ri is given by the
time-derivative of the corresponding potential,

Lṙi
Φi(ri, ri) =

d

dt
Φi(ri, ri) = 〈∂Φi

∂ri
, ṙi〉 (7.9)

The differential in Ri is then pulled back to the configuration space Q as,

Lq̇Φi(ri, ri) = 〈∂Φi

∂ri
, ṙi〉 = 〈J⊤

i

∂Φi

∂ri
, q̇〉 (7.10)

In the case of superposition of proportional actions [204, 205], the total force
acting is,

τ =
∑

i=1

Fi = −
2∑

i=1

J⊤
i

∂Φi(ri, ri)

∂ri
(7.11)

Lemma 7.2. Given the EL system in (2.15), the proportional action in (7.11)
conserves the Hamiltonian, H = K(q, q̇) +

∑
Φi(ri, ri).

Proof. Taking the time-derivative of H , using (7.10) and Prop. 6.1, Ḣ = 0.

For the configuration space in Example 5, Q = R
2, the orbit (due to the

undamped motion) of the particle due to superposition proportional action in
Lemma 7.2 is confined in a bounded rectangular region, as shown in Fig. 7.3a,
and the shape of the rectangular region is determined by the magnitudes of
Hess(Φi). In this example, linear spring-like scalar potentials, Φi = 1

2
〈δri, δri〉Pi

,
are used where δri = ri − ri and P1 = 4, P2 = 20, which gives Hess(Φi) = Pi.

The following property is introduced here to apply Property 2.1, and will be
used later to write the operational space potentials, Φi as functions in Q.

While Lemma 7.2 provides a conserved Hamiltonian, H , that serves as a
Lyapunov candidate, both potentials, Φi, charge and discharge in a way that can
conflict with each other. This means that

〈J⊤
1

∂Φ1(r1, r1)

∂r1
, J⊤

2

∂Φ2(r2, r2)

∂r2
〉M(q)−1 6= 0, (7.12)
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which results because the operational space configurations, R1 and R2, do not
satisfy a surface orthogonality condition relative to each other. In the example
of Fig. 7.2, this means that r1 and r2 are not orthogonal. Consequently, J1 and
J2 are also not orthogonal, as is explicitly shown in Fig. 7.3b. In the following
section, EL mechanics on fibered manifolds is introduced to impose task-induced
algebraic symmetry.

7.3 EL Mechanics on Fibered Manifolds

In this section, the key concepts from geometric mechanics on fibered manifolds
are revisited from Chapter 6. Using this formalism, I prove that the projection
of the proportional action of the secondary task to the fiber (nullspace) actually
corresponds to a restricted potential in the manifold of self-motions. Using the
EL equations of motion in the fibered bundle formalism, energy conservation is
proved while considering a fiber potential with a stationary equilibrium.

In robotics, often the secondary potential is pulled back along the nullspace
projector (yellow arrow in Fig. 7.3b) of the primary task differential (Jacobian)
[52, 207, 224]. Let the nullspace basis of the map J1 be Z1 ∈ Rn×(n−n1). In this
work, I assume that each nullspace basis satisfies the orthogonality and unity
norm criteria, i.e.,

〈Zj
1, Z

i
1〉A = 0, i 6= j, 〈Zj

1, Z
j
1〉A = 1 (7.13)
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where A ∈ Rn×n is a weighing matrix for the inner product. While the local oper-
ational space transformation π : Q→ R in (6.11) is useful, there is an alternative
way to describe the system.

7.3.1 Task-induced Fiber Bundle

The task-induced fiber bundle is identical to the one presented in Chapter 6. In
the following, the key points are summarized. The surjective submersion, π1, of
the primary task from Def. 2.3 results in a fibered manifold, denoted as a triplet
(Q, π1, R1). Each fiber π−1

1 (r1) for r1 ∈ R1 is an embedded submanifold of Q with
dimension k1 = n− n1 [100], which is also known as the manifold of self-motions
[101]. The task-induced fiber bundle is denoted by the short exact sequence as,

π−1
1 (r1) Q R1

R2 R

Ψ1

π2◦Ψ1

π1

π
π2

(7.14)

where Ψ1 : π−1
1 (r1)→ Q is the inclusion map of the embedded submanifold at

each r1. The function Ψ1 can be determined locally using the secondary task
submersion,

π1(q) = r1, π2(q) = r2, s(q) = 0 (7.15)

where s determines the fiber origin, i.e., the zero of the fiber at a given π1(q) = r1.
For every q ∈ Q, the primary submersion π1,the canonical vertical subspace

is, V1, on the tangent bundle TQ, written as, V1q = Kern(J1(q)), where V1q is
a k1-dimensional vector space. The fibered manifold provides canonical exact
sequences for the tangent and the cotangent spaces as follows [104, eq. 1.4.3],

V1q TqQ Tr1R1

Tr2R2 TrR

Z1

J2Z1

J1

J
J2

(7.16)

T⊤
r1
R1 T⊤

q Q V1q
⊤

T⊤
r R T⊤

r2
R2

J⊤
1 Z⊤

1

J⊤

J⊤
2

Z⊤
1 J

⊤
2 (7.17)

Let the vertical velocity be (q, µ̃) ∈ V1q, where µ̃ ∈ Rk1 . The velocity µ̃ is
canonically projected to a vertical component q̇v1 ∈ Ver(TqQ) on the tangent
space, as q̇v1 = Z1(q)µ̃, where Z1 ∈ R

n×k1 denotes the set of vertical (nullspace)
basis. Motion along Z1 ensures the invariance of π1(q) = r1. The numerical
procedure to find Z1 basis is reported in the Lemma 6.3 of Chapter 6.
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Before proceeding, let us revisit some key ideas from Chapter 2. Assump-
tion 2.2 is invoked so that the fibers are isomorphic, and the EL system does
not suffer from algorithmic singularity [106]. In Example 5, the nullspace basis

is Z1 = 1√
1+k2

1

[

1 −k1

]⊤
. Another consequence of the sequences in (7.16) and

(7.17) is the canonically defined metric on the submanifold π−1
1 , see Def. 2.4,

M2 = Z⊤
1 MZ1.

7.3.2 Restriction of the Secondary Task

Consider the secondary task potential, Φ2(r2, r2). Using Property 6.2, it is con-
cluded that ∀Φ2(r2, r2), ∃Φq

2(q). Recall that the fiber π−1
1 is an embedded sub-

manifold of Q. Hence, smooth functions on Q have a restriction to the domain in
the submanifold, π−1

1 (r1), i.e., the fiber [89, Th. 5.27]. The domain restriction ap-
plied to the scalar field Φq

2 results in another restricted scalar field Φ̃2 : π−1
1 → R,

whose domain is a point in the submanifold at r1. This is the restriction of the
potential Φ̃2 = Φ2(r2, r2)

∣
∣
∣
π−1

1 (r1)
at each r1.

This potential, Φ̃2, is restricted to the fiber (nullspace), and it is characterized
by its origin, its equilibrium and the local Hessian form in the fiber space. The
fiber origin was already identified using the inclusion map Ψ1 in (7.14) as the
point s which satisfies Ψ1(r1, s) = q. Using the same map the equilibrium can be
identified as follows. The key idea is that, there exists an equilibrium q̂ ∈ Q, which
must satisfy the current primary configuration (r1) and the desired secondary
configuration r2, i.e., ∀r1 ∈ R1, ∃(r1, s) ∈ π−1

1 (r1), such that q̂ = Ψ1(r1, s) and
π2(q̂) = r2, where s determines the fiber equilibrium. Note that the restricted
potential, Φ̃2, depends on the relative distance between s and s. Consequently,
∂Φ̃2(s,s)

∂s
= −∂Φ̃2(s,s)

∂s
.

For the next treatment, the Lie derivative of Φ̃2 along V1 is computed by
restricting the Lie derivative of Φ2 to π−1

1 . Computing this,

Lq̇Φ2

∣
∣
∣
∣
π−1

1 (r1)
= 〈J⊤

2

∂Φ2

∂r2
, q̇〉

∣
∣
∣
∣
π−1

1 (r1)

⇒Lq̇v1Φ̃2 = 〈J⊤
2

∂Φ2

∂r2
, q̇v1〉 = 〈Z⊤

1 J
⊤
2

∂Φ2

∂r2
, µ̃〉

︸ ︷︷ ︸

force-velocity pair in fiber

(7.18)

From (7.18), the fiber force fe = −Z⊤
1 J

⊤
2
∂Φ2(r2,r2)

∂r2
is the differential of the

restricted potential in the submanifold at r1, i.e., fe = −∂Φ̃2(s,s)
∂s

. Locally, its
Hessian in the fiber is obtained as, Hess(Φ̃2) = Z⊤

1 J
⊤
2 Hess(Φ2)J2Z1 by taking the

second derivative. The restricted potential in the fiber is therefore determined
locally as,

Φ̃2 =
1

2
〈se, se〉Hess(Φ̃2), se = s− s, (7.19)
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Remark 38. Note that in (7.19), the local fiber potential Φ̃2(se) generates a

conservative force field −∂Φ̃2

∂s
. But, the fiber potential, which is local, is not like

the global potential forms, Φi(ri, ri). The key difference is that the latter can be
pulled back trivially as corresponding potential forms in the configuration space
Q, see Prop. 6.2. However, the Φ̃2 corresponds to an analogous potential in Q iff
ṙ1 = 0.

Note that the final R.H.S of (7.18) agrees with the cotangent space exact
sequence in (7.17). After the domain restriction, I obtain a force in the fiber
space, however, to apply control forces, the force must be brought back to TqQ.
Unfortunately, there is no more canonical geometric machinery available. As in
Chapter 6, a connection (see Def. 2.5), Aq : TqQ 7→ V1q, is chosen to aid this step,
which satisfies A

(

Ver(µ̃)
)

= µ̃, where µ̃ ∈ V1.
Thus, Def. 2.5 determines a specific vertical velocity µ̃ given q̇. In Robotics,

the Ehresmann connection is referred to as the nullspace projector [206, 207],
and appears in literature in the form, A = (Z⊤

1 WZ1)
−1Z⊤

1 W , where W ∈ Rn×n

is a weighing matrix. In particular, the connection defines the endomorphism
map, TqQ→ TqQ, through the projector matrix (endomorphism in Property 6.3)
Z = Z1A, which splits any tangent velocity vector q̇∗ ∈ TqQ as,

q̇∗ = q̇∗
v + q̇∗

h = (Z)q̇∗ + Kern(Z)q̇∗ (7.20)

which decomposes the tangent space into two distributions as TqQ = V1q + H1q.
The connection can be defined as statically consistent using W = In,n andA = Z⊤

1

or dynamically consistent using W = M(q) and A =M−1
2 Z⊤

1 M .
Both projection formulae satisfy the force-velocity pairing in (7.18), and hence,

are equally valid iff ṙ1 = 0. In geometric mechanics, the former is called a trivial
Ehresmann connection and the latter is called the mechanical connection, see
Def. 2.7. In the latter case, µ̃ obtained from the connection is known as the
locked velocity, i.e., the velocity corresponding to the momentum in the fiber
space. The bundle velocity is obtained as a locally invertible linear transformation
of the velocity on TqQ, i.e.,

[

ṙ1

µ̃

]

= T (q)q̇, T =

[

J1(q)
A(q)

]

(7.21)

which is called (with an abuse of wording), the extended Jacobian in robotics.
However, T does not emerge as the differential of a kinematic map. Note that
from Def. 7.3, the shape velocity ṙ1 and the vertical velocity µ̃ are geometrically
decoupled for any arbitrary connection, A, as

〈

T−1

[

0
µ̃

]

, T−1

[

ṙ1

0

]〉

W
= 0 (7.22)
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However, the mechanical connection satisfies an additional orthogonality (sym-
metry) condition between the proportional actions of the primary and secondary
tasks, i.e.,

〈(J⊤
1

∂Φ1

∂r1

)♯, (A⊤Z⊤
1 J

⊤
2

∂Φ2

∂r2

)♯〉M = 0 (7.23)

which is not satisfied by the trivial one. Thus, (7.21) and (7.23) give the con-
ditions of algebraic symmetry that needs to be satisfied by the motion control.
Note that definition of A is a choice, and does not affect power flows in dynamics,
but it simplifies the EL equations of motion. With the aforementioned machin-
ery, it is prudent to investigate a simple example to recollect the concepts in
task-induced algebraic symmetry (hierarchy).

Example 6. Consider an EL system with configuration q = (q1, q2) ∈ Q = R2,

see Fig. 7.4, with kinematic submersions for primary task r1 = π1(q) =
√

∑

i q
2
i ,

and secondary task r2 = π2(q) = 1− cos(q2). Note that Def. 7.3 is not satis-
fied, see top of Fig. 7.4. Considering the tasks independently, the potentials are,
Φi(ri) = 1

2
kir

2
i , k1 = 1, k2 = 2.5. For task-induced symmetry, (7.19) yields a re-

stricted potential Φ̃2(se), and (7.23) holds on Q. The potential Φ̃2 is compared
with Φ2(r2, r2) at the bottom of Fig. 7.4, which shows the effect on Φ̃2 due to the
projection. In this plot, Φ̃2 is computed using (7.19) over the domain Q.

Note that Φ̃2 gets truncated in Q in regions where J1 (blue) and J2 (red)
are aligned, which indicates conflicting primary and secondary objectives. Con-
sequently, J2Z is singular in these regions, and the restricted potential Φ̃2 is 0,
along the diagonal. This shows that the domain of Φ̃2 is actually a disjoint union
of 4 sets. The analysis in this work considers motion in the interior of one set such
that the ensuing motion does not encounter the submanifold boundary. This is
ensured by the Assumptions 2.1, 2.2 and 2.3.

7.3.3 EL equations of Motion on the Fiber Bundle

As in Sec. 6.5 from Chapter 6, note that for a general EL system without symme-
try considered here, the quotient map π1 : Q→ Q/Gr1 holds locally for each r1,
where Gr1 is the Lie group locally defined at r1. The dynamics of (ṙ1, µ̃) globally
correspond to the dynamics of the shape velocity and the Lie algebroid of Gr1 .
The equations of motion are given as in (6.33) from Chapter 6.

M(q)

[

r̈1

˙̃µ

]

+ Γ(q, ṙ1, µ̃)

[

ṙ1

µ̃

]

=

[

F1

f

]

(7.24)

where τ = T⊤(F1, f) denote the forces in the shape and fiber, M = T−⊤MT−1

is the metric tensor (fully-coupled for arbitrary A) in the fiber bundle, and
Γ = T−⊤(CT−1 −MṪ−1) is the matrix of CC terms.
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Figure 7.4: Example EL system: Configuration: q = (q1, q2) ∈ Q = R2, with sub-
mersions maps r1 = π1(q) =

√
∑

i q
2
i , r2 = π2(q) = q2 − q1. Top: The scalar po-

tential field, Φ1, with vector fields J1, J2 and J2Ẑ. Bottom: Comparison of
independent Φ2(r2) and restricted Φ̃2.

Remark 39. Note that the inertia tensor M is block-diagonalized

M(q) =

[

M1(q) 0
0 M2(q)

]

(7.25)

if A is chosen to be the mechanical connection, as was shown in [207, 215]. In
the following, A is chosen as the mechanical connection to simplify the derivation.
But the trivial connection can be alternatively used.

Remark 40. The dynamics in (7.24) satisfy the passivity property by the corol-
lary in Prop. 6.1, i.e., there exists a conserved Hamiltonian.

Lemma 7.3. Given a EL system in 2.15, the submersion of the primary task
kinematics, π1 : Q→ R1, results in a fiber bundle description, i.e., local coordi-
nates (r1, s) ∈ π−1

1 . Let the kinetic energy of the EL system in (2.15) be rewritten
as K = 1

2
〈(ṙ1, µ̃), (ṙ1, µ̃)〉M. Consider the motion under static scalar potentials,
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Φ1(r1, r1) and Φ̃2(s, s) as F1 = −∂Φ1

∂r1
and f = −∂Φ̃2

∂s
, such that r1, s are time-

invariant. In terms of this description, the equations of motion are given by the
EL equations in (7.24), which conserve the Hamiltonian, Ĥ = K(ṙ1, µ̃) + Φ(r1, s),
where Φ = Φ1 + Φ̃2.

Proof. Taking the time-derivative of Ĥ along the trajectory using (7.24),

˙̂
H = 〈(ṙ1, µ̃),

(Ṁ
2

(ṙ1, µ̃)− Γ(ṙ1, µ̃)
)

〉

+ 〈(ṙ1, µ̃), (F1, f)〉+ 〈∂Φ1

∂r1
, ṙ1〉+ 〈∂Φ̃2

∂s
, µ̃〉 = 0

(7.26)

where Remark 40 is used to assert passivity as 〈(ṙ1, µ̃), (ṙ1, µ̃)〉Ṁ−2Γ = 0.

Lemma 7.3 provides the analytical machinery to design the proportional ac-
tion which ensures that the state (r1, r2) is driven towards (r1, r2) in a manner
that imposes task-induced algebraic symmetry. To that end, I consider the pro-
portional action of the form,

τ =τ1 + τ2 + τu

τ1 =− J⊤
1

∂Φ1(r1, r1)

∂r1

)

τ2 =−A⊤Z⊤
1 J

⊤
2

∂Φ2(r2, r2)

∂r2

(7.27)

where Φi = 1
2
〈(ri − ri), (ri − ri)〉Pi

is the spring-like potential with Pi ≻ 0, and
τu is a control action to be determined later. In robotics, τu = 0 is often used,
or has some compensation terms for CC forces [207]. However, I will show next
that this naive imposition of task hierarchy destroys the Hamiltonian nature of
the EL system.

Remark 41. Given that a secondary task potential, Φ2(r2, r2), has a restriction

to the fiber, Φ̃2(s, s)
∣
∣
∣
∣
π−1

1 (r1)
, as shown in Sec. 7.3.2, it is enticing to use Φ̃2 and

apply Lemma 7.3 to prove the Hamiltonian nature of the system. However, the
fiber equilibrium s in task-hierarchy is not time-invariant, and imparts curl forces
to the dynamics as I will show next. This makes the problem non-Hamiltonian,
and (7.27) applied to (7.24) does not conserve Ĥ.

7.4 Conserved Hamiltonian and Motion Control

In this section, firstly, I use Example 5 to demonstrate the non-conservative na-
ture of task-induced algebraic symmetry under conventional proportional actions



7.4 Conserved Hamiltonian and Motion Control 203

(with τu = 0 in (7.27)). Secondly, I prove that this is due to a wandering equi-
librium of the restricted potential in the fiber space. Thirdly, I derive a novel
proportional action that conserves a new Hamiltonian which characterizes the
EL system with task hierarchy while preserving the metric tensor.

7.4.1 Comparison of Force Fields

For the 2D case in Fig. 7.2, comparing the force field portraits for the proportional
term in Lemma 7.2 and the one in (7.27) (with τu = 0) reveals the nature of the
forces. In particular, the force fields are shown in Fig. 7.5 for scalar potentials,
with Hessians P1 = 4 and P2 = 20. The potential parameters were chosen to
highlight the difference in the resulting force fields. On the left, the force field
portrait with superposition of proportional actions from Lemma 7.2 is shown,
while the portrait with the projection of the secondary proportional action from
(7.27) is shown. Note that in both cases, the forces turn towards the equilibrium
strongly in the conical region between the lines (r1, r2). However, the latter
turns strongly in a way that resembles motion with vorticity [228]. Vorticity is
quantified by the curl of the force field, i.e., ∇× τ . For the case of Lemma 7.2,
obviously∇× τ = 0 because the proportional actions are obtained as differentials
of primary and secondary potentials. Mathematically, it is computed as the
following,

∇× τ =
[
∂
∂q1

∂
∂q2

]
[

0 1
−1 0

][

τ1

τ2

]

=
2∑

i=1

(

v⊤
1 J

⊤
i Hess(Φi)Jiv2 − v⊤

2 J
⊤
i Hess(Φi)Jiv1

)

= 0

(7.28)

where v⊤
1 =

[

1 0
]

and v⊤
2 =

[

0 1
]

are the unit vectors. Note that in (7.28),
the null curl condition results due to the symmetric nature of the Hessian forms
J⊤
i Hess(Φi)J2. It is worth noting that these Hessians correspond to the potentials

(0-forms) in the configuration space Q, which result from the pullbacks from the
operational spaces R1, R2, see Prop. 6.2.

However, the case with (7.27) has ∇× τ 6= 0, thus, generating a system with
curl forces. As in (7.28), the curl is computed using Ẑ1 = Z1A, as,

∇× τ =v⊤
1 Cv2 − v⊤

2 Cv1, C = Ẑ⊤
1 J

⊤
2 Hess(Φ2)J2 = v⊤

1 (C − C⊤)v2 (7.29)

As expected, due to the non-symmetric nature of C in (7.29), which arises due
to the projection, the curl is not null. Thus, the system becomes non-conservative.
This poses a challenge in characterizing the motion of the particle using level-sets
of a scalar Hamiltonian. Consequently, Lyapunov-based stabilization also be-
comes difficult because the system is non-Hamiltonian, i.e., the motion equations
do not arise from a Lagrangian or Hamiltonian, which precludes the natural en-
ergy as a candidate. In mechanics terminology, (7.27) with (7.1) defines a purely
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Figure 7.5: Force fields with scalar potential parameters: P1 = 4, P2 = 20. Left:
Superposition of primary/secondary proportional actions, Right: Using Projec-
tion of secondary proportional action.

Newtonian system with curl forces, see related works in [226, 227]. In the next
part, I will prove that these curl forces arise because the equilibrium, s of the
fiber-restricted potential, Φ̃2(s, s), varies as r1(t) changes due to the primary
potential Φ1. This makes the control problem non-conservative.

7.4.2 Wandering Equilibrium in the Fiber

In (7.18), I derived the Lie derivative of the fiber-restricted potential, Φ̃2 in the
submanifold π−1

1 (r1) for a fixed r1. To attribute for the complete motion, the
total derivative of this potential must be computed, and is stated below. The
proof requires the following Assumption.

Assumption 7.2. The current primary configuration r1 ∈ R1, and the desired
secondary configuration, r2 ∈ R2, satisfy a unique point in Q, i.e.,

π(q̂) = (r1, r2)⇒ q̂ = π−1(r1, r2) (7.30)

Assumption (7.2) only requires that π be a proper map, i.e., the total opera-
tional space Jacobian, J , is full rank.

Lemma 7.4. Given the fiber bundle of the primary task, π1 : Q→ R1, the total
derivative of the fiber-restricted secondary potential, Φ̃2, under Assumption 7.2
is,

Lq̇Φ̃2 = 〈Z⊤
1

∂Φ̃2(s, s)

∂q
, ω̃〉, ω̃ = µ̃− ω(ṙ1) (7.31)
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where ω(ṙ1) = AJ−1

[

ṙ1

0

]

is the velocity of the potential’s equilibrium s in the fiber,

π−1
1 (r1), trivialized at the frame located in s = 0, while r1 varies in R1.

Proof. Computing the total derivative of Φ̃2 along q̇, and using (7.20) to decom-
pose q̇ = q̇v + q̇h,

Lq̇Φ̃2 =〈∂Φ̃2(s, s(r1))

∂q
, q̇v〉+ 〈∂Φ̃2(s, s(r1))

∂q
, q̇h〉

= 〈∂Φ̃2(s, s(r1))

∂q
, Z1µ̃〉

︸ ︷︷ ︸

Ver

−〈∂Φ̃2(s, s(r1))

∂r1

, ṙ1〉
︸ ︷︷ ︸

Hor6=0

(7.32)

where the negative sign in the second line follows from

∂Φ̃2(s, s)

∂s
= −∂Φ̃2(s, s)

∂s
. (7.33)

The identity in (7.33) is because the magnitude of Φ̃2(s, s) depends on the relative
distance between the origin s and the equilibrium s. In (7.32), the Ver-part of the
R.H.S. is equivalent to 〈∂Φ̃2

∂s
, ṡ〉, as described in Sec. 7.3.2. Note that the Hor-part

of the power flow (7.32) is generally not 0, and it is simplified next. From (6.14),
q̂ is obtained using the inclusion map, Ψ1, from the fiber as,

Ψ1(r1, s) = π−1
1 (r1, r2) = q̂ ⇒ ∂Ψ1

∂r1
ṙ1 + Z1ω = J−1

[

ṙ1

0

]

= ˙̂qh + ˙̂qv (7.34)

where the differential form is considered in the second line of (7.34). Using
A ˙̂qh = 0, I get the form of ω in the Lemma. The Hor-part in the R.H.S. of (7.32)
is therefore,

〈∂Φ̃2

∂r1
, ṙ1〉 = 〈J⊤

[
∂Φ̃2

∂r1

0

]

, J−1

[

ṙ1

0

]

〉 = 〈Z1
∂Φ̃2

∂q
,AJ−1

[

ṙ1

0

]

〉 = 〈Z1
∂Φ̃2

∂q
, ω〉 (7.35)

Thus, using (7.35) in (7.32) proves the result.

Note that in Lemma 7.4, the wandering velocity of the fiber equilibrium is
exactly the horizontal contribution of the shape (primary task) towards motion
in the fiber, as shown in Lemma 6.4 in Chapter 6. This is the physical intuition
behind Lemma 7.4, and it brings forth a very surprising observation.

Remark 42. Although the vertical (nullspace) velocities along Z1 basis are or-
thogonal to the proportional action of the primary task, J⊤

1
∂Φ1

∂r1
, recall Lemma 6.3,

the horizontal velocities (emerging purely from ṙ1) are not necessarily orthogonal
to the proportional action of the secondary task, even when restricted to the man-
ifold of self-motions. In other words, even if the motion occurs purely in R1, the
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magnitude of the fiber restricted potential Φ̃2 varies along the path in R1. This
observation proves instrumental in finding the Hamiltonian for the task-hierarchy
problem.

It is instructive to visualize this effect using Example 5, see Fig. 7.3b. The
equilibrium of the submanifold (nullspace) is not located at the projection of the
force field F2 = −J⊤

2
∂Φ2

∂r2
. To see this, consider the point q = q0. At this point, the

pullback of the secondary proportional action, F2 is projected along the nullspace
basis using, f = Z⊤

1 F2. However, after projection, the equilibrium is not located
at the yellow dot. In fact, at this point, there is another non-zero proportional
term. The actual equilibrium, i.e., f = 0 is located at the blue ×, which is the
intersection of (r1, r2), i.e., intersection of the line given by r1 and the line of the
secondary equilibrium r2. Given the point in primary space, r1, the configuration
point is q̂ = π−1(r1, r2), which varies with r1.

This variation of equilibrium is highlighted in Fig. 7.6. In particular, the EL
system trajectory is plotted in magenta, and 10 points are numbered on it to
identify the equilibrium s as red circles on the r2 line. Note that in transition
from 1 to 2, the equilibrium has shifted left along π−1

2 (r2), i.e., along the nullspace
(fiber) of the secondary equilibrium. At the points 7 and 10, the primary equi-
librium is reached, r1 = r1. Hence, the proportional action of the secondary task
is pointed along the nullspace (fiber) of the primary equilibrium, π−1

1 (r1). The
pairs 1-9, 2-8 and 4-6, respectively, are non-identical points in Q, but have the
same value of r1, and the corresponding fiber equilibria. Thus, for the 1-9 pair,
the proportional action at 9 is stronger than in 1, as the former is further away.
The equilibria varies between the limits shown by the black arrowed line.

Generally, it is not trivial to find the fiber variables s, s in EL systems. How-
ever, Example 5 enables the study of the behaviour of the origin and the equilib-
rium in the fiber. The origin in the fiber is determined by the map, Ψ1(r1, s) = q,
where (r1, s) ∈ π−1

1 (r1) ≡ R1. This origin is obtained as,

s = Ψ−1
1 (q) = Z⊤

1 J
−1r = Z⊤

1 q (7.36)

The state-dependent equilibrium in the fiber is s = Ψ−1
1 ◦ π−1(r1, r2). I use

the map,

Ψ1(q, s) = q̂ ⇒ s = Ψ−1
1 ◦ π−1(r̂) = Z⊤

1 q̂ (7.37)

where r̂ = (r1, r2). In Fig. 7.7, the motion of s and s are shown for the trajectory
in Fig. 7.6. Recall that, the proportional actions are given by (7.27) with τu = 0.
It can be seen that the fiber origin, s has a poor tracking performance relative to
the wandering fiber equilibrium, s. Due to the varying nature of the equilibrium in
the fiber, the conventional EL equations are not suitable. Instead, it is required
to use a anisotropic form of the kinetic energy which is common in tracking
control [229]. This idea will be followed to design a novel proportional action
that preserves the Hamiltonian structure of the EL system.
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Figure 7.6: Time-evolution of the fiber equilibrium, s, (red circles) due to conven-
tional projected position-dependent forcing in (7.27) with τu = 0. The equilibria
vary along π−1

2 (r2).
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Figure 7.7: Time-evolution of the fiber origin, s, and the fiber equilibrium, s, due
to conventional projected position-dependent forcing in (7.27) with τu = 0. Fiber
coordinate is unable to track the state-dependent equilibrium.

7.4.3 The Conserved Hamiltonian

In the context of PBC [3] and Lagrangian matching [13], for a given EL system
with natural Hamiltonian H(q, q̇) = K(q, q̇) + V(q), a desired closed-loop Hamil-
tonian is chosen as H = K(q, q̇) + Φ(q), and the proportional actions are derived
such that H is a conserved quantity of motion. In PBC, K = K is often chosen
to preserve the metric structure of the EL system, while potential shaping is
performed so that V is replaced by Φ in closed-loop. Recall that by virtue of
Assumption 6.1, the effect of V is already removed, and it remains to impose
the potential Φ that exhibits the task-induced algebraic symmetry. In hierarchi-
cal PBC approaches for motion control with redundancy, however, a closed-loop
Hamiltonian H for the entire EL system has never been reported. To that end, in
the following Theorem as the main result, I report a Hamiltonian, H, which is a
conserved quantity of motion, while imposing a task-induced algebraic symmetry.
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Theorem 7.1. Consider the EL system in (6.33) with the natural Hamiltonian,
Ĥ, in Lemma. 7.3 as the integral of motion. For the task-induced algebraic sym-
metry, let surjective submersions imposed by the forward kinematics to the op-
erational spaces, π1 : Q→ R1, as in Def. 2.3, where i = 1 (i = 2) denotes the
primary (secondary, respectively) task satisfy Assumption 7.1. The proportional
action chosen as (7.27), where

[

F1

f

]

= −
[

∂Φ1

∂r1

Z⊤
1 J

⊤
2
∂Φ2

∂r2

]

︸ ︷︷ ︸

proportional action

+

[

0
M2f

♯
u

]

︸ ︷︷ ︸

feedforward

+ Γ(ṙ1, µ̃)

[

ṙ1

ω

]

︸ ︷︷ ︸

tracking

f ♯u =N (q, q̇)

[

ṙ1

0

]

︸ ︷︷ ︸

CC terms

+AJ−1M−1
1

∂Φ1(r1, r1)

∂r1
︸ ︷︷ ︸

proportional action (primary)

N =
(

ȦJ−1 +AJ̇−1 −M−1Γ(ṙ1)
)

(7.38)

conserves a new Hamiltonian given as,

H =
1

2

〈

(ṙ1, ω̃), (ṙ1, ω̃)
〉

M
︸ ︷︷ ︸

K

+ Φ1(r1, r1) + Φ̃2(s, s)
︸ ︷︷ ︸

Φ

(7.39)

which preserves the inertia tensor M along trajectories.

Proof. Subtracting the time-derivative of the wandering fiber velocity from the
L.H.S. and R.H.S. of (6.33),

M(q)

[

r̈1

˙̃ω

]

+ Γ(q, ṙ1, µ̃)

[

ṙ1

µ̃

]

=

[

F1

f

]

−M(q)

[

0
ω̇

]

(7.40)

As remarked in Remark 39, A is chosen as the mechanical connection. Thus, the
dynamics of the wandering equilibrium in the fiber (R.H.S. of (7.40)) is written
as,

M2ω̇ =M2
d

dt

(

AJ−1

[

ṙ1

0

]
)

=M2

((

ȦJ−1 +AJ̇−1
)

[

ṙ1

0

]

+AJ−1

[

r̈1

0

])

(7.41)

In (7.41), r̈1 can be either measured or computed using the top row in (6.33).
In this work, I follow this model-based approach to compute r̈1 as,

[

r̈1

0

]

= −M−1Γ(ṙ1)

[

ṙ1

0

]

+

[

M−1
1 F1

0

]

(7.42)

Applying (7.42) in (7.41),

M2ω̇ =M2

(

ȦJ−1 +AJ̇−1 −AJ−1M−1Γ(ṙ1)
)[

ṙ1

0

]

+M2AJ−1

[

M−1
1 F1

0

]
)

(7.43)
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Computing the time-derivative of H,

Ḣ =〈(ṙ1, ω̃), (F1, f)〉 − 〈(ṙ1, ω̃),M(0, ˙̄ω)〉

+ 〈∂Φ1(r1, r1)

∂r1
, ṙ1〉+ 〈∂Φ̃2(s, s)

∂q
, Z1ω̃〉+ 〈(ṙ1, ω̃),

Ṁ
2

[

ṙ1

ω̃

]

− Γ

[

ṙ1

µ̃

]

〉
(7.44)

where the time-derivatives are computed using (7.9) for Φ1(r1, r1) and Lemma
7.4 for Φ̃2(s, s). Note that the final term in (7.44) does not cancel out by the
passivity property in Prop. 6.1 (see Remark 40) because the fiber velocities are
not identical. Thus, a CC compensation is required, as in tracking control. This
term shows up as the final term on the R.H.S. of the first of (7.38). Thus, if the
shape-fiber actuation is chosen as the first of (7.38), it ensures the conservation of
H, i.e., Ḣ = 0, which proves the result. Note that in the first of (7.38), the second
term is the feedforward term to track the wandering equilibrium acceleration, ω̇,
which appears as an inertial acceleration, whereas the final term compensates
for the CC terms, like in tracking for motion control, see [229]. It is worth
pointing out that although H resembles a tracking control problem, the problem
of task-induced hierarchy is not explicitly time-varying, i.e., the level-set of H is
time-invariant.

Remark 43. In (7.38), apart from velocity-dependent CC terms, there is also a
position-dependent term related to the primary task that is projected to the fiber
(nullspace). For relatively slow motions, the velocity-dependent terms might be
ignored at the cost of accuracy. However, the proportional term is only small iff
r1 → r1, and therefore, cannot be ignored even in practice.

Remark 44. Theorem 7.1 is important because it provides a conserved quan-
tity for stabilization using damping injection, as in PBC approaches. Physically,
the compensation in τu ensures tracking of the wandering potential, Φ̃2, in the
fiber space by removing the inertial effects of the moving frame. This creates a
conserved Hamiltonian as, Ḣ = 0, and renders the system integrable, although it
continues to have the presence of curl force. This is a rare example of a sys-
tem with curl forces possessing an integral of motion, that can be exploited for
energy-based stabilization.

Remark 45. Another consequence of Theorem 7.1 is that the stability property
is applicable to the entire system, as opposed to the hierarchical property in [51,
52, 206]. To the best of my knowledge, motion stabilization for the entire system,
while providing a hierarchy of convergence has not been provided earlier.

Remark 46. In Theorem 7.1, task-induced algebraic symmetry is mathematically
imposed as the inner product,

〈J⊤
1

∂Φ2(r1, r1)

∂r1
,A⊤Z⊤

1

∂Φ2(r2, r2)

∂r2
〉M−1 = 0 (7.45)

which was the main goal of this chapter.



210 7 Task-induced Algebraic Symmetry in Motion Control

It is instructive to validate Theorem 7.1 for the case considered in Example 5.
In this particular case, the underlying coordinate system is non-orthogonal, and
hence, the mechanical connection A 6= Z⊤

1 . Before writing the Hamiltonian, it is
worth noting that the inertia in the directions of the primary subspace and the
fiber (nullspace), isM = T−⊤MT = diag(m1, m2). The velocity of the wandering

equilibrium (Lemma 7.4) in the fiber is, ω = Z⊤
1 J

−1

[

ṙ1

0

]

. For the application of

Theorem 7.1, only the proportional term in (7.38) is required as,

τu = A⊤m2AJ−1

[

m−1
1

∂Φ1(r1,r1)
∂r1

0

]

(7.46)

which is required to preserve the Hamiltonian H.
Firstly, the force fields of the total proportional action in Theorem 7.1 is shown

in Fig. 7.8a. The force fields preserve the nature of motion in the right of Fig. 7.5,
which considered a naive projection of the secondary proportional action, τu = 0
in (7.27). As before, the fields turn strongly in a way that resembles motion
with vorticity, but arise from a conserved Hamiltonian H. The Hamiltonian
was computed using (7.19), (7.36) and (7.37) for Φ̃2, and is plotted in Fig. 7.8b.
Clearly, H (green) is a constant of motion, while the anisotropic form of the
kinetic energy (yellow) proposed in this chapter, K, and the total potential energy
Φ = Φ1 + Φ̃2 (purple) exchange energy with each other. Note that Φ̃2 (red) is
comparable in magnitude to Φ1 (blue). The observations in the aforementioned
figures prove the correctness of the proposed theory in this chapter.

To evaluate the tracking performance in the fiber, the proportional gain in
the secondary task was chosen as, P2 = 0, and the result is plotted in Fig. 7.9a.
Evidently, the fiber origin s tracks the wandering fiber equilibrium s with a
constant offset. This shows that even without the secondary proportional gain,
the terms in Theorem 7.1 ensure that the fiber origin follows the fiber equilibrium
in an equidistant manner, as is seen with only the feedforward terms of tracking
control. The motion in fiber while considering P2 6= 0 is shown in Fig. 7.9b.
In contrast to Fig. 7.7, it is seen that the tracking performance is considerably
improved due to the terms in Theorem 7.1. Finally, the trajectory in R2 for
t ∈ [0, 30] is shown in Fig. 7.10a in a colour-graded manner, i.e., from blue (t = 0)
to yellow (t = 30). The trajectory is starkly different from that in superposition,
Fig. 7.3a. In particular, the motion is bounded in a rhombus with sides defined
by the considered operational space ri ∈ [ri(0), 2ri − ri(0)]. The trajectory in
Fig. 7.10a also indicates the anisotropic form of the inertia metric, as the standard
Lissajous figure in Fig. 7.3a is now skewed into a rhombus. It is worth noting
here that, setting the primary task gain as P1 = 0, results in a motion along the
fiber (nullspace) of the primary task π−1

1

(

r1(0)
)

toward r2, while using P2 = 0,

results in a motion along the fiber (nullspace) of the secondary task π−1
2

(

r2(0)
)

toward r1. This is an intuitive behaviour of task-induced algebraic symmetry,
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Figure 7.8: Motion Characteristics with proposed control action in Theorem 7.1.

and was verified in simulation. As a corollary of Theorem 7.1, the asymptotic
stabilization of the EL system about the equilibrium is proved next while adding
damping terms.

Corollary 6. Consider the EL system in Theorem 7.1 with τ in (7.27) as the
control law having τu as a feedforward with additional damping for setpoint regu-
lation, such that,

τ =τ1 + τ2 + τu,







τ1 = J⊤
1 F1, F1 = −

(
∂Φ1(r1,r1)

∂r1
) +D1ṙ1

)

τ2 = A⊤f, f = −
(

Z⊤
1 J

⊤
2
∂Φ2(r2,r2)

∂r2
+D2ω̃

) (7.47)

where D1, D2 ≻ 0. The closed-loop dynamics of the EL system ensures asymptotic
stability, i.e., (r1, r2)→ (r1, r2).

Proof. The Hamiltonian, H, in Theorem 7.1 serves as the Lyapunov candidate.
Taking its time-derivative,

Ḣ = −〈ṙ1, ṙ1〉D1 − 〈ω̃, ω̃〉D2 (7.48)

which proves uniform stability. Importantly, the problem is time-invariant, as
proved in Theorem 7.1. Hence, LaSalle’s invariance principle [220] is employed,
i.e., in the set {H(r1, ṙ1, s, ω̃)

∣
∣
∣Ḣ = 0}, we get,

[

J⊤
1 A⊤

]
[

∂Φ1

∂r1

Z⊤
1 J

⊤
2
∂Φ2

∂r2

]

=
[

J⊤
1 A⊤

]
[
∂Φ1

∂r1
∂Φ̃2

∂s

]

= 0⇒ (r1, s)→ (r1, s). (7.49)
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Figure 7.9: Time evolution of fiber origin and equilibrium with proposed control
action.

Furthermore, in the set {H
∣
∣
∣Ḣ = 0, ṙ1 = 0}, ω = 0, i.e., the fiber equilibrium

stabilizes to a stationary point. In this condition, since (r1, s) must satisfy
π−1(r1, r2), (r1, s)→ (r1, s) also implies, (r1, r2) → (r1, r2), which proves the
result.

As mentioned earlier, Corollary 6 is significant because the control law in
(7.47) achieves task-induced symmetry, while employing a single energy-like quan-
tity H. This is in contrast to prior works [51, 52] which exploited a hierarchy of
energy functions to achieve the same functionality.

The results from the application of Corollary 6 to Example 5 are shown in
Figures 7.10b and 7.11a. In Fig. 7.11a, it is seen that the Lyapunov function H
(green) decreases to origin in a non-increasing manner which validates Corollary
6. Commensurately, the fiber motion is emphasized in the Fig. 7.11b, in which
it is observed that the wandering equilibrium in the fiber, s (red) reaches a limit
value, and the actual fiber motion (blue) tracks it. The actual trajectory is
shown in Fig. 7.10b, in which the EL system is shown to asymptotically converge
to q ≡ (r1, r2).

In the next part, limit cycle phenomena are proved separately for the primary
operational space and the fiber. For this analysis, recall that A chosen as the
mechanical connection results in a block-diagonal inertia M. This eases the
following stability analysis.

Corollary 7. Consider the EL system in Theorem 7.1 with τ in (7.27) as the
control law having τu as feedforward with additional damping only for regulation
in the primary space, R1, and initial condition as K(0) = 0, such that,

τ =τ1 + τ2 + τu,







τ1 = J⊤
1 F1, F1 = −∂Φ1(r1,r1)

∂r1
−D1ṙ1

τ2 = A⊤f, f = −Z⊤
1 J

⊤
2
∂Φ2(r2,r2)

∂r2

(7.50)

where D1 ≻ 0. The closed-loop dynamics of the EL system ensures orbital sta-
bility in the fiber π−1

1 (r1), i.e., H → H
∣
∣
∣
ṙ1=0

, and EL system converges to a limit
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orem 7.1 with conserved H about the
desired equilibrium q ≡ (r1, r2) with ini-
tial condition q0 ≡ (r1, r2). Trajectory is
colour-graded from blue (t = 0[s]) to yel-
low (t = 30[s]). Motion is bounded in a
rhombus.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

r1

r2

r1

r2

q0

q

q1
q 2

(b) Damped trajectory of the 2D parti-
cle as dictated by Corollary 6 with Lya-
punov function H towards the desired equi-
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Figure 7.10: 2D particle orbit: undamped and damped.

cycle in the fiber.

Proof. The Hamiltonian, H, in Theorem 7.1 serves as the Lyapunov candidate.
Taking its time-derivative, we get Ḣ = −〈ṙ1, ṙ1〉D1 , which proves stability. The
problem is rendered time-invariant, see Theorem 7.1. Hence, the EL system
converges to the set {H

∣
∣
∣ṙ1 = 0}, in which Ḣ = 0. In this set, the wandering

equilibrium in Lemma 7.4 becomes stationary, i.e., ω = 0. Thus, due to block-
diagonal inertia, M, the top row of EL dynamics in (6.33) vanishes, resulting
in J⊤ ∂Φ1

∂r1
= 0, i.e., r1 → r1. Only the bottom row of the EL dynamics in (6.33)

remains, which is simply the geodesic equation in the fiber π−1
1 (r1) under the

scalar potential Φ̃2, i.e., ∇̂Gr1
µ̃ µ̃ = −

(

∂Φ̃2

∂s

)♯

, where∇Gr1 is the covariant derivative

on the specific fiber π−1
1 (r1). Furthermore, if K(0) = 0, then in the limit set,

H
∣
∣
∣
ṙ1=0

=
1

2
〈µ̃, µ̃〉M2 + Φ̃2(s, s(r1))

which proves the result.

Corollary 8. Consider the EL system in Theorem 7.1 with τ in (7.27) as the
control law having τu as a feedforward with additional damping only for fiber
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(a) Time-evolution of the EL system under
Corollary 6 in which Ĥ is driven to 0.
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Figure 7.11: Fully damped control motion characteristics.

regulation and initial condition as K(0) = 0, such that,

τ =τ1 + τ2 + τu,







τ1 = J⊤
1 F1, F1 = −∂Φ1(r1,r1)

∂r1

τ2 = A⊤f, f = −
(

Z⊤
1 J

⊤
2
∂Φ2(r2,r2)

∂r2
+D2ω̃

) (7.51)

where D2 ≻ 0. The closed-loop dynamics of the EL system ensures orbital sta-
bility of the primary task, i.e., H → H

∣
∣
∣
ω̃=0

, and EL system converges to a limit

cycle in the primary operational space along π−1
2 (r2).

Proof. The Hamiltonian, H, in Theorem 7.1 serves as the Lyapunov candidate.
Taking its time-derivative, we get Ḣ = −〈ω̃, ω̃〉D2, which proves stability. The
problem is rendered time-invariant, see Theorem 7.1. Hence, the EL system con-
verges to the set {H

∣
∣
∣ ˙̃ω = 0}, in which Ḣ = 0. In this set, the L.H.S. of the bot-

tom row of (7.40) vanishes, resulting in A⊤ ∂Φ̃2

∂s
= 0, i.e., s→ s ∀r1 ∈ R1. Thus,

only the top row of the EL dynamics in (7.40) remains, which is simply the
geodesic equation in the primary operational R1 under the scalar potential Φ1,

i.e., ∇̂R1
ṙ1
ṙ1 = −

(

∂Φ1

∂r1

)♯

, where∇R1 is the covariant derivative on R1. Furthermore,

if K(0) = 0, then in the limit set,

H
∣
∣
∣
ω̃=0

=
1

2
〈ṙ1, ṙ1〉M1 + Φ1(r1, r1), (7.52)

which proves the result. Also note that, since Φ̃2 → 0 as t→∞, r2 → r2.

In [225], limit cycle stabilization was achieved in the fiber, while regulating
on the primary operational space, R1. In contrast, Corollary 8 implies that limit
cycle stabilization can be achieved on R1 while regulating motion on the fiber.
This is significant because, the generated limit cycle is a geodesic of motion on
R1. To achieve this, the proposed Hamiltonian, H, which is a single quantity for
the entire EL system, is exploited in contrast to the hierarchy of two Hamiltonian
functions (one each for primary and fiber spaces) in [225].
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Figure 7.12: Time-evolution of the EL system under Corollaries 7 (left) and 8
(right), in which the Hamiltonian H reaches a steady state value by damping out
motion in one subspace.
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Corollaries 7 (left) and 8 (right). Left: Fiber equilibrium s assumes a steady
state, while the fiber coordinate tracks it. Right: Fiber coordinate s tracks the
equilibrium s, which varies due to the limit cycle in R1.

Remark 47. Note that in Corollaries 7 and 8, the Hamiltonian H does not nec-
essarily converge (t→∞) to the initial energies, Φ̃2(s(r1(0)), s) and Φ1(r1(0), r1),
respectively. It will however, converge to a value that satisfies H(t) ≤ H(0).

The results for the Corollaries 7 and 8 applied to Example 5 are shown in
Figures 7.12-7.14. In particular, the results of Corollary 7 and Corollary 8 are
shown on the left and right side, respectively. In Fig. 7.12, it is seen that the
Hamiltonian H converges to steady-state values, as postulated in the Corollaries.
In the case of Example 5, H → Φ̃2(s(r1(0)), s) and H → Φ1(r1(0), r1) on the left
and right, respectively. However, note that, in general, as in Remark 47, this
might not be the case. In Corollary 7, the EL system converges to ṙ1 → 0, or
ω = 0, i.e., the equilibrium in fiber becomes stationary. This is seen clearly in
the left of Fig. 7.13, while the EL system assumes a limit cycle in the fiber. In
contrast, on the right, the limit cycle is on R1, and s does not assume a steady
state. However, the proposed feedforward in Theorem 7.1 ensures tracking. In
Fig. 7.14, the orbit of the EL system is shown. On the left, as proved in Corollary
7, the EL system converges to a limit cycle on π−1

1 (r1). In contrast, on the right,
as proved in Corollary 8, the convergence is to a limit cycle on π−1

2 (r2).
With these results from the application of aforementioned Theorems and the

corollaries, the proposed mechanism of imposing task-induced algebraic symmetry



216 7 Task-induced Algebraic Symmetry in Motion Control

-6 -4 -2 0 2 4 6
-6

-4

-2

0

2

4

6

-6 -4 -2 0 2 4 6
-6

-4

-2

0

2

4

6

q1q1

q 2q 2

Figure 7.14: Orbit of the 2D particle as dictated by Corollaries 7 (left) and 8
(right). Left: Motion is regulated to the primary desired equilibrium r1 with a
limit cycle along its fiber. Right: Motion is regulated on the fiber with a limit
cycle along the primary operational space. Trajectory is colour-graded from blue
(t = 0[s]) to yellow (t = 30[s]).

is validated. In particular, I recall that the stabilization results here are evaluated
using a single Lyapunov candidate, in contrast to the work presented in Chapter
6. Therefore, the stability claims are applicable for the whole EL system at all
times. This type of hierarchical control was not done before.

7.5 Conclusion

In this chapter, the problem of task-induced algebraic symmetry (hierarchy) in
motion control has been solved from a Hamiltonian perspective for the entire
EL system for the first time. In motion control with redundancy, the EL equa-
tions on the task-induced fiber bundle is sufficient to ascertain stabilization with
a single task. However, introducing a secondary task makes the problem non-
Hamiltonian due to the wandering equilibrium of the fiber (nullspace) potential
that varies with the motion in the primary operational space. This phenomena
was proved analytically and demonstrated through simulation results. To pose
the control problem in the Hamiltonian framework, a novel proportional action
was proposed to ensure that a new Hamiltonian which describes the EL system
with task hierarchy is conserved. Although the new proposed Hamiltonian is
different from the original Hamiltonian of the EL system, it preserves the met-
ric tensor. The conserved Hamiltonian was demonstrated through simulation
results. The main value of this work is that it introduces the notion of motion
stabilization using non-conservative force fields. As future work, the proposed
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theory will be applied for PBC of robotic systems to experimentally validate the
system-wide stability and passivity properties. From that perspective, it appears
that task-induced algebraic symmetry could be imposed without any force sens-
ing requirement, in contrast to traditional methods in [52, 207, 209]. However,
this remains to be proved analytically.





CHAPTER 8

Applications

In this chapter, the applications which have directly benefited from the contents
of the theoretical contribution of this thesis are summarized. This gives the
reader an overview of the impact of this thesis in practice. Obviously, in some
applications, the contributions of the thesis have been modified for engineering
considerations. The mathematical aspect of these modifications can be found in
the corresponding publication related to this thesis (Tables 1.1 and 1.3), and are
referenced explicitly in each section below. The key findings are summarized with
instructive figures and plots to aid the understanding of the key concept. As is
evident from the earlier chapters, the contributions include the topics of sensor-
based control, Validation & Verification for orbital robotics, motion control and
shared control (teleoperation). The contributions are: one intravehicular ISS
mission, a dedicated V&V strategy for orbital robotics, four projects (EU,ESA)
in orbital robotics, and two KUKA-supported innovation awards.

8.1 NASA/DLR/MIT ROAM/Tumbledock:

ISS Experiments

This work focuses on the results of an experimental campaign for autonomous
rendezvous using two Astrobee robots on the International Space Station (ISS),
conducted under the ROAM/TumbleDock test campaign, a collaboration between
NASA, DLR and MIT [230]. In these experiments, one robot serves as the au-
tonomously controlled Chaser, and another as the unknown Target. The Target
mimics the anticipated tumble of the ENVISAT satellite, which is of interest for
active debris removal [42].

219
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Figure 8.1: Validation of the Observer during on-ground testing at NASA Ames
(top left), ISS Crew minimal (top right) and the final Tumbledock/ROAM2 ex-
periments in the Japanese Experiment Module on the ISS (bottom).

NASA’s Astrobee robots are free-flying robots which operate aboard the
Japanese Experiment Module in the ISS. The Astrobees enable microgravity au-
tonomy research through a sensor-suite and three reconfigurable general-purpose
processors. The Astrobees utilize impellers to provide full actuation by propul-
sion, with multiple sensors for navigation including cameras and an IMU. On-orbit
testing during the first campaign faced a significant challenge with Astrobee’s de-
fault localization module, which was prone to infeasible jumps and general high
root mean square error [230].

To this end, based on my work in Chapter 5 on internal model control, I pro-
posed a two-layer state estimation approach to the localization to overcome these
discontinuities. The proposed approach is shown in Fig. 8.2, where the extension
is highlighted in yellow. In particular, the ith Astrobee robot’s configuration in
the ISS is gi ∈ SE(3) with the body velocity Vi. First, the state (g̃i, Ṽi) is roughly
estimated by the default localization pipeline using a kinematic sensor fusion of
exteroceptive (cameras) and proprioceptive (IMU) measurements. However, the
transitioning of optical features (s) from the field of view might result in esti-
mation discontinuities, which negatively affect control performance. This was
already observed in ROAM 1 test campaign earlier. Furthermore, air circulation
in the ISS can cause a disturbance (Fi) that perturbs the desired Astrobee mo-
tion. The proposed observer was added to estimate not only the motion state
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(ĝi, V̂i) in a smooth and precise manner, but also the disturbance wrenches (F̂i). In
particular, Theorem 5.3 was employed while linearizing the observer error dynam-
ics about g−1

i ĝi = I4,4, V̂i − Vi = 0 to formulate an EKF for LP dynamics. This
was done in order to enable outlier rejection based on a stochastically-significant
threshold and measurement noise modeling for the localization pipeline, as was
shown in [231]. Additionally, in the neighbourhood of the linearization point, the
observer and the controller dynamics become decoupled, which simplified testing.

Astrobee

Dynamics

Localization

Pipeline

Model-based 

EKF Observer

Controller

ISS

Environment

Actuator model

ḡi, V̄i

ĝi, V̂i

F̂i

Fi

g̃i, Ṽi

s

q̇

Figure 8.2: Controller block diagram for the ith Astrobee, i = C for the Chaser
and i = T for the Target. Extensions to the default Localization Pipeline are
indicated in yellow.

.

The proposed observer was validated sequentially in three phases, as shown
in Fig. 8.1: On-ground validation using air-bearing test-bed at NASA Ames, fol-
lowed by Crew Minimal on the ISS, and the final ROAM test campaign. The
observer was successful in 19 out of 20 experiments in the final ROAM 2 test
campaign on the ISS, with one failure being attributable to a prolonged image
processing error. Here, I show the key experimental results for the Target As-
trobee in Figs. 8.3-8.4; the observer was also used on subset of runs for Chaser
localization improvement. The position and velocity estimates provided by the
localization pipeline (blue) and the observer (red) from Fig. 8.2 are shown in
Fig. 8.3. It can be seen that the localization estimates tend to suffer sporadic
discontinuities (dashed ellipses). The model-based observer is not affected by
these discontinuities as they are not in agreement with the Astrobee’s dynamic
model. Note that both position and velocity estimates are required for the mo-
tion stabilization of the Astrobee, and the removal of discontinuities was a major
benefit. To validate the estimation of disturbance forces, Fi, the Astrobee actu-
ators were turned off so that the commanded forces of the controller serve as a
disturbance. In Fig. 8.4, the actual (red) and the estimated (blue) disturbance
forces are shown, which demonstrates the estimation convergence. The success
of this ISS test campaign has sparked the interest of NASA to have the filter as
a part of the permanent Astrobee software stack.
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8.2 V&V Strategy for Orbital Robotics

With the rapid development of robotics technologies and powerful computing,
orbital robotic missions have emerged as a key driver to address problems, e.g.,
on-orbit servicing. Such missions require multiple subsystems, e.g., planning,
perception, motion control software, autonomy, and shared control modalities to
work reliably, especially during proximity operations. This necessitates a more
structured validation plan, to be started already during the preliminary stages
of the mission. In traditional space missions, approaches for V&V of GNC algo-
rithms have been instrumental in derisking mission preparatory activities. How-
ever, the extension to robotic missions requires a commensurate extension of the
V&V tools to possess robotics-oriented dynamic models, sensor/actuator models,
onboard computers, and math libraries. In this section, I outline my contribution
towards the approach adopted at DLR for V&V of orbital robotics technologies.
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8.2.1 Co-simulation: MIL/SIL/PIL

Once the mission requirements are roughly available, the initial phase A/B1 pro-
gresses through a sequence of rapid prototyping using model-based design tools
[232, 233]. However, contemporary tools have been aimed at GNC applications,
and the topics relevant to robotics prototyping, e.g. multibody dynamics, mo-
mentum conservation, capture dynamics, have been missing. At DLR, during the
research activity for this thesis, I have developed a co-simulation framework that
enables model/software/processor-in-the-loop, also known as MIL/SIL/PIL, see
Fig. 8.5. In particular, the framework is composed of CoppeliaSim [234] as the
physics provider and MATLAB/Simulink as the control prototyping environment.
The inter-process communication between the orbital robot and control software
was developed using Links and Nodes, while high-bandwidth data communica-
tion, e.g. for synthetic camera images, was developed using SensorNet, both of
which are developed at DLR [235]. The main novelty over the the state-of-the-art
[236] is that, my approach allows the CoppeliaSim simulation to run with a lower
time-step of 10[ms], while the communication for robot joints runs at a faster and
synchronized time-step of 1[ms] with the control software for high-fidelity torque
control. This ensures that the non-dynamics modules, e.g., graphics rendering,
are computed slower than the dynamics engine, which is not possible with the
supported API of CoppeliaSim. To achieve this, I developed an unsupported API
around the supported API, which communicates directly with the underlying dy-
namics engine that runs with a finer time-step. This co-simulation framework was
exploited in multiple projects, e.g., ESA MIRROR [66], EU EROSS+/IOD [41]
each of which will be described later. The official deliverables of these projects
have directly featured results from the co-simulation developed during this thesis.
In this co-simulation, the motion of FRM is simulated using Open Dynamics En-
gine because it preserves the symmetry of FRM’s LP dynamics, i.e., momentum
conservation [237].

8.2.2 HIL on OOS-SIM

In the Phase D of such projects, the control software was validated on the DLR
OOS-SIM facility: a robotic facility to simulate capture dynamics for orbital
robotics. The LP dynamics from Chapter 3 was implemented on a real-time
computer to simulate the motion of an orbital FRM. As shown in Chapter 4,
this implementation preserved the symmetry, i.e., momentum conservation, of
the FRM. In fact, for the mission phases of approach, grasping and post-grasping,
the total momentum of the orbital robot (Js) and the client satellite (Jc) was also
conserved, as is shown in Fig. 8.6. In the shown scenario, the satellite was spinning
around its docking axis at 1[°/s], while the orbital FRM grasped it using a free-
floating controller [29]. After the grasp event (arrow), momentum was transferred
from the satellite to the FRM. During this simulation, the bottom plot shows that
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Figure 8.5: Co-simulation environment for control prototyping in orbital robotics
missions developed during this thesis.

the total momentum Jc + Js is conserved. This proves the high-fidelity and the
real-time computation capability of the LP dynamics from Chapter 3.

Thus, through the aforementioned contributions, I extended the incremental
V&V strategy for orbital robotics at DLR, which is summarized in the Fig. 8.7.
This approach was successfully employed during the EROSS+/IOD mission de-
velopment, which was funded by the European Union [41].

8.3 EU EROSS+: On-orbit Servicing

The objective of European Robotic Orbital Support Services (EROSS+) is to
demonstrate the European solutions for the Servicers and the Serviced LEO/GEO
satellites, enabling a large range of efficient and safe orbital support services. The
demonstration mission concept includes the complete orbital rendezvous phase
of a Servicer spacecraft (FRM) with a collaborative Client satellite prepared
for On-Orbit Servicing that shall be followed by the capture and then servicing
operations. The whole idea is to validate the capability of carrying out on-orbit
operations of this type for future missions [41, 172].

8.3.1 Co-simulation: Initial Analysis

Within this project, DLR was responsible for the robotic arm subsystem, which
consisted of the CAESAR robotic manipulator [170]. For rapid control prototyp-
ing, the co-simulation framework in Sec. 8.2.1 was constructed to reflect the an-
ticipated concept of operations [41], see 8.8. This framework was used to evaluate
the controller, and an example of manoeuvre performed with the co-simulation
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Figure 8.6: Conservation of total momentum (Jc + Js) of the orbital robot and
the client satellite on the DLR OOS-SIM facility during approach, grasp and
post-grasping phases of an experiment.

for the EROSS+ project is shown in Fig. 8.8 from the initial configuration to
the capture configuration. To deal with this exteroceptive sensing, the IM-PBC
approach in Theorem 5.1 was employed, as is. The client satellite was considered
with a residual velocity of 1[°/s] when the CAESAR arm begins its approach.
During the approach, the spacecraft was required to regulate its pose using a
combined control approach. The tracking control errors were less than 5[mm]
and 0.02[°] for the platform, and less than 5[mm] and 0.5[°] for the end-effector,
as shown in Figures 8.9a and 8.9b. In compliance with the mission requirements,
the sampling rates of sensors/actuators for the platform, as well as the visual
input were considered at 10[Hz].
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Figure 8.7: An incremental V&V strategy using the co-simulator framework (dy-
namics, synthetic images, LIDAR point clouds) and HIL during thesis research.

Figure 8.8: EROSS+: Co-simulation environment for control prototyping. Or-
bital FRM approaches client satellite spinning at 1[°/s]. Left: Initial approach
configuration. Right: Final capture configuration.

8.3.2 HIL: Control Prototyping

The robotic HIL facility: DLR OOS-SIM from Sec. 8.2.2 was configured with
the anticipated masses of the spacecraft 345[Kg] and satellite 400[Kg] to validate
the control approach. Following the co-simulation from the previous section, the
IM-PBC approach from Theorem 5.1 was also used for HIL validation. The
validation results of the proposed method on the OOS-SIM are detailed therein
in Sec. 5.6.2, and are not explicitly repeated here. The reader is encouraged
to review the results. This also proves the effectiveness of the incremental V&V
approach, which begins with the MIL at an early stage (shown here), and followed
by HIL process. Through these processes, technical mission requirements, e.g.,
maximum acceptable displacement of the FRM-base, were obtained. Although
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Figure 8.9: EROSS+ results from Co-simulation environment.

the robotic manipulator on the OOS-SIM was the LWR4+, the dynamic coupling
between it and the spacecraft was analysed while keeping the identical inertia
ratios.

8.4 ESA COMRADE: Active Debris Removal

This work deals with the early phase analysis of the robotic capture of the EN-
VISAT satellite. The satellite was decommissioned in 2012 and has acquired a
complex tumbling motion in orbit which creates a hazard for neighbouring space
assets. Hence, it is being considered for debris removal using an orbital FRM
that will require combined control, i.e., use the combined effort of spacecraft and
the robotic manipulator, to approach it in a safe manner. The dynamic nature
of the mission posed challenges in motion control design and the HIL validation
[42]. In the following, I list down my contributions related to these topics.

8.4.1 Robot Navigation EKF

A Robot Navigation EKF was designed for the capture phase to simultaneously
estimate the inertial states of the two agents: FRM platform, which will un-
dergo combined actuation of the robotic arm and the spacecraft, and ENVISAT,
which is tumbling with nearly 2.5[°/s]. The scenario is shown in Fig. 8.10a, and
the corresponding sensor-suite is given in Table 8.1. On the ISS, the current
method uses an estimator for the FRM-base (ISS) followed by another one for
the Target (incoming cargo vessel) [238]. However, note that the ISS does not
produce dynamic motions and the Target is also controlled, which simplifies the
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Figure 8.10: The grasping frame, {G}, is observed in an end-effector-mounted
camera frame, {E}, and the CoM frame, {T } is observed using a base-mounted
LiDAR, {B}, to estimate the inertial motion states of both, the FRM-base and
the target, w.r.t. {I}.

estimation problem. Therefore, estimation errors are likely to propagate with a
difficult-to-model correlation, when motions are dynamic, as in ESA COMRADE.
The proposed combined EKF is advantageous over the cascaded scheme since it
performs a combined state estimation.

Table 8.1: Available Measurements on Orbital Robot

Sensor LiDAR Camera Star IMU

Tracker

Meas. {r̃bt, µ̃bt} {r̃eg, µ̃eg} µ̃b {ω̃bb, ãbb}
Rate [Hz] 10 10 10 1000

Combined state estimation poses a design challenge that the correlation men-
tioned above needs to be explicitly modeled. Traditionally, a multiplicative
quaternion filter is used that only models the quaternion error vector while as-
suming that the scalar part is unity when errors are small [238]. In the proposed
filter, two inertial orientation states (Target and FRM) were to be estimated from
relative measurements which are composed of both. This lack of observability is
resolved by using the inertial star tracker measurement, however, the main issue
lies in the linearization of the measurement error model. This is because both
inertial quaternion states are coupled, and this needs to be accounted for in the
measurement matrix of the filter. In [75, App. B], I derived this correlation
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model, which enabled the design within the multiplicative filtering framework.
The EKF also employed the symmetry of ENVISAT’s EP dynamics, i.e., momen-
tum conservation of its unforced motion, to improve estimation accuracy. For the
Phase B1 of the project, the controller structure in [64, 134] was used to track
the tumbling ENVISAT, which is based on the combined controller presented in
[44], for the reach phase and the proposed filter was implemented in the GNC De-
velopment Environment [233, 239]. It is an integrated development environment
that provides tools which are able to support the analysis, synthesis, evaluation
activities and data management, especially for a GNC design process, and was
the tool chosen for COMRADE. The results are summarized below.

Firstly, due to the limited range of operation of the camera, in the initial
part of the capture phase, there is a high possibility of the camera going out of
range. This is clearly emphasized in t ∈ [4, 5.2] [s] (dashed grey) of Figure 8.11a,
in which the component-wise camera position measurement, for measured (plus),
estimated (solid) and real (dotted) are provided. It is observed that despite
the camera being out of range, the EKF provides robust reconstruction of the
relative transforms that it measures. This ensures the normal operation of the
controller. Furthermore, it is also seen that the estimate (solid) tracks the real
(dotted) line better than the measured (plus) quantity. Secondly, noise levels
are high in unfiltered LiDAR pose measurements. This negatively affects the
performance of the base body GNC system which, in turn, affects end-effector
accuracy. Figure 8.11b shows the residuals (obtained by subtracting from ground
truth) of measurements (marked as +) and reconstructed measurements from
estimates (solid). It is evident that the proposed EKF successfully filters out the
noise of the LIDAR signal.
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Figure 8.11: ESA COMRADE: Estimation results for camera and LiDAR.

Using the proposed filter, the end-effector performance in terms of position
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and orientation control errors were 1 [mm] and 0.05[°] respectively. It is worth
pointing out that the combined controller architecture (relying on unfiltered mea-
surements) in [44] had a nominal end-effector control error of 1 [cm] and 0.5° in
orientation due to LiDAR noise. This confirms the noise reduction of the pro-
posed filter and the controller performance improvement. The details of the filter
were published in [75].

8.4.2 V&V using HIL

A typical approach to replicate a desired motion between an orbital FRM and the
client satellite on a robotic facility is to use an absolute formulation, i.e. the mo-
tion of the simulated body with respect to an inertial frame is commanded exactly
on a HIL facility with respect to its inertial frame [49, 50, 73, 240]. The absolute
representation of the dynamics can have limited applicability when replicating
the tumbling velocity of a large satellite (e.g. ENVISAT) due to workspace con-
straints. Although a kinematic scaling might be useful to address this problem,
however, it will lead to a non-physical simulation because model-based and mea-
sured forces will be different. Therefore, a relative formulation of the dynamics
is an attractive solution.

In contrast to prior work on relative dynamics implementations in [161, 165],
the proposed method ensured dynamic consistency. Specifically, the fictitious
forces of the space analogue scenario, e.g. CC forces, are experienced on the
HIL facility by commanding additional feed-forward terms. To achieve this, the
method of Lagrangian matching from Chapter 4 was applied. The key novelty
was its application while considering motions of the orbital FRM (i.e., a multi-
body Hamel’s equations) and ENVISAT (i.e., rigid-body EP equations) relative
to the nominal unforced motion of ENVISAT for a client satellite. This choice
of the nominal trajectory was motivated to employ the symmetry in the EP
dynamics of ENVISAT, i.e., momentum conservation. This means that the time-
evolution of motion on the HIL facility can be seen as relative dynamics on the
momentum level-set of ENVISAT. This novel application of the method enabled
HIL simulation while reproducing only the relative motions on the OOS-SIM, and
was crucial to achieving the V&V results of the COMRADE scenario.

The manipulator on the FRM was equipped with a gripper, which was used
to grasp the launch-adapter-ring profile attached to the client mock-up. The
phases of the experiments are shown in Fig. 8.12. The OBSW controller for
the HIL validation was designed as a nonlinear compliant controller (see [179,
§6.2.1]), which provides the actuation to perform synchronisation, approach and
capture of ENVISAT. Fig. 8.13 summarises the experimental results. On the top
row, the relative error of the manipulator and FRM-base is shown. ENVISAT
was initialised with an angular velocity of 2.5[°/s] about its major axis of iner-
tia and between t ∈ [0, 9][s] the synchronisation phase occurs, i.e. the spacecraft
regulates its pose with respect to ENVISAT. At t = 9.1[s], the manipulator arm
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synchronisation, t = 0− 9[s] approach, t = 9.1− 32.6[s] grasping, t = 32.6− 35[s]

Figure 8.12: ESA COMRADE scenario of robotic capture of ENVISAT (right)
using a FRM on the OOS-SIM facility.
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starts the approach and the capture of the ENVISAT occurs at t = 32.6[s] (see
the dashed-line) in Fig. 8.13. The bottom of Fig. 8.13 shows the relative ve-
locity of the servicer with respect to the client. It can be seen that before the
grasping, the angular error is approximately 0.2[°/s] component-wise (see between
t ∈ [15, 32.6][s]). This validation of the controller for the ENVISAT capture was
enabled by the proposed relative dynamics formulation. Commonly, a rigidisa-
tion phase (see [179, §6.2.2]) follows after the grasping and the manipulator arm
damps the remaining relative velocity, however, it was not considered within this
validation.

8.5 ESA MIRROR: On-Orbit Assembly

Autonomous on-orbit assembly is a key technology for building larger space assets.
This technology is crucial for structures which are too large to be self-deployed as



232 8 Applications

a monolithic component. For example, the new generation of space telescopes for
deep-space observations require a larger diameter, however, the sizes are currently
limited by launch vehicle sizes [241]. Hence, a suitable solution is to deliver the
structural components into the orbit in single or multiple launches to perform
the so-called in-orbit assembly.

In the ESA-funded project, MIRROR, a novel modular MAR system has been
proposed, see [47]. The MAR is composed of three modules: a torso and two sym-
metrical 7-DoF anthropomorphic robotic arms that are functionally independent
and can be connected through the Standard Interfaces (SIs) to the torso. The
modular design of the MAR reduces the complexity of the robotic system by
separating it into a smaller atomic components and recombining the manipula-
tors in different morphologies. Examples of the MAR morphology are: 1-arm,
1-arm+torso and 2-arms, which are shown in Fig. 8.14 A, B and C, respectively.
The main operations foreseen for the MAR are pick-and-place of the tiles (Fig.
8.14-D) with the torso or the arm(s), and transportation of the tiles by walking
on the telescope structure through the SIs. These operations will enable the on-
orbit assembly of larger telescope structures. In the project, a unified PBC was
designed in order to accommodate all the MAR operations for each morphology
shown in Fig. 8.14. This approach featured a primary task on the end-effector
pose without a secondary task, and stabilized the entire MAR system using a sin-
gle energy function. This is a simplified version of Theorem 7.1, in which there is
no potential in the fiber (nullspace), only damping. The proposed unified control
law was compliant against the constraint forces arising during SI closure. A key
advantage of the proposed controller is that it can operate in both decentralized
and centralized manner, and enables the usage of OBSW in each MAR atomic
component.

For control prototyping, the co-simulation framework from Sec. 8.2.1 was used,
see Fig. 8.15 and the control software was developed in MATLAB/Simulink. The
holonomic constraints of the SIs were implemented using the suctionPad function-
ality in CoppeliaSim, which creates an overlap constraint, i.e., the two pertinent
objects in close proximity will overlap their respective position/orientation to cre-
ate dynamics loop closure constraints. Specifically, the suctionPad objects were
added on each of the tiles of the breadboard shown in Fig. 8.14-D in a way that
reflected the kinematics (not geometry) of the SIs. Thus, in the event that the
end-effector of the MAR was in close proximity (below a specified threshold) of
the suctionPad object, the former will be constrained to the tile structure.

In this section, the co-simulation results of the walking operation using the
dual arm system with torso are shown for walking motion using 5 tiles. The
sequence snapshots of the walking procedure are shown in Fig. 8.15, where the
system moves from its initial position at t = 0[s] to the first tile with the Arm-1.
At t = 39[s], the SI is engaged and later Arm-2 moves towards the second tile
(t = 50[s]) to perform a second latch with the SI at t = 60[s]. In Fig. 8.16, the
error in position (left) and orientation (right) of the corresponding arm in use
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Figure 8.14: Morphologies of the MAR system in MIRROR project. A: Morphol-
ogy 1-arm, B: Morphology 1-arm+torso, C: Morphology 2-arms, D: Breadboard
of mirror tiles equipped with standard interfaces (SI), E: The manufactured MAR
prototype in MIRROR.
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Figure 8.15: 2-arms MAR-morphology: Snapshots of walking operation.

during this walking operation is shown. The results show the effectiveness of the
developed unified controller in performing multi-contact walking. The unified
PBC, proof of stability and simulation results of different MAR-morphologies
within the project were published in [66].

8.6 EU ORU-BOAS: On-Orbit Assembly

To support in-orbit assembly, the EU has commissioned the ORU-BOAS project
[168], which considers the deployment of orbital modules to perform life-extension
operations. These modules are autonomous small satellites, equipped with on-
board Reaction Control System (RCS) and reaction wheels (RWs), i.e., they are
fixed-inertia multibody systems. For assembly, two modules are mechanically
connected through a SIROM SI, as shown in [168]. Within ORU-BOAS project,
the goals were to design a centralized motion control system that can achieve
docking for assembly and its HIL V&V, see Fig. 8.17. For this scenario, a HIL
framework that replicates the relative motion of the agents in a dynamically con-
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��� Approach(t = 0) Docked(t = tf)

Figure 8.17: ORU-BOAS Scenario: Two satellite modules approach and dock
with each using the SIROM SI. The HIL facility for V&V was developed using a
single robotic system, while ensuring that the total momentum of both satellites
is integrated in software for dynamic consistency.

sistent way is a promising solution, as was shown in Sec. 8.4.2. However, therein
the formulation was considered relative to a nominal trajectory, which required
the computation of two dynamic models and also acceleration measurements,
which are computational and sensory overheads.

To address these problems, a momentum-shape dynamics formulation for a
fleet of multibody modules was proposed in ORU-BOAS. The contribution was
the sequential application of reduction theory (LP-dynamics from Chapter 3) for
each module followed by passive decomposition theory [242, 243] for the fleet of
modules. The latter step describes the formation using a global LP-dynamics
formulation that splits the formation’s motion into the total momentum and the
relative configurations (shape). Two complementary control laws: Free-flying and
Hierarchical, are proposed to enable on-orbit assembly by regulating the total and
relative motions of the modules. The free-flying control law is an extension of
Theorem 5.1. In this, the observer was not considered to retain focus on pure
motion control, and the shape potential Φq = 0 because the reaction wheels are
not controlled in position but velocity. The hierarchical control law prioritizes the
momentum subsystem and converges in shape as a secondary task, and hence, its
convergence sequence is exactly the opposite of Theorem 5.2. However, note that
even this sequence is an outcome of the passive feedback interconnection of LP
systems in Theorem 3.4. The free-flying control law prioritizes convergence, while
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Figure 8.18: Control (left, Sat-1) and Interaction (right) wrenches on the HIL
during approach and docking maneuver.

the hierarchical controller optimizes fuel efficiency. The Cartesian tasks in such
missions are time-constrained and necessitate a fast response from the actuators.
To achieve this, both control approaches are based on inertia-shaping of RWs’
actuator dynamics and passivity-based control of the Cartesian dynamics. Third,
a novel HIL framework is realized and experimentally validated on the DLR OOS-
SIM and LWR4+, wherein the relative motion is reconstructed on the hardware
while simulating momentum in software. The key benefit of this approach is that
acceleration measurements are avoided in contrast to [54]. Furthermore, a single
robotic system is used to generate relative motions, see Fig. 8.17. The proposed
free-flying controller is experimentally validated using this HIL approach.

The results from an experiment in the V&V campaign is shown in Figures
8.18-8.20. The two satellites with initial conditions, as shown in Fig. 8.17, were
required to achieve docking using the SIROM SI. In the left of Fig. 8.18, the
actuation of the Sat-1, F1 resulting from the free-flying controller [57, Th. 1] is
shown on the left, and in the centralized scheme Sat-2 has an equal and opposite
actuation. In particular, the initial phase (double arrow) is the actuation required
for the approach phase, whereas the docking happens in t > 25[s]. Note that the
actuation forces during docking are due to the control action to compensate for
the initial misalignment when the satellites are constrained by the SIROM SI.
The interaction wrench, F̃ , measured using the FTS in the HIL is shown on the
right. In particular, in the inset, it can be seen that the wrenches stabilize in
t > 33[s] which validates the docking procedure. The torques (τ1), saturated at
0.1[N.m]) and velocities (θ1) of the reaction wheels, which were considered in the
dynamic model of the HIL during the experiment are shown in Fig. 8.19. For the
controller, the tracking (left) and the setpoint (right) position errors are shown in
Fig. 8.20. Note that after docking there are some residual position errors, which
are responsible for the forces in Fig. 8.18.
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tralized free-flying controller on the HIL during approach and docking maneuver.

8.7 KUKA Innovation Awards

This section deals with industrial engagement of topics in this thesis through
KUKA Innovation Award [244]. In this annual competition, KUKA AG provides
a robot to demonstrate research solutions that address a specific class of industry-
relevant challenge. Although the focus is on technological implementation, it
enables prototyping research results through a demonstrator. The specific events
listed below are those in which I was a part of the team. Naturally, for engineering
purposes, the corresponding thesis contributions are used in a modified form for
engineering purposes, which I explicitly outline in the descriptions below.

8.7.1 Automatica (2023): Open Platform challenge

For a FRM, although automatic control [35, 134, 245] is the crowning glory, its
technology-readiness for unplanned tasks, e.g. tactile inspection, opening-closing
fluid values, might not be satisfactory [246]. In this case, teleoperated control
[246, 247], emerges as a pragmatic approach because it employs the advantage
of human intuition for corrective actions, see Fig. 8.22. Such a method was ex-
ploited in [247] to grasp a satellite. This approach, however, does not consider
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prolonged interactions encountered in a inspection/maintenance task, which re-
quires the fully-actuated (free-flying) control of the FRM to avoid drifts. In
the KUKA Innovation Award 2023, the objective for our team (SPIRIT) was to
demonstrate robotic maintenance of industrial infrastructure using the DLR Sus-
pended Aerial Manipulator (SAM) system [248]. To this end, the motion control
required the teleoperated control of the to open/close a fluid value, see Fig. 8.21.

A

B

C

{Ê}

{I}

{B}

{E}
{Î}

Figure 8.21: KUKA Innovation Award 2023 scenario: A: KUKA LBR iisy 3 R760
used as haptic device, B: Teleoperation system for human guidance, C: Remote
SAM system closing a fluid value in an industrial maintenance activity.

This demonstration of shared control required the following features:

1. Bilateral Teleoperation Controller (BTC) [249–251]: An archetypal teleop-
eration approach which stabilizes a coordination task error, i.e., the error
between the desired motion generated by the human operator using a haptic
device and the motion of the remote robot. In this method, the measure-
ments of positions (P) and interaction forces (F) from the two agents are
transmitted over communication channels.

2. Partitioned Shared Controller (PSC) [252]: Fully-actuated control of FRM
introduces redundancy for in situ execution of a secondary task, e.g., regula-
tion of the FRM-base configuration within safety limits during interaction-
oriented tasks while considering the BTC task as primary.

To this end, I proposed a novel passivity-based free-flying PSC, which per-
forms a primary interaction-oriented coordination task, e.g. tactile sensing, and
an in situ secondary task for operational safety, e.g. collision avoidance. The pre-
liminary validation of this approach was performed for the orbital FRM, which
might also require the aforementioned features, e.g., to perform extravehicular

https://www.kuka.com/en-de/future-production/innovation-and-research/kuka-innovation-award/kuka-innovation-award-2023
https://www.youtube.com/watch?v=FS8Hcwu6N7I&ab_channel=KUKA-Robots%26Automation
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Figure 8.22: Teleoperation scenario. A: Teleoperator with haptic device; B:
Remote orbital FRM and its environment.

tactile inspection, see Fig. 8.22. The LP dynamics of the orbital FRM from
Chapter 3 are exploited in the control design, which avoids the ideal velocity
tracking assumption in [246], to obviate acceleration measurements of the haptic
device and human-related sensitivity in the spacecraft actuation. In particular,
the control law assumes the form in Theorem 5.1. However, the analysis was per-
formed without the observer to retain focus on the PSC concept. This means that
the control law assumes the form as in (5.20), in which the symmetry-breaking
potential Φb consists of both the BTC coordination task and the secondary FRM-
base regulation task, while Φq = 0. Additionally, the BTC coordination task re-
quires tracking the human guidance input, so (5.20) was augmented with tracking
feedforward terms. This control law is published in [55, Th. 1].

For the validation, the control sequence is summarized in Fig. 8.23, which
consists of: free approach, maintain static contact, and perform sliding contact.
The end-effectors of the haptic device and the remote orbital robot in Fig. 8.22
were equipped with FTS to measure the teleoperator and environment interaction
wrenches, respectively. The results of the experiment are summarized through
the plots in Figures 8.24-8.25, wherein 1-3 and 4-6 are the translational and rota-
tional bases, respectively. In the plots, the time intervals for static (t ∈ [48, 95][s])
and sliding (t ∈ [120, 145][s]) contacts are highlighted using solid and dashed ver-
tical lines, respectively. The tracking performance of the BTC coordination task,
i.e., the position errors, re, and the orientation errors, ∆R = sk(η̆e)

∨.180
π

, between
the end-effector poses of the orbital robot and the haptic device are shown in Fig.
8.24.A-8.24.B, respectively. The component-wise mean errors for the whole ex-
periment were (−4.6,−9.1,−3.1)[mm] and (−2.2, 2.5, 0.24)[°], respectively. The
measurements of the dynamically consistent teleoperator wrench1, F̂h, and the
negated end-effector interaction wrench, −Fe, are shown in Fig. 8.25.A-8.25.B,

1The wrench is scaled correctly to account for differences in inertia tensor between the
haptic and remote robotic systems.
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t = 40[s] t = 75[s] t = 130[s]

A B C

Figure 8.23: Control sequence in the experiment. A: Approach; B: Static contact;
C: Sliding contact.

respectively. During interactions, F̂h is opposite in sign and approximately equal
to Fe, which indicates a high degree of transparency for the teleoperator. In
Fig. 8.25.C, the spacecraft actuation in the orbital robot’s end-effector frame, {Ê},
i.e., F̂b, is shown. Juxtaposing this with Fig. 8.25.B shows that the spacecraft ac-
tuation provides the exact stabilizing wrench during interactions, and highlights
the free-flying functionality of the proposed method. At the end (t > 150[s]),
the biases in (re,∆R) and F̂h in Figures 8.24, and 8.25.A, respectively, are due
to common HIL modeling errors, e.g. gravity compensation and static friction,
which appear as a quasi-static disturbance for the proposed method. However,
the stability of the system equilibrium holds, as proved in [55, Lemma 2].
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Figure 8.24: BTC coordination task error, A: position error, re; B: orientation
error, ∆R.

It is worth pointing out some differences of the proposed method w.r.t. the
orbital FRM and the SAM system. In the orbital case, the spacecraft has 6-
DoF actuation through thrusters, whereas in SAM system, the thrust is gen-
erated using propellers. Notably, SAM’s propellers are designed for pendulum
motion stabilization, not gravity compensation. Therefore, the controllability of
the propellers is limited to the yaw and horizontal plane, red arrow in Fig. 8.21.
Therefore, while the FRM-base task is posed on SE(3) for the orbital robot, it is
limited to SE(2) for SAM. With these modalities in view, the motion control sys-
tem featuring BTC and PSC features were implemented on SAM for the KUKA
innovation Award 2024, as shown in [Jongseok]. Therefore, the findings in [55]
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Figure 8.25: A: Dynamically consistent teleoperator wrench, F̂h; B: Negated end-
effector interaction wrench, −Fe, C: Spacecraft actuation in the orbital robot’s
end effector frame ({Ê}), F̂b.

for orbital robotics proved to be the basis for the industrial maintenance appli-
cation, which was implemented by co-contributors for the event with additional
features like extended reality and deep-learning based perception. In fact, our
work in KUKA Innovation Award 2024 has secured funding from DLR to perform
market research towards a business case in which the work proposed in [55] is a
key technology for shared control functionality.

8.7.2 Hannovermesse (2024): Robots for the people

In KUKA Innovation Award 2024, the objective for our team (YANTRA) was
to demonstrate robotic assistance for handloom sustainable textiles. For the
project development, the robotic manipulator provided by KUKA was LBR iisy
R1300 (6-DoF), see left of Fig. 8.26. In this robot, the tool center point (TCP)
that is required to be controlled has a non-collocated set of three joints that
contribute towards the orientation task, see right of Fig. 8.26. This was due
to the long links towards the end of the serial kinematic chain to increase the
robot’s reachability [253]. However, this had the negative effect that a small
change in the desired orientation translates to a large reconfiguration of the arm.
Consequently, the uncertainties like friction and gravity errors on the large inertia
elements negatively affected the overall orientation accuracy of the end-effector.
During development, it was observed that the conventional Cartesian impedance
control law [254, eq. 3] provided unsatisfactory orientation control.

Additionally, in the considered tasks, the main goal of the end-effector was to
achieve a desired pointing with respect to the surface. Due to the axial symmetry
of the end-effector, the rotation about the pointing axis is of secondary impor-
tance. To address the orientation control problem, I proposed the approach in
Theorem 6.1 to create a task-induced variational symmetry, i.e., it prioritizes the
pointing requirement as a primary task (along with the translational part), while
utilizing the nullspace (fiber) of the robot to achieve the secondary requirement
of rotation about the pointing axis. The details of the primary and secondary
potentials are outlined below.

https://www.kuka.com/en-de/future-production/innovation-and-research/kuka-innovation-award/kuka-innovation-award-2024
https://event.dlr.de/en/hm2024/yantra/
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Figure 8.26: Cartesian control of robotic manipulator. Left: In traditional Carte-
sian control, the pose of {E} w.r.t. {I}, i.e., ge ≡ (Re, pe) is regulated about a
desired setpoint ge ≡ (Re, pe). Right: A primary pointing requirement such that
the Direction Cosine Vector (DCV) Rz aligns with Rz (yellow), while the angle
around the pointing axis (magenta) is secondary.

The end-effector body Jacobian is written as translational and rotational parts
as, J⊤ =

[

J⊤
v J⊤

ω

]

[8, §3.4]. The rotational part can be further written compo-

nentwise as, J⊤
ω =

[

J⊤
ωx J⊤

ωy J⊤
ωz

]

. The rotation matrix for the end-effector is
written as,

Re =
[

Rx Ry Rz

]

(8.1)

where R(•) ∈ R3 is the DCV along the direction indicated by the superscript. For
example, Rz is the vector ez =

[

0 0 1
]

in {E} expressed in {I}. Note that
the DCV satisfies the condition of the sphere, i.e., R⊤

z Rz = 1, Rz ∈ S
2. Thus,

controlling the variable Rz results in control on the S2 sphere. The time-derivative
of the DCV is written as,

Ṙz = ωe×
Rz = −(Rz)×ωe = −(Rz)×Jω(q)

︸ ︷︷ ︸

J1

q̇ (8.2)

The pointing error is indicated using a scalar potential function as,

Φ1p : S2 → R+, Φ1p(Rz, Rz) = K1(1− 〈Rz, Rz〉), K1 > 0 (8.3)
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Its time-derivative is written as,

d

dt
Φ1p = K1〈Rz, (Rz)×ωe〉 = 〈(K1Rz)×Rz, ωe〉 = 〈(K1Rz)×Rz, Jωq̇〉 (8.4)

Note that J1 ∈ R3×n, however, is not full-rank because of the sphere constraint
R⊤
z Rz = 1. Thus, using SVD, its nullspace basis can be obtained as, shown in

Lemma 6.3. In this work, the proportional control torques for the axial angle
error are projected to the fiber (nullspace). To that end, let the current angle
about the Rz axis be θ ∈ S1 and its desired setpoint be θ ∈ S1. Therefore, the
axial error is determined as, θ̃ = θ − θ. Thus, the total primary task potential
and the secondary potential are written as,

Φ1 =
1

2
||re||2K + Φ1p, Φ2 =

1

2
〈θ̃, θ̃〉k (8.5)

where re ∈ R3 is the position error, K ≻ 0 and k > 0. The control law with varia-
tional symmetry was obtained using Theorem 6.1, and applied to the robot. The
results are shown in Fig. 8.27. In particular, on the top left, it is seen that the
robot converges in the primary operational space, while the secondary configu-
ration error (bottom) suffers from a steady-state error due to inaccurate gravity
errors, friction etc. On the right, the SE(3) impedance control is compared with
the proposed control in terms of the misalignment error (α) by commanding three
successive trajectories. While the former suffers errors upto 12[°], the proposed
approach reduces the alignment error, thus, enabling task execution using the
provided robot.

8.8 Conclusion

This chapter presented practical applications of the work developed during the
thesis research. These applications were a part of international projects with a
consortium of space agencies, eminent aerospace companies and robot manufac-
turers. The methods have been validated either on real robotic hardware or tools
that have been recommended by space agencies. These applications have been
officially a part of work packages in funded projects, and hence, the impact of
the thesis contributions have a financial value attached to it.

The practical applications from this thesis, however, are a part of an incre-
mental progress narrative. Indeed, in the on-going ESA-funded RISE/ADRIOS-II
mission, the co-simulation tool from Sec. 8.2.1 is being used in collaboration with
the spacecraft manufacturer, D-Orbit, and the robotics manufacturer, Kinetik.
The digital twin of the mission is used for integration of developments by both
manufacturers so that the MIL/SIL/PIL phases can be achieved for evaluation
by the ESA. In this mission, the pointing-prioritized motion control law from
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Figure 8.27: Controller performance for KUKA Innovation Award 2024.

Sec. 8.7.2 has been proposed to grasp a the launch adapter ring using a circu-
larly symmetric multi-contact mechanism. The combined state estimation for
the FRM-base and the client statellite proposed in Sec. 8.4.1 that employs the
robotic manipulator’s kinematics has become a mission-standard now, see the
ESA-funded follow-up of COMRADE in [255]. This approach is also being used
currently within the EU-funded EROSS-IOD mission. The output-feedback com-
bined control approach from this research [64], as in Sec. 8.4, is being used in early
phase mission analysis within the CNES-funded DIANE mission for grasping a
spinning satellite. Even in academia, the published works from Table 1.1 that
have been referenced in this chapter have featured in high-impact survey papers
on space robotics [256–260].





CHAPTER 9

Conclusion

In the current age, robotic mechanisms have emerged as a practical reality to
address conveniences and contingencies of human endeavour across all media:
land, sea, air and space. Over the years, these robotic mechanisms have evolved
into articulated systems, which are characterized by variable inertia with a non-
Euclidean geometry in their configuration spaces. For such a mechanism, it is
intuitive to model the dynamics as an Euler-Lagrange (EL) system and analyze
its motion control stability in terms of geometric quantities like energy. This gen-
eral approach is the geometric principle behind Passivity-Based Control (PBC).
For the special class of EL systems with symmetry, known as Lagrange-Poincaré
(LP) systems, Noether’s invariance (symmetry) was instrumental in developing
the view of a higher dimensional motion as variations of a lower dimensional shape
in level-sets of momenta (possibly conserved). Our knowledge of the dynamics
of contemporary robotic mechanisms is already on the precipice that requires a
deeper understanding of symmetry for solving practical motion control problems.
In particular, Lagrangian symmetry occurs naturally in a Floating-base Robotic
Mechanism (FRM), and is a behavioural requirement in hierarchical motion con-
trol. However, a common theory based on symmetry that unifies the dynamics
and control synthesis for this class of problems in robotics was missing. Thus,
this development was imminent, and is the primary contribution of this thesis.

The research towards this thesis has made one of the first strides towards
employing symmetry in dynamics and motion control of robotic mechanisms. I
have exploited the symmetry of FRM to develop a deeper understanding of its
dynamics, which aided the design of a motion control framework for LP systems.
For systems that do not have a natural symmetry, but require a behavioural
symmetry, as in hierarchical motion control, I developed an approach that syn-
thesizes an artificial symmetry to create a LP system. This enables the direct
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Figure 9.1: Employing symmetry in dynamics and motion control of robotic
mechanisms: From theory to application.

application of the aforementioned control framework. In this way, the proposed
theory in this thesis exploits symmetry when available, or gives an approach to
synthesize it when required.

This thesis fills the identified research gaps, while amalgamating the topics
of symmetry from geometric mechanics with dynamics and motion control from
robotics. Using the symmetry of FRMs, I derived a novel computation of its
LP dynamics. This novel computation was employed to design a momentum-
consistent HIL simulation framework for orbital robotic missions. Following this,
the LP dynamics derived in this thesis were also used to design observer-based
PBC control approaches for such systems with inherent symmetry. By revealing
the passive feedback interconnection between the shape and momentum subsys-
tems of LP systems, I derived a formal framework for hierarchical motion control.
On the other hand, for EL systems that lack symmetry, the proposed control the-
ory was employed to impose a hierarchy in task execution after synthesizing an
artificial symmetry. The multidisciplinary topics in the thesis were structured in
an incremental flow of theoretical treatment, which were validated by simulations
and hardware experiments. A brief outline of the contributions are summarized
in Fig. 9.1, and is also written below.

Chapter 2 proposed a comprehensive theory of constrained EL systems and
linked it to the concept of symmetry. I showed that the presence of a constraint
results in a fiber bundle topology of the total configuration space. In this bundle
formalism, the shape space refers to the motion orthogonal to the constraint.
This approach helped generalize the modeling of motion for two key subtopics
in robotics: dynamics of FRM and the dynamics of hierarchical motion control.
While the former is characterized by the special structure of a Principal Fiber
Bundle (PFB) topology, the latter results in a general fiber bundle topology.

Corresponding to the PFB of a FRM, a novel computation of its LP dynam-
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ics was derived in Chapter 3. This computation split the CC matrix into two
parts according to the velocity dependencies. In particular, the first one varied
with the shape, while the latter varied with momentum. This decomposition
was pivotal in revealing the passive feedback interconnection between the shape
and momentum subsystems. This interconnection provided the stepping stone
for designing PBC approaches for motion control. Furthermore, using the LP
dynamics, a generalized Poinsot theorem was proved, which provided a geometric
visualization of the FRM’s motion.

In Chapter 4, the proposed LP dynamics for the FRM was employed to de-
velop an on-ground HIL framework for performing V&V of orbital missions. In
particular, the proposed dynamics were a significant improvement in eliminating
sensory overheads, like acceleration measurements, and ensuring momentum con-
sistency. The proposed HIL framework was advantageous in that it unified the
use of different On-ground Robotic facilities that are developed during the course
of an orbital mission through a substructuring approach.

Chapter 5 used the passive interconnection from Chapter 3 to propose sensor-
based PBC approaches for the FRM. In practice, the floating-base and the artic-
ulated mechanism of the FRM are equipped with sensors and actuators that have
different underlying physical principles. To this end, the proposed sensor-based
PBC was proved to be effective against practical problems (e.g., sensor noise,
actuation lag) arising from the hybrid nature of FRM.

Chapters 6 and 7 generalize the aforementioned PBC approach for LP sys-
tems to general EL systems. This is relevant for practical robotic applications
that require a task-induced hierarchy in motion control, but might not possess
a symmetry in the desirable directions of the configuration space, e.g., using a
fixed-base robot. In Chapter 6, a control approach was proposed to ensure hierar-
chical convergence of energy functions, while the approach in Chapter 7 ensured
hierarchical convergence of the tasks with a single energy function. In contrast
to prior works, the key advantage in the above two approaches is that the hier-
archical behaviour of the EL system is prescribed by virtue of its metric tensor
and task potentials.

As detailed in Chapter 8, the work in this thesis contributed towards several
projects/missions funded by ESA (MIRROR and COMRADE), EU (ORU-BOAS
and EROSS-IOD), NASA (TUMBLEDOCK) and KUKA (Innovation awards
2023/24). The contributions of this thesis are a part of ongoing development
in robotics, and it is prudent to have an overview of future work. The on-ground
HIL framework is used in EU EROSS-SC and ESA GEA-RISE missions. The
sensor-based motion control approaches are being integrated into the overall on-
board architecture for these missions. The output-feedback combined control
approach from this thesis will be used in early phase mission analysis within the
CNES-funded DIANE mission for grasping a spinning satellite. The fiber bun-
dle framework and the hierarchical motion control approaches of this thesis will
be used to create a geometry-informed control policy generator, e.g., NVIDIA
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RMPflow. The benefit of having a priori knowledge of the desirable metric be-
haviour will be exploited for integrating with physics-informed learning methods
to achieve hierarchical motion control.

Thus, the key achievements of the thesis have enabled subtopics, each of which
will exploit symmetry to improve the utility of robots in practical applications.
This thesis is multidisciplinary in that it makes contributions to the diverse fields
of dynamics, simulation, observer-based motion control and hierarchical control,
which are unified within the context of symmetry. In conclusion, it has provided
a framework to address a class of motion control problems in robotics using the
same formalism that is used today to explain motion phenomena in the universe.

“ An intellect which at a certain moment would know all forces that
set nature in motion, and all positions of all items of which na-
ture is composed, if this intellect were also vast enough to submit
these data to analysis, it would embrace in a single formula the
movements of the greatest bodies of the universe and those of the
tiniest atom; for such an intellect nothing would be uncertain and
the future just like the past would be present before its eyes [261]. ”

P.S. Laplace, Essai philosophique sur les probabilités, 1825
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Appendix

Lemma A.1. Equivalence of inner products: Given ρ ∈ Rn and σ ∈ Rn as body
trivializations of a vector and its covector respectively, and likewise ρ′ ∈ Rn and
σ′ ∈ Rn as corresponding trivializations in inertial space, then,

〈ρ, σ〉 = 〈ρ′, σ′〉 = c0, c0 ≥ 0

A.1 SE(3) Group and Properties

A.1.1 Introduction

In this section, relevant details about motion on the SE(3) group are provided.
The reader is referred to the Appendix A.1.2 for the matrix descriptions of intro-
duced quantities. The pose of a rigid-body is a matrix representation of SE(3),
which is written as g ≡ g(R, p), where R ∈ SO(3) is the rotation matrix and
p ∈ R3 is the position. The identity of the SE(3) group is I4,4, where Ik,k is an
identity matrix of dimension k×k. The tangent space at I4,4 is the se(3) algebra,
which is referenced in body and spatial frames. Analogously, the cotangent space
at I4,4 is denoted as se(3)∗. The se(3) algebra and its dual se(3)∗ are isomorphic
to the space of velocity twists and wrenches on R

6 using (•)∧ : R6 → se(3), se(3)∗

and (•)∨ : se(3), se(3)∗ → R6, e.g. given a twist, V ∈ R6, V∧ ∈ se(3). The ad-
joint action, Ad : se(3)→ se(3), of a pose g transforms elements of se(3) algebra
between spatial and body frames as Vs = AdgV, see [10]. The adjoint map of
the se(3) algebra onto itself is ad : se(3)→ se(3). This is denoted by adV and
its coadjoint map is ad⊤

V : se(3)∗ → se(3)∗. The SE(3) group and its algebra are
endowed with a diffeomorphism map, exp : se(3)→ SE(3) and its inverse map,
log : SE(3)→ se(3) (see [62]).

249
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A.1.2 Matrix Representation

Given a rigid-body pose g ≡ (R, p) ∈ SE(3) with body velocity V =
[

ω⊤ v⊤
]⊤

,
the following quantities are detailed,

g =

[

R p
01,3 1

]

, V∧ =

[

ω× v
01,3 0

]

,

Adg =

[

R 03,3

p×R R

]

, adV =

[

ω× 03,3

v× ω×

]

,

(A.1)

where (•)× is a skew-symmetric matrix for the vector, and ω (v) is the angular
(linear, respectively) velocity. For kth-link (see Sec. 2.6.1) with mass, mk > 0, the

moment of inertia, Ik ∈ R3×3 ≻ 0, and momentum hk =
[

hTω hTv
]T

= MkVk,

Mk =

[

Ik 03,3

03,3 mkI3,3

]

, ad∼
MkVk

=

[

hω× hv×

hv× 03,3

]

. (A.2)

Property A.1. Corresponding to a SE(3) action of g ∈ SE(3), the following
properties hold,

• Adg adV Ad−1
g = adAdgV (A.3a)

• Ad⊤
g ad∼

MV Adg = ad∼
Ad⊤

g MV (A.3b)

Property A.2. [262, Lemma 1]: Given x ∈ R6 and a pose g ∈ SE(3), which
varies as ġ = gV ∧ with body velocity V ∈ R

6 ∼= se(3), the following holds,

dAdg
dt

x = AdgadV x. (A.4)

Property A.3. [262, Lemma 2]: Given a frame with a pose g ∈ SE(3), which
is time-varying as ġ = gV ∧, where V ∈ R6 ∼= se(3) is the frame body velocity, the
time-derivative of a covector y ∈ R

6 ∼= se(3)∗ in this frame is given by,

d

dt
y = ẙ − ad⊤

V y, (A.5)

where ẙ is the componentwise time-derivative (see [23, §2.10]), and ad⊤
V y ac-

counts for the basis change of the time-varying frame, and encapsulates the SE(3)
structural coefficients.

A.1.3 Proof in Property 2.3

The first part follows because Mk is a constant and ad∼
MkVk

is skew-symmetric.
For the corollary, a time-varying frame {C} with a pose gc ∈ SE(3) is considered,
which is a right translation of gk, i.e., gc = gkgkc, where gkc ∈ SE(3) evolves as
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ġkc = gkcV
∧
kc. In the basis of {C}, V̄k = Ad−1

kc Vk, and taking its time-derivative
using (2.52) and Prop. A.1 from Appendix A.1 leads to,

M̄k
˙̄Vk + (−ad∼

M̄kV̄k
+ M̄kadVkc

)V̄k = F̄k, (A.6)

where M̄k = Ad⊤
kcMkAdkc and F̄k = Ad⊤

kcFk. In (A.8), for x ∈ R6,

x⊤
( d

dt
M̄k − 2(−ad∼

M̄kV̄k
+ M̄kadVkc

)
)

x = 0 (A.7)

is satisfied, which proves the invariance of the skew-symmetry to a change (time-
varying) of basis, i.e., a frame transformation.

A.2 Multibody Dynamics

A.2.1 Passivity/Skew-symmetry

Given a mechanical system with velocity V ∈ Rm and inertia M , the unforced
motion equations result from the kinetic energy, κ = 1

2
〈V, V 〉M , as,

MV̇ + C(V )V = 0, (A.8)

where CV is the CC force.
Passivity in (A.8), i.e., V ⊤

(

Ṁ − 2C
)

V = 0, is pivotal in Lyapunov stability
analysis of controller designs [25, 27], in which, the time-derivative of kinetic
energy, κ̇ is computed. Using (A.8), κ̇ = V ⊤

(
Ṁ
2
− C

)

V , and passivity implies
κ̇ = 0, i.e., 0 power flow due to the CC force.

In specific control problems like tracking [134] and observer design [62], a
kinetic-like energy function appears as κ̂ = 1

2
〈w,w〉M , where w ∈ Rm is, for exam-

ple, a velocity error. In such cases, the time-derivative of κ̂ contains w⊤
(
Ṁ
2
− C

)

w,
which is not 0 despite passivity. Hence, a stronger skew-symmetry property is
desired for the C matrix to conclude 0 power flow due to the CC wrench.

A.2.2 Proof of Lemma 2.14

The velocity of the kth link is Vk = Tk(q)V and its time-derivative is written as
V̇k = Tk(q)V̇ + Ṫk(V )V . Substituting this in (2.52) for all links, pre-multiplying
T⊤
k on both sides and considering that the constraint reaction wrenches disappear

after projection results in (3.1) with M,C as in (3.2). Note that an iterative loop
is required in Lemma 2.14, and Tk and Ṫk are obtained beforehand in this loop
through a recursive computation, as shown in [22, §VI].



252 A Appendix

A.2.3 Proof of Lemma 3.2

Substituting V̇ = Lξ̇ + L̇ξ in (3.1), and multiplying L⊤ on the L.H.S results in
(3.4) with Λ,Γ as numerical transformations of M,C (in underbraces of (3.4)).

Property A.4. Given the FRM (see Fig. 3.1) defined in Def. 3.1, for V ∈ R6 ∼=
se(3),

∑

k

Ad−⊤
1k ad⊤

Ad−1
1k

VMkAd−1
1k = ad⊤

VMb. (A.9)

Proof. Using (A.3a) in Prop. A.1 from Appendix A.1 for simplification of L.H.S,
followed by substitution of the iterative expansion of Mb from (3.3), the result
follows.

The following identities related to J̃k will be used for the proof of Theorem
3.2.

Lemma A.2. The following identities hold true.

∑

k

Ad−⊤
1k Mk J̃k = 06,n (A.10a)

∑

k

Ad−⊤
1k Mk

˙̃Jk =
∑

k

Ad−⊤
1k ad⊤

Jk q̇
Mk J̃k (A.10b)

∑

k

Ad−⊤
1k ad∼

MkJ̃k q̇
Ad−1

1k = 06,n (A.10c)

∑

k

Ad−⊤
1k ad⊤

Ad−1
1k
µ
MkJ̃k = 06,n (A.10d)

∑

k

Ad−⊤
1k (ad⊤

Jk q̇
− ad⊤

J̃kq̇
)MkJ̃k = 06,n (A.10e)

Proof. To prove (A.10a), in the iteration of (3.3), the expression of J̃k is used
instead of Jk, while all the other identities are a direct consequence of (A.10a),
(A.3a) and (A.3b) from the Prop. A.1 in Appendix A.1.

A.3 Stokes’ Theorem for the FRM

A.3.1 Stokes’ Theorem

Let us assume J = 06 ⇒ µ = 06 for simplicity of exposition, which reduces (5.4)
to

ġ1 = g1(−Alq̇)∧, (A.11)
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and that the initial condition is g1(0) = I4,4. Under an abelian group assumption1

for g1, the solution for (A.11) is [124],

g1(tf) = exp
( ∫ tf

t0
−Alq̇dt

)

= exp
( ∫

∂U
−Aldq

)

, (A.12)

where for X ∈ R6, exp(X) ≡ exp(X∧) is the SE(3) exponential [10]. Note that
the time-integral is replaced by a path-integral over a path ∂U . For a closed path,
i.e., gait, Stokes’ theorem [124] is applied to convert the path integral in (A.12)
to an area integral over the area U ,

g1(tf) = exp
(

−
∫ ∫

U
DAldA

)

, (A.13)

where, (DAl)(x)y = (dAl)(x)y − adAlxAly is a map DAl : Rn ×Rn → se(3) and
is the local curvature, i.e., the covariant derivative of the local connection form
Alx along shape trajectories given by y, and dA is a differential area that is pa-
rameterized by the basis vectors x, y ∈ Rn. The integral of (dAl)(x)y in (A.13)
is the nonconservative contribution and captures the change in mechanical con-
nection due to change in shape. Likewise, the integral of the Lie bracket term
−adAlxAly is the the primary non-commutative contribution and captures the
change in mechanical connection due to non-commutativity of SE(3) [20].

A.3.2 FRM-base Displacement over a Gait

Plotting the curvature, DAl, component-wise over the gait’s domain produces
the CCF surfaces, see Fig. A.1. By computing the CCF surface volume under
the gait area, we obtain the corrected Body Velocity Integral (cBVI), i.e., ζ in
(2.48). Using this, an approximate δĝ1 = exp(ζ) per gait cycle is obtained [20].
We elaborate the main idea for a 2-joint FRM (see Fig. 2.11), and hence the gait
is defined by the shape basis vectors (q1, q2) ∈ R2. In Fig. A.1, the CCF for the
kth component2, (DAl)k is plotted on the left as a surface with an overlay of a
circular gait (red). On the right of Fig. A.1, the volumetric mesh of the CCF
surface under the gait area (red) is shown. The positive sense (arrows) is given by
the direction of gait is execution. By computing the volume of the CCF surfaces
for each component (k), we obtain the corresponding component, ζk. Finally,
exp(ζ) = δĝ1 is the approximation of the net displacement of the FRM-base, δg1,
over the gait.

1The assumption is used to explain the main idea. However, SE(3) is not an abelian
group, and despite the failure of the assumption, the presented theory was shown to be an
approximation of the exact solution [20, 124].

2In se(3) ∼= R6, k = 1, ..., 6, where the first three indices refer to the rotational and the last
three to the translational bases, respectively.
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Figure A.1: CCF surface for the kth basis corresponding to a gait (red circle)
using 2-joints, and its zoomed in mesh volume (right) under that gait area, which
provides an approximate estimate of FRM-base displacement per gait.

A.4 Derivations in Lemma 3.3

A.4.1 Proof of (3.7)

The momentum equation [16, eq. 6] is,

〈dp
dt
, η〉 = 〈p, [(−Alq̇ +M−1

b p)∧, η∧]∨〉, η ∈ R
6. (A.14)

Moving η to the left on L.H.S and R.H.S after using SE(3) Lie-bracket isomor-
phism, [x∧, y∧]∨ = adxy, x, y ∈ R6, substituting p = Mbµ and, eliminating η
yields the result.

A.4.2 Proof of (3.8)

To obtain closed form expression for Ñ in (3.8), we recall [5, eq. 3.11.19]3, which
provides a scalar product form in terms of body momentum, p = Mbµ, as,

〈Ñ, δq〉 = −
〈

p, (dAl)(q, q̇, δq)− [(Alq̇)∧, (Alδq)∧]∨

+
1

2

∂(Mb
−1p)

∂q
δq + [(Mb

−1p)∧, (Alδq)∧]∨
〉

.
(A.15)

In (A.15), as in Appendix A.4.1, the isomorphism, [x∧, y∧]∨ = adxy is used.
Also, in vector notation, (dAl)(q, q̇, δq) = (dAl)(q, q̇)δq. Furthermore, we get
∂(Mb

−1p)
∂q

= −Mb
−1 ∂Mb(Mb

−1p)
∂q

. Moving all δq terms towards the left in both L.H.S
and R.H.S of (A.15), and substituting p, we get,

3In [5, eq. 3.11.19], the µ-dependent terms are on the L.H.S.
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〈δq, Ñ〉 =
〈

δq,
(

− (dAl)(q, q̇)⊤ −A⊤
l ad⊤

Alq̇
)Mbµ

+
1

2

∂µ⊤Mb(q)µ

∂q
−A⊤

l ad⊤
µMbµ

)〉

.
(A.16)

Removing δq variations, we get Ñ in (3.8).

A.5 Computation of LID Matrix: Lemma 3.7

The following Lemma, which is an application of [22, Prop. 4], is key to the proof
in Lemma A.4.

Lemma A.3. Given a column-wise detail of link Jacobian as, Jk =
[

J1
k ... Jnk

]

for the kth link, using [22, Prop. 4] for the jth joint and a velocity X ∈ R6 ∼= se(3),
we have,

∂Ad−1
1kX

qj
= −adJj

k
Ad−1

1kX

⇒ ∂Ad−1
1kX

∂q
=

[

−adJ1
k
Ad−1

1kX ...
]

.

(A.17)

Lemma A.4. The partial derivative of the scalar form 〈x, y〉Mb
, x, y ∈ R6 with

respect to q is computed as,

∂

∂q
〈x, y〉Mb

=
∑

k

(

Πk(x)⊤ + Π̃k(x)
)

y = S(x)⊤y, (A.18)

∑

k

Πk(x)⊤ =
∑

k

J⊤
k ad⊤

Ad−1
1k
xMkAd−1

1k , (A.19)

∑

k

Π̃k(x) =
∑

k

J⊤
k ad∼

MkAd−1
1k
x
Ad−1

1k . (A.20)

Proof. Considering that Ad1k ≡ Ad1k(q), note that,

∂

∂q
〈x, y〉Mb

=
∑

k

∂

∂q

((

Ad−1
1k x

︸ ︷︷ ︸

r(q)

)⊤
Mk

(

Ad−1
1k y

︸ ︷︷ ︸

s(q)

))

=
∑

k

((∂r(q)

∂q

)⊤
Mks(q) +

(∂s(q)

∂q

)⊤
Mkr(q)

)

=
∑

k

Πk(x)⊤y + Πk(y)⊤x,

(A.21)

where Πk(z) = Ad−⊤
1k Mk

∂Ad−1
1k
z

∂q
. Now, we invoke Lemma A.3, and apply the prop-

erty, adJj
k
Ad−1

1k x = −adAd−1
1k
xJ

j
k in it. Isolating, J jk to obtain Jk, we first obtain

∂Ad−1
1k
x

∂q
= adAd−1

1k
xJk. Substituting this in Πk yields (A.19).
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The result in second of (A.21) can be conveniently rewritten as a linear opera-
tor form as (A.18) such that Πk(y)⊤x = Π̃k(x)y. This velocity exchange property
appears similar to the one in (2.56) and is actually a consequence of it. By simply
exploiting the property in (2.56) in Πk(y)⊤x, we obtain (A.20).

A.6 Proofs about Key Properties in Sec. 3.6

A.6.1 Proof of Prop. 3.2

The first follows straightforwardly. The second follows by using the corresponding
matrix expansions in (3.26a) and (3.26d). For the third, fourth and fifth, ad∼

Mbµ
,

B̃ in (3.26e) and Dµ in (5.3), respectively, are skew-symmetric. The final claim
is evident in the velocity dependencies of Dq̇,Dµ.

A.6.2 Proof of Prop. 3.4

Using the first of (3.39) in (3.26a), we conclude that Λq is invariant. The sec-
ond of (3.39) implies that the reduced joint torques, τ −A⊤

l F1, in (5.3) are also
invariant. In (3.26d), Γ̃′

q is invariant because its computation depends on body
Jacobians, J̃k, which are invariant to spatial frame transformations. Finally, sub-
stituting µ = Ad1cµc in (5.3) and using (3.40), we conclude that the CC torques
are invariant. Thus, the invariance of the shape dynamics in (5.3) to frame
transformations follows. The second follows straightforwardly from Prop. 3.3. In
particular, x⊤( d

dt
M̄b − 2P̄ )x = 0 for x ∈ R6 is the multibody equivalent of the

corollary in Prop. 2.3.

A.6.3 Proof of Theorem 3.3

The iterative form of the curvature is obtained by matching (3.8) and the bottom
row of (5.3). Following Remark 19, by elimination, the only remaining terms are
−B̃(µ)q̇ in (5.3) and −((DAl)(q, q̇))⊤Mbµ in (3.8), which are equal4. Considering
a generalized velocity x instead of q̇, (3.26e) is reformulated as −B̃(µ)x = B(q, x)µ
to obtain the new matrix operator in (3.43). This reformulation of −B̃(µ)x is
performed by applying the properties adXY = −adYX, (2.56), and the proposed
Prop. 3.1. Hence, by equating, −B̃(µ)x = B(x)µ = −((DAl)(q, x))⊤Mbµ, we get
the result in Theorem 3.3. In particular, we further isolate the exterior derivative

4This observation has also been remarked in [145, §4]
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operator as,

(dAl)(x)y = −M−1
b

(

− S(Alx) + P (x)Al

+
∑

k

(

J⊤
k (Mk∇JkX + 2MkadJkx

)

Ad−1
1k

)⊤
)

.
(A.22)

A.6.4 Proof of Corollary 2

Substituting x = y, the final term in BT cancels out because adXX = 0. Applying
Prop. 3.1, the two middle terms cancel each other. In the first term, using (3.27),
all the terms cancel out and yield the result.

A.6.5 Proof of Prop. 3.5

The transformed curvature, DAcl , is obtained using (3.42), but with the dy-
namics matrices Mb,B referred in the basis of gc, i.e., M̂b = Ad⊤

1cMbAd1c and5

Bc(q, x) = B(q, x)Ad1c, as DAcl = M̂−1
b Bc(x)⊤. Substituting the constituent ma-

trices yields the result.

A.6.6 Proofs used in Theorem 3.2

A.6.6.1 Proof of Lemma 3.9

The partitions of the CC matrix, Γ, in (3.28) are expanded by using partitions of
T̃ from (3.21) of Remark 17. The main idea of this proof is to start from these
expressions and separate the terms according to their velocity dependencies for
each of the four blocks of Γ in (3.28). In fact, the key feature of the CC matrix
structure in (5.3) is the isolation of different terms according to the dependency
on shape (q̇) and locked (µ) velocities. This step will also reveal the LIV matrix
structure defined above in (3.22).

Expanding the CC matrix, Γ, using (3.21) yields

Γb =
∑

k

Ad−⊤
1k (−ad⊤

Vk
Mk −Mk adJkq̇)Ad−1

1k (A.23a)

Γbq =
∑

k

Ad−⊤
1k (−ad⊤

Vk
MkJ̃k +Mk

˙̃Jk)

=
∑

k

Ad−⊤
1k (−ad⊤

Vk
Mk + ad⊤

Jk q̇
Mk)J̃k

(A.23b)

Γqb =
∑

k

J̃⊤
k (−ad⊤

Vk
Mk −Mk adJk q̇)Ad−1

1k (A.23c)

Γq =
∑

k

J̃⊤
k (−ad⊤

Vk
MkJ̃k +Mk

˙̃Jk), (A.23d)

5In the new basis, µc = Ad−1

1c µ, which is substituted in B to get Bc.
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where (A.10b) is used to get (A.23b). For the proof, Γ is factorized to obtain
(q̇, q̇), (q̇, µ) and (µ, µ) coupling forces. The key idea is to use (3.21) to write
Vk = Ad−1

1k µ+ J̃kq̇ and split ad⊤
Vk
Mk in (A.23) as the sum of contributions de-

pending on q̇ and µ, as,

ad⊤
Vk
Mk = (ad⊤

Ad−1
1k
µ

+ ad⊤
J̃kq̇

)Mk. (A.24)

• Γb in (3.29): We simplify (A.23a) by splitting ad⊤
Vk

as,

Γb =
∑

k

Ad−⊤
1k

(

−
(

ad⊤
Ad−1

1k
(µ−Al q̇)

+ ad⊤
Jk q̇

)

Mk −Mk adJkq̇

)

Ad−1
1k

(A.25)

The summation in (A.25) is eliminated after using the expansion for P (q̇) from
(3.22), and applying Prop. A.4 (Appendix A.2). This yields (3.29) in Lemma
3.9.

• Γbq in (3.30): After expanding J̃k in (A.23b), we obtain,

Γbq =
∑

k

Ad−⊤
1k

(

ad⊤
(−Ad−1

1k
µ−J̃k q̇+Jk q̇)

Mk

)

J̃k

=−
∑

k

Ad−⊤
1k

(

ad⊤
Ad−1

1k
µ

+ ad⊤
(J̃k q̇−Jk q̇)

)

Mk J̃k
(A.26)

Using Prop. A.4 (Appendix A.2) and applying (A.10d) and (A.10e) straight-
forwardly yields (3.30).

• Γqb in (3.31): Using (A.24) and the form of J̃k from (3.21) to expand the terms
in (A.23c), we get,

Γqb =
∑

k

J̃⊤
k

(

− ad⊤
(Ad−1

1k
µ+J̃k q̇)

Mk −Mk adJk q̇

)

Ad−1
1k

=
∑

k

((

− J⊤
k ad⊤

Ad−1
1k
µ

+A⊤
l Ad−⊤

1k ad⊤
Ad−1

1k
µ

− J̃⊤
k adJ̃kq̇

)

Mk − J̃⊤
k Mk adJkq̇

)

Ad−1
1k .

(A.27)

Upon expanding, followed by invoking Prop. A.4 (Appendix A.1.2) for the
second term, the matrix A⊤

l ad⊤
µMb is obtained. Therefore, (A.27) is rewritten

as in (3.31).

• Γq in (3.32): The Γq matrix in (A.23d) is expanded as in (3.32) by simply
using (A.24).
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A.6.6.2 Proof of Lemma 3.10

In the proof, the following identities are used for the block matrix expansions
(underbraced parts) of Γqb and Γq, which were obtained in Lemma 3.9.

B1(q̇)µ =
∑

k

J̃⊤
k

(

ad∼
MkAd−1

1k
µJ̃k −MkadAd−1

1k
µJk

)

q̇

= B3(q, µ)q̇
(A.28)

Γ′
q(q̇)q̇ =

∑

k

J̃⊤
k (−ad∼

MkJ̃k q̇
J̃k +Mk

˙̃Jk)q̇

= Γ̃′
q(q, q̇)q̇

(A.29)

S̃(µ)⊤µ =
1

2

∑

k

(Π⊤
k + Π̃k)µ =

1

2
S(µ)⊤µ (A.30)

These three identities follow straight forwardly by using (2.56) and adXY =
−adYX for rearrangement. Applying these identities to the L.H.S of Lemma
3.10, we obtain all the terms, but B̃ = −(B2 + B3). Expanding B̃, using J̃k, and
(A.10d) to cancel terms results in (3.26e).

Lemma A.5. Consider an EL system with q ∈ Q, which is moving due to a
time-invariant gauge potential comprising of a scalar potential, V (q), a magnetic
potential A(q). The motion equations describe the electromagnetic geodesic for
this system as,

M(q)q̈ + C(q, q̇)q̇ = −dV − B(q)q̇ (A.31)

where B = ∂A
∂q
− ∂A

∂q

⊤
is skew-symmetric, i.e., x⊤Bx = 0 for x ∈ Rn.

Proof. In this case, the magnetic Lagrangian [94, §3] is used and written as,

L = T − V + 〈q̇, A(q)〉 (A.32)

We obtain the two parts of the L.H.S in (A.31) as,

d

dt

∂L

∂q̇
=M(q)q̈ + Ṁ(q, q̇)q̇ + Ȧ(q, q̇) (A.33)

∂L

∂q
=

1

2

∂

∂q
〈q̇, q̇〉M(q) −

∂V

∂q
+

∂

∂q
〈q̇, A(q)〉 (A.34)

In (A.33) and (A.34), respectively, through algebraic manipulation, we get,

Ȧ(q, q̇) = q̇⊤∂A(q)

∂q
= A(q)q̇,

∂〈q̇, A〉
∂q

= A(q)⊤q̇ (A.35)

Using (A.35) in (A.33) and (A.34), and writing (A.31), we obtain B = A−A⊤,
and hence, (A.31).

Note that Lemma A.5 generalizes the Lorentz force law, see [263, eq. 16],
for a curved configuration space, Q, (Christoffel symbols in C) and replaces
the magnetic force using a skew-symmetric tensor B. A corollary is that the
Hamiltonian is written as H = 1

2
〈q̇, q̇〉Q + V (q), and is conserved.
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